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Abstract—Passive non-line-of-sight imaging methods are often
faster and stealthier than their active counterparts, requiring
less complex and costly equipment. However, many of these
methods exploit motion of an occluder or the hidden scene, or
require knowledge or calibration of complicated occluders. The
edge of a wall is a known and ubiquitous occluding structure
that may be used as an aperture to image the region hidden
behind it. Light from around the corner is cast onto the floor
forming a fan-like penumbra rather than a sharp shadow. Subtle
variations in the penumbra contain a remarkable amount of
information about the hidden scene. Previous work has leveraged
the vertical nature of the edge to demonstrate 1D (in angle
measured around the corner) reconstructions of moving and
stationary hidden scenery from as little as a single photograph of
the penumbra. In this work, we introduce a second reconstruction
dimension: range measured from the edge. We derive a new
forward model, accounting for radial falloff, and propose two
inversion algorithms to form 2D reconstructions from a single
photograph of the penumbra. Performances of both algorithms
are demonstrated on experimental data corresponding to several
different hidden scene configurations. A Cramér–Rao bound
analysis further demonstrates the feasibility (and utility) of the
2D corner camera.

Index Terms—corner camera, non-line-of-sight imaging, com-
putational photography, remote sensing, computer vision.

I. INTRODUCTION

THE ability to form non-line-of-sight (NLOS) images
would be useful in a variety of situations. It could help

soldiers anticipate danger as they navigate a tunnel system, au-
tonomous vehicles avoid collision, and first responders as they
enter buildings. Current NLOS imaging methods may be ac-
tive, based predominantly on the transient imaging framework
first proposed in [1], [2] and requiring control of hidden scene
illumination, or passive, where only light sources already
present are used. The earliest active NLOS imaging systems
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combined a femtosecond laser with a 2 picosecond resolution
streak camera [2], [3]; newer systems using single-photon
avalanche diode (SPAD) detectors and time-correlated single
photon counting (TCSPC) modules provide a less expensive
alternative. These systems have been used extensively for both
line of sight imaging [4]–[6] and NLOS applications [7]–
[19]. Recently, SPAD-based NLOS imaging systems have
demonstrated faster processing using confocal scanning [16],
reconstruction algorithms based on wave properties [17], [18],
and color reconstructions using multiple wavelengths of illu-
mination [19]. The system demonstrated in [20] scans a pulsed
laser along an arc at the base of a vertical edge occluder, like
the edge we use in this paper, to achieve reconstructions with
high azimuthal resolution. An active non-SPAD-based system
for tracking a hidden object was demonstrated in [21] using
intensity-only measurements.

Compared to active methods, passive NLOS imaging tech-
niques may be less expensive and stealthier, with lower power
requirements and faster data acquisition. These passive meth-
ods leverage occluding structures and light sources already
present in the environment [22]. Useful structures may be
the aperture formed by a partially open window or door, or
the ‘accidental pinhole’ formed when a once-present object is
moved [23], [24]. Using an ordinary digital camera, Saunders
et al. formed NLOS color reconstructions when the form of
the occluder was known [25]. Other methods use the motion
of the hidden scene to discern the shape of an unknown
occluder [26], or deep matrix factorization to simultaneously
reconstruct an unknown hidden scene and occluder [27].
Unlike other occluders used in NLOS imaging systems [25]–
[29], a wall edge has a known shape and is ubiquitous. In this
case, light is cast onto the visible floor around the occluding
edge forming a penumbra Photographs of the penumbra may
be used to produce angularly resolved reconstructions of the
hidden scene. This concept was introduced in [30], where
smoothed differences between consecutive video frames were
used to form one-dimensional reconstructions of changes in
the hidden scene, even when the video frames were visu-
ally indistinguishable. Our previous work demonstrated 1D
reconstruction of both moving and stationary hidden-scene
components from a single photograph, while simultaneously
estimating unknown nonuniform floor albedo [31].

In this paper, we go beyond 1D reconstructions by combin-
ing the resolving power of a vertical edge with information
from the relationship between intensity and radial distance. To
see why this is possible—though potentially difficult—we first
examine the effects of certain idealized occluders. Consider a
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(a) Pinhole occluder

(b) Vertical slit occluder
(c) Edge occluder

Fig. 1: The edge occluder (c) may be better understood by considering other well-known occluders, such as the pinhole (a) and vertical slit
(b).

pinhole in a vertical plane, as shown in Fig. 1a. The direction
(i.e., azimuth and elevation angles) of a point source s of
unknown brightness is easily recoverable, but its range is not.
If the scene is extended rather than a single point source, a
sharp, classical pinhole projection of the scene is obtained.
When the occluder has a vertical slit, as shown in Fig. 1b, a
slice of the 3D world, a portion of which is shown in light blue,
is mapped to a line (brown) on the observation plane. Here,
the azimuthal angle α of incident light is easily recoverable.
If there is a single omnidirectional point source in the planar
slice at azimuthal angle α, its elevation angle δ and range can
be recovered from the variation of light intensity, due to radial
falloff and path length differences, at p1, p2, and p3. For an
extended scene, the blurring in elevation angle δ is extremely
ill-conditioned for inversion.

The edge occluder, shown in Fig. 1c, may be thought of as
‘half’ of a slit occluder. For a point source, the sharp shadow
on the observation plane makes the azimuthal angle α again
easily recoverable. The elevation angle δ and range are easier
to recover than in the slit case because they influence the
gradations of brightness over the entire unobscured portion
of the observation plane (i.e., the yellow region in Fig. 1c).
Imaging of an extended scene is more difficult than in the slit
case because of range-dependent blurring over both α and δ.

Localization of a point source is both easier to achieve
and easier to analyze. We study this in Section III, with the
main objective of precisely characterizing how much easier
the estimation of azimuthal angle α is than the estimation
of range. Our greater interest is in imaging extended hidden
scenes, and in principle, we could attempt a 3D scene recon-
struction. However, Cramér–Rao bound analyses presented in
Sections III and VI-A suggest that this 3D reconstruction prob-
lem would be ill-conditioned. As such, earlier works [30], [31]
attempt only 1D reconstructions. We seek 2D reconstructions
depending on angle and range (omitting height) in cylindrical
coordinates centered at the vertical edge. This is motivated
primarily by real-world scenes being dominated by objects that
are approximately vertically oriented. The specifics of the 3D-
to-2D mapping are given in Section II-A. Alternative inverse
problem formulations for the same imaging configuration are
discussed in Section VI-A.

Our key contributions include:

• A new forward model that describes a single photograph
as a combination of light originating from a range of
angles and depths in the hidden scene (Section II).

• Cramér–Rao bound (CRB) analysis (Section III) to
demonstrate the limits of exploiting measurement of vis-
ible penumbrae for 2D hidden scene reconstruction. Our
analysis shows that while range estimation is possible, it
is inherently difficult relative to angle estimation.

• Two different inversion algorithms, proposed in Sec-
tion IV).

• Experimental demonstration of our 2D reconstruction
algorithm on a variety of colored hidden scenes (Sec-
tion V).

II. FORWARD MODEL

A. Light Transport

Consider the NLOS imaging scenario in Fig. 2, where the
hidden scene consists of a green cylinder. Here we show a
tripod, but in practice, the camera could be mounted anywhere
that has a line-of-sight view of the floor adjacent to the corner.
For example, it could be mounted on an autonomous vehicle
or on a soldier’s helmet. As shown in Fig. 2, we parameterize
the hidden scene in cylindrical coordinates with range ρ, angle
α, and height z. A point p = (r, θ) on the floor in the camera
field of view is described by its range r and angle measured
from the wall θ. Assuming the camera looks straight down
at a Lambertian floor,1 and the effects of all foreshortening
factors are negligible, the brightness Lo(p) of point p on the
floor is the albedo f(p) at point p multiplied by the sum of
all incident light:

Lo(p) = f(p) (Lv(p) + Lh(p)) , (1)

where Lv(p) is the incident ambient light originating from the
visible side, and Lh(p) is the incident light originating from
the hidden side.

