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Abstract—Passive non-line-of-sight imaging methods are often
faster and stealthier than their active counterparts, requiring
less complex and costly equipment. However, many of these
methods exploit motion of an occluder or the hidden scene, or
require knowledge or calibration of complicated occluders. The
edge of a wall is a known and ubiquitous occluding structure
that may be used as an aperture to image the region hidden
behind it. Light from around the corner is cast onto the floor
forming a fan-like penumbra rather than a sharp shadow. Subtle
variations in the penumbra contain a remarkable amount of
information about the hidden scene. Previous work has leveraged
the vertical nature of the edge to demonstrate 1D (in angle
measured around the corner) reconstructions of moving and
stationary hidden scenery from as little as a single photograph of
the penumbra. In this work, we introduce a second reconstruction
dimension: range measured from the edge. We derive a new
forward model, accounting for radial falloff, and propose two
inversion algorithms to form 2D reconstructions from a single
photograph of the penumbra. Performances of both algorithms
are demonstrated on experimental data corresponding to several
different hidden scene configurations. A Cramér-Rao bound
analysis further demonstrates the feasibility (and utility) of the
2D corner camera.

Index Terms—corner camera, non-line-of-sight imaging, com-
putational photography, remote sensing, computer vision.

I. INTRODUCTION

HE ability to form non-line-of-sight (NLOS) images

would be useful in a variety of situations. It could help
soldiers anticipate danger as they navigate a tunnel system, au-
tonomous vehicles avoid collision, and first responders as they
enter buildings. Current NLOS imaging methods may be ac-
tive, based predominantly on the transient imaging framework
first proposed in [1], [2] and requiring control of hidden scene
illumination, or passive, where only light sources already
present are used. The earliest active NLOS imaging systems
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combined a femtosecond laser with a 2 picosecond resolution
streak camera [2], [3]; newer systems using single-photon
avalanche diode (SPAD) detectors and time-correlated single
photon counting (TCSPC) modules provide a less expensive
alternative. These systems have been used extensively for both
line of sight imaging [4]-[6] and NLOS applications [7]-
[19]. Recently, SPAD-based NLOS imaging systems have
demonstrated faster processing using confocal scanning [16],
reconstruction algorithms based on wave properties [17], [18],
and color reconstructions using multiple wavelengths of illu-
mination [19]. The system demonstrated in [20] scans a pulsed
laser along an arc at the base of a vertical edge occluder, like
the edge we use in this paper, to achieve reconstructions with
high azimuthal resolution. An active non-SPAD-based system
for tracking a hidden object was demonstrated in [21] using
intensity-only measurements.

Compared to active methods, passive NLOS imaging tech-
niques may be less expensive and stealthier, with lower power
requirements and faster data acquisition. These passive meth-
ods leverage occluding structures and light sources already
present in the environment [22]. Useful structures may be
the aperture formed by a partially open window or door, or
the ‘accidental pinhole’ formed when a once-present object is
moved [23], [24]. Using an ordinary digital camera, Saunders
et al. formed NLOS color reconstructions when the form of
the occluder was known [25]. Other methods use the motion
of the hidden scene to discern the shape of an unknown
occluder [26], or deep matrix factorization to simultaneously
reconstruct an unknown hidden scene and occluder [27].
Unlike other occluders used in NLOS imaging systems [25]-
[29], a wall edge has a known shape and is ubiquitous. In this
case, light is cast onto the visible floor around the occluding
edge forming a penumbra Photographs of the penumbra may
be used to produce angularly resolved reconstructions of the
hidden scene. This concept was introduced in [30], where
smoothed differences between consecutive video frames were
used to form one-dimensional reconstructions of changes in
the hidden scene, even when the video frames were visu-
ally indistinguishable. Our previous work demonstrated 1D
reconstruction of both moving and stationary hidden-scene
components from a single photograph, while simultaneously
estimating unknown nonuniform floor albedo [31].

In this paper, we go beyond 1D reconstructions by combin-
ing the resolving power of a vertical edge with information
from the relationship between intensity and radial distance. To
see why this is possible—though potentially difficult—we first
examine the effects of certain idealized occluders. Consider a
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Fig. 1: The edge occluder (c) may be better understood by considering other well-known occluders, such as the pinhole (a) and vertical slit

(b).

pinhole in a vertical plane, as shown in Fig. 1a. The direction
(i.e., azimuth and elevation angles) of a point source s of
unknown brightness is easily recoverable, but its range is not.
If the scene is extended rather than a single point source, a
sharp, classical pinhole projection of the scene is obtained.
When the occluder has a vertical slit, as shown in Fig. 1b, a
slice of the 3D world, a portion of which is shown in light blue,
is mapped to a line (brown) on the observation plane. Here,
the azimuthal angle o of incident light is easily recoverable.
If there is a single omnidirectional point source in the planar
slice at azimuthal angle «, its elevation angle § and range can
be recovered from the variation of light intensity, due to radial
falloff and path length differences, at p;, ps, and ps. For an
extended scene, the blurring in elevation angle § is extremely
ill-conditioned for inversion.

