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Abstract

We consider the problem of eliciting truthful responses to a survey question, when the re-

spondents share a common prior about which the survey planner is agnostic. The planner would

therefore like to have a universal mechanism, which would induce honest answers for all possible

priors. If the planner also requires a locality condition that ensures that the mechanism payoffs are
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determined by the respondents’ posterior probabilities of the true state of nature, we prove that,

under additional smoothness and sensitivity conditions, the payoff in the truth-telling equilibrium

must be the logarithmic function of those posterior probabilities. Moreover, the respondents are

necessarily ranked according to those probabilities. Finally, we discuss implementation issues.

Key words: proper scoring rules, robust/universal mechanisms, Bayesian Truth Serum, mechanism

implementation, ranking experts

JEL codes: C11, D82, D83, M00



1 Introduction

Consider a problem of truthful elicitation of responses in a population of Bayesian agents who share a

common prior.1 We allow the survey planner to be ”agnostic” about the prior (although the planner

may have beliefs about the prior, she prefers to keep these beliefs private). The true outcome about

which the responses are elicited is not verifiable. If the (lack of) respondent honesty or care is an issue,

the survey planner may want to implement an incentive-compatible mechanism or ’scoring rule.’ We

say that a multi-person scoring rule is (strictly) incentive compatible, if, for each respondent π, when

every other respondent responds truthfully, then providing the honest answer (strictly) maximizes that

respondent’s π expected score. Incentive compatible scoring rules play a major role in survey studies

in various fields, most notably in economics and business. Thus, it would be of high value to both

researchers and practitioners in numerous applications to characterize usable incentive-compatible al-

gorithms. Are we to expect a variety of such algorithms, or is the incentive-compatibility a rather

restrictive property? We show in this paper that, under a fairly natural ”equilibrium-locality” con-

dition, the property is more on the restrictive side, and guides us to an algorithm well-known in the

literature. We now further elaborate more on the precise nature of our results.

Prelec (2004) introduced an algorithm based on two inputs by each respondent: a declaration of the

respondent’s type and his belief about the distribution of the type declarations by other players. BTS

has two important properties (Prelec, 2004). First, it is strictly incentive compatible (IC), i.e., strict

truth-telling is an equilibrium, so that the agents’ “types” corresponding to their true responses, are

fully revealed 2. Second, the BTS equilibrium score of a respondent is, up to a linear transformation,

equal to the logarithm of his posterior probability of the true state of nature , so that BTS ranks

respondents by posteriors, henceforth called Posterior Ranking. We say that the BTS mechanism

results in logarithmic scoring. BTS has been successfully applied in various fields, including new

product adoption, Howie, Wang and Tsai (2011), economics and psychology, Kukla-Gryz, Tyrowicz,

Krawczyk and Siwinski (2015), knowledge design, Miller, Bailey and Kirlik (2014) and criminology,

Loughran, Paternoster and Thomas (2014).

The motivating questions for our paper are: Under which conditions do equilibrium payoffs gen-

1For example, a market survey in which the respondents are asked whether they would buy a particular new product.
2In fact, we show that all strict equilibria in the BTS framework are either truth-telling or a types-permutation of

truth-telling, and the scores are unique up to a linear transformation.
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erated by a strictly Incentive Compatible scoring rule necessarily correspond to logarithmic scoring?

Under which conditions must a strict Incentive Compatible equilibrium satisfy Posterior Locality?

That is, under which conditions are equilibrium payoffs essentially equivalent to BTS payoffs?

Our main results are the following. We identify two conditions on equilibrium payoffs that we name

”Posterior Locality”, and a ”Separation of Variables” property. The main theorem says

Incentive Compatible + Posterior Locality + Separation of Variables −→ logarithmic scoring.

The second result says

Incentive Compatible + Posterior Locality −→ Posterior Ranking.

To make these statements more precise, we describe now our setting in more detail. There is a

state of nature drawn from a finite set, and an infinite population (for application purposes one can

think of having a large population). There is a planner who asks each respondent to submit responses

to a questionnaire. The respondents are players in a Bayesian game, with each player rewarded by the

planner according to a score that depends on his responses and the responses of everyone else. Each

player has a type, where types take values in a finite set. The variation in types can be interpreted

as a consequence of players observing varying signals. (As was shown in Radanovic and Faltings

(2013), and in this paper using a different proof, reporting only types cannot lead to a truth–telling

equilibrium.) 3 The types are conditionally i.i.d. with respect to the state of nature, so that there

is a single probability distribution, the “prior”, that describes the joint distribution of the state of

nature and types. We assume that the prior is common knowledge among players, but unknown to

the planner ex-ante.

Let us now recall the notion of proper scoring rules in a framework with only one respondent.

Consider a random variable Ω, taking values in {1, . . . , N}, N > 1, representing the state of nature.

Based on the respondent’s declarations, his belief about the distribution p̃ = (p̃1, . . . , p̃N) of Ω is

implied. As a consequence, if the outcome Ω = i occurs, the respondent is paid Fi(p̃). In the

3We expect that our results would still hold approximately for finite, but large sample sizes. The exact theory for

the finite case is very different and left for future research. For some elements of the finite case theory within the

information-theoretic setup see Cvitanić, Prelec, Radas and Šikić (2019).
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multi-respondent setting of this paper, each i will itself be a distribution, but over the beliefs of the

respondents. In that case, if p̃ is implied by respondent’s answer and if the outcome Ω = i occurs, we

will refer to p̃i as his “local posterior”.

With only one respondent, a family of functions {Fi}i=1,...,N is called a strictly proper scoring rule

if it is incentive compatible for truth-telling, that is, the respondent’s expected payoff is maximized

at his true belief, the respondent’s posterior, denoted by p. More precisely, for all probability vectors

p̃ 6= p, we have
N∑
i=1

piFi(p) >
N∑
i=1

piFi(p̃). (1.1)

There are many proper scoring rules. A general characterization with many examples is provided in

Gneiting and Raftery (2007)4. An important special case arises if Fi(p) = Fi(pi) depends only on the

local posterior, which is the probability pi the respondent assigns to the outcome Ω = i that is actually

realized, and does not depend on how probabilities are divided among the remaining counterfactual

outcomes. In that case, the scoring rule is necessarily equal to a linear transformation of the logarithm

of pi (Savage (1971), Bernardo (1979)). Such a rule is a natural choice if the local posterior is interpreted

as a measure of respondent’s expertise, that is, if the quality of respondent’s signal/type is measured

by the probability assigned to the true state of nature.

As mentioned above, in the multi-player setting the values of Ω are interpreted as distributions

of the types in the infinite population, and posterior as the probabilities that a type assigns to those

values. We do not allow all distributions, but only finitely many. In practice, the respondents would

be given a discretized choice of distributions, for example, “Do you think the percentage of votes for

candidate A will fall in the range 0-10%, 10-20%, ...”. Assuming that our game has a strictly type-

separating equilibrium, our results depend only on the form of equilibrium payoffs, and not on the

actual scoring rules that lead to those payoffs. The Posterior Locality condition posits that equilibrium

payoffs Fi in the state Ω = i are functions of local posteriors, that is, of the posterior probabilities of

the event Ω = i.

Anticipating our results, we show now that, under mild smoothness conditions, if the equilibrium

payoffs Fi satisfy a property analogous to (1.1), the difference in the state i scores of two respondents

with local posteriors pi and qi, respectively, has to be approximately proportional to log(pi)−log(qi) for

4Offerman, Sonnemans, Van De Kuilen and Wakker (2009) consider the case in which the respondents may have

non-expected utilities, with only two possible states of nature.
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q ≈ p, up to the first order. To explain what we mean by that, assume now, for simplicity of notation,

the case with two types, with local posteriors pi and qi. If a player implies, by his responses, local

posterior pi, he receives Fi(p
i, qi), and if he implies qi, he receives Fi(q

i, pi). The incentive compatibility

of the family {F}i, as generalized from the one-player incentive compatibility (1.1) of proper scoring

rules, means that the solution to the problem

min
qi

{∑
i

pi[Fi(p
i, qi)− Fi(qi, pi)] + λ

∑
i

qi

}

is qi = pi, where λ is a Lagrange multiplier for the constraint
∑

i q
i = 1. The first order condition for

the above problem is, denoting by ∂x the partial derivative with respect to the x argument,

∂qFi(p
i, pi)− ∂pFi(pi, pi) = − λ

pi

In the one player case, this reads F ′(pi) = λ/pi, and results in the log function as the only proper

scoring rule that satisfies locality. In our multi-player case, we fix pi and expand the score difference

up to the first order as a function of qi around the point pi, to get

Fi(p
i, qi)− Fi(qi, pi) ≈ [∂qFi(p

i, pi)− ∂pFi(pi, pi)](qi − pi)

Finally, combining the above equations and using that the first order Taylor expansion of the log

function around qi = pi is log(pi)− log(qi) = 1
pi

(pi − qi), we get

Fi(p
i, qi)− Fi(qi, pi) ≈ λ(1− qi

pi
) ≈ λ(log(pi)− log(qi))

Building on this approximation, our first theorem says: if we add to incentive compatibility mild

requirements on payoff smoothness and sensitivity on other players of the difference in equilibrium

payoffs of two respondents, then the difference in incentive compatible scores of the two respondents

is exactly proportional to the difference in logarithms of the implied local posteriors, rather than only

approximately.

Our second theorem says that any incentive compatible equilibrium payoff Fi(p
i
k, p

i
−k) of the player

who implies, via his responses, probability pik corresponding to type k, given that other types imply

probabilities pi−k, is non-decreasing in the local posterior probability pik. Consequently, the ranking of

experts in equilibrium, if we consider pik to be the measure of expertise, is the same given any incentive

compatible mechanism, and it corresponds to the ranking by posteriors. The result is very general,
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proven by purely algebraic methods. It is a generalization of the results in the literature in the case of

one respondent, on the monotonicity being implied by incentive compatibility of proper scoring rules.