1For the sake of demonstration, this paper assumes the camera is centered
above the observation region, looking directly down at the floor. At this
viewing angle, the floor area seen by each camera pixel is approximately
the same. The setup in Fig. 2, where the camera views the floor from an
angle, is realizable when differences in projected pixel area are included in
the model.
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(a) Side view

(b) Bird’s-eye view

Fig. 2: Acquisition setup and depiction of problem geometry. A point
p in the camera’s field of view is represented in polar coordinates,
while the 3D hidden scene is represented in cylindrical coordinates.

The measured photograph is an array of size Mx×My , with
M = MxMy total pixels. The measurement ym of camera
pixel m is equal to the total radiosity of camera pixel Pm,
which consists of all points p on the measurement plane that
are focused on camera pixel m. Thus,

ym =

∫
p∈Pm

Lo(p) dp,

where we have ignored the constant scaling factor associated
with the camera because we are not attempting to estimate
a physically meaningful overall scaling factor for the hidden
scene. Because all camera pixels have equal projected area
κcam

def
= area (Pm) on the measurement plane, and because

κcam = 1 without loss of generality, we can use (1) to write

ym ≈ κcamLo(rm, θm)

= f(rm, θm) (Lv(rm, θm) + Lh(rm, θm)) , (2)

where (rm, θm) is the center of camera pixel Pm.
By adopting a cylindrical coordinate parameterization of the

hidden scene, the hidden scene contribution Lh(r, θ) is the sum
of incident light Li coming from different directions:

Lh(r, θ) =

∫ θ

0

∫ ∞
0

∫ ∞
0

Li(ρ, α, z)ρ dz dρ dα

=

∫ θ

0

∫ ∞
0

∫ ∞
0

Sh(ρ, α, z)

d2(r, θ, ρ, α) + z2
ρ dz dρ dα, (3a)

where Sh(ρ, α, z) is the radiosity of a hidden scene location
(ρ, α, z), assumed to have no directional dependence over the
extent of the camera FOV, and

d2(r, θ, ρ, α) = r2 + ρ2 − 2rρ cos(π − θ + α) (3b)

is the squared distance between point p on the visible floor
and a hidden scene (floor) point (ρ, α, 0). The inversion of (3)
to estimate the 3D scene Sh(ρ, α, z) from Lh(r, θ) may be
possible with suitable discretization and regularization. While
we do not study the conditioning of this problem formally,
it is presumably quite poorly conditioned. Instead, we would
like to write an approximation of (3) that has a 2D hidden
scene representation and then estimate that representation.

B. 2D Scene Model

Inspired by [30], [31], the presence of the vertical edge oc-
cluding our view of the hidden scene makes the α dependence
of Sh(ρ, α, z) the easiest dimension to estimate. We choose to
represent the dependence on ρ rather than on z to recover a
2D plan view representation of the hidden scene. To this end,
we rewrite (3a) as

Lh(r, θ) =

∫ θ

0

∫ ∞
0

ρ

d2(r, θ, ρ, α)
S̄h(r, θ, ρ, α) dρ dα, (4a)

where

S̄h(r, θ, ρ, α) =

∫ ∞
0

Sh(ρ, α, z)

1 + (z/d(r, θ, ρ, α))
2 dz. (4b)

For (4) to be a forward operator to invert for recovery of a 2D
representation of the scene, we would like to replace S̄h with
an approximation with no dependence on r and θ. If scene
content is mostly short relative to the horizontal dimensions,
z � d(r, θ, ρ, α) where Sh(ρ, α, z) is appreciable. The 2D
scene representation

S̄h(ρ, α) =

∫ ∞
0

Sh(ρ, α, z) dz (5)

thus satisfies
S̄h(ρ, α) ≈ S̄h(r, θ, ρ, α)

for all (r, θ) in the camera FOV. Using this approximation,
the inversion we study in Section IV is of

Lh(r, θ) =

∫ θ

0

∫ ∞
0

ρ

d2(r, θ, ρ, α)
S̄h(ρ, α) dρ dα. (6)

When a target has appreciable height, we expect there to be
some distortion. In simulation, we found that taller targets
were estimated to be farther from the occluding edge than
shorter targets.

To model occlusion in the hidden scene, we assume that
all the contributions to our measurement from a given angle
α come from a single range ρ. This roughly corresponds to
a hidden scene composed of opaque vertical objects resting
on the ground. Under this assumption, we write S̄h(ρ, α) =
δ(ρ−ρh(α))sh(α) as a separable function of range ρh(α) ≥ 0
and angle α ∈ (0, π], where sh(α) denotes the dependence of
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scene radiosity on α, and δ(·) is the Dirac delta function. Then
(6) becomes

Lh(r, θ) =

∫ θ

0

∫ ∞
0

ρ

d2(r, θ, ρ, α)
δ(ρ− ρh(α))sh(α) dρ dα

=

∫ θ

0

ρh(α)

d2(r, θ, ρh(α), α)
sh(α) dα.

Thus, substituting

Lh(rm, θm) =

∫ θm

0

ρh(α)

d2(rm, θm, ρh(α), α)
sh(α) dα (7)

into (2) we obtain the model

ym ≈ f(rm, θm)

(
Lv(rm, θm)

+

∫ θm

0

ρh(α)

d2(rm, θm, ρh(α), α)
sh(α) dα

)
(8)

for the hidden scene and visible scene contributions to camera
measurement m.

C. Discrete Forward Model

For the sake of concisely demonstrating our core ideas, this
paper focuses on estimating half of the hidden scene, i.e., the
region α ∈ (0, π/2].2 We discretize the hidden region into N
equiangular wedges identified by their center angles

αn =
(n− 1

2 )π

2N
, n = 1, 2, . . . , N,

and associate a single unknown range value ρh(αn) with
each wedge. Then the pair (ρh(αn), αn) defines a (unique)
position in the hidden space for each n ∈ {1, 2, . . . , N}.
Now gathering these variables into the hidden-scene radiosity
vector sh = [sh(α1), sh(α2), . . . , sh(αN )]T and range vector
ρh = [ρh(α1), ρh(α2), . . . , ρh(αN )]T gives the discrete, non-
linear forward model

y = a� f + f � (V �D(ρh))sh + ε, (9)

where y = [y1, y2, . . . , ym] ∈ RM denotes the vectorized
camera photograph, a ∈ RM is the discretization of ambient
light contribution Lv, f ∈ RM is the floor albedo, V ∈ RM×N
is a binary-valued visibility matrix (with the entry [V]m,n
equalling 0 if the path joining pm and (ρ(αn), αn) is occluded
by the wall, otherwise it is equal to 1), and � is Hadamard
(or element-wise) product. Note that when no target is present
at angle αn, sh(αn) = 0. The matrix D(ρh) ∈ RM×N has
elements

[D(ρh)]m,n =
ρh(αn)

d2(rm, θm, ρh(αn), αn)
,

and ε models noise and other possible model mismatch.
Inverse Problem: Our goal is to recover a 2D (plan view)

reconstruction (sh,ρh) of a hidden scene Sh from a single

2Our proposed methods could be extended to reconstruct the full hidden
scene, i.e., φs ∈ (0, π], by: (i) extending the camera’s FOV to also include
measurements from the positive y-axis of the visible side floor surface (see
Fig. 2); and (ii) carefully accounting for the thickness of the occluding wall
if necessary.

photograph y of the penumbra created on a visible floor
surface using (9).

Before presenting our approaches for solving (9), we study
the feasibility (and certain limits) of realizing the 2D corner
camera. Specifically, by evaluating the CRBs for hypothetical
cases where the hidden scene comprises only a few hidden
point targets, we demonstrate the merits of the occluding wall
(or corner occluder) for hidden scene recovery.