The edge occluder, shown in Fig. 1c, may be thought of as
‘half” of a slit occluder. For a point source, the sharp shadow
on the observation plane makes the azimuthal angle o again
easily recoverable. The elevation angle J and range are easier
to recover than in the slit case because they influence the
gradations of brightness over the entire unobscured portion
of the observation plane (i.e., the yellow region in Fig. 1c).
Imaging of an extended scene is more difficult than in the slit
case because of range-dependent blurring over both o and §.

Localization of a point source is both easier to achieve
and easier to analyze. We study this in Section III, with the
main objective of precisely characterizing how much easier
the estimation of azimuthal angle « is than the estimation
of range. Our greater interest is in imaging extended hidden
scenes, and in principle, we could attempt a 3D scene recon-
struction. However, Cramér—Rao bound analyses presented in
Sections III and VI-A suggest that this 3D reconstruction prob-
lem would be ill-conditioned. As such, earlier works [30], [31]
attempt only 1D reconstructions. We seek 2D reconstructions
depending on angle and range (omitting height) in cylindrical
coordinates centered at the vertical edge. This is motivated
primarily by real-world scenes being dominated by objects that
are approximately vertically oriented. The specifics of the 3D-
to-2D mapping are given in Section II-A. Alternative inverse
problem formulations for the same imaging configuration are
discussed in Section VI-A.

Our key contributions include:

« A new forward model that describes a single photograph
as a combination of light originating from a range of
angles and depths in the hidden scene (Section II).

e Cramér—Rao bound (CRB) analysis (Section III) to
demonstrate the limits of exploiting measurement of vis-
ible penumbrae for 2D hidden scene reconstruction. Our
analysis shows that while range estimation is possible, it
is inherently difficult relative to angle estimation.

e Two different inversion algorithms, proposed in Sec-
tion IV).

o Experimental demonstration of our 2D reconstruction
algorithm on a variety of colored hidden scenes (Sec-
tion V).

II. FORWARD MODEL

A. Light Transport

Consider the NLOS imaging scenario in Fig. 2, where the
hidden scene consists of a green cylinder. Here we show a
tripod, but in practice, the camera could be mounted anywhere
that has a line-of-sight view of the floor adjacent to the corner.
For example, it could be mounted on an autonomous vehicle
or on a soldier’s helmet. As shown in Fig. 2, we parameterize
the hidden scene in cylindrical coordinates with range p, angle
«a, and height z. A point p = (r,6) on the floor in the camera
field of view is described by its range r and angle measured
from the wall 6. Assuming the camera looks straight down
at a Lambertian floor,! and the effects of all foreshortening
factors are negligible, the brightness L,(p) of point p on the
floor is the albedo f(p) at point p multiplied by the sum of
all incident light:

Lo(p) = f(p) (Lv(p) + Lu(p)), (1)

where Ly (p) is the incident ambient light originating from the
visible side, and Ly (p) is the incident light originating from
the hidden side.

IFor the sake of demonstration, this paper assumes the camera is centered
above the observation region, looking directly down at the floor. At this
viewing angle, the floor area seen by each camera pixel is approximately
the same. The setup in Fig. 2, where the camera views the floor from an
angle, is realizable when differences in projected pixel area are included in
the model.
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Fig. 2: Acquisition setup and depiction of problem geometry. A point
p in the camera’s field of view is represented in polar coordinates,
while the 3D hidden scene is represented in cylindrical coordinates.

The measured photograph is an array of size M, x M,, with
M = M,M, total pixels. The measurement y,, of camera
pixel m is equal to the total radiosity of camera pixel P,,,
which consists of all points p on the measurement plane that
are focused on camera pixel m. Thus,

Ym = / L (p) dp,
PEPm

where we have ignored the constant scaling factor associated
with the camera because we are not attempting to estimate
a physically meaningful overall scaling factor for the hidden
scene. Because all camera pixels have equal projected area
Keam & area (P,.) on the measurement plane, and because

Keam = 1 without loss of generality, we can use (1) to write
ym ~ K‘/CamLO(T’ﬂYM em)
= f(rma am) (Lv(rm» Gm) + Lh(’f’m, gm)) 5 (2)

where (7, 0,) is the center of camera pixel P,,.

By adopting a cylindrical coordinate parameterization of the
hidden scene, the hidden scene contribution Ly, (r, #) is the sum
of incident light L; coming from different directions:

o= [ ]
I e

i(p,a, 2)pdzdpda

Sh pva Z)
2(r,0,p,0) + 22"

dzdpda, (3a)

where Sy (p, @, z) is the radiosity of a hidden scene location
(p, v, z), assumed to have no directional dependence over the
extent of the camera FOV, and

d*(r,0,p,a) = r* + p* — 2rpcos(m — 0 + ) (3b)

is the squared distance between point p on the visible floor
and a hidden scene (floor) point (p, v, 0). The inversion of (3)
to estimate the 3D scene Sy(p, @, z) from Ly(r,d) may be
possible with suitable discretization and regularization. While
we do not study the conditioning of this problem formally,
it is presumably quite poorly conditioned. Instead, we would
like to write an approximation of (3) that has a 2D hidden
scene representation and then estimate that representation.