See, e.g., McCarthy (1956), Savage (1971), Schervish (1989) and Schlag and van der Weele (2013). 5

We also discuss implementation issues. Observe that in general, while a particular ex-post payoff of

the form Fi(p
i
k, p

i
−k) may arise in equilibrium in theory, it is not necessarily simple to implement it in

practice. That is, the problem is how to implement the theoretically optimal payoff score using only the

players’ responses to a questionnaire designed by the agnostic planner, while having the questionnaire

as simple as possible. Under an assumption somewhat stronger than Posterior Locality, but without

assuming Separation of Variables, we show that the payoffs of all strictly-separating equilibria in our

framework can be implemented by particular questionnaires, but the latter may be complex, except for

the logarithmic, BTS case. In this context, let us recall that Prelec (2004) shows that promising the

respondents the BTS scores ex-ante, results, in equilibrium, in the ex-post scores of the form log(pik)

(plus a term that does not vary with a respondent). We revisit this result and provide a detailed

proof thereof. We also show that the budget-balanced strict equilibrium under BTS are necessarily

separating.

Relationship to existing literature. Since Prelec (2004), proper scoring rules in the game-

theoretic context, also called “information elicitation without verification”, have been studied exten-

sively in recent years. In the case in which the planner knows the prior distribution of the player types,

an early work is Miller, Resnick, and Zeckhauser (2005) who design a clever use of proper scoring rules

to elicit truthful information. However, as the assumption that the planner knows the prior is unre-

alistic in practice, alternative approaches have been proposed. Jurca and Faltings (2007) use robust

optimization to deal with small variations in belief models. Expanding on the framework of Prelec

(2004) in which the planner does not know the prior, but the number of players is infinite, Witkowski

and Parkes (2012) and Witkowski (2014) devise mechanisms, under the name Robust Bayesian Truth

Serum (RBTS) that work for a finite number of respondents, but with only two types. Waggoner and

Chen (2013) consider a general framework without assumptions on information structure. Radanovic

and Faltings (2013, 2014) and Zhang and Chen (2014) develop mechanisms that are incentive com-

patible for any number of agents and non-binary player types. Dasgupta and Ghosh (2013) and

5See also Prelec, Seung and McCoy (2017) who define and test experimentally a broader class of algorithms to produce

a ranking of experts according to their posteriors. Within this class, only BTS is known to be incentive-compatible.
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Witkowski and Parkes (2013) relax the knowledge requirement even more by asking for more extensive

reports by respondents in form of responses to multiple similar questions. Baillon (2016) implements

truth-telling equilibria via a Bayesian Market, in the case of binary types. Cvitanić, Prelec, Riley

and Tereick (2018) provide additional incentive-compatible mechanisms which are simple to explain to

respondents. In Frongillo and Witkowski (2017), the authors characterize “minimal” peer-prediction

mechanisms, that is, those in which the score depends only on the respondent’s reported type, and

the reported type of another, suitably chosen ”peer” respondent. We, on one hand, allow the scores

to depend on reported types of all the respondents and on their predictions of those reports, and, on

the other hand, we impose the assumption of locality on the scores. The preference for one or the

other approach depends on whether minimality or locality is the preferred feature of the mechanism.

The paper Kong and Schoenebeck (2019) develops an informational theoretic paradigm for designing

incentive mechanisms, which includes, as special cases, many established mechanism, including BTS,

and shows that properties of BTS can be proved in a simpler way by using a connection to Shannon

mutual information. For a different connection between BTS and information theory, see Cvitanić,

Prelec, Radas and Šikić (2019). Liu and Chen (2019) design a ”uniform dominant” truth serum when

there is a noisy signal of the ground truth, and there are sufficiently many agents and tasks. Their

scoring depends on whether a report is informative or not, thus, in a sense, related to expertise of the

respondent.

However, with the exception of Prelec (2004), all the papers mentioned above are concerned with

incentive compatibility and not with ranking of respondents, so that the proposed mechanisms either

do not satisfy our Posterior Locality condition, or they require the planner to know the common

prior of the respondents. We focus on mechanisms that have all of these three properties: they

allow IC equilibria, they can be implemented even when the planner is agnostic about the prior, and

they rank the respondents by posteriors. In this case our main result says that, under relatively

weak conditions, logarithmic scoring is the only possible equilibrium payoff form. When ranking by

posteriors is not required from the mechanism, then the above papers provide many other ways to

design IC mechanisms.

The problem we tackle in the paper can also be considered as one of mechanism design, since

we seek to describe mechanisms that are both incentive-compatibile and have attractive features for

opinion elicitation applications. In one way, our approach is more general than typical mechanism
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design models 6 because we allow for both uncertainty regarding the players information (type), and

uncertainty regarding the true state of nature, and those two may be correlated in a nontrivial way. It

is exactly the joint distribution of the two that drives all the results. Our basic assumption is that the

players have a common prior on this joint distribution, but that the prior is not used by the planner

in designing the survey. We present this as a methodological rather than a substantive requirement:

Although the planner may have some beliefs about the prior, she may prefer to keep these beliefs

private and adopt the position of an agnostic/neutral outsider, not imposing her conjectures on the

survey respondents. Thus, she is interested in an ’universal’ mechanism, one that would work for

all priors without any input from her side apart from the initial formulation of the multiple-choice

question. 7 In this sense, ours is a study of robust Bayesian mechanisms. On the other hand, our setup

is less general in another way – the players do not choose actions other than reporting their responses,

which is assumed to be costless. Thus, there is no modeling of utility/disutility drawn from actions,

the only utility the players draw is from the expected payoff they attain. Moreover, our framework is

less general than some models of robust mechanism design that, unlike ours, do not assume common

knowledge of the prior distribution by all the players. (In our case only the planner may be ignorant.)

We discuss in the conclusions section in what directions one could try to extend our results.

The rest of the paper is organized as follows: Section 2 introduces the model, Section 3 presents

the main theoretical results, Section 4 discusses implementation issues, and we conclude in Section 5.

The proofs are presented in the appendix.

2 Model, Definitions and Assumptions

In our model, a mechanism consists in giving scores to the players (respondents) of different types. 8

Applications we have in mind are of the polling type: the respondents are asked to provide responses

to queries assigned by a survey planner. The planner is interested in eliciting truthful opinions to a

6See, e.g., Maskin and Sjöström (2001), Bergemann and Morris (2012), Börgers (2013). We refer the reader to

Bergemann and Morris (2012) for a detailed literature survey.
7In theory, using the “majority rule” mechanism that would ask for the common prior to be declared may result

in an equilibrium that reveals the common prior; however, such a rule would not be implementable in practice, as we

discuss in the paper.
8A negative of a score is usually called a transfer in the mechanism design literature; see, e.g., Börgers (2013).
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multiple choice question, and ranking players according to the quality of their information, which in

our framework, will mean according to their posterior probabilities of the true state of nature. For

instance, the planner might be interested in the value of a certain wine bottle some years into the

future, and asks experts to respond to appropriately designed questions. Broader applications include

voting in elections, predicting political events, product market research, online product reviews, and

any other application that involves a survey with a multiple choice question. 9 We remark that it is

not necessary to assume that the true response to the multiple choice question is verifiable.

2.1 The model

The players are indexed by π ∈ R, where R is infinite and countable.10 The state of nature is a random

variable Ω, taking values in {1, . . . , N}, N > 1. 11 The players can be of M > 1 different types, that

can be interpreted as random signals the players receive about the state of nature. Player π’s type is

a random variable denoted T π, and it takes values tπ ∈ {1, . . . ,M}. We consider scoring mechanisms

in which, for a given fixed positive integer K, player π submits as a response a K−dimensional value

aπ ∈ RK (a for “action”).

A response aπ would typically include a declaration of a respondent’s type (choosing an answer to

a multiple choice question), and it would also include responses to some other questions in order to

be truth-inducing.12 It could also include a declaration of the respondent’s prior distribution of types

and states of nature, as introduced below; that is, the respondent could be asked to state what his

9Prelec (2004) and Prelec, Seung and McCoy (2017) provide many more examples.
10We need the assumption that there are infinitely many players for several reasons: first, we don’t want to impose

assumptions on the form of the payoffs outside of equilibrium; for this, we will use the fact that, with infinite number

of players, the form of equilibrium payoff does not change when a player of one type mimics the equilibrium strategy

of another type; second, achieving truth-telling of types is much harder with finitely many players, and so is the

implementation of equilibrium payoffs using practical inputs. We postpone to future research the analysis of the setup

with finitely many players; finally, we need the infinite number of players because we invoke de Finetti’s theorem in our

model setup.
11Strictly speaking, this is only an approximation for most applications, in which the state of nature could naturally

have a continuous range of values. For instance, in the example about a wine bottle’s value, the state of nature could

be the percentage of experts who believe the bottle is worth more than one thousand dollars.
12In the section on implementation, we will see that another question might be about the percentage of other respon-

dents choosing a specific choice from the multiple choice list.
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prior is. We posit the following

Assumption 2.1 (i) The family of signals T π, π ∈ R, is a family of exchangeable random variables,

and random variables T π, π ∈ R, are i.i.d. conditional on the state of nature Ω.

(ii) If respondent π chooses response aπ, and the remaining responses are represented by a−π, then

his score is given by the scoring function f(aπ, a−π), where the order of different respondents’ responses

in a−π does not matter, that is, f is symmetric in those.

Condition (i) implies that the order in which we consider our players is irrelevant (from the point

of view of the probability distribution of the entire sequence). Moreover, by de Finetti’s theorem, the

exchangeability assumption actually implies the second part of Assumption 2.1, that there exists a

random variable Ω such that T π’s are conditionally i.i.d. with respect to Ω; see, e.g., Aldous (1985),

or Chow and Teicher (1997).

The symmetry property in condition (ii) is a natural restriction considering that the planner does

not make a distinction between different types, assumed exchangeable by condition (i).

From now on, we assume the players are risk-neutral, that is, each player maximizes his expected

payoff. 13

2.1.1 The prior and the posteriors

The joint distribution of types and states of nature is given by an M ×N matrix Q = [qik], where

qik = Pr(T π = k,Ω = i).

Note that Q does not actually depend on π, a consequence of the exchangeability assumption.