III. CRAMÉR–RAO BOUND FOR TARGET LOCALIZATION

In the subsections that follow, we present CRB analysis
to demonstrate the merit and challenge of an edge occluder
for 2D plan-view reconstruction of a hidden scene. To truly
understand the effect of the edge, we perform our analysis
both for the edge occluder scenario, and the scenario where
no edge is in place. We start with the former.

In (7), measurement ym, with the edge in place, is approxi-
mated by the intensity at the center of the pixel. Now, we leave
the more precise integral across points p = (r, θ), in floor
patch Pm, in place and assume no ambient light contributions,
i.e. Lv = 0. Under an additive white Gaussian noise (AWGN)
model, the noisy camera measurement is given by

ym =

∫
p∈Pm

∫ θm

0

ρh(α)

d2(r, θ, ρh(α), α)
sh(α) dα dp + ε, (10)

where ε ∼ N (0, σ2).

A. Single Hidden Target

Assume the hidden target is a hypothetical point emitter,
located at the point (ρs, φs, 0) on the ground, i.e. Sh(ρ, α, z) =
csδ(ρ − ρs)δ(α − φs)δ(z), where φs ∈ (0, π/2]. Evaluating
(3a), the outgoing radiosity from a point p = (r, θ) is

Lo(p) = f(p)
csρsH(θ − φs)

r2 + ρ2
s − 2rρs cos(φs + π − θ)

, (11)

where H(x) is the Heaviside step function.
Assuming a uniform albedo f(p) = 1, the measurement at

pixel m is ym = im + ε, with

im =

∫
p∈Pm

csρsH(θ − φs)

r2 + ρ2
s − 2rρs cos(φs + π − θ)

dp. (12)

We will now analyze how small changes in target location
(ρs, φs) and brightness cs propagate to small changes in the
camera measurements. This will allow us to analyze how much
information about these unknown parameters is contained in
our noisy measurements ym. The derivatives of im with respect
to the unknown parameters are as follows:

∂im
∂cs

=

∫
p∈Pm

ρsH(θ − φs)

r2 + ρ2
s − 2rρs cos(φs + π − θ)

dp,

∂im
∂ρs

= cs

∫
p∈Pm

(r2 − ρ2
s )H(θ − φs)

(r2 + ρ2
s − 2rρs cos(φs + π − θ))2 dp,

and
∂im
∂φs

= −csρs

∫
p∈Pm

δ(θ − φs)

r2 + ρ2
s − 2rρs cos(φs + π − θ)

+
2rρs sin(φs + π − θ)H(θ − φs)

(r2 + ρ2
s − 2rρs cos(φs + π − θ))2

dp.



SEIDEL et al.: NLOS SCENE ESTIMATION 5

Interchanging the integral and derivative is justified since the

definite integral im is finite. We define the following matrix:

∇I =

⎡⎢⎢⎢⎢⎢⎣
∂i1
∂cs

∂i1
∂ρs

∂i1
∂φs

∂i2
∂cs

∂i2
∂ρs

∂i2
∂φs

...
...

...

∂iM
∂cs

∂i2
∂ρs

∂iM
∂φs

⎤⎥⎥⎥⎥⎥⎦ (13)

and note that under our Gaussian model, the Fisher infor-

mation matrix, which describes the amount of information

our data contains about unknown parameters, for estimating

(cs, ρs, φs) from the noisy measurements {ym}Mm=1 is given

by

F =
1

σ2

(∇IT∇I
)
,

=
1

σ2

⎡⎢⎢⎢⎢⎣
∑

m

(
∂im
∂cs

)2 ∑
m

∂im
∂cs

∂im
∂ρs

∑
m

∂im
∂cs

∂im
∂φs∑

m
∂im
∂ρs

∂im
∂cs

∑
m

(
∂im
∂ρs

)2 ∑
m

∂im
∂ρs

∂im
∂φs∑

m
∂im
∂φs

∂im
∂cs

∑
m

∂im
∂φs

∂im
∂ρs

∑
m

(
∂im
∂φs

)2

⎤⎥⎥⎥⎥⎦ .

(14)

The CRB provides a lower bound for the achievable uncer-

tainty of an unbiased estimator and is related to the reciprocal

of the Fisher information:

CRBEO(cs) = σ2[F−1]1,1, (15a)

CRBEO(ρs) = σ2[F−1]2,2, (15b)

CRBEO(φs) = σ2[F−1]3,3, (15c)

where the EO subscript indicates that these CRB results are for

the edge occluder scenario. In other words, greater information

about the unknown parameters corresponds to lower estimate

uncertainty.

Without the occluding edge, corresponding CRBs

(CRBno-EO(cs), CRBno-EO(ρs), and CRBno-EO(φs))
for estimating the same “out-of-view” target parameters

follow similarly. Without the occlusion described in (10), the

measurement by the mth camera pixel is

yno-EO
m

def
=

∫
p∈Pm

csρs
r2 + ρ2s − 2rρs cos(φs + θ)

dp+ ε

= ino-EO
m + ε.

Using the derivatives of ino-EO
m with respect to the hidden

target’s parameters:

∂ino-EO
m

∂cs
=

∫
p∈Pm

ρs
r2 + ρ2s − 2rρs cos(φs + θ)

dp,

∂ino-EO
m

∂ρs
= cs

∫
p∈Pm

(r2 − ρ2s )

r2 + ρ2s − 2rρs cos(φs + θ)
dp,

and

∂ino-EO
m

∂φs
= csρs

∫
p∈Pm

2rρs sin(θ + φs)

r2 + ρ2s − 2rρs cos(φs + θ)
dp,

the Fisher information matrix Fno-EO, along with CRBs

(CRBno-EO(cs), CRBno-EO(ρs), and CRBno-EO(φs)) may be

computed using the approach outlined in (13, 14, 15).

 x

 y

(a) log10 CRBEO(ρs)

 x

 y

(b) log10 CRBEO(φs)

 x

 y

(c) log10 CRBno-EO(ρs)

 x

 y

(d) log10 CRBno-EO(φs)

Fig. 3: Variation of the CRBs for estimating a single hidden target
for different target locations. The number of measurement pixels is
M = 1552 and the measurement FOV is 0.2m× 0.2m, with fixed
noise variance σ2 = 10.

Contour plots of computed CRBs for various ground truth

target positions with respect to the origin (corner) are shown

in Fig. 3, for the corner (CRBEO) and no corner cases

(CRBno-EO). Comparing Figs. 3a and 3c, achievable target

range estimates MSE has marginal dependence on the presence

of a corner, when estimating a single point target. On the other

hand, Figs. 3b and 3d suggest that CRBs for angle estimates

with the corner are around five to seven orders of magnitude

smaller when compared to the no-corner case.

Fixing the target’s range at ρs = 1 m, Fig. 4 sum-

marizes the dependence of the computed CRBs on φs ∈
[π/64, 63π/64] rads. First, Fig. 4a shows that CRBEO(ρs)
and CRBno-EO(ρs) are nearly equal at very shallow target an-

gles, because the shadowed region in the occluded case is very

small (the measurements for the corner and no corner cases are

almost the same). However, with measurement noise variance

fixed and φs increasing, CRBEO(ρs) diverges because the in-

shadow region—which cannot possibly be informative about

the occluded target’s distance—grows, while CRBno-EO(ρs)
changes only marginally (reaching a maximum at π/4 rads
before decreasing again). At the deepest angle, CRBEO(ρs)
is roughly 28 times CRBno-EO(ρs). Figs. 4b and 4c indicate

that CRBno-EO(φs) has relatively mild dependence on the true

target angle φs, with symmetry around π/4. The observed

partial symmetry, in Fig. 4c, about π/4, with φs ∈ [π/8, 3π/8]
is because, in contrast to range estimation, the in-shadow

region is also informative (subject to prevalent noise lev-

els) about the target’s angular position. The asymmetry (for

φs /∈ [π/8, 3π/8]) is explained by a fixed noise variance

(i.e., measurement SNR reduces with increasing target angle).