B. 2D Scene Model

Inspired by [30], [31], the presence of the vertical edge oc-
cluding our view of the hidden scene makes the o dependence
of Sn(p, a, z) the easiest dimension to estimate. We choose to
represent the dependence on p rather than on z to recover a
2D plan view representation of the hidden scene. To this end,
we rewrite (3a) as

6 proo
p —
Lu(r,0) = — P 5.(r6.pa)dpda, 4
) = [ |7 G S0, p.0) dpda, G
where
Sh(r,e,p,a):/ Shlp, 2 2) sdz. (4b)
o 1+ (z/d(r,0,p,a))

For (4) to be a forward operator to invert for recovery of a 2D
representation of the scene, we would like to replace S}, with
an approximation with no dependence on r and 6. If scene
content is mostly short relative to the horizontal dimensions,
z < d(r,0,p,a) where Sy(p,q, z) is appreciable. The 2D
scene representation

a) = /00 Sh(p, o, z)dz 5)
0

thus satisfies

gh(pva)

for all (r,0) in the camera FOV. Using this approximation,
the inversion we study in Section IV is of

6 proo
- S <
Ly(r,0) = /0 /0 20 0.p.0) Sh(p,a)dpda.  (6)

When a target has appreciable height, we expect there to be
some distortion. In simulation, we found that taller targets
were estimated to be farther from the occluding edge than
shorter targets.

To model occlusion in the hidden scene, we assume that
all the contributions to our measurement from a given angle
«a come from a single range p. This roughly corresponds to
a hidden scene composed of opaque vertical objects resting
on the ground. Under this assumption, we write Sy, (p, a) =
d(p—pn(a))sn(a) as a separable function of range pp () > 0
and angle « € (0, 7], where sp(a) denotes the dependence of

~ Su(r,0,p,a)



scene radiosity on «, and §(+) is the Dirac delta function. Then
(6) becomes

u(r.0) // Fra o= m@)s,
:/ Pu() o
o d?(r,0, pn(a), @)

Thus, substituting

[’
B m pn(Q)
Bt 0n) = [t @ @)

into (2) we obtain the model

(o) dpda

(o) da.

Ym = f(T’rTH em) (Lv(rma em)

0
" pn(a)
* /0 d? (Tma 9m7 ph(a)v a) o (a) da) (8)

for the hidden scene and visible scene contributions to camera
measurement m.

C. Discrete Forward Model

For the sake of concisely demonstrating our core ideas, this
paper focuses on estimating half of the hidden scene, i.e., the
region o € (0,7/2].2 We discretize the hidden region into N
equiangular wedges identified by their center angles

(n—4Hm

n = T aonr :1727"
« ON n

and associate a single unknown range value py(c,) with
each wedge. Then the pair (pn(cw,), ) defines a (unique)
position in the hidden space for each n € {1,2,..., N}.
Now gathering these variables into the hidden-scene radiosity
vector s, = [sp(aq),sn(az),...,sn(an)]" and range vector
pn = [pn(a1), pn(a2), ..., pn(an)]" gives the discrete, non-
linear forward model

'7N7

y=a0f+fo(VoD(pn))sn+e, )

where y = [y1,Y2,--,Ym] € RM denotes the vectorized
camera photograph, a € RM is the discretization of ambient
light contribution L., f € RM is the floor albedo, V € RM*N
is a binary-valued visibility matrix (with the entry [V,
equalling 0 if the path joining p,,, and (p(c,), @) is occluded
by the wall, otherwise it is equal to 1), and ® is Hadamard
(or element-wise) product. Note that when no target is present
at angle «,, sp(a,) = 0. The matrix D(py) € RM*N has
elements

ph(an)
d2 (Tma 0m; Ph(Oén), an,) ’
and e models noise and other possible model mismatch.

Inverse Problem: Our goal is to recover a 2D (plan view)
reconstruction (sp, pn) of a hidden scene S}, from a single

[D(Ph)]m,n =

2Qur proposed methods could be extended to reconstruct the full hidden
scene, i.e., ¢s € (0, 7], by: (i) extending the camera’s FOV to also include
measurements from the positive y-axis of the visible side floor surface (see
Fig. 2); and (ii) carefully accounting for the thickness of the occluding wall
if necessary.
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photograph y of the penumbra created on a visible floor
surface using (9).

Before presenting our approaches for solving (9), we study
the feasibility (and certain limits) of realizing the 2D corner
camera. Specifically, by evaluating the CRBs for hypothetical
cases where the hidden scene comprises only a few hidden
point targets, we demonstrate the merits of the occluding wall
(or corner occluder) for hidden scene recovery.