We suppose that the matrix Q is common knowledge among the players, and refer to it as their

“common prior”. However, Q is not used by the planner when designing the survey. In fact, the

planner does not even need to know the number of the states of nature N . The only thing we assume

13Typically, mechanism design models consider only the types as being random, according to a prior which is known

also to the planner. Our model is more general by considering random states of natures in addition to random types,

with a non-degenerate correlation between the two. On the other hand, it is less general in that the players do not

choose actions other than choosing what response to give.
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that the planner uses is M . For example, M is needed for implementation using a multiple choice

question – the planner has to offer exactly as many possible choices as there are types. 14

Matrix Q determines the marginal probabilities of types, referred to as type probabilities, and the

probabilities of states of nature given the type, referred to as posteriors. They are denoted

sk = Pr(T π = k)

and

zik = Pr(Ω = i | T π = k).

We assume that the marginal probabilities of types and of states of nature are all strictly positive.

The posteriors form a matrix Z = [zik]
M, N
k=1,i=1. Note that zik does not depend on π, that for every

k ∈ {1, ...,M}, we have
∑N

i=1 z
i
k = 1, and that any matrix with this property can be represented as a

Z−matrix of posteriors for some joint distribution Q. We denote the vector (s1, ..., sM) by S.

2.2 Equilibrium payoff and incentive compatibility

In the standard literature on scoring rules, there is only one respondent, asked to declare his posterior

belief about the distribution of Ω, that is, to declare zi’s. If the outcome Ω = i occurs, the respondent

is paid Fi(z). A family of functions {Fi}i=1,...,N is called a strictly proper scoring rule if it is incentive

compatible for truth-telling, that is, the respondent’s expected payoff is maximized at his true belief,

meaning, for all probability vectors p̃ 6= p, we have
∑N

i=1 p
iFi(p) >

∑N
i=1 p

iFi(p̃).

In our framework with infinitely many respondents, we consider only the payoff mechanisms

that allow for a strictly separating Bayesian Nash equilibrium (SSNE), as defined below,

in which the equilibrium payoffs are functions Fi : (0, 1)2M → R, of the form Fi(z
i
k, z

i
−k; sk, s−k)

where, for example, zi−k = (zi1, ..., z
i
k−1, z

i
k+1, ..., z

i
M). We call this property Posterior Locality.

We now make this more precise. A pure strategy for player π is a map σπ that maps a player’s

type to his response choice aπ. We allow only pure strategies. The profile of all respondents’ pure

strategies is denoted σ(t), with entries σπ(tπ), and the profile excluding player π is denoted σ−π(t−π).

14To get around the problem of not knowing the common prior the planner could ask each player to state the whole

prior distribution and harshly penalize the player who gives a response different from others. However, asking for the

common prior is unlikely to work in practice - more likely than not, most responses would be different from each other,

and the planner would have to penalize harshly most respondents.
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The score for player π is given by f(σπ(tπ), σ−π(t−π)), where f is a scoring function that takes the

responses to the set of real numbers. Function f(·, ·) is of the same functional form for all N and Q.

We assume that the players maximize the expected score value. We will mostly restrict the payoff

mechanisms to those which are “budget balanced”, that is, those for which the sum of the scores of

all the players is equal to zero, with probability one.15

Here is the definition of equilibrium:

Definition 2.1

- (i) Given a prior matrix Q, we say that a scoring function f allows a Strict (Bayesian) Nash

Equilibrium (SNE) if there exists a pure strategy profile σ = σQ such that for all π, tπ, t−π, tγ, we

have:

For an arbitrary response choice aπ 6= σπ(tπ), we have, with expectation taken with respect to the

(conditional) distribution of Ω,

E[f(aπ;σ−π(t−π)) | T π = tπ] < E[f(σπ(tπ), σ−π(t−π)) | T π = tπ]

The strategy profile σ is called an SNE. If the equilibrium is also separating, that is, if, in addition

to the above, we also have σπ(tπ) = σγ(tγ)⇒ tπ = tγ, we call σ a Strictly Separating (Bayesian) Nash

Equilibrium (SSNE).

- (ii) We say that a scoring function f is an Universal Separating Scoring Rule (USSR), if for all

Q it allows at least one budget-balanced SNE σQ, and if every budget-balanced SNE is an SSNE.

We will show later below that the budget-balanced logarithmic scoring can be implemented by an

USSR (that is, by BTS), which also satisfies the assumptions below on the equilibrium payoffs.

From now on, we only consider USSR functions f , or non-budget-balanced versions thereof, so

that there exists at least one SSNE. We use notation Fi for the state i ex-post payoff in an SSNE

corresponding to f , budget-balanced or not. The following is the additional crucial assumption we

impose, and it is an assumption on the ex-post, equilibrium payoffs Fi of an SSNE.

15It should be mentioned that in a budget-balanced game the players know they may receive negative “payments”,

and some players may not be willing to participate. In practice, the “payments” will often not be monetary, but used as

score points, and every respondent might be paid a non-negative amount, that may consist of a fixed fee and a variable

fee that depends on the respondent’s score, or his ranking according to the scores. That is, what is used may not be a

budget-balanced scoring rule, but a modification thereof.
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Assumption 2.2

- Posterior Locality. (∀k ∈ {1, ...,M}) and (∀i ∈ {1, ..., N}), and ∀j 6= k, if T π = k, and

Ω = i, the equilibrium score (but not necessarily the out-of-equilibrium scores) of player π has the

representation, with Fi : (0, 1)2M → R,

f(σπQ(k), σ−πQ (t−π)) = Fi(z
i
k, z

i
−k; sk, s−k) .

We discuss this assumption in Section 2.2.1 below. We do not address uniqueness of equilibrium,

and we study only the equilibria in which the realized equilibrium payoffs (but not necessarily the

out-of-equilibrium payoffs) are of the above form. Moreover, we require that the realized equilibrium

payoffs satisfy the conditions in the following definition.

Definition 2.2 The family {Fi} of functions of the form Fi(z
i
k, z

i
−k; sk, s−k) is called a Posterior-Local

Equilibrium Payoff System (PLEPS) if the following is satisfied:

- (i) Symmetry: (∀x, y ∈ (0, 1)) (∀z2, ...zM , s2, . . . , sM ∈ (0, 1)) (∀ permutation Π of {2, ...,M}),

we have

Fi(x, z2, z3, ..., zM ; y, s2, . . . , sM) = Fi(x, zΠ(2), zΠ(3), ..., zΠ(M); y, sΠ(2), sΠ(3), ..., sΠ(M))

- (ii) Incentive compatibility, strict separation inequality:

(∀Z −matrix) (∀S − vector) (∀k, j ∈ {1, ...,M} such that (z1
k, ..., z

N
k ) 6= (z1

j , ..., z
N
j ))

N∑
i=1

zikFi(z
i
k, z

i
−k; sk, s−k) >

N∑
i=1

zikFi(z
i
j, z

i
−j; sj, s−j) (2.1)

Assumption (i) on symmetry means that the equilibrium score of type k does not depend on the

order of other types, and is consistent with Assumption 2.1 (ii) on the symmetry of scoring function

f . Assumption (ii) implicitly assumes that the players are risk-neutral and maximize the expected

score. By Proposition 2.1 below, it is automatically satisfied if Fi are the equilibrium payoffs in a

truth-telling equilibrium.

We now elaborate more on the assumed form of equilibrium payoffs Fi.

Remark 2.1 The crucial assumption for the results of this paper is that the score of a player in

equilibrium depends on the player’s posterior zi of the realized state of nature i, called local posterior.

This is justified if the posterior is a good measure of a player’s expertise. Note, however, that here we
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think of expertise regarding the actual state of nature in this one particular survey, not about average

accuracy over many surveys. It is the ex-post expertise, resulting from the signal a player receives,

and not the ex-ante expertise of obtaining good signals.

There are cases in which the planner clearly wants to know about the distribution of types, such

as elections or product market research, trying to estimate what percentage of population will vote

for each candidate, or is likely to buy a product. In such cases, it is intuitive that a respondent with

higher local posterior is a better expert – he has the highest probability of being right about the actual

distribution of responses, reminiscent of the concept of maximum likelihood estimators that maximize

the probability of the event that does actually occur. Moreover, if the survey study has more than

one stage, for example, in market research, a mechanism that results in PLEPS payoffs could be used

to identify experts in the first stage, and then only the experts could be used for further surveys,

thus reducing the cost of the study. It is primarily these applications we have in mind. In other

applications, such as, for example, surveying economists on whether this year’s inflation will be higher

than a certain level, it is less clear that a higher local posterior on the distribution of types means

a higher expertise. This is because in this example it is not necessarily the case that those that are

better at estimating the percentage of their colleagues who will predict high inflation are also better

at predicting the inflation. In such cases scoring rules other than those with ex-post PLEPS payoffs

might be appropriate. In particular, if the planner is not concerned with identifying experts, but only

with truth-telling, the assumption may exclude perfectly reasonable scoring rules, as in the papers

mentioned in the literature survey in Introduction.

We also note that we look for the simplest possible equilibrium payoffs that describe players’

expertise, which is why the payoff F is not allowed to depend on other local probabilities that can

be derived from the prior. On the other hand, the reason why we allow dependence on ex-ante type

probabilities sk, s−k is because these, in implementation, translate to type frequencies, which may be

used to make a mechanism budget-balanced. Actually, for budget balance, it is sufficient to have

dependence on local conditional probabilities sik = Pr(T π = k | Ω = i), but we allow dependence on

sk, s−k for generality (except in the implementation section), as discussed next.

A natural question to ask is whether for any PLEPS F there exists a scoring rule f that implements

it in equilibrium. In the implementation section below we argue that this is, indeed, the case, under

the assumption that, instead of on possibly all sk, s
−k, Fi depends only on sik = Pr(T π = k | Ω = i).
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It is also natural to ask if, for a given f , the equilibrium that implements F is unique. We show later

below that this is essentially true for the benchmark example of the Bayesian Truth Serum scoring

rule.

The following result is simple, but crucial for our results. It tells us what the score looks like for

the type who mimics another type’s equilibrium strategy. We emphasize that we need infinite number

of players for this result.

Proposition 2.1 Suppose there exists a strictly separating Bayesian Nash equilibrium for our game

of respondents for which the ex-post payoffs are given by PLEPS {Fi}. Then, if a respondent of type

k deviates from the equilibrium by using the strategy of type j 6= k, his deviation payoff is equal to

Fi(z
i
j, z

i
−j; sj, s−j). That is, if a player of type k mimics the equilibrium strategy of type j, then his

payoff is given by the equilibrium evaluation corresponding to type j.