Overall, the variation in CRBEO(φs) is small relative to the

roughly five orders of magnitude improvement due to the

occluding wall.
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(a) CRB(ρs) (b) CRBno-EO(φs)

(c) CRBEO(φs)

Fig. 4: Variation of CRB of the hidden target estimate in response to
varying the target’s angular position. (a) CRBs for range estimates
with and without a corner. (b) CRB for angle estimates without a
corner. (c) CRB for angle estimates with a corner camera. Camera
FOV = 0.2m× 0.2m, σ2 = 10, and ρs = 1m.

Second, with the target’s angle held constant (φs =
π/3 rads) while its distance from the corner increases from

zero, Fig. 5a shows that CRBEO(ρs) and CRBno-EO(ρs)
are both small for a close target, but increase dramatically

with target’s distance. The uninformativeness of the in-shadow

measurements for range estimation causes CRBEO(ρs) to be

higher than CRBno-EO(ρs), whereas the presence of the corner

makes CRBEO(φs) at least five orders of magnitude lower

than CRBno-EO(φs) (see Fig. 5b). Under our measurement

scenario, a target 3m from the corner (with φs = π/3) for

instance has
√

CRBEO(φs) ≈ 10−5/2 = 0.003 rads, while√
CRBno-EO(φs) ≈ 10−3/4 = 0.178 rads.
Our study for a single point target demonstrates over-

whelming improvement in the estimation of φs due to the

occluding wall, with marginal negative impact on the expected

estimation quality of ρs. This is because the occluding wall

effectively separates light paths arising from different angles in

the hidden region. Phrased differently, the exact proportion of

shadowed-to-nonshadowed regions within the camera’s FOV

is informative about the angular location of the hidden target.

Using the CRBs, one can compute theoretical spatial un-

certainty regions for a hidden target. These are regions within

which the majority of a target’s estimates are expected to

fall. Specific examples for a camera FOV of 0.15m× 0.15m

(a) CRB(ρs) (b) CRB(φs)

Fig. 5: Variation of CRB of the hidden target estimate in response to
varying the target’s distance from the corner ρs. FOV = [0.2 m ×
0.2 m], σ2 = 10, φs = π/3 rads.

and M = 1552 pixels, and at SNR levels resembling real

experimental measurements are shown in Fig. 6. Assuming

unbiased estimators that achieve the CRB, these bubbles depict

regions within which two standard deviations of a target’s

estimate are expected to fall. We observe that the uncertainty

regions are very different with and without the occluding wall:

almost circular for the latter, while the angular uncertainties

are virtually imperceptible for the former. The presence of the

corner collapses these bubbles into lines, with the length of

each line representing the uncertainty in range, while angular

uncertainties are almost completely removed.

B. Multiple Hidden Targets

Although our single point-target CRB analysis showed the

incredible benefits of the occluding wall in φs estimation,

estimation of ρs was actually shown to be slightly more

challenging, especially for hidden targets at greater angular

depths. The benefit of the occluding wall in range estimation

is realized when the hidden scene is more complicated. We

extend our single point target CRB analysis to include a second

hidden point target to demonstrate this effect.

In Fig. 7, Target 1 is fixed at (ρ1, φ1) = (1 m, π/4 rads)
while Target 2 is held at ρ2 = 2 m and moved in angle φ2.

The CRB for both parameters and targets are compared for

scenarios with and without the corner in place. Fig. 7a shows

that CRB(ρ1) and CRB(ρ2) are, generally, over an order

of magnitude smaller when the corner is in place, the only

exception being when both targets are at or very near the same

angle. In this case, it becomes difficult to isolate the two targets

in range. Just like the single-target scenario, CRBEO(φ1)
and CRBEO(φ2) are seen to be many orders of magnitude

smaller (than CRBno-EO(φ1) and CRBno-EO(φ2)) in Fig. 7b.

This significantly improved angular resolution depends on the

ability to separate angular derivatives due to each target, which

becomes more challenging when they are very close to each

other in angle, causing the peak at φ2 = π/4 in Fig. 7b.

When the two targets are at or near the same angle, the no-

corner case, which relies exclusively on radial falloff, shows

improvement due to contributions from each target adding

constructively in the measurement. Though that improvement

is marginal relative to improvement from having a corner.
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x

y

x

y

(a) SNR = -5 dB
x

y

x

y

(b) SNR = 0 dB

Fig. 6: 2×√
CRB uncertainty regions (right) for various measure-

ment SNR levels. Each uncertainty region is an ellipse (in polar
coordinates) with minor and major axis length set to 4×√

CRB
for the corresponding dimension. Camera FOV = 0.15m × 0.15m,
one typical realization of the camera measurement made at the
corresponding SNR assuming no occluding wall (insets: top) and
with an occluding wall (insets: bottom). The number of camera pixels
M = 1552.

Even when the angular location of both targets is given,

CRB(ρ;φ1, φ2) is still substantially lower for the corner

camera case, as shown in Fig. 7c. This may be explained

by the fact that light from the shallowest (in angle) target

in the hidden scene affects a larger angular wedge in the

measurement than the less shallow target. The difference

between these two wedges is a swath of pixels affected only by

the shallowest target, making range estimation for that target

easier. In contrast, light from both targets without the corner

strikes all pixels in the measurement, making separating each

radial falloff pattern more challenging.

In addition, note that knowing the angular location of both

targets has a negligible effect on CRB(ρ;φ1, φ2) when the

wall is in place, likely due to the fact that angular uncertainty is

already so low in that situation. Inspired by these observations,

we introduce an algorithm that alternates between estimating

φ and ρ in Section IV-C.

IV. INVERSE PROBLEMS & ALGORITHMS

In this section, we present two approaches to form a plan-

view reconstruction from a photograph of the penumbra. The

first method, described in Section IV-B, discretizes the hidden

scene into a polar grid of pixels; thus transforming our inverse

problem into a linear problem of estimating the intensity

of each polar pixel. While this method is straightforward,

we demonstrate improved reconstructions using a second

approach that solves the inverse problem introduced in II-C by

alternating between estimating angular and range information.

First, by exploiting the high angular resolution provided by the

corner an initial estimate of the scene is formed, as a function

of angle. From this initial profile of the scene, the number

of hidden targets is estimated. Finally, we alternate between

estimating a single range for each target (i.e., learning the true

forward model), and updating the angular profile.

A. Floor Albedo and Ambient Light

Jointly estimating f along with a 1D projection of the

hidden scene has been studied in [31], with the assumption

that ambient—or visible side—light contribution to the mea-

surements a ≈ c11 is approximately constant over the camera

FOV. This work assumes uniform floor albedo f(r, θ) (i.e.,

f = 1), though we remark that both inversion methods can be

similarly extended to handle the case of spatially varying floor

albedo f . This is by no means trivial and we leave it for a future

work. As previously mentioned, it is also assumed that the

floor surface is Lambertian. Given the intended tripod viewing

angle shown in Fig. 2a, specular mirror-like reflections would

provide little useful information about the hidden scene. When

specular reflections are present, these regions of the floor

may be isolated and those pixels removed from the data.

This was not necessary in the experiments that follow. In

addition, because ambient light contributions in the camera

measurements are slowly varying across the camera field of

view, they can be approximately decomposed into a sum of

light contributions from sources near the measurement surface,

aNF, and those in the far-field, aFF. The far-field contribution

is roughly constant over the camera FOV, a ≈ c11 + c2aNF,

where c1 and c2 are constants that lead to dimensionless pixel

values. The term aNF can be measured, or computed from

our knowledge of the position of the visible side, so that

the only unknown needed to describe a is c = [c1, c2]. In

the presence of ambient light, the inverse problem becomes

estimating (sh,ρh, c) from measurements y, under the model

y = Ac+ (V �D(ρh))sh + ε, (16)

where A = [1,aNF].

