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Abstract. We characterize k–colorability of a simplicial graph via the intrin-

sic algebraic structure of the associated right-angled Artin group. As a conse-
quence, we show that a certain problem about the existence of homomorphisms
from right-angled Artin groups to products of free groups is NP–complete.

1. Introduction

Let Γ be a finite simplicial graph with vertex set V = V (Γ) and edge set E =
E(Γ). We say that Γ is k–colorable if there is a map κ : V → {1, . . . , k} such that if
{v, w} ∈ E then κ(v) �= κ(w). The map κ is called a k–coloring of Γ. The minimal
k for which there exists such a map κ is called the chromatic number of Γ and is
denoted χ(Γ).

The problem of finding a k–coloring of a given graph is fundamental in graph
theory, and has many applications in discrete mathematics, computational com-
plexity, and computer science. Determining whether a given graph is 3–colorable is
known to be NP–complete, as is determining a graph’s chromatic number [1,7,15].

As such, determining the existence of a k–coloring of a graph is a fundamen-
tal problem in theoretical complexity theory, with a plethora of applications to
both theoretical and applied computer science; for instance, several cryptographic
schemes based on the 3–colorability problem have been proposed, such as a post-
quantum public key encryption known as Polly Cracker [17], and a zero-knowledge
proof system for graph 3–colorability [8].

This paper studies k–colorings of graphs via algebraic methods, specifically right-
angled Artin groups [3]. To a finite simplicial graph Γ, we associate the right-angled
Artin group A(Γ) via

A(Γ) = 〈V (Γ) | [v, w] = 1 if and only if {v, w} ∈ E(Γ)〉.

It is well-known that the isomorphism type of A(Γ) determines the isomorphism
type of Γ [4, 14, 16], so that the graph theoretic properties of Γ should be reflected
in the algebra of A(Γ). We are generally interested in the following problem:
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Problem 1.1. Let P be a property of finite simplicial graphs. Find a property Q
of groups such that Γ has P if and only if A(Γ) has Q.

In order for Problem 1.1 to be interesting, one should insist that Q be a property
of the isomorphism type of a group only. In particular, one should disallow reference
to a generating set.

One reason for interest in Problem 1.1 is that it can provide insight into various
graph theoretic problems and their computational complexity from the more flexible
point of view of the algebraic structure of A(Γ). Moreover, algebraically formulated
problems can be approached using an arbitrary presentation for A(Γ), without
reconstructing the full underlying graph of A(Γ).

Here are some instances where a satisfactory answer to Problem 1.1 is known:

(1) The graph Γ is a nontrivial join if and only if A(Γ) decomposes as a non-
trivial direct product [18].

(2) The graph Γ is disconnected if and only if A(Γ) decomposes as a nontrivial
free product [2].

(3) The graph Γ is square–free if and only if A(Γ) does not contain a subgroup
isomorphic to a product F2 × F2 of nonabelian free groups [11, 12].

(4) The graph Γ admits an independent set D of vertices such that every cycle
in Γ meets D at least twice if and only if the poly-free length of A(Γ) is
two [10].

(5) The graph Γ is a cograph (i.e. a P4–free graph) if and only if A(Γ) is
contained in the class of finitely generated groups which contains Z and is
closed under taking direct products and free products [12, 13].

(6) The graph Γ is a finite tree or a finite complete bipartite graph if and only
if A(Γ) is a semidirect product of two free groups of finite rank [10].

(7) The graph Γ admits a nontrivial automorphism if and only if the group
Out(A(Γ)) of outer automorphisms of A(Γ) contains a finite nonabelian
group [5].

(8) A sequence of graphs {Γi}i∈N forms a graph expander family if and only
if the cohomology rings {H∗(A(Γi), F )} over an arbitrary field F form a
vector space expander family [6].

In this paper, we prove the following result which characterizes the existence
of a k–coloring of a graph Γ (and in particular the chromatic number of Γ) via
right-angled Artin groups, thus providing an answer to Problem 1.1 when P is
k–colorability.

Theorem 1.2. Let Γ be a finite simplicial graph with n vertices. The graph Γ is
k–colorable if and only if there is a surjective map

A(Γ) →
k∏

i=1

Fi,

where for 1 ≤ i ≤ k the group Fi is a free group of rank mi, and where

k∑

i=1

mi = n.