III. CRAMER—RAO BOUND FOR TARGET LOCALIZATION

In the subsections that follow, we present CRB analysis
to demonstrate the merit and challenge of an edge occluder
for 2D plan-view reconstruction of a hidden scene. To truly
understand the effect of the edge, we perform our analysis
both for the edge occluder scenario, and the scenario where
no edge is in place. We start with the former.

In (7), measurement y,,,, with the edge in place, is approxi-
mated by the intensity at the center of the pixel. Now, we leave
the more precise integral across points p = (r,6), in floor
patch P,,, in place and assume no ambient light contributions,
i.e. L, = 0. Under an additive white Gaussian noise (AWGN)
model, the noisy camera measurement is given by

" a)dadp +€, (10)
= [ J. A
where € ~ N(0,02).

A. Single Hidden Target

Assume the hidden target is a hypothetical point emitter,
located at the point (ps, ¢, 0) on the ground, i.e. Sy (p, @, z) =
cs0(p — ps)d(a — ¢s)d(2), where ¢s € (0,7/2]. Evaluating
(3a), the outgoing radiosity from a point p = (r, 0) is

cspsH (0 — ¢s)
r2 4 p2 — 2rpgcos(gps + 1 — 0)’
where H(z) is the Heaviside step function.

Assuming a uniform albedo f(p) = 1, the measurement at
pixel m is 4., = i, + €, With

Lo(p) = f(p) (1)

i = / CspsH(9 - ¢5)

pep,, T2+ p2 —2rpgcos(ps +m — 0
We will now analyze how small changes in target location
(ps, ¢s) and brightness cs propagate to small changes in the
camera measurements. This will allow us to analyze how much
information about these unknown parameters is contained in
our noisy measurements y,,. The derivatives of 7,, with respect
to the unknown parameters are as follows:

Dim H(0 — ¢s)

Ocs - /pepm r2 4+ p2 — 2rpscos(¢ps + ™ — 0
Oim _ (r® = p2)H (0 — ¢5)

ops “ /pepm (r2 + p2 — 2rp, cos(¢s + 7 — 0))?

and

Ol /
= —CsPs
995 PEPm

) dp. (12)

dp,
)

dp,

5(9 — ¢s)
r2 4+ p? — 2rps cos(¢s + 1 — 0)
2rpssin(¢ps +m — 0)H(0 — ¢s)
(72 + 72 = 20y cos(ds + 7 — )2
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Interchanging the integral and derivative is justified since the
definite integral i,, is finite. We define the following matrix:

Oiy  Ou 04y
Jcs dps Oos
iz iz Oig
OJes  Ops  Ogs
VI = (13)
Jcg Ops Os

and note that under our Gaussian model, the Fisher infor-
mation matrix, which describes the amount of information
our data contains about unknown parameters, for estimating
(¢s, ps, ¢s) from the noisy measurements {y,,}M_; is given
by

1
F = — (VI'VI),

2
i Dy, 01 Diyy 01
Sn(32) Thfnds ¥, %424
2
Oty 01 o1 Oty 01
Do Zm (8;:) Zm 8;;: 8({72

) Zm Ops Ocg
2
i,
o (52)

Oty Ol iy, Ol
Zm Ops Ocg Zm Ops Ops
(14)

The CRB provides a lower bound for the achievable uncer-
tainty of an unbiased estimator and is related to the reciprocal
of the Fisher information:

CRBgo(cs) = o?[F Y11, (15a)
CRBgo(ps) = 0°[F ]2, (15b)
CRBEo(¢s) = 0*[F s 3, (15¢)

where the EO subscript indicates that these CRB results are for
the edge occluder scenario. In other words, greater information
about the unknown parameters corresponds to lower estimate

uncertainty.
Without the occluding edge, corresponding CRBs
(CRBno—EO (Cs)’ CRBno—EO (ps)’ and C:RBno—EO (()bs))

for estimating the same “out-of-view” target parameters
follow similarly. Without the occlusion described in (10), the
measurement by the mth camera pixel is

no-EQ def CsPs
= dp + ¢
" /pepm r2 4 p2 — 2rps cos(gs + 0) b
= if,?'EO + €.
Using the derivatives of 29 with respect to the hidden
target’s parameters:
a'no—EO
m = / 2 2 - dp,
Ocs pep,, T2+ p2 — 2rps cos(ps + 0)

8inO_EO . / (TQ — pg)
Ips * Jpep,, T2+ p2 — 2rpscos(¢s + 0

and

dp,
)

Qino-EO 2rps sin(0 + ¢s)

mo /
a(bs i PEPm r? + pg - 2Tps COS(QsS + 6
the Fisher information matrix F,, po, along with CRBs

(CRBio-EO (CS)’ CRBuo-rO (ps), and CRB,0-r0 (d)s)) may be
computed using the approach outlined in (13, 14, 15).

dp,
)

1 2 3 4 5
x [m]

(a) logy o CRBro (ps)

x[m]

(b) log1o CRBgo (¢s)

1 2 3 4 5 1 2 3 4 5
x[m] x[m]

(C) loglo CRBno—EO (Ps) (d) logl() CRBno—EO(¢S)

Fig. 3: Variation of the CRBs for estimating a single hidden target
for different target locations. The number of measurement pixels is
M = 1552 and the measurement FOV is 0.2m x 0.2 m, with fixed
noise variance o = 10.