B. A Linear Model and Inverse Algorithm

Equation (16) is linear in sh and nonlinear in ρh. However,

by discretizing the possible values of each element of ρh(αn),
we can formulate a new system that is linear in all unknown

parameters. Specifically, let {ρ1, ρ2, . . . , ρL} be the set of

allowed ranges. Then the Cartesian product {ρ1, ρ2, . . . , ρL}×
{α1, α2, . . . , αN} gives a 2D polar partitioning of the hidden

region, with each element (ρ�, αn) defining a hidden-scene

polar pixel. Shown in Fig. 8 is a (coarse) 5 × 6 polar grid
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(a) (b) (c)

Fig. 7: Variation of the CRBs for estimating two hidden targets for different target positions. The number of measurement pixels, M = 1552

and the measurement FOV is 0.2m × 0.2m, with fixed noise variance σ2 = 10. Target 1 is fixed at (ρ1, φ1) = (1m, π/4); target 2 is at
range ρ2 = 2m and moved in angle φ2.

Fig. 8: Polar partitioning of the hidden space to obtain polar pixels at
six discrete angles and five discrete range values. The n-th column of
each submatrix Dl, of D, describes propagation of light from hidden
scene polar pixel (ρl, αn), to the measurement plane.

discretization of the hidden space. Under this partitioning, the

forward model (9) becomes

y = Ac+Ds̄h + ε, (17)

where D = [V �D(ρ11),V �D(ρ21), . . . ,V �D(ρL1)],
and s̄h = vec([sh1

, sh2
, . . . , shL

]) ∈ R
NL
+ with [sh�

]n repre-

senting the radiosity of pixel (n, �) at range ρ� and angular

bin n.

Although (17) is linear in all unknown parameters and (9)

is not, there is an important difference. Built into (9) is the

constraint that only a single hidden object per angle contributes

to the measurement. This constraint is based on the assumption

that the scene is composed of opaque vertical facets, so light

from objects that are behind other objects is blocked from

reaching the corner. In contrast, this constraint is not built

into (17). In this case, to model the fact that the vast majority

of pixels in the hidden scene either do not contain a target

or are occluded from the camera FOV by another visible to

the camera FOV, we promote sparsity in our estimate of s̄h,

resulting in the �1-regularized problem

[ˆ̄sh, ĉ] = argmin
s̄h,c

[
1

2

∥∥y −Ac−Ds̄h
∥∥2
2
+ λ ‖s̄h‖1

]
, (18)

where λ is the regularization parameter. The optimization

problem (18) is efficiently solved using the FISTA algo-

rithm [32].

We evaluate the linear model approach for the hidden

scene and measurement in Fig. 9a.3 Reconstructions at range

resolutions of L = 10 and L = 40 are shown in Fig. 9b and

Fig. 9c for angular resolution N = 90. Both reconstructions

exhibit two clusters of pixels with intensities larger than zero,

corresponding to the two hidden objects in the scene. While

the relative order of the objects is correct, the yellow-blue

stripe is estimated to be closer than its true location in both

reconstructions. Both targets are reconstructed with mostly

correct color content, though several angular bins have differ-

ent range estimates across the three different color channels

causing some misalignment in the reconstructions. Although

both targets are at an approximately constant range across their

angular extent, this is not the case in both reconstructions,

particularly in the more coarse reconstruction of Fig. 9b. Our

nonlinear, more physically-inspired, model addresses some of

these challenges.

Remark 1: Under the assumption of at most one target in

any angular bin, each sub-vector shl
in s̄h is either 1-sparse or

zero. Combining this with the existence of only a few targets

means that there is a small number of 1-sparse groups in s̄h,

i.e., sparsity both within and across groups. This could be

incorporated by solving a Sparse-Group Lasso problem [33]:

argmin
s̄h,c

[
1

2

∥∥y −Ac−Ds̄h
∥∥2
2
+ λ1

L∑
l=1

‖shl
‖2 + λ2 ‖s̄h‖1

]
.

(19)

Empirically, we found no compelling evidence that solving

(19) is superior to solving (18). Consequently, all results for

the linear inverse problem (17) are based on solving (18),

separately, for each color channel.

3The corresponding experimental setup will be described in detail in
Section V, after we present our second, preferred, algorithm.
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(a) RGB color measurement y
and true hidden scene.

(b) N = 90, L = 10 (c) N = 90, L = 40

Fig. 9: Demonstration of linear inversion algorithm for hidden scene
and measurement shown in (a). The hidden region is discretized into
N angles and L ranges.

C. Nonlinear Modeling and Inversion

In many practical scenarios, the hidden scene is composed

of only a few hidden targets of interest, with each target

having some angular extent and being roughly at a constant

distance from the corner. Solving (18) with fine range and

angular discretization is computationally expensive; similarly,

finely discretizing the angular dimension and estimating a

unique range value ρ(αn) for each hidden-scene angle αn,

using (16), is unnecessarily ambitious. Alternatively, we can

assume that there is an unknown number Nt � N of disjoint

targets to be estimated, each with unknown range and radiosity.

Mathematically,

S̄h(ρ, α) =

Nt∑
j=1

s(α)δ(ρ− ρ̄j)u

(
α− ᾱj

Δj

)
, (20)

with the jth hidden target having angular position ᾱj , an-

gular extent Δj , and range ρ̄j ; u(·) is the zero-centered unit

rectangular function. The radiosity s(α) is piecewise constant,

taking value [s]n for α ∈ [(n − 1)π/(2N), nπ/(2N)), such

that s ∈ R
N is the vector representing the discretization of

s(α).

Angular bins containing no detected targets are attributed to

background, and the minimal light coming from those regions

will be assumed to be coming from a large distance ρmax.

Under the model (20), instead of having N different range

values, contiguous angular bins will have the same range ρ̄j if

they contain the same target. Letting ρ = [ρ̄1, ρ̄2, . . . , ρ̄Nt
]T:

y = Ac+ (V �D(ρ))s+ ε, (21)

where for any m = 1, 2, . . . ,M and n = 1, 2, . . . , N ,

[D(ρ)]m,n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ̄j
d2(rm, θm, ρ̄j , αn)

,

when target j is present at angle αn;
ρmax

d2(rm, θm, ρmax, αn)
,

when no target is present at angle αn.
(22)

Note that target j is present at angle αn when αn ∈
[ᾱj −Δj/2, ᾱj +Δj/2). We propose to estimate s, ρ̄ and

c by solving

min
s,ρ,c

(
1

2
‖y −Ac− (V �D(ρ))s‖22︸ ︷︷ ︸

data fidelity

+ λ1 ‖Ws‖1 + λ2 ‖Bs‖22 + ι[0,∞)N (s)︸ ︷︷ ︸
regularizers for s

+ ι[c,∞)Nt (ρ)︸ ︷︷ ︸
regularizer for ρ

)
,

(23)

where W is a wavelet transform matrix (we use the

Daubechies wavelet of order 4), B returns the difference

between subsequent entries in s that are attributed to hidden-

scene background terms, λ1 and λ2 are tuning parameters,

and

ιC(x) =

{
0, if x ∈ C;
∞, otherwise

is the indicator function for a set C. In (23), the regularizers for

s promote sparsity in the wavelet basis, smoothness in hidden-

scene background contributions, and positivity in s, respec-

tively. The regularizer for range ρ enforces range estimates to

be at least c > 0 (a small constant). This optimization problem

is solved using an alternating approach described below.

1) Initialize s and c by solving

[s0, c0] = argmin
s,c

1

2
‖y −Ac− (V �D(ρ0))s‖22

+ λ ‖Ws‖1 + ι[0,∞)N (s),

(24)

with ρ0 = ρFF1, initialized to represent a single target

(Nt = 1) in the far field (ρFF � 0). Our motivation to

first estimate s is because, given ρ0, the resulting problem

is well-conditioned (Section III).