We note that the number of vertices of Γ is a canonical invariant of the isomor-
phism type of A(Γ), since this is simply the rank of the abelianization of A(Γ).
We state Theorem 1.2 as we do because of the conciseness of the hypotheses and
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the conclusion, though in the course of the proof it will become clear that we can
weaken the hypotheses somewhat. For instance, the target groups need not be free,
but may be replaced by groups with the correct Betti numbers in which infinite
order elements have (virtually) cyclic centralizers. This last hypothesis is satisfied
in all Gromov hyperbolic groups [9], for instance. Moreover, we need not assume
that φ is surjective — it suffices that φ induces an isomorphism on first rational
homology.

Theorem 1.2 has the following easy consequence, which is of interest from the
point of view of complexity theory.

Corollary 1.3. Fix k ≥ 3. The problem of determining whether a right-angled
Artin group A(Γ) surjects to a product of k free groups, the sum of whose ranks
equals |V (Γ)|, is NP–complete.

Proof. It is a direct consequence of Theorem 1.2 and the fact that the k-colorability
problem is NP–complete for k ≥ 3 (see for example [7]). �

2. Proof of Theorem 1.2

There is only one difficult direction in our proof of Theorem 1.2. The following
easy lemma handles the “only if” direction.

Lemma 2.1. Suppose Γ is a simplicial graph on n vertices which is k–colorable.
Then A(Γ) admits a surjection as in Theorem 1.2.

Proof. Let κ be a k–coloring, and write Vi = κ−1(i) ⊂ V . If {v, w} ∈ E then v ∈ Vi

and w ∈ Vj for suitable indices i �= j. We may thus form a quotient G of A(Γ) by
imposing the relation [a, b] = 1 for all pairs a ∈ Vi and b ∈ Vj for i �= j. Clearly the
result will be a right-angled Artin group A(Λ), where

Λ = V1 ∗ V2 ∗ · · · ∗ Vk

is the join of the sets {V1, . . . , Vk}. Since for all i the set Vi is totally disconnected
in Γ (and hence in Λ), it is easy to see that A(Λ) is a direct product of free groups
with ranks {|V1|, . . . , |Vk|}, and that

k∑

i=1

|Vi| = n,

as desired. �

We now turn our attention to the “if” direction. Suppose

φ : A(Γ) →
k∏

i=1

Fi = G

is a surjection as in Theorem 1.2. We will fix notation and write {v1, . . . , vn} for
the vertices of Γ and wi = φ(vi). Recall that mi stands for the rank of Fi. We
write X = {x1, . . . , xn} for a generating set of G, where

Xi = {x1+
∑

j<i mj
, x2+

∑
j<i mj

, . . . , x∑
j≤i mj

}

generates the subgroup

{1} × · · · × {1} × Fi × {1} × · · · × {1}.
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For each xi ∈ X and g ∈ G, we write expxi
(g) for the exponent sum of xi in g, i.e.

the image of the element g under the homomorphism G → Z which sends xi to 1
and xj to 0 for j �= i.

If g ∈ G is arbitrary, we write g = g1 · · · gk, where gi ∈ 〈Xi〉. It is easy to see
that this expression for g is unique.

Lemma 2.2. Suppose g, h ∈ G are elements such that [g, h] = 1. Write g =
g1 · · · gk and h = h1 · · ·hk. Then for all 1 ≤ i ≤ k, the tuples

(expα(gi))α∈Xi
, (expα(hi))α∈Xi

are rational multiples of each other.

Note that the map

gi �→ (expα(gi))α∈Xi

just computes the image of gi in the abelianization H1(Fi,Z), using the images of
elements of Xi as an additive basis for Zmi .

Proof of Lemma 2.2. Fix i arbitrarily. If one of these tuples consists of all zeros
then there is nothing to show. Otherwise, we may suppose that these tuples are
nontrivial for both gi and hi. In particular, we must have that both gi and hi are
nontrivial group elements of 〈Xi〉. The centralizer of a nontrivial element of a free
group is cyclic, so that then gi and hi must share a common nonzero power. Since
the exponent sum map is a homomorphism, the lemma is now immediate. �

We will require the following fact from linear algebra, which we include for
completeness.

Lemma 2.3. Let M be a complex n × n matrix of rank n, let 1 ≤ k ≤ n − 1 be
an integer, and consider the block decomposition M = (M1 | M2), where M1 is an
n× k matrix. There exist k rows {r1, . . . , rk} which have the following properties:

(1) The submatrix M ′
1 of M1 spanned by the rows {r1, . . . , rk} has rank k.

(2) The submatrix M ′
2 of M2 obtained by deleting the rows {r1, . . . , rk} has rank

n− k.