Contour plots of computed CRBs for various ground truth
target positions with respect to the origin (corner) are shown
in Fig. 3, for the corner (CRBgp) and no corner cases
(CRBpo.ro)- Comparing Figs. 3a and 3c, achievable target
range estimates MSE has marginal dependence on the presence
of a corner, when estimating a single point target. On the other
hand, Figs. 3b and 3d suggest that CRBs for angle estimates
with the corner are around five to seven orders of magnitude
smaller when compared to the no-corner case.

Fixing the target’s range at ps = 1 m, Fig. 4 sum-
marizes the dependence of the computed CRBs on ¢g €
[w/64,637/64] rads. First, Fig. 4a shows that CRBgo(ps)
and CRB,o.ro(ps) are nearly equal at very shallow target an-
gles, because the shadowed region in the occluded case is very
small (the measurements for the corner and no corner cases are
almost the same). However, with measurement noise variance
fixed and ¢ increasing, CRBgo(ps) diverges because the in-
shadow region—which cannot possibly be informative about
the occluded target’s distance—grows, while CRB g0 (ps)
changes only marginally (reaching a maximum at 7/4 rads
before decreasing again). At the deepest angle, CRBgo (ps)
is roughly 28 times CRBy,o.go(ps). Figs. 4b and 4c indicate
that CRB,,0.r0 (¢s) has relatively mild dependence on the true
target angle ¢5, with symmetry around m/4. The observed
partial symmetry, in Fig. 4c, about 7/4, with ¢ € [7/8, 37 /8]
is because, in contrast to range estimation, the in-shadow
region is also informative (subject to prevalent noise lev-
els) about the target’s angular position. The asymmetry (for
¢s ¢ [r/8,3m/8]) is explained by a fixed noise variance
(i.e., measurement SNR reduces with increasing target angle).
Overall, the variation in CRBgo(¢s) is small relative to the
roughly five orders of magnitude improvement due to the
occluding wall.
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Fig. 4: Variation of CRB of the hidden target estimate in response to
varying the target’s angular position. (a) CRBs for range estimates
with and without a corner. (b) CRB for angle estimates without a
corner. (¢) CRB for angle estimates with a corner camera. Camera
FOV = 0.2m x 0.2m, ¢ = 10, and ps = 1 m.

Second, with the target’s angle held constant (¢5 =
/3 rads) while its distance from the corner increases from
zero, Fig. 5a shows that CRBro(ps) and CRByo.ro(ps)
are both small for a close target, but increase dramatically
with target’s distance. The uninformativeness of the in-shadow
measurements for range estimation causes CRBgro(ps) to be
higher than CRB,,,_g0(ps), whereas the presence of the corner
makes CRBgo(¢s) at least five orders of magnitude lower
than CRB,,, .50 (¢s) (see Fig. 5b). Under our measurement
scenario, a target 3m from the corner (with ¢s = m/3) for
instance has /CRBgo(¢s) ~ 107%/2 = 0.003 rads, while

CRBuo-ro(¢s) =~ 1073/4 = 0.178 rads.

Our study for a single point target demonstrates over-
whelming improvement in the estimation of ¢s due to the
occluding wall, with marginal negative impact on the expected
estimation quality of ps. This is because the occluding wall
effectively separates light paths arising from different angles in
the hidden region. Phrased differently, the exact proportion of
shadowed-to-nonshadowed regions within the camera’s FOV
is informative about the angular location of the hidden target.

Using the CRBs, one can compute theoretical spatial un-
certainty regions for a hidden target. These are regions within
which the majority of a target’s estimates are expected to
fall. Specific examples for a camera FOV of 0.15m x 0.15m
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Fig. 5: Variation of CRB of the hidden target estimate in response to
varying the target’s distance from the corner ps. FOV = [0.2 m X
0.2 m], 0% =10, ¢s = 7/3 rads.

and M = 1552 pixels, and at SNR levels resembling real
experimental measurements are shown in Fig. 6. Assuming
unbiased estimators that achieve the CRB, these bubbles depict
regions within which two standard deviations of a target’s
estimate are expected to fall. We observe that the uncertainty
regions are very different with and without the occluding wall:
almost circular for the latter, while the angular uncertainties
are virtually imperceptible for the former. The presence of the
corner collapses these bubbles into lines, with the length of
each line representing the uncertainty in range, while angular
uncertainties are almost completely removed.

B. Multiple Hidden Targets

Although our single point-target CRB analysis showed the
incredible benefits of the occluding wall in ¢ estimation,
estimation of ps was actually shown to be slightly more
challenging, especially for hidden targets at greater angular
depths. The benefit of the occluding wall in range estimation
is realized when the hidden scene is more complicated. We
extend our single point target CRB analysis to include a second
hidden point target to demonstrate this effect.