2) Determine number of targets Nt by comparing [s0]n
to the threshold κn = α/(2�+ 1)

∑n+�
i=n−�

[
s0

]
i
, where

α ∈ R+ and (odd) filter length (2� + 1) ∈ Z+ are

tuneable parameters. It is assumed that [st−1]n = 0 for

n /∈ {1, 2, . . . , N}. Consecutive threshold crossings in s0

represent the edges of a single target.

3) Update ρt by

[ρt, zt] = argmin
ρ,z

1

2

∥∥y −Act−1−(V�D(ρ))st−1
∥∥2

2

+ ι[c,∞)Nt (ρ) + ι[0,∞)Nt (z),
(25)

where z = [z1, z2, . . . , zNt
]T ∈ R

Nt
+ is such that for any

n = 1, 2, . . . , N ,

[D(ρ)]m,n =
zj ρ̄j

d2 (rm, θm, ρ̄j , αn)
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(a) Photograph of
hidden scene

(b) Initial estimate s0 (c) Final estimate ŝ

(d) Measurement y (e) Initial residual:
y −Ac0 −(
V�D(ρ0)

)
s0

(f) Final residual:
y−Aĉ−(V�D(ρ̂))ŝ

Fig. 10: Demonstration of model mismatch with scene initialization.
The hidden scene was a narrow white cylinder with a diameter of
2.5cm, 18cm away from the corner, at φ = 45o, as shown in (a).
When all light is assumed to originate in the far field, the initial
estimate of s0 (b) does not describe the radial falloff that is present
in the measurement y (d), as shown in the initial residual (e). After
the algorithm converges, the range estimate is updated allowing for
a more accurate estimate of s as shown in (c) with a much smaller
residual (f).

when αn ∈ [ᾱj −Δj/2, ᾱj +Δj/2). The introduction

of z couples the minimization problems (25) and (26),

permitting radiosities st−1 to be scaled, appropriately, as

ρ is updated.

4) Update s and c by solving

[st, ct] = argmin
s,c

1

2

∥∥y −Ac− (V�D(ρt))s
∥∥2
2

+ λ1 ‖Ws‖1 + λ2 ‖Bs‖22 + ι[0,∞)N (s).

(26)

5) Increment iteration counter t by one.

6) Repeat steps 3, 4 and 5 until convergence.

7) Return ρ̂ ← ρt, and ŝ ← st.

Steps 1, 3, and 4 are solved using projected gradient meth-

ods [32]. Fig. 10 illustrates several algorithm steps for a

scene containing a single hidden cylinder, shown in Fig. 10a,

resulting in measurement y, shown in Fig. 10d. The final

estimate of s (Fig. 10c) does not contain the artifacts seen in

the initial estimate s0 (Fig. 10b) because, instead of assuming

the hidden scene is in the far field, the model has been

updated to include the effects of radial falloff due to a target at

estimated distance ρ̂. In fact, the residual due to the initial far

field assumption (Fig. 10e) clearly contains unmodeled radial

falloff, whereas the final residual (Fig. 10f) exhibits a much

better overall fit.

D. Nonlinear RGB Model Inversion

The algorithm described in Section IV-C, which operates

on a single measurement channel, may be adapted to operate

on color (RGB) data. In this case, the camera measures yR,

yG, and yB corresponding to each color channel. Although

our goal is still to estimate range values ρ ∈ R
Nt
+ , we now

seek radiosity estimates ŝR, ŝG, and ŝB, as well as estimates

of ambient light ĉR, ĉG, and ĉB. These estimates are obtained

by solving (23) with substitutions

y → ỹ = vec ([yR,yG,yB]) ∈ R
3M ,

A → Ã = diag ([1,aR], [1,aG], [1,aB]) ∈ R
3M×6,

V � (D(ρ)) → D̃(ρ) = (V �D(ρ))⊗ I ∈ R
3M×3N ,

B → B̃ = B⊗ I ∈ R
3(N−1)×3N ,

where I is the 3×3 identity matrix. The optimization becomes

min
ρ,̃s,c̃

(
1

2

∥∥∥ỹ − Ãc̃− D̃(ρ)s̃
∥∥∥2
2
+ λ2

∥∥∥B̃s̃
∥∥∥2
2

+ λ ‖Ws̃‖1 + ι[0,∞)3N (s̃) + ι[c,∞)Nt (ρ)

)
,

(27)

which, like before, is solved using an alternating approach,

performing initial thresholding, or target counting, on s̄ =
1
3 (s

0
R + s0G + s0B), with (25) modified to update z̃ =

[zR; zG; zB] ∈ R
3Nt instead of z:

[ρt, z̃t] = argmin
ρ,z̃

1

2

∥∥∥ỹ −Ac̃t−1 − (D̃(ρ))s̃t−1
∥∥∥2
2

+ ι[c,∞)Nt (ρ) + ι[0,∞)3Nt (z̃).

(28)

The scene s̃ is updated by solving (26) in parallel for each

color channel. This concatenation of the color channel mea-

surements enforces consensus among channels in the range

estimate and angular extent of a given hidden target, thus

avoiding the spurious range estimates observed in the �1-

regularized solutions of the linear inverse problem formulation

(Fig. 9).

V. EXPERIMENTAL EVALUATION USING REAL DATA

Performances of the algorithms presented in Sections IV-C

and IV-D were evaluated in a variety of conditions, using the

scaled-down laboratory setup shown in annotated photograph

Fig. 10a. A tripod-mounted FLIR Grasshopper3 camera model

GS3-U3-41S4C-C equipped with a Tamron M118FM16 lens

was used to photograph the floor (C) on the visible side of

occluding wall (A). The camera was positioned approximately

1 meter off the ground, directly above the observation region.

A tuneable light source consisting of an array of LEDs,

positioned behind the occluding wall, was used to illuminate

the hidden scene region (B). The camera’s exposure time was

adjusted for each experimental run to avoid saturation while

still using the full dynamic range. Camera automatic gain

correction and gamma correction were turned off. The floor

in region (B) was covered with a large paper polar grid for

reference. Black tape secures the corner of this paper to keep

it flush with the floor. In this work, we reconstruct a region

that extends π/2 radians into the hidden scene. In principle,

the full π radians of hidden scene may be reconstructed by

extending the photograph region (C) to the right.
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(a) σρ vs. ρ (b) σϕ vs ρ

(c) Biasρ vs. ρ (d) Biasϕ vs. ρ

Fig. 11: Evaluation of algorithm performance for a single target at
four different ranges, in five different noise conditions, placed at ϕ =
45◦. The standard deviation of the range estimate (a), σρ, increases
with increasing range ρ, and the standard deviation of the angular
estimate (b), σϕ is small at all ranges. Bias for the range estimate
(c) increases with increasing range, while the bias for the angular
estimate remains small at all ranges.

A. Empirical Performance Evaluation: Single Target

To evaluate performance, a single white cylindrical target,

shown in Fig. 10a, was placed at different positions (ρ1, φ1)
in range and angle. For each position, with a camera FOV of

0.16 m×0.16 m, 150 snapshots of the visible floor were taken.

By combining 1, 2, 4, 8, and 20 randomly selected snapshots

(without replacement), we emulated decreasing measurement

noise levels. Estimates’ bias and variance were computed using

the recovery results from 60 repetitions of each configuration.

In each trial, scalar range parameter estimates ϕ̂1 and angular

profiles ŝ are recovered for the target, as shown in Fig. 10c. We

use the peak value of ŝ (after up-sampling) as a proxy for ϕ̂1,

to compute its bias and variance. We take the measured center,

in angle, of the target as the true ϕ1. While it is expected that

they are close, this measured center of the cylinder may not

exactly match the brightest illuminated region of the cylinder.

1) Varying Range: Fig. 11 shows estimate bias and standard

deviation computed for ϕ1 = 45◦ and ranges ρ1 = 0.09 mm,

0.18 mm, 0.27 mm, and 0.36 mm. As shown in Fig. 11a,

range estimate standard deviation increases in noisier con-

ditions (i.e., fewer combined frames) and at greater ranges.