This holds because every type is represented by infinitely many players, the equilibrium payoffs

are strictly separating, and the scoring function f is symmetric in their responses. The proof is in

Appendix.

We have the following negative result, proved in Appendix, when the number of players is finite.16

Proposition 2.2 Assume (only in this proposition) a finite number of players, and at least two play-

ers. Then, there exists no budget-balanced PLEPS.

We also remark that even a non-budget balanced version of BTS is not incentive compatible when

there are finitely many players.

2.2.1 Ex-ante vs. ex-post payoff: implementation

Even when identifying states of nature with possible empirical frequencies of responses, asking about

posterior probabilities of state of nature is likely to be prohibitively complex in practice, because it

would require respondents to provide a distribution over all possible empirical frequencies. Thus, in

practice, the planner who wants the mechanism to result in ex-post payoffs Fi when the players play

the truth-telling equilibrium, would like to find a way to induce those ex-post payoffs by promising

to pay the players based on ex-ante scores that require much simpler inputs than the players’ beliefs

16We leave for a future study a more thorough analysis of the case with the finite number of players.
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about the distribution of the empirical frequencies. We will discuss this issue in the implementation

section, and here we just mention the following. Our benchmark example of a PLEPS is the classical

logarithmic scoring rule payoff

Fi(z
i
k, z

i
−k; sk, s−k) = log(zik) .

Prelec (2004) showed that the budget-balanced version of this payoff can be implemented by, in addition

to asking (infinitely many) respondents to declare their own type – the multiple choice question – also

asking them what they think is the percentage of other types in the population, that is, the empirical

frequencies of each choice in the multiple choice question. It is much easier for the respondents to

provide their estimates of empirical frequencies than their estimates of the probability distribution of

the empirical frequencies. In the logarithmic case, this means that a respondent of type k is not asked

for zik’s and is not promised log(zik), but he is asked for simpler inputs that determine his promised

score via a specific function f (called Bayesian Truth Serum), and the value of the score will turn out

to be equal to log(zik) when the players play the truth-telling equilibrium.

3 Possible equilibrium payoffs

In this subsection we present examples of PLEPS’s and address the question whether logarithmic

equilibrium payoffs, or simple modifications thereof are the only possible PLEPS’s.

3.1 Logarithmic equilibrium payoffs

3.1.1 The benchmark example – the logarithmic function

The canonical example of a PLEPS (ignoring budget-balancing) is the logarithmic function:

Fi(z
i
k, z

i
−k; sk, s−k) = log(zik)

More precisely, a player’s equilibrium payoff is the logarithm of the posterior probability of the state

of nature given his type. It is well known and straightforward to verify that this, indeed, satisfies the

strict separation inequality (2.1). This is because of the well known Gibbs inequality which says that

for a probability vector (p1, . . . , pN), we have

0 = min
qi≥0,

∑
i q

i=1

N∑
i=1

pi[log(pi)− log(qi)] (3.1)
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This can be verified by noting that, with λ being a Lagrange multiplier for the constraint
∑

i q
i = 1,

the first order conditions for the problem

0 = min
qi

{
N∑
i=1

pi[log(pi)− log(qi)] + λ
∑
i

qi

}
(3.2)

are pi/qi = λ, thus satisfied with qi = pi.

The question arises whether the log function is the only PLEPS (modulo budget balancing). The

answer is negative in general, and we present a counterexample in what follows. Later below, we show

that under mild additional conditions logarithmic equilibrium payoffs are, in fact, the only possible

PLEPS’s.

3.1.2 Other examples of PLEPS’s

Let us first note that there are variations of the logarithmic equilibrium payoffs that produce equivalent

scores when we require budget balance. For instance, if we set, for some function G symmetric in all

the arguments, and some constant K, suppressing the dependence on the state of nature i,

F (zk, z−k) = log(zk)−K
∑
j 6=k

log(zj) +G(z1, . . . , zM)

then, function F corresponds to a PLEPS, as can be verified in the same way as for the problem (3.2).

However, it is not really different from logarithmic equilibrium payoffs if we insist on budget balance,

because, as is straightforward to check, if we add the constant term that makes it budget-balanced,

we get the same equilibrium payoffs as for the budget-balanced logarithmic equilibrium payoffs.

We now present a PLEPS that has higher order terms that make it distinct from the logarithmic

PLEPS, even if we make it budget-balanced.

Example 3.1 Consider the case with three types, M = 3, and denote

pi = zik , (qi, ri) = zi−k

Define the following function:

F (p, q, r) = K log(p) + p4 − 2p3(q + r)− 6p(qr2 + q2r)
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It is straightforward to verify that, for large enough K, this function satisfies the strict separation

inequality (2.1). This is because the first order conditions (FOC’s) for the Lagrangian optimization

problem

min
qi

{∑
i

pi[F (pi, qi, ri)− F (qi, pi, ri)] + λ
∑
i

qi

}
are, denoting with ∂xF the derivative with respect to x argument,

pi[∂pF (qi, pi, ri)− ∂qF (pi, qi, ri)] = λ (3.3)

for some Lagrange multiplier λ, and these FOC’s are satisfied for the above function with qi = pi.

For large enough K, the FOC’s are also sufficient conditions for optimality because the second order

optimality conditions will also be satisfied, which implies that (2.1) is satisfied.

Remark 3.1 Even though there are “strange” PLEPS functions Fi as in the example above, as we

explained in Introduction, for all of them the difference in two equilibrium payoffs is proportional to

the difference of logarithmic payoffs, up to the first order. This is also true if Fi depends on type

probabilities sk, under the conditions of Lemma 3.1 below.

We next identify conditions under which there can be no second-order terms, and the budget-

balanced logarithmic equilibrium payoff is the only budget-balanced PLEPS.

3.2 When are equilibrium payoffs logarithmic?

We assume in this section that N ≥ 3. 17 As we have just shown, the difference in the ex-post

scores of two types is equal to the difference of the log scores up to the first order. We will now

find conditions under which the higher order terms cannot appear, and under which any PLEPS is

essentially a logarithmic equilibrium payoff.

We do the following:

- (i) we first state an assumption on the second order mixed derivative of the difference in equilib-

rium scores of two types;

- (ii) we then show that the assumption implies an additive representation of the equilibrium payoff

of a given type – the equilibrium payoff is a sum of a term that does not depend on the posteriors of

other types and a term that is symmetric in types.

17It is well known that there are quadratic scoring rules that are strictly separating when N = 2, for all priors.
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- (iii) finally, we show that such additive representation is sufficient to imply logarithmic equilibrium

payoffs, under a smoothness assumption.

For ease of notation we continue assuming M = 3, and use the above notation pi, qi, ri for the

local posteriors of the three types. Also denote by sp, sq, sr the corresponding type probabilities. This

is without loss of generality, the same proof works for more than three types.

The following is the assumption on “separation of variables” that we need; not surprisingly, in

light of the first-order approximation above, it is an assumption on the second-order properties of the

equilibrium payoffs. In particular, it is weaker than the assumption that the difference in equilibrium

payoffs of two types does not depend on other types.

Assumption 3.1 For all i, and all type probabilities sp, sq, sr, the second mixed derivative (assumed

to exist)

∂pq
[
Fi(p

i, qi, ri; sp, sq, sr)− Fi(qi, pi, ri; sq, sp, sr)
]

of the difference in scores of two types with local posteriors pi and qi respectively, does not depend on

other types’ local posteriors ri.

The assumption says that the (mixed) sensitivity of the difference in equilibrium payoffs to the

corresponding types is not affected by other types.

We now state the following additive representation result, proved in Appendix.

Proposition 3.1 Consider a PLEPS {Fi} such that Assumption 3.1 holds. Then, if, for some p0 ∈

(0, 1) and for any fixed type probabilities sp, sq, sr the function Fi(p
i, qi, ri; sp, sq, sr) can be expanded

as an infinite Taylor series around the point (pi, qi, ri) = (p0, . . . , p0) ∈ (0, 1)M , then, necessarily, the

following Additive Representation (AR) holds:

Fi(p
i, qi, ri; sp, sq, sr) = Gi(p

i; sp, sq, sr) +Hi(p
i, qi, ri; sp, sq, sr) (3.4)

where Hi is a function that is symmetric in all the pairs (pi, sp), (q
i, sq), (r

i, sr), i = 1, . . . , N .

The main result of the section is the following:

Theorem 3.1 Consider a PLEPS consisting of functions Fi(p
i, qi, ri; sp, sq, sr), i = 1, 2, . . . , N , that

satisfy the assumptions of Proposition 3.1. Assume also that Fi is such that Gi is symmetric in all
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sk variables, for every fixed pi, i = 1, . . . , N . Then, we have, for some functions λ and B of type

probabilities S = (sp, sq, sr),

Gi(p
i, sp, sq, sr) = λ(S) log pi +Bi(S)

In particular, if the corresponding PLEPS is budget-balanced, the equilibrium payoff to the repondent

with local posterior pi is given by

Fi(p
i, qi, ri; sp, sq, sr) = λ(S) log pi − λ(S)

∑
t=p,q,r

sit log ti (3.5)

where sio is the conditional probability of the type with posterior o in state i, o = p, q, r.

Remark 3.2 We emphasize again that this result is obtained by restricting only equilibrium properties

of a scoring rule, without restrictions on the off-equilibrium properties.

Proof: Since Fi is a PLEPS, it satisfies separation property (2.1). By the stated symmetry of Hi,

function Gi also satisfies the same type of inequality, which can be written as

0 = min
qi

{∑
i

piGi(p
i; sp, sq, sr)−

∑
i

piGi(q
i; sp, sq, sr)

}
, (3.6)

As shown in Savage (1971), this property implies that Gi is continuously differentiable in the pi variable,

i = 1, . . . , N . Then, by Lemma 3.1 below that identifies the first order condition for this minimization

problem, there exists a Lagrange multiplier λ(S) independent of p, such that, suppressing dependence

on i,

λ(S)
1

pi
= ∂pG(pi; sp, sq, sr)

The above implies the statement about the logarithmic form of Gi. Equation (3.5) is then straightfor-

ward to verify.