In Fig. 7, Target 1 is fixed at (p1,¢1) = (1 m, /4 rads)
while Target 2 is held at p» = 2 m and moved in angle ¢s.
The CRB for both parameters and targets are compared for
scenarios with and without the corner in place. Fig. 7a shows
that CRB(p;) and CRB(pz) are, generally, over an order
of magnitude smaller when the corner is in place, the only
exception being when both targets are at or very near the same
angle. In this case, it becomes difficult to isolate the two targets
in range. Just like the single-target scenario, CRBgo(¢1)
and CRBgo(¢2) are seen to be many orders of magnitude
smaller (than CRB,,, g0 (¢1) and CRByo.go(¢2)) in Fig. 7b.
This significantly improved angular resolution depends on the
ability to separate angular derivatives due to each target, which
becomes more challenging when they are very close to each
other in angle, causing the peak at ¢o = m/4 in Fig. 7b.
When the two targets are at or near the same angle, the no-
corner case, which relies exclusively on radial falloff, shows
improvement due to contributions from each target adding
constructively in the measurement. Though that improvement
is marginal relative to improvement from having a corner.
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Fig. 6: 2x+/CRB uncertainty regions (right) for various measure-
ment SNR levels. Each uncertainty region is an ellipse (in polar
coordinates) with minor and major axis length set to 4x+/CRB
for the corresponding dimension. Camera FOV = 0.15m x 0.15m,
one typical realization of the camera measurement made at the
corresponding SNR assuming no occluding wall (insets: top) and
with an occluding wall (insets: bottom). The number of camera pixels
M = 155%,

Even when the angular location of both targets is given,
CRB(p; ¢1,¢2) is still substantially lower for the corner
camera case, as shown in Fig. 7c. This may be explained
by the fact that light from the shallowest (in angle) target
in the hidden scene affects a larger angular wedge in the
measurement than the less shallow target. The difference
between these two wedges is a swath of pixels affected only by
the shallowest target, making range estimation for that target
easier. In contrast, light from both targets without the corner
strikes all pixels in the measurement, making separating each
radial falloff pattern more challenging.

In addition, note that knowing the angular location of both
targets has a negligible effect on CRB(p; ¢1, ¢2) when the
wall is in place, likely due to the fact that angular uncertainty is
already so low in that situation. Inspired by these observations,
we introduce an algorithm that alternates between estimating
¢ and p in Section IV-C.

IV. INVERSE PROBLEMS & ALGORITHMS

In this section, we present two approaches to form a plan-
view reconstruction from a photograph of the penumbra. The

first method, described in Section I'V-B, discretizes the hidden
scene into a polar grid of pixels; thus transforming our inverse
problem into a linear problem of estimating the intensity
of each polar pixel. While this method is straightforward,
we demonstrate improved reconstructions using a second
approach that solves the inverse problem introduced in II-C by
alternating between estimating angular and range information.
First, by exploiting the high angular resolution provided by the
corner an initial estimate of the scene is formed, as a function
of angle. From this initial profile of the scene, the number
of hidden targets is estimated. Finally, we alternate between
estimating a single range for each target (i.e., learning the true
forward model), and updating the angular profile.

A. Floor Albedo and Ambient Light

Jointly estimating f along with a 1D projection of the
hidden scene has been studied in [31], with the assumption
that ambient—or visible side—light contribution to the mea-
surements a ~ c;1 is approximately constant over the camera
FOV. This work assumes uniform floor albedo f(r,0) (i.e.,
f = 1), though we remark that both inversion methods can be
similarly extended to handle the case of spatially varying floor
albedo f. This is by no means trivial and we leave it for a future
work. As previously mentioned, it is also assumed that the
floor surface is Lambertian. Given the intended tripod viewing
angle shown in Fig. 2a, specular mirror-like reflections would
provide little useful information about the hidden scene. When
specular reflections are present, these regions of the floor
may be isolated and those pixels removed from the data.
This was not necessary in the experiments that follow. In
addition, because ambient light contributions in the camera
measurements are slowly varying across the camera field of
view, they can be approximately decomposed into a sum of
light contributions from sources near the measurement surface,
anF, and those in the far-field, app. The far-field contribution
is roughly constant over the camera FOV, a =~ ¢;1 + ceanr,
where c¢; and ¢, are constants that lead to dimensionless pixel
values. The term anp can be measured, or computed from
our knowledge of the position of the visible side, so that
the only unknown needed to describe a is ¢ = [c1,¢2]. In
the presence of ambient light, the inverse problem becomes
estimating (sp, pn, ¢) from measurements y, under the model

y=Ac+ (VOD(pn))sh+e, (16)

where A = [1, anF].