Fig. 11b shows that, as predicted by the CRB analyses

in Section III, the standard deviation of estimate ϕ̂1 remains

small at every position in range.

Fig. 11c and Fig. 11d show the bias for range and angle

estimates respectively, at the four ranges in the same five noise

conditions. For both range and angle estimates, bias is constant

at a given range, regardless of the noise level. In both cases,

the bias is orders of magnitude larger than the corresponding

standard deviation. For the range estimate, we attribute this

(a) σρ vs. φ (b) σφ vs. φ

(c) Biasρ vs. φ (d) Biasφ vs. φ

Fig. 12: Evaluation of algorithm performance for a single target at
five different angles, in five different noise conditions, placed at ρ =
0.18 m. The standard deviation of the range estimate (a), σρ, is
greatest when ϕ = 75◦, when the fewest pixels on the floor are
exposed to penumbra. The standard deviation of the angular estimate
(b), σφ is small at all angles.

bias to model mismatch due to unmodelled reflections, nonzero

target height, and edge imperfections. As shown in Fig. 11d,

angular bias is much smaller, and may correctly reflect the

fact that the brightest part of the cylinder changes in angle,

as the cylinder moves with respect to the fixed hidden scene

illumination.

2) Varying Angle: Fig. 12 shows estimate standard devi-

ation and bias for fixed range ρ1 = 0.18m a set of angles

φ1 = 15o, 30o, 45o, 60o, and 75o. We similarly observe lower

estimate standard deviation in less noisy conditions, greater

standard deviation in range than angle, and substantially higher

bias than standard deviation for both range and angle.

3) Varying Ambient Light: Measurements were also taken

of this same target in a fixed position, with different levels

of ambient light. A constant light source on the visible side

introduced ambient light while a light source on the hidden

side was tuned to vary penumbra brightness. Fig. 13a, Fig. 13b,

Fig. 13c, and Fig. 13d show measurements as the penumbra

becomes faint to the point of not being visible to the naked

eye; Fig. 13e, Fig. 13f, Fig. 13g, and Fig. 13h show the

corresponding reconstructions with the true target location

marked by a red dot. All four reconstructions correctly pick

out the target in angle demonstrating robustness to a surprising

amount of ambient light, although the higher SNR case is both

sharper in angle and more accurate in range estimation.

B. Color Reconstructions

The RGB nonlinear inversion algorithm was tested on

scenes with colored objects in several different configurations.

Testing was also performed on a multi-object, colored scene
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(a) y1 (b) y2 (c) y3 (d) y4

(e) (ρ̂1, ˆ̄s1) (f) (ρ̂2, ˆ̄s2) (g) (ρ̂3, ˆ̄s3) (h) (ρ̂4, ˆ̄s4)

Fig. 13: Demonstration of performance degradation as the penumbra becomes fainter. The true location of the hidden object, a white cylinder,
is shown in red. When the penumbra is brighter, (a) and (e), the estimated range ρ̂ is closer to the truth, and ˆ̄s contains a sharp peak at the
true angular location of the hidden object. When the penumbra is more faint, (d) and (h), the estimated range ρ̂ is further from the truth
and the peak in ˆ̄s less sharp.

in the presence of increasingly bright ambient light to demon-

strate algorithm robustness to low SNR conditions.

1) Multiple Targets: Measurement and hidden scene pairs

are shown in Fig. 14a and Fig. 14c, where the same two

colored objects have been placed in reverse positions. Recon-

structions Fig. 14b and Fig. 14d show that in both cases, the

two targets are accurately found in angle, and placed in range

correctly with respect to each other. High angular resolution

is demonstrated in both reconstructions, with the red-green

object correctly portrayed to have a slightly wider red section,

just like the yellow-blue object has a slightly wider yellow

section. The scenario and measurement shown in Fig. 14e tests

our algorithm on a scene that includes three targets instead of

two. The reconstruction shown in Fig. 14f accurately picks out

all three targets in angle and places them at ranges that are

correct with respect to each other.

2) Varying Ambient Light: In Fig. 15, we demonstrate

algorithm robustness to increasing amounts of ambient light.

Here, the hidden scene, arranged as shown in Fig. 15e, consists

of the yellow-blue target and a more distant, in both range and

angle, white cylinder. With an angular location close to π/2,

very few pixels in the measurement are exposed to light from

the white cylinder making range estimation more challenging.

Still, all but the lowest SNR reconstructions correctly place the

white cylinder at a greater range than the yellow-blue target.

All four reconstructions demonstrate high angular resolution,

even resolving the sharp boundary between the yellow and

blue portions of the yellow-blue target.

VI. DISCUSSION

A. Technical Conclusions

We proposed and tested two inversion algorithms: one based

on a conventional linear model and the other on an alternating

approach that more directly inverts the nonlinear forward

model (9). Both make use of regularization to solve an ill-

conditioned problem and demonstrate high angular resolution

and significantly coarser range resolution in reconstruction

results, owing to the conditioning of range estimation. While

the linear model (17) enjoys simplicity, it omits the opacity

assumption that is naturally embedded in the nonlinear model

(9), thus allowing multiple nonzero pixels in a single angle.

In addition, without enforcing a single range per target, this

method also raises questions about how to effectively promote

coincident pixels across the color channels. The second (non-

linear) method benefits from the natural separation of range

and angle estimation problems, enabling a highly effective

alternating recovery algorithm.

The linear approach discretizes the hidden scene into a

polar grid. Even with fine angular discretization and sparsity-

enforcing priors, estimating a range per angle when a hidden

scene likely contains only a few targets is unnecessarily chal-

lenging. In contrast, the initialization step of the alternating

algorithm that we propose for solving the nonlinear problem

(9) allows us to exploit excellent angular resolution to count

the number of targets and estimate only one range per detected

hidden target. In this light, the range update step can be

interpreted as learning the forward model to ultimately allow

for better angular reconstructions, as demonstrated in Fig. 10.

With the few unknown ranges as parameters, the alternating

approach enjoys less model mismatch than the linear inversion

algorithm, because the range parameters are not discretized.

The fact that the alternating algorithm treats unknown

ranges as parameters also lends itself to a natural three-channel

RGB extension. Estimating a single range per fixed angular

extent enforces consensus across color channels. In contrast,

the linear inversion algorithm operates separately on three

color channels and may place RGB values for the same object

at different ranges or angles, as shown in Fig. 9. One way this

may ultimately be improved is by forming a reconstruction

in the YUV color space. Enforcing sparsity on component

Y (i.e., the ‘luma’, or ‘intensity’ component) would penalize

intensities at multiple ranges in the same angular bin.
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(a) RGB color measurement y1 and
true hidden scene.

(b) Reconstruction (ρ̂1, ŝ1)

(c) RGB color measurement y2 and
true hidden scene.

(d) Reconstruction (ρ̂2, ŝ2)

(e) RGB color measurement y3 and
true hidden scene.

(f) Reconstruction (ρ̂3, ŝ3)

Fig. 14: Demonstration of color reconstruction with three different
scenes containing multiple hidden objects. The widths of yellow, blue,
white, green, and red objects are 2.9 cm, 2.7 cm, 2.5 cm, 2.9 cm,
and 4.2 cm respectively. The black arcs on the floor in (a), (c), and
(e) correspond to the ranges marked in white in (b), (d), and (f).