The following “Lagrange optimization” lemma is proved in Appendix. It gives the first order

condition for the IC minimization problem in (3.7)below.
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Lemma 3.1 Consider, in the above notation, functions Fi(p
i, qi, ri; sp, sq, sr), i = 1, 2, . . . , N, that are

continuously differentiable in the pi and qi variables, and, for every fixed pi, qi, ri, symmetric in all

values of s variables. Recall the strict separation inequality (2.1), written in the form

0 = min
qi

{∑
i

piFi(p
i, qi, ri; sp, sq, sr)−

∑
i

piFi(q
i, pi, ri; sp, sq, sr)

}
, (3.7)

that is, the minimum over probabilities qi is obtained at qi = pi. Then, there exists a function λ(S) =

λ(sp, sq, sr) such that, for all i, pi, qi, ri, sp, sq, sr,

λ(S) = pi[∂pFi(p
i, pi, ri, sp, sq, sr)− ∂qFi(pi, pi, ri, sp, sq, sr)] . (3.8)

3.3 Ranking by (local) posteriors

We now show the following result: PLEPS payoffs necessarily rank the players according to the relative

ranking of the corresponding local posteriors. That is, when using a scoring system resulting in an

equilibrium with PLEPS payoffs, the planner will know which players are better experts than others, if

she considers the level of the local posterior equivalent to the level of expertise. 18 We emphasize that

for this result it is crucial to assume that the equilibrium scores depend only on the local posteriors

of the realized state of nature.

The main result of this section is

Theorem 3.2 PLEPS payoffs {Fi} are strictly increasing in the posterior probabilities of the true

state of nature. That is, functions Fi satisfy (for any prior distribution matrix Q),

If j, k ∈ {1, ...,M} and zik > zij, then Fi(z
i
k, z

i
−k; sk, s−k) > Fi(z

i
j, z

i
−j; sj, s−j) (3.9)

Put differently, if the planner wants to determine relative expertise of players receiving exchangeable

signals, it is sufficient to design a scoring system which allows only for equilibria that are realized via

a PLEPS. Thus, inequality (2.1) not only guarantees strict separation of types, but also has the

posterior-based ranking as a direct consequence.

This theorem is a generalization of the results in the literature on the monotonicity being implied

by incentive compatibility of proper scoring rules. See, e.g., McCarthy (1956), Savage (1971), Schervish

18If they were not ranked by their local posteriors, then, in the pre-game phase, they might want to avoid collecting

information about the true state of nature, which is undesirable.
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(1989) and Schlag and van der Weele (2013). Those papers consider only the non-game version of the

problem with one respondent only. Moreover, they mostly use analytic methods to prove it, while our

proof is completely algebraic. 19

The intuition behind the result is that if type A’s posterior probability of a state was higher

than the one of type B, but type A’s score in that state was lower, then, he would be better off

pretending to be type B. To be more precise, consider the case with only two types, A and B, and

two states of nature, 1 and 2. Denote by pA and pB the posterior probabilities of state 1, and suppose,

without loss of generality, pA > pB. There are only two possible PLEPS scores in each state i, denoted

Fi(pA, pB) and Fi(pB, pA) (suppressing dependence on S vector). Denote by Di the difference in scores,

DA
i = Fi(pA, pB)− Fi(pB, pA). The claim is that, in equilibrium, type A’s higher posterior probability

of state i implies higher score in that state, that is, positive DA
i . To argue this, note first that by the

strict separation inequality, player A’s expected value of the differences in scores, that is, the weighted

average of DA
1 and DA

2 with weights pA and 1 − pA, is positive. By the same token, the weighted

average of DA
1 and DA

2 with weights pB and 1 − pB, is negative. The only way this can be possible

when pA > pB (thus also 1 − pA < 1− pB) is that DA
1 > 0 and DA

2 < 0. Thus, indeed, the type with

higher posterior probability of a state receives higher score in that state. Or, put differently, if the

type with higher posterior probability of a state does not receive higher score in that state, he would

adopt the other type’s strategy. In Appendix, we state and prove the above simple argument in a

lemma, and extend it to any number of types and states.

4 Implementation

In this section we first show how to implement any PLEPS, up to an additional mild restriction, and

then we elaborate on the Prelec (2004) result that the Bayesian Truth Serum algorithm provides a

feasible implementation of budget-balanced logarithmic equilibrium payoffs of (3.5) (under standard

Bayesian and rationality assumptions); see also Prelec, Seung and McCoy (2017). We also comment

19Theorem 3.1 is also in the spirit of the theorems that relate incentive compatibility to monotonicity in types, if we

equate types with posterior probabilities; see Myerson (1981) for an early theorem of that type, and Vohra (2007) for

a comprehensive treatment. However, our framework is different from the standard mechanism design framework, in

that we have random states of nature, so that incentive compatibility is a property of a weighted sum (expected value

conditional on type), not on the value itself. As a consequence, the methodology of those papers does not work.
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on the uniqueness of equilibrium under the BTS scoring rule.

4.1 PLEPS implementation

By implementing an equilibrium payoff system F , we mean designing a questionnaire and a scoring

rule such that the associated game allows an equilibrium with payoffs given by F .

We continue to assume there are infinitely many respondents. We consider the case in which the

respondents are asked to choose the correct answer to a multiple choice question (to declare their

type), and assume that the possible states of nature take values in the set of probability distributions

of the responses to the multiple choice questions.

The following result shows that any PLEPS {Fi} such that Fi depends only on local conditional

type probabilities sik = Pr(T π = k | Ω = i) can be implemented by using Fi to compute the value of

the scoring function f in state i.

Proposition 4.1 Consider a PLEPS with type k payoff in equilibrium state i given by Fi(z
i
k, z

i
−k; s

i
k, s

i
−k);

that is, in addition to zjk’s, the payoff depends only on local conditional type probabilities sik = Pr(T π =

k | Ω = i) instead of on possibly all ex-ante type probabilities contained in vector sk. Then, this PLEPS

can be implemented by the agnostic planner. More precisely, there exist questions that the planner can

ask from which she can form estimates î, ẑ îk and ŝîk of the true state of nature i and the true probabil-

ities zik and sik, and such that, if the planner announces that a player who declares type k will receive

Fî(ẑ
î
k, ẑ

î
−k; ŝ

î
k, ŝ

î
−k), then, truth-telling is an equilibrium.

Proof: Suppose the planner asks the following from the respondents:

- (a) to choose the correct answer to the multiple choice question;

- (b) to state the possible states of nature, that is, to declare what the set of the possible dis-

tributions of the responses to (i) is, AND to state their perceived probability (z’s) for each of those

distributions.

To guarantee that truth-telling is an equilibrium, the planner announces she will compute the

scores Fi as follows. Her estimate î of the true state of nature i will be given by the frequencies by

which each particular answer to the multiple choice question has been chosen by the respondents. She

will also make the estimates ŝîk of the type probabilities equal to those frequencies. Having estimated

state i, she will then choose the corresponding ẑ îk from all the zjk’s, j = 1, . . . , N , that a player provides
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as the answer to (b). Having all of these, the planner will compute the corresponding values of Fî’s,

by plugging ẑ îk’s and ŝîk’s as the arguments of function Fî.

Suppose now that all players other than player π of type k play the truth-telling strategy. If player

π also plays the truth-telling strategy, his payoff in state i is Fi(z
i
k, z

i
−k; s

i
k, s

i
−k), because i, z’s and s’s

are correctly estimated by the planner. If player π of type k declares type j 6= k, his payoff in state i

is Fi(z
i
j, z

i
−j; s

i
j, s

i
−j), because, with infinite number of players and all except player π being honest, i,

z’s and s’s are again correctly estimated by the planner. By IC inequality (2.1), player’s π expected

value of the payoff when he is dishonest is less than the expected value of the payoff when he is honest,

and he would not deviate.

Remark 4.1 The above implementation procedure is not robust – in practice, there will be more

different outcomes of responses to question (b) than the number of types, and different respondents will

consider different distributions of the responses to (a) as the possible outcomes for the states of nature.

Thus, some approximate grouping of the responses would have to be done. Moreover, responding to (b)

puts a large burden on the subjects, because they have to provide possible frequencies of the responses

to (a) and distributions over those frequencies. For budget-balanced logarithmic equilibrium payoffs

the story is different, as discussed in the next section: the Bayesian Truth Serum (BTS) scoring rule

of Prelec (2004) implements budget-balanced logarithmic equilibrium payoffs using inputs that are

simpler than those obtained from the responses to (b), and a procedure which is robust (that is, no

grouping of similar responses is necessary).

4.2 Implementing logarithmic equilibrium payoffs by the Bayesian Truth

Serum

We first recall the definition of the Bayesian Truth Serum (BTS). We specify the model in the no-

tation of Section 2. We assume that there are infinitely (countably) many respondents, labeled

π ∈ R. The truthful opinion of respondent π is represented by a pair of M -tuples (Xπ;Y π) =

((Xπ
1 , . . . , X

π
M); (Y π

1 , . . . , Y
π
M)) of random variables. Here, Xπ

i ’s take values zero or one, and only one

is equal to one. This is interpreted as choosing an answer from a set of M possible answers. Random
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variables Y π
i ’s take values in [0, 1] and

∑M
i=1 Y

π
i = 1. The latter represent the declared opinion that

respondent π has on what percentage of respondents will choose i as the correct answer.

As in Section 2, we assume that the infinite sequence (Xπ, π ∈ R) is exchangeable. Then, by de

Finetti’s theorem, there is an M−dimensional (potentially random) vector

X̄ = lim
n

1

n

n∑
r=1

Xπ

taking values in [0, 1]M , such that Xπ’s are conditionally independent given X̄. We interpret X̄ to be

the true state of nature, denoted previously by Ω.