B. A Linear Model and Inverse Algorithm

Equation (16) is linear in s, and nonlinear in py,. However,
by discretizing the possible values of each element of py, (v, ),
we can formulate a new system that is linear in all unknown
parameters. Specifically, let {p1,p2,...,pr} be the set of
allowed ranges. Then the Cartesian product {p1, p2,...,pr} X
{a1,aq,...,an} gives a 2D polar partitioning of the hidden
region, with each element (p;, cv,) defining a hidden-scene
polar pixel. Shown in Fig. 8 is a (coarse) 5 x 6 polar grid
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Fig. 8: Polar partitioning of the hidden space to obtain polar pixels at
six discrete angles and five discrete range values. The n-th column of
each submatrix D;, of D, describes propagation of light from hidden
scene polar pixel (pi, ), to the measurement plane.

discretization of the hidden space. Under this partitioning, the
forward model (9) becomes

y = Ac + D5, + €, 17)

where ]5 = [V ® D(pll),V O] D(pg].)7 e ,V © D(le)],
and S, = vec([Sh,,Sh,,--.,sn,]) € RYL with [sy,],, repre-
senting the radiosity of pixel (n,¢) at range p, and angular
bin n.

Although (17) is linear in all unknown parameters and (9)
is not, there is an important difference. Built into (9) is the
constraint that only a single hidden object per angle contributes
to the measurement. This constraint is based on the assumption
that the scene is composed of opaque vertical facets, so light
from objects that are behind other objects is blocked from
reaching the corner. In contrast, this constraint is not built
into (17). In this case, to model the fact that the vast majority
of pixels in the hidden scene either do not contain a target
or are occluded from the camera FOV by another visible to
the camera FOV, we promote sparsity in our estimate of sy,

resulting in the ¢;-regularized problem

[Sh, €] = arg min % ly — Ac— D5h||§ +Asnll, |, (18)
Sh,C
where A\ is the regularization parameter. The optimization
problem (18) is efficiently solved using the FISTA algo-
rithm [32].

We evaluate the linear model approach for the hidden
scene and measurement in Fig. 9a.> Reconstructions at range
resolutions of L = 10 and L = 40 are shown in Fig. 9b and
Fig. 9c for angular resolution N = 90. Both reconstructions
exhibit two clusters of pixels with intensities larger than zero,
corresponding to the two hidden objects in the scene. While
the relative order of the objects is correct, the yellow-blue
stripe is estimated to be closer than its true location in both
reconstructions. Both targets are reconstructed with mostly
correct color content, though several angular bins have differ-
ent range estimates across the three different color channels
causing some misalignment in the reconstructions. Although
both targets are at an approximately constant range across their
angular extent, this is not the case in both reconstructions,
particularly in the more coarse reconstruction of Fig. 9b. Our
nonlinear, more physically-inspired, model addresses some of
these challenges.

Remark 1: Under the assumption of at most one target in
any angular bin, each sub-vector sy, in Sy, is either 1-sparse or
zero. Combining this with the existence of only a few targets
means that there is a small number of 1-sparse groups in sy,
i.e., sparsity both within and across groups. This could be
incorporated by solving a Sparse-Group Lasso problem [33]:

L

|1 =_ 2 _
argmin | o |y — Ac — Dsyl|, + M Z lIsn, lls + A2 [I5ull;
Sno¢ 1=1
19)
Empirically, we found no compelling evidence that solving
(19) is superior to solving (18). Consequently, all results for
the linear inverse problem (17) are based on solving (18),

separately, for each color channel.

3The corresponding experimental setup will be described in detail in
Section V, after we present our second, preferred, algorithm.
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Fig. 9: Demonstration of linear inversion algorithm for hidden scene

and measurement shown in (a). The hidden region is discretized into
N angles and L ranges.

C. Nonlinear Modeling and Inversion

In many practical scenarios, the hidden scene is composed
of only a few hidden targets of interest, with each target
having some angular extent and being roughly at a constant
distance from the corner. Solving (18) with fine range and
angular discretization is computationally expensive; similarly,
finely discretizing the angular dimension and estimating a
unique range value p(«,,) for each hidden-scene angle «,,
using (16), is unnecessarily ambitious. Alternatively, we can
assume that there is an unknown number Ny < NN of disjoint
targets to be estimated, each with unknown range and radiosity.
Mathematically,

N, _

= _ = a — Qy )

Su(pr0) = 3 slalils pu(*5). o
with the jth hidden target having angular position &;, an-
gular extent A;, and range pj; u(+) is the zero-centered unit
rectangular function. The radiosity s(«) is piecewise constant,
taking value [s],, for a € [(n — 1)7/(2N), n7/(2N)), such
that s € RY is the vector representing the discretization of
s(a).