Both algorithms seek to reconstruct a 2D plan view of the

3D hidden scene. Angular information is provided by the edge

occluder, while target range information is contained in the

subtle radial falloff curvature measured by the unoccluded

camera pixels. Shining a spotlight on a hidden target only

changes the intensity scaling of this curve. However, moving a

target in range changes the shape of this curvature, allowing us

to distinguish between targets at different positions. Although

both the height and range of a single hidden point source

may be recoverable in a noiseless setting, in practice, we

contend with measurement noise, ambient light on the visible

side, and more complicated hidden scenes. As demonstrated

by the CRB analysis in Section III, even when the target is

assumed to be in the ground plane, range information in our

measured data is subtle. In fact, when a point source’s vertical

position zs is treated as another unknown parameter, the CRB

for estimating both source range ρs and vertical position zs
is even larger, as shown for a point source at zs = 0.2m in

Fig. 16a and Fig. 16b. When it is assumed that the source’s

vertical coordinate zs or range ρs is known, as is the case in

Fig. 16c and Fig. 16d, uncertainty is reduced. Furthermore,

comparing columns in Fig. 16 illustrates that, at least when a

point source is not very high off the ground, range is the easier

of the two parameters to estimate. These observations support

our choice to reconstruct range (along the floor) rather than

height under the assumption that targets rest on the ground
with heights that are small compared to their range.

When a target has significant vertical extent, our assumption

is violated and our algorithms may be expected to estimate

targets to be further than they truly are. We demonstrate this

using synthetic data in Fig. 17. Here the simulated target spans

35◦-55◦ within the hidden scene and is fixed at range ρ =
0.15m. Target height extent η is varied from 0m to 0.3m and

target range ρ is estimated using the alternating algorithm for

each target height. Fortunately, even in an extreme case where

the target’s height extent η is approximately equal to its range

(ρ ≈ η ≈ 0.15m), the relative error in the estimated range is

still less than 20%. In fact, in many of our experimental results,

targets had some vertical extent but were placed closer to the

corner in reconstruction results, likely due to this effect being

overwhelmed by other sources of model mismatch.

B. Future Outlook

Experimental results presented in Section V were obtained

using an experimental setup with target distances on the order

of half a meter, but we believe both inversion algorithms could

work with a larger experimental setup, given comparable SNR

and larger camera FOV. CRB analysis may be extended to

determine the effect of camera FOV on estimate variance

for targets at a given range. We conjecture that for a given

target range, there may be an optimal camera FOV for range

recovery, although generally speaking a larger camera FOV

makes angular estimation more challenging. In the alternating

algorithm, this trade-off may be managed by taking one photo

with a smaller FOV to use in scene s initialization and update

steps, (24) and (26), and another photo with larger FOV

for range estimation step, (25). Though at the scale of the

experiments in this paper, this was not necessary.

The alternating algorithm may be further adapted to handle

the common scenario of a few hidden objects with heights

known a priori. Imagine a scene composed of people or cars

that we observed entering the hidden scene from the visible

side. If the heights of hidden objects are known and we assume

a constant radiosity across height for a fixed angle, we may

model the radiosity of the hidden scene as

Sh(ρ, α, z) =

{
Sc
h(ρ, α), for z ∈ [0, η(ρ, α)];

0, otherwise,

where at hidden scene floor location (ρ, α), an object of height

η(ρ, α) has constant radiosity Sc
h(ρ, α) over its full height.

Now, instead of recovering S̄h(ρ, α) of the hidden scene, as

defined in (5), we seek to recover Sc
h(ρ, α). With this explicit

modeling of the z dependence of Sh(ρ, α, z), our expression
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(a) y1 (b) y2 (c) y3 (d) y4

(e) Line of sight
photograph of hidden

scene
(f) (ρ̂1, ˆ̄s1) (g) (ρ̂2, ˆ̄s2) (h) (ρ̂3, ˆ̄s3) (i) (ρ̂4, ˆ̄s4)

Fig. 15: Demonstration of RGB alternating inversion algorithm as SNR is reduced. The white cylinder (width 0.025 m) and yellow-blue
stripes (widths 0.029 m and 0.027 m, respectively) were arranged as shown in (e), at 0.21 m and 0.16 m respectively. Note the increased
difficulty due to the white cylinder’s deep placement, in angle, into the scene. In this location, only a small fraction of the measurement
pixels are exposed to light from the cylinder. Still, only the lowest SNR reconstruction fails to place the white cylinder at a greater range
than the yellow-blue object. In all cases, the two objects are resolved in great angular detail. Black arcs on the floor correspond to the ranges
marked in white on the reconstructions.

(a) log10 CRBEO(ρs) (b) log10 CRBEO(zs)

(c) log10 CRBEO(ρs; zs) (d) log10 CRBEO(zs; ρs)

Fig. 16: Variation in CRBEO for parameters ρ and z when both
are unknown (first row) and when the other parameter is assumed
known (second row). The true position of the hidden point source is
varied over [0.2, 1]2 in the (x, y)-plane, with a fixed vertical position
zs = 0.2m. The number of measurement pixels is M = 1072 and
the measurement FOV is 0.2m×0.2m and noise variance σ2 = 10.

for incident light on the floor (originating from the hidden

Fig. 17: Demonstration of range estimation error as a function of
target height extent η. Targets with greater height extent are estimated
to be further away. The simulated target spans 35◦–55◦ within the
hidden scene and is fixed at range ρ = 0.15m. Target height extent
η is varied from 0m to 0.3m, and target range ρ is estimated using
the alternating algorithm. Simulated measurements are noiseless with
M = 1552 measurement pixels and the measurement FOV is
0.15m× 0.15m.

scene), (3a), may be rewritten:

Lh(r, θ) =

∫ θ

0

∫ ∞

0

∫ η(ρ,α)

0

Sc
h(ρ, α)

d2(r, θ, ρ, α) + z2
ρ dz dρ dα

=

∫ θ

0

∫ ∞

0

Sc
h(ρ, α)

d(r, θ, ρ, α)
arctan

(
η(ρ, α)

d(r, θ, ρ, α)

)
ρ dρ dα.

(29)

In the alternating method for inverting our nonlinear model,

using a vector of known target heights η̄ = [η̄1, η̄2, . . . , η̄Nt
] ∈

R
Nt to recover Sc

h(ρ, α) instead of S̄h(ρ, α) can be appropri-

ately incorporated by replacing (22) with

[D(ρ)]m,n =
ρ̄j arctan

(
η̄j/d(rm, θm, ρ̄j , αn)

)
d(rm, θm, ρ̄j , αn)

(30)
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when αn ∈ [ᾱj −∆j/2, ᾱj + ∆j/2).
Outside the laboratory, ambient light on the visible side

might be more difficult to describe, and hidden scenes may
be more complicated than a collection of a few targets. As
our CRB results indicate, range information is subtle, making
it easily overwhelmed by model mismatch. For these rea-
sons, our 2D reconstruction algorithms, in their current form,
might lack robustness outside of the controlled laboratory
setting. However, there are ways the ideas in this paper
could be realizable outside of the laboratory. For example,
our algorithms might be adapted to produce reconstructions
of only the moving part of the hidden scene. Like [30], we
could greatly reduce model mismatch through background
subtraction. Unlike [30], the ideas presented in this paper
would allow us to produce 2D, instead of 1D, reconstructions
of these moving targets.

The breadth of recent work on edge-resolved NLOS imaging
[30], [31], including a recent active method [20], allows us to
envision some of the ideas in this paper as part of a larger
hybrid edge-resolved NLOS imaging system. Such a system
might include both active and passive components, allowing
for greater robustness under real world conditions. In this
paper, range is an unknown part of the forward model that
we learn. In a hybrid system, an active module might provide
coarse (in angle) range information that could be plugged
directly into our forward model so it would not need to be
learned. The passive module could then quickly provide high
resolution (in angle) RGB information about the hidden scene.

VII. CONCLUSION

In this work we explore 2D reconstruction of the region
hidden behind a wall using a single photograph of the floor
on the visible side. Unlike previous work, which has assumed
all light sources to be in the far field, we propose a more
complete forward model to describe radial falloff, enabling
2D reconstructions of the hidden scene. Using the Cramér–
Rao bound for a single target, we demonstrate the utility and
difficulty of using penumbra measurements for 2D reconstruc-
tion. We propose an alternating nonlinear inversion algorithm
for 2D reconstruction and provide a comparison to a more
conventional linear inversion algorithm. Experimental results
demonstrate the promise and robustness of both methods.
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