Denote by x̄j the sample mean of the declared values xπj of Xπ
j over all respondents π, and by log ȳj

the sample mean of all the declared values log yπj of log Y π
j (so that ȳj is their geometric mean):

log ȳj := lim
n→∞

1

n

n∑
r=1

log yπj

Definition 4.1 The Bayesian Truth Serum (BTS) score function for respondent π is given by

BTSπ =
M∑
j=1

xπj log
x̄j
ȳj

+
M∑
j=1

x̄j log
yπj
x̄j

Prelec (2004) proved that BTS is an incentive compatible mechanism, in the sense that a respon-

dent’s payoff is maximized by declaring the true opinion, if everyone else does. Moreover, we can

state a new “uniqueness” result, namely, that with the BTS mechanism any budget-balanced strict

(Bayesian) Nash equilibrium is separating.

Remark 4.2 It is a natural convention to define log(x̄j/ȳj) = 0 if x̄j = ȳj = 0, as well as to define

x̄j log(yπj /x̄j) = 0 if x̄j = 0. Note that if xπj = 0 for all but a finite number of π’s, so that x̄j = 0, then

it is optimal for every player π to correctly predict yπj = 0, so that ȳj is naturally defined to be zero20.

Under these conventions, the only possible budget-balanced SNE’s are those which are separating, and

in which the players of the same type have the same strategies. Indeed:

-(i) First, it is impossible to have an SNE in pure strategies in which two individuals of the same

type choose different strategies and hence have different expected scores: suppose they have different

strategies in this SNE. If player 1 switched to strategy 2, he would have a strictly lower value, by

20This is because increasing yj does not change the score, while decreasing yk for k 6= j would lower the score, if

x̄k > 0.
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definition of ”strict”, and this value would be the same as player 2’s value, because with infinite number

of players, the value of one player is not affected by what another player does. For the same reason,

if player 2 switched to strategy 1, his value would be equal to the original player 1’s value, which we

argued above is strictly larger. This means that player 2 was not playing an equilibrium strategy to

start with. A contradiction.

- (ii) Second, two individuals of different types cannot have the same strategies in an SNE: if they

did, by (i) all other players of their types also would choose the same strategy, which means that there

would be a type k that nobody would “claim”, that is a k such that xπk = 0 for all π. Because we

assume budget balance, there is a player with a non-positive score. If that player deviated to type k, by

above natural conventions his BTS score would be zero, which is weakly better than not deviating, so

the equilibrium could not be strict.

Because of this, and since the truth-telling equilibrium is focal among strictly separating equilibria,

from now on we consider xi’s and yi’s to be the truthful responses.

For the reader’s convenience and to provide additional details, we recall the Prelec (2004) result

that, in such a truth-telling equilibrium, the BTS score is equal to the budget-balanced logarithmic

payoff, and we provide a detailed proof in Appendix.

Theorem 4.1 (Prelec 2004; Theorem 2) Under the above assumptions, when the players play the

truth-telling equilibrium, BTS scoring results in budget-balanced logarithmic equilibrium payoffs. More

precisely, in the equilibrium we have

BTSπ = logPr(X̄ = x̄|Xπ = xπ)− lim
n→∞

1

n

n∑
s=1

logPr(X̄ = x̄|Xγ = xγ) (4.1)

or, denoting xπ = k, xγ = j, x̄ = i,

BTSπ = log(Pr(Ω = i | T π = k))−
M∑
j=1

Pr(T π = j | Ω = i) log(Pr(Ω = i | T π = j)) (4.2)

Thus, the BTS score corresponds to the PLEPS function Fi that is logarithmic. Put differently, BTS

implements budget-balanced logarithmic equilibrium payoffs by asking the players only two things: to

choose an answer from the multiple choice list, and to predict what percentage of players will choose

a particular answer.
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To conclude, the main message of this section is the one confirming the appeal of BTS because

of the following three properties: BTS always leads to a strictly separating equilibrium in which the

players of the same type get the same score, it results in the benchmark, logarithmic ex-post scores,

and it is easily implementable. We know of no other mechanism that has all of these properties.

5 Conclusions

We consider the problems of extracting true opinions from a large group of respondents and of ranking

them according to their posteriors on the realized state of nature (local posteriors), in the case in which

the planner is agnostic about the distribution of the states of nature and the respondents’ types. Thus,

the planner has to design a universal mechanism, that would work for all such distributions. One such

mechanism is the one that is based on ex-post logarithmic payoffs. We prove the following results for

equilibrium payoffs that are determined only by the local posteriors and type probabilities: (i) under

assumptions on the sensitivity of score differences, the incentive compatible budget-balanced equilibria

necessarily result in logarithmic payoffs; (ii) for arbitrary mechanisms, any incentive compatible equi-

librium necessarily ranks the respondents according to the relative size of their posterior probabilities

of the realized state of nature. We elaborate on the result from Prelec (2004) that the logarithmic

equilibrium payoffs can be implemented using the BTS algorithm, and we note that other equilibrium

payoff rules can also be implemented, but may require responses to more complex questions.

Our setup does not allow for players’ actions other than costless expressing of their opinions. Thus,

developing a more general analysis of robust mechanisms in our framework, in which the players also

would draw utility from costly actions, is an unfinished task. In our model the experts have no reason to

lie, but need positive incentive to tell the truth. One could envision a framework in which players have

some reason to lie, for example they do not care about their own payoff, but want to manipulate the

results so as to have some other type have the highest score. Or, a framework with known utilities and

unknown correlation of types, in which the planner wants to elicit information about the correlations

without disturbing the stated utilities; for example, the case in which the planner wants to ask players

to predict what others will do, but she doesn’t want the payoff they get for making these predictions to

change any of the other incentives in the game. Finally, ours is a static game, while many applications

are dynamic by nature.
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6 Appendix

Proof of Proposition 2.1: We want to prove that, if a player of type k mimics the equilibrium

strategy of type j, then his payoff is given by the equilibrium evaluation corresponding to type j.

First, recall that a pure strategy for player π is a map σπ(tπ), that maps a player’s type to

his response choice aπ. The profile of all respondents’ pure strategies is denoted σ(t), with entries

σπ(tπ), and the profile excluding player π is denoted σ−π(t−π). The score for player π is given by

f(σπ(tπ), σ−π(t−π)). Let us denote by σ the equilibrium strategy profile of all the respondents, and

define ρ to be the strategy profile that is identical to σ, except that a specific player π of type k 6= j

plays the strategy σπ(j) corresponding to type j. Let γ denote a player of type j. Then, we have that

the payoff to the mimicry strategy, when π plays j is

f(ρπ(k), ρ−π(T−π)) = f(ργ(j), ρ−s(T−s))

= f(σγ(j), ρ−s(T−s))

= f(σγ(j), σ−s(T−s))

because σ−s(T−s) and ρ−s(T−s) differ only in π’s response, and this does not matter with infinitely

many players. This is because every type will be represented by infinitely many players, and f is

symmetric in their responses. More precisely, to justify the last equality above, we argue as follows:

We need to prove that if exactly one of −s respondents deviates from the equilibrium response, then

the score f of respondent γ does not change. Since σ corresponds to a strictly separating equilibrium,

the sequence {σ−s(T−s)} consists of M different K-tuples, each being repeated infinitely many times.

If a respondent of type k deviates to type j, that means that one repetition (among infinitely many) of

K-tuples corresponding to type k becomes an additional repetition (among infinitely many) K-tuples

corresponding to type j. We can then define a permutation of the sequence {σ−s(T−s)} which is equal

to the deviation sequence {ρ−s(T−s)}, and by symmetry of f , we prove the last equality in the equation

above.

Proof of Proposition 2.2:

Recall that we want to prove that, with finitely many players there is no budget-balanced PLEPS.
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For notational simplicity, we consider the case M = 2 with two types only, type 1 and type 2, with

at least two players, and with N = 3, the states of nature 1 being (2, 0) (two of type 1, zero of type

2), state 2 being (1, 1), and state 3 being (0, 2). The proof adjusts easily to the case when M > 2, ,

since we can consider only those matrices Q in which the two types are isolated in a particular block.

We consider a Z matrix of the form  p 1− p 0

0 q 1− q


where 0 < p, q < 1 (notice that the rows correspond to types and columns to states of nature).

With finitely many players, any PLEPS functions Fi would depend on the posteriors based on the

state of nature i corresponding to the declared types. For example, if the true state is (2, 0), but one

respondent declares herself as type 2, then the payoffs correspond to state (1, 1).

The expected score of the truthful response for type 1 would be

pF1(p, p) + (1− p)F2(1− p, q)

If one respondent lies and declares his type 1 as type 2, then the expected value would be

pF2(q, 1− p) + (1− p)F3(1− q, 1− q)

Therefore, the separating inequality is

pF1(p, p) + (1− p)F2(1− p, q) > pF2(q, 1− p) + (1− p)F3(1− q, 1− q)

This becomes

p[F1(p, p)− F2(q, 1− p)] + (1− p)[F2(1− p, q)− F3(1− q, 1− q)] > 0

Similarly, when one type 2 respondent lies we get the following:

qF2(q, 1− p) + (1− q)F3(1− q, 1− q) > qF1(p, p) + (1− q)F2(1− p, q)

This becomes

q[F2(q, 1− p)− F1(p, p)] + (1− q)[F3(1− q, 1− q)− F2(1− p, q)] > 0
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Suppose now that p 6= q. Without loss of generality we consider the case p > q, and apply Lemma 6.1

in Appendix on the inequalities above. We obtain

F1(p, p)− F2(q, 1− p) > 0

F2(1− p, q)− F3(1− q, 1− q) < 0

Assuming budget balance holds, we must have F1(p, p) = 0 = F3(1− q, 1− q) and so

(1− p)F2(1− p, q) + qF2(q, 1− p) = 0

Note that F1(p, p) = 0 leads to F2(q, 1 − p) < 0, while F3(1 − q, 1 − q) = 0 leads to F2(1 − p, q) < 0.

This is in clear contradiction with the last equality.

Proof of Lemma 3.1:

Recall that we need to prove that (3.8) holds.