Proof. We have that the determinant of M is nonzero, since M is invertible. We
may now expand the determinant about k × k–subminors of M1. That is, we
consider a submatrix M ′

1 of M1 spanned by k rows, and the submatrix M ′
2 of M2

obtained by deleting the k rows used to define M ′
1. We then consider the complex

number ζ = (detM ′
1) · (detM ′

2). An easy application of the Leibniz formula shows
that detM is an alternating sum of the complex numbers ζ, as M ′

1 ranges over all
possible choices of k rows. Since detM �= 0, there is a choice of M ′

1 and M ′
2 so that

the corresponding value of ζ is nonzero. In particular, such a choice of M ′
1 and M ′

2

gives the desired matrices of the correct ranks, whence the lemma follows. �

The following lemma completes the proof of Theorem 1.2.

Lemma 2.4. Let φ : A(Γ) → G be a surjective homomorphism as above. Then Γ
admits a k–coloring.

Proof. Since the abelianizations of A(Γ) and G are both isomorphic to Zn, we have
that the induced map

φ∗ : H1(A(Γ),Q) → H1(G,Q)
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is an isomorphism. We express this map as a matrix with respect to the additive
bases {v1, . . . , vn} for H1(A(Γ),Q) and {x1, . . . , xn} for H1(G,Q), so that

φ∗(vi) = [wi] =

n∑

j=1

βi
jxj

for suitable coefficients βi
j . With respect to these bases, φ∗ is represented by an

n× n matrix A = (βi
j) with rank exactly n, where here βi

j denotes the (i, j)–entry
of A. We write A as a block column matrix

A = (A1 | · · · | Ak),

where the column space of Ai has dimension exactly mi.
Consider the matrix A1. Since φ∗ is an isomorphism, we have that the row space

of A1 has dimension m1. We may therefore choose an m1 × m1 minor B1 of A1

with rank m1. By Lemma 2.3, we may assume that deleting the first m1 columns
of A and the rows which appear in B1 results in a matrix of rank exactly n−m1.
We perform a row permutation of A to get a matrix A′, so that the rows of B1 are
the restriction of the first m1 rows of A′ to the first m1 columns of A′.

Deleting the first m1 rows and columns of A′ results in a matrix of rank exactly
n −m1. Repeating this process for each block column matrix results in an n × n
block matrix

B = (B1 | · · · | Bk)

with the following properties:

(1) The matrix B is obtained from A by permuting rows.
(2) The rows with index set Ji = {(

∑
j<imj) + 1, . . . ,

∑
j≤imj} of Bi have

rank mi.

Observe that the rows of B correspond to the group elements

{wi = φ(vi)}ni=1,

where we have relabeled the elements {v1, . . . , vn} so that φ(vi) corresponds to the
ith row of B. We define κ : V → {1, . . . , k} by κ(v�) = i if � ∈ Ji. It remains to
check that κ is a valid coloring of Γ. Suppose that κ(v) = κ(w) = i for distinct
vertices of V . Then the elements [φ(v)] and [φ(w)] in H1(G,Q) correspond to
linearly independent rows of the block Bi. We have that if {v, w} ∈ E then v and
w commute. Lemma 2.2 implies that the rows corresponding to [φ(v)] and [φ(w)]
in the block Bi are rational multiples of each other, which is a contradiction. We
conclude that {v, w} /∈ E, so that κ is a valid coloring of Γ. �

Observe that the proof of Theorem 1.2 builds an explicit coloring of Γ using
the image of V (Γ) under φ. In principle, an algorithm which takes as input the
surjection from Theorem 1.2 and outputs a coloring of Γ can be implemented, and
even in polynomial time.

More precisely, let Γ be a graph with n vertices and let φ be a surjection from
A(Γ) to a product of k free groups of total rank n, given in terms of generators. We
can compute the map induced by φ on abelianizations in time which is linear in the
complexity of φ. Let M be the resulting matrix and N a bound on the maximum
of the entries of M , in absolute value. Following the proof of Theorem 1.2, we
break M into submatrices M1 and M2, and compute a sequence of determinants
of submatrices of M1 and M2, of which there are at most polynomially many as a
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function of n. All this would require a computation time which is bounded by a
polynomial in n and N . This allows us to sort the rows of M as in the proof of the
theorem and therefore produce a k–coloring in polynomial computing time.

It it straightforward to see that one can start with a k–coloring of Γ and produce
the surjection φ in polynomial time.
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