By the standard result on optimization under constraints (in our case the constraint being
∑

i q
i =

1), there exists a Lagrange multiplier function λ(~p, ~r, sp, sq, sr), where, for example, ~p = (p1, . . . , pN),

such that

pi[∂pFi(p
i, pi, ri, sp, sq, sr)− ∂qFi(pi, pi, ri, sp, sq, sr)] = λ(~p, ~r, sp, sq, sr) (6.1)

Fix an arbitrary value of i and pi, ri. Since N > 2, we can set pj = x, rj = y, for a fixed, but arbitrary

j 6= i, for any 0 < x < 1 − pi, 0 < y < 1 − ri. By the above equality we have that λ(~p, ~r, S) is a

function λ(pi, ri, S) of pi, ri, S, only, and we have

x[∂pFj(x, x, y, S)− ∂qFj(x, x, y, S)] = λ(pi, ri, S),

for all 0 < x < 1 − pi, 0 < y < 1 − ri. Since we can choose pi, ri arbitrarily small, we have then, for

fixed S, that the left-hand side is constant across all values of x, y in (0, 1), and because i is arbitrary

we get that λ(S) does not depend on any of the values pi, ri, i = 1, . . . , N .

Proof of Proposition 3.1:
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We suppress dependence on i in this proof, and on sp, sq, sr. We want to show that

F (p, q, r) = G(p) +H(p, q, r)

where H is symmetric in all the pairs (p, sp), (q, sq), (r
j, srj).

For p0 ∈ (0, 1) denote

p̄ = p− p0, q̄ = q − p0, r̄ = r − p0

From the smoothness and the symmetry property of F , we can write, for some functions a, b, c, d, e of

the type probabilities, by Taylor’s expansion,

F (p, q, r) =
∞∑
n=0

anp̄
n+

∞∑
n=1

(bqnq̄
n+bπnr̄

n)+
∞∑

m,n=1

p̄m(cqm,nq̄
n+cπm,nr̄

n)+
∞∑

m,n=1

dm,nq̄
mr̄n+

∞∑
l,m,n=1

el,m,np̄
lq̄mr̄n

where, by the symmetry property,

bqn(sp, sq, sr) = bπn(sp, sr, sq) , cqm,n(sp, sq, sr) = cπm,n(sp, sr, sq)

dm,n(sp, sq, sr) = dn,m(sp, sr, sq) , el,m,n(sp, sq, sr) = el,n,m(sp, sr, sq)

Note that it is sufficient to show that

cπm,n = dm,n , el,m,n = em,l,n

because then we can write

F (p, q, r) =
∞∑
n=0

[an − bqn]p̄n +H(p, q, r)

where H is symmetric in all the pairs (pi, sp), (q
i, sq), (r

i
j, srj).

Let us consider the consequences of strict separation inequality (3.7), using Lemma 3.1. We have

∂qF (p, p, r)− ∂pF (p, p, r)

=
∞∑
n=1

nbqnp̄
n−1 +

∞∑
m,n=1

cqm,nnp̄
m+n−1 +

∞∑
m,n=1

dm,nmp̄
m−1r̄n +

∞∑
l,m,n=1

el,m,nmp̄
l+m−1r̄n

−
∞∑
n=0

nanp̄
n−1 −

∞∑
m,n=1

mp̄m−1(cqm,np̄
n + cπm,nr̄

n)−
∞∑

l,m,n=1

el,m,nlp̄
l+m−1r̄n

We can then write

p∂qF (p, p, r)− p∂pF (p, p, r)
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=
∞∑
n=1

nbqnp̄
n +

∞∑
m,n=1

cqm,nnp̄
m+n +

∞∑
m,n=1

dm,nmp̄
mr̄n +

∞∑
l,m,n=1

el,m,nmp̄
l+mr̄n

−
∞∑
n=0

nanp̄
n −

∞∑
m,n=1

mp̄m(cqm,np̄
n + cπm,nr̄

n)−
∞∑

l,m,n=1

el,m,nlp̄
l+mr̄n

+
∞∑
n=1

nbqnp
0p̄n−1 +

∞∑
m,n=1

ncqm,np
0p̄m+n−1 +

∞∑
m,n=1

dm,nmp
0p̄m−1r̄n +

∞∑
l,m,n=1

el,m,nmp
0p̄l+m−1r̄n

−
∞∑
n=0

nanp
0p̄n−1 −

∞∑
m,n=1

mp0p̄m−1(cqm,np̄
n + cπm,nr̄

n)−
∞∑

l,m,n=1

el,m,nlp
0p̄l+m−1r̄n

By Lemma 3.1, to have a PLEPS this has to be equal to (−λ) for all p, r, which is possible only if

- from r̄n terms:

cπ1,n = d1,n (6.2)

- from p̄r̄n terms:

0 = cπ1,n − d1,n + cπ2,n − d2,n (6.3)

- from p̄2r̄n terms:

0 = 2(d2,n − cπ2,n) + 3p0(d3,n − cπ3,n) + p0(e1,2,n − e2,1,n) (6.4)

- from p̄3r̄n terms:

0 = 3(d3,n − cπ3,n) + (e1,2,n − e2,1,n) + 4p0(d4,n − cπ4,n) + 2p0(e1,3,n − e3,1,n) (6.5)

And so on.

So, it is sufficient to show el,m,n = em,l,n This follows directly from Assumption 3.1, because then

the third mixed derivative of the difference F (p, q, r)−F (q, p, r) in scores is zero for all p, q, r, that is,

0 =
∞∑

l,m,n=1

lmn el,m,np̄
l−1q̄m−1r̄n−1 −

∞∑
l,m,n=1

lmn el,m,nq̄
l−1p̄m−1r̄n−1

This completes the proof.

Then following lemma is the key ingredient in proving Theorem 3.2. It is a slight extension of

Lemma A.1 in Schervish (1989).
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Lemma 6.1 (Schervish 1989). Let 0 < a ≤ 1, p, q ∈ (0, a), and p > q. If A,B are real numbers

such that

pA+ (a− p)B > 0

q(−A) + (a− q)(−B) > 0

then A > 0 and B < 0.

Proof:

Notice that A 6= 0. If not, then the two above inequalities become (a−p)B > 0 and (a−q)(−B) > 0,

a contradiction. In order to prove the lemma we only need to prove that A > 0. Suppose to the contrary

that A < 0. Then B > 0. From (a − p)B > −pA it follows that B > − p
a−pA > 0. We then get

0 < q(−A) + (a − q)(−B) < q(−A) + a−q
a−ppA = Aa p−q

a−p < 0, which is impossible. This contradiction

proves A > 0.

Proof of Theorem 3.2:

Recall that we want to prove that PLEPS payoffs are strictly increasing in the posterior probabilities

of the true state of nature.

We suppress the dependence on sk’s in our notation. This is justified because fixing sk’s does not

restrict the choice of any two rows of the Z-matrix, because we can always define Q by qik = ziksk.

We consider three cases separately according to the values of M and N .

Case 1: Assume M = 2, N = 2. The matrix Z can be written then as

z1
1 z2

1

z1
2 z2

2

. If we denote

p := z1
1 , q := z1

2 , then the matrix Z becomes Z =

p 1− p

q 1− q

. Suppose p > q (which is equivalent to

1− q > 1− p). The IC property (2.1) of Fi implies

pF1(p, q) + (1− p)F2(1− p, 1− q) > pF1(q, p) + (1− p)F2(1− q, 1− p) and

qF1(q, p) + (1− q)F2(1− q, 1− p) > qF1(p, q) + (1− q)F2(1− p, 1− q).

This leads to
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p[F1(p, q)− F1(q, p)] + (1− p)[F2(1− p, 1− q)− F2(1− q, 1− p)] > 0 and

q[F1(q, p)− F1(p, q)] + (1− q)[F2(1− q, 1− p)− F2(1− p, 1− q)] > 0.

We set a = 1, A = F1(p, q)−F1(q, p) and B = F2(1− p, 1− q)−F2(1− q, 1− p), and apply Lemma

6.1 in Appendix to the above equations. We obtain that F1(p, q) > F1(q, p) and F2(1 − p, 1 − q) >

F2(1− q, 1− p), which proves the theorem in this case.

Case 2: Assume M ≥ 3, N = 2. The matrix Z can be written as


z1

1 z2
1

z1
2 z2

2

...
...

z1
M z2

M

.

The matrix entries satisfy z2
k = 1 − z1

k, k = 1, ...,M . Take any k, j ∈ {1, ...,M} such that z1
k > z1

j

(which is equivalent to z2
j > z2

k). Using the notation p := z1
k, q := z1

j , and the notation zi−j,k for the

(N − 2)-tuple which consists of {zi1, ..., ziM} \ {zij, zik}, from (2.1) we obtain that the following two

equations hold:

pF1(p, q, z1
−(j,k)) + (1− p)F2(1− p, 1− q, z2

−(j,k)) > pF1(q, p, z1
−(j,k)) + (1− p)F2(1− q, 1− p, z2

−(j,k))

qF1(q, p, z1
−(j,k)) + (1− q)F2(1− q, 1− p, z2

−(j,k)) > qF1(p, q, z1
−(j,k)) + (1− q)F2(1− p, 1− q, z2

−(j,k)).

Hence, if we define A and B in the following way,

A = F1(p, q, z1
−(j,k))− F1(q, p, z1

−(j,k)) = F1(z1
k, z

1
−k)− F1(z1

j , z
1
−j)

and

B = F2(1− p, 1− q, z2
−(j,k))− F2(1− q, 1− p, z2

−(j,k)) = F2(z2
k, z

2
−k)− F2(z2

j , z
2
−j)

we are again within the framework of Lemma 6.1, and we conclude that A > 0 and B < 0, which

proves (3.9) for both i = 1 and i = 2.

Case 3:

Assume M ≥ 2, N ≥ 3 and denote Z =


z1

1 z2
1 . . . zN1

z1
2 z2

2 . . . zN2
...

...
...

...

z1
M z2

M . . . zNM

. We will prove (3.9) for the i-th

column in the matrix Z. Choose any rows (types) j, k ∈ {1, ...,M} where j 6= k. Since the only

requirement for the matrix Z is that its rows are non-degenerate probability distributions, and since

the values of Fi depend only on the quantities in the i-th column, then in order to complete the proof
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we need to prove only that for every p := zik and q := zij, with 1 > p > q > 0, for any choice of

zi−(k,j) ∈ (0, 1)M−2 (if M = 2 this last requirement is unnecessary), we have

Fi(p, q, z
i
−(k,j)) > Fi(q, p, z

i
−(k,j)) (6.6)

To use (2.1) and apply Lemma 6.1 again, the idea now is to suitably modify the matrix Z, without

changing its i-th column, by finding a matrix Q̃ with the same type probabilities s` as the original

matrix Q. As mentioned above, we can always do that by choosing q`i = zi`s`. Moreover, looking at

the proof from Case 1 and Case 2, we see that we apply Lemma 6.1 to the payoff differences in two

different states, corresponding to two different columns of matrix Z. Without loss of generality, we

assume i 6= 1, and we change that column in a specific way. More precisely, instead of working with

the original matrix Z, we work with the following Z−matrix, in which the i-th column is not changed:

Take 0 < ε < 1 and a := 1− ε ; we work with the matrix Z̃ given by

Z̃t
l :=



ztl , if l ∈ {1, ...,M} \ {j, k}

p, if l = k, t = i

q, if l = j, t = i

a− p, if l = k, t = 1

a− q, if l = j, t = 1

ε
N−2

, otherwise

where p, q are arbitrary values in (0, a) with p > q. Then for every choice of ε and p and q, we have

that Z̃ is a Z-matrix which differs from Z only in the j-th and k-th row and these rows are

a− p ε
N−2

. . . ε
N−2

p ε
N−2

. . . ε
N−2

a− q ε
N−2

. . . ε
N−2

q ε
N−2

. . . ε
N−2


.

The IC property (2.1) applied now to j and k yields

N∑
t=1

z̃tkFt(z̃
t
k, z̃

t
−k) >

N∑
t=1

z̃tkFt(z̃
t
j, z̃

t
−j)
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N∑
t=1

z̃tjFt(z̃
t
j, z̃

t
−j) >

N∑
t=1

z̃tjFt(z̃
t
k, z̃

t
−k)

Observe that for t ∈ {1, .., N}\{1, i} we have z̃tj = z̃tk = ε
N−2

. Hence on both sides of the above inequal-

ities we have terms ε
N−2

Ft(
ε

N−2
, ε
N−2

, zt−(j,k)) and they cancel each other. Therefore, the inequalities

take the following form:

(a− p)F1(a− p, a− q, z1
−(j,k)) + pFi(p, q, z

i
−(j,k)) > (a− p)F1(a− q, a− p, z1

−(j,k)) + pFi(q, p, z
i
−(j,k))

(a− q)F1(a− q, a− p, z1
−(j,k)) + qFi(q, p, z

i
−(j,k)) > (a− q)F1(a− p, a− q, z1

−(j,k)) + qFi(p, q, z
i
−(j,k))

If we set A and B as A = Fi(p, q, z
i
−(j,k)) − Fi(q, p, zi−(j,k)) and B = F1(a − p, a − q, z1

−(j,k)) − F1(a −

q, a − p, z1
−(j,k)), we are again within the framework of Lemma 6.1. Therefore A > 0, which proves

inequality (6.6) for a > p > q > 0. By letting ε→ 0, we obtain (6.6) for 1 > p > q > 0.

Proof of Theorem 4.1:

We want to derive the representation of the BTS score in terms of the logarithms of the local

posteriors.

Let us denote

pij = Pr(Xπ
i = 1, Xγ

j = 1)

where we use the fact that, by exchangeability, the right-hand side does not depend on the choice of

π 6= γ. Thus, we also have

Pr(Xπ = xπ|Xγ = xγ) =
pij∑M
k=1 pkj

(6.7)

We will need the following three properties.

- Property I: yπj =
∑M

i=1 x
π
i

pij∑M
k=1 pki

- Property II: logPr(Xγ = xγ | Xπ = xπ) =
∑M

j=1 x
γ
j log yπj , where conditioning indicates condi-

tioning on the truthful response, hence on the signal.

- Property III: logPr(Xπ = xπ|X̄ = x̄) =
∑M

k=1 x
π
k log x̄k.
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Property I is assumed because we assume a Bayesian game: the respondents compute conditional

probabilities in a Bayesian fashion. Property II is a consequence of Property I and equation (6.7). For

Property III, let ` be such that xπ` = 1. De Finetti’s theorem implies

Pr(Xπ = xπ|X̄ = x̄) = x̄` =
M∑
k=1

xπk x̄k .

The sum on the right always has only one term different from zero. Therefore, taking the log implies

Property III.

Next, let xγ be any values such that

x̄k = lim
n

1

n

∑
s

xγk

Note that we can use exchangeability to reorder the respondents so that π = 1 and γ = 2, ..., n+ 1.

For such choice of π and γ we have logPr(Xπ = xπ|Xγ = xγ) =
∑M

j=1 x
π
j log(yγj ). We may always omit

those γ such that Pr(Xγ = xγ) = 0. Thus, we actually have only finitely many choices for an M -tuple

xγ such that 0 < Pr(Xγ = xγ) < 1, and there is a lower bound A and an upper bound B such that

0 < A ≤ Pr(Xγ = xγ) ≤ B < 1. Then it follows that A = n
√
An ≤ n

√∏n
s=1 Pr(X

γ = xγ) ≤ n
√
Bn = B.

The log function is continuous, so log(lim(f)) = lim(log(f)) as long as f and lim(f) are both finite

and strictly positive. We conclude that the limit limn→∞
∏n

s=1 Pr(X
γ = xγ) exists, that it is not zero,

and that we can take the log outside or inside the limit.

Next, using the above conclusion, from Properties I-III we get

M∑
k=1

x̄k log yπk = lim
n

1

n

∑
s

logPr(Xγ = xγ|Xπ = xπ)

and
M∑
k=1

xπk log ȳk = lim
n

1

n

∑
s

logPr(Xπ = xπ|Xγ = xγ)

and so, using Bayes rule,
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BTSπ =
M∑
k=1

xπk log
x̄k
ȳk

+
M∑
k=1

x̄k log yπk

= logPr(Xπ = xπ|X̄ = x̄) + lim
n

1

n

∑
s

logPr(Xγ = xγ|Xπ = xπ)− lim
n

1

n

∑
s

logPr(Xπ = xπ|Xγ = xγ)

= log

(
Pr(Xπ = xπ|X̄ = x̄) lim

n
Πn
s=1

Pr1/n(Xγ = xγ|Xπ = xπ)

Pr1/n(Xπ = xπ|Xγ = xγ)

)
= log

(
Pr(Xπ = xπ|X̄ = x̄)

limn Πn
s=1Pr

1/n(Xγ = xγ)

Pr(Xπ = xπ)

)
= logPr(X̄ = x̄|Xπ = xπ)− logPr(X̄ = x̄) + lim

n

1

n

∑
s

logPr(Xγ = xγ)

Since the last two terms do not depend on π, and
∑

r BTS
π = 0, we get equation (4.1). Next, for

fixed n and x̄, denote by nj the number of respondents who have type j, so that∑
j

nj = n

Then we can write equation (4.1) as

BTSπ = logPr(X̄ = x̄|Xπ = xπ)

− lim
n→∞

1

n

[ n1∑
s=1

logPr(X̄ = x̄|Xπ = x1) + . . .+

nM∑
s=nM−1+1

logPr(X̄ = x̄|Xπ = xM)

]

= logPr(X̄ = x̄|Xπ = xπ)− lim
n→∞

[
n1

n
logPr(X̄ = x̄|Xπ = x1) + . . .+

nm
n

logPr(X̄ = x̄|Xπ = xM)

]
Since

lim
n→∞

nj
n

= Pr(T π = j | X̄ = x̄)

we prove equation (4.2).
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[18] Maskin, E. and Sjöström, T. (2002) Implementation theory. In “Handbook of Social Choice and

Welfare”; K. J. Arrow, A. K.Sen and K. Suzumura (ed.) 1, 237–288, Elsevier.

[19] McCarthy, J. (1956) Measures of the value of information. Proc Natl Acad Sci USA 42, 654–655.

[20] Miller, S.R., Bailey, B.P. and Kirlik, A. (2014) Exploring the Utility of Bayesian Truth Serum for

Assessing Design Knowledge, Human-Computer Interaction, vol.29, no.5-6, 487-515.

[21] Miller, N., Resnick, P. and Zeckhauser, R. (2005) Eliciting Informative Feedback: The Peer-

Prediction Method. Management Science 51, 1359–1373.

[22] Myerson, R. B. (1981) Optimal Auction Design Mathematics of Operations Research 6, 58–73.

[23] Offerman, T., Sonnemans, J., Van De Kuilen, G. and Wakker, P.P. (2009) A Truth Serum for

Non-Bayesians: Correcting Proper Scoring Rules for Risk Attitudes. Review of Economic Studies

76, 1461–1489.

[24] Prelec, D. (2004) A Bayesian Truth Serum for Subjective Data. Science 306, 462–466.

[25] Prelec, D., Seung, H.S. and McCoy, J. (2017) A solution to the single-question crowd wisdom

problem. Nature 541, 532-535.

39



[26] Radanovic, G. and Faltings, B. (2013) A Robust Bayesian Truth Serum for Non-binary Signals.

In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI13). 833839.

[27] Savage, L.J. (1971) Elicitation of Personal Probabilities and Expectations. Journal of the Amer-

ican Statistical Association 66, 783–801

[28] Schervish, M. (1989) A General Method for Comparing Probability Assessors. The Annals of

Statistics 17, 1856–1879.

[29] Schlag, K.H. and van der Weele, J.J. (2013) Eliciting Probabilities, Means, Medians, Variances

and Covariances without assuming Risk Neutrality. Theoretical Economics Letters 2, 38–42.

[30] Vohra, R.V. (2007) Paths, Cycles and Mechanism Design. Preprint.

[31] Waggoner, B., and Chen, Y. (2013) Information Elicitation Sans Verification. In Proceedings of

the 3rd Workshop on Social Computing and User Generated Content (SC13).

[32] Witkowski., J. (2014.) Robust Peer Prediction Mechanisms. Ph.D. Dissertation. Department of

Computer Science, Albert-Ludwigs-Universitat Freiburg.

[33] Witkowski, J., and Parkes, D. (2012) A Robust Bayesian Truth Serum for Small Populations. In

Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI12). 1492–1498.

[34] Witkowski, J., and Parkes, D. (2013) Learning the Prior in Minimal Peer Prediction. In Proceed-

ings of the 3rd Workshop on Social Computing and User Generated Content (SC13)

40