Angular bins containing no detected targets are attributed to
background, and the minimal light coming from those regions
will be assumed to be coming from a large distance pmax-
Under the model (20), instead of having NN different range
values, contiguous angular bins will have the same range p; if
they contain the same target. Letting p = [p1, P2, ..., N, :

y=Ac+ (VOD(p))s +e, (21)

where forany m=1,2,..., M andn=1,2,..., N,
Pj
d? (T'ma Orms Pjs an) ’
when target j is present at angle a,;
pmax
d2(r’ma 9177,7 pma)u an)
when no target is present at angle «,.
(22)
Note that target j is present at angle «, when «, €
[@; —A;/2,a; + A;/2). We propose to estimate s, p and
¢ by solving

[D(ﬁ)}m,n =

b

s,P,¢

. 1 _
min ( 3y~ Ac— (Vo Dip)sl:

data fidelity

A W)y + Ao IBSIE + 110,000 () + torscye (B) )

regularizers for s regularizer for p

(23)

where W is a wavelet transform matrix (we use the
Daubechies wavelet of order 4), B returns the difference
between subsequent entries in s that are attributed to hidden-
scene background terms, A; and Ao are tuning parameters,
and

if x € C;

otherwise

is the indicator function for a set C. In (23), the regularizers for
s promote sparsity in the wavelet basis, smoothness in hidden-
scene background contributions, and positivity in s, respec-
tively. The regularizer for range p enforces range estimates to
be at least ¢ > 0 (a small constant). This optimization problem
is solved using an alternating approach described below.

1) Initialize s and c by solving

1
s’, ¢l =argmin = ||y — Ac — (VO D(py))s 2
5. c'] = angmin | VoD@l

+AWslly + ¢0,00)v (8),

with p = ppp1, initialized to represent a single target
(Ny = 1) in the far field (ppr > 0). Our motivation to
first estimate s is because, given ﬁ) , the resulting problem
is well-conditioned (Section III).

2) Determine number of targets N; by comparing [s°],,
to the threshold k, = a/(2(+1) 17", [s°] ., where
a € Ry and (odd) filter length (2¢ + 1) € Z, are
tuneable parameters. It is assumed that [s'~'],, = 0 for
n ¢ {1,2,..., N}. Consecutive threshold crossings in s°
represent the edges of a single target.

3) Update p' by

p',2'] :argminé ly — Ac'™'—(VoD()s""|;
P,z

+ Ue,00)No (ﬁ) + L[0,00) Nt (Z),

(25
where z = (21, 22,...,2n,]T € RY* is such that for any
n=12,...,N,

_ 2iPj

d? (vagmaﬁﬁan)
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Fig. 10: Demonstration of model mismatch with scene initialization.
The hidden scene was a narrow white cylinder with a diameter of
2.5cm, 18cm away from the corner, at ¢ = 45°, as shown in (a).
When all light is assumed to originate in the far field, the initial
estimate of so (b) does not describe the radial falloff that is present
in the measurement y (d), as shown in the initial residual (e). After
the algorithm converges, the range estimate is updated allowing for
a more accurate estimate of s as shown in (c) with a much smaller
residual (f).

(d) Measurement y

when o, € [@; —A;/2,a&; +A;/2). The introduction
of z couples the minimization problems (25) and (26),
permitting radiosities s’ ! to be scaled, appropriately, as
p is updated.

4) Update s and c by solving

= = Ac— (VeD(p
[s', c'] = argrmn ||y c—( H2 26)

+A HWSH1 + Az I Bsl3 + 0,00 (8)-

5) Increment iteration counter ¢ by one.

6) Repeat steps 3, 4 and 5 until convergence.

7) Return p < p', and § + s.
Steps 1, 3, and 4 are solved using projected gradient meth-
ods [32]. Fig. 10 illustrates several algorithm steps for a
scene containing a single hidden cylinder, shown in Fig. 10a,
resulting in measurement y, shown in Fig. 10d. The final
estimate of s (Fig. 10c) does not contain the artifacts seen in
the initial estimate s (Fig. 10b) because, instead of assuming
the hidden scene is in the far field, the model has been
updated to include the effects of radial falloff due to a target at
estimated distance ;A’) In fact, the residual due to the initial far
field assumption (Fig. 10e) clearly contains unmodeled radial
falloff, whereas the final residual (Fig. 10f) exhibits a much
better overall fit.

D. Nonlinear RGB Model Inversion

The algorithm described in Section IV-C, which operates
on a single measurement channel, may be adapted to operate
on color (RGB) data. In this case, the camera measures yg,

TRANSACTIONS ON COMPUTATIONAL IMAGING

ya, and yp corresponding to each color channel. Although
our goal is still to estimate range values p € RYt, we now
seek radiosity estimates Sg, Sg, and Sg, as well as estimates
of ambient light Cr, Cg, and €. These estimates are obtained
by solving (23) with substitutions

y =¥ = vec([yr,yc,ys]) € R*,

A — A =diag([1,aRr],[1,ac],[1,ap]) €
Vo (D(p) = D(p) = (VOD(p) 0 T € RN,

B > B=BgIecRW-1Dx3N

R3MX6

)

where I is the 3 x 3 identity matrix. The optimization becomes

~ ~ 2 ~ 112
S e N
p,s,c 2 2 (27)

EAIWRI, + 10myon ) + ey (B >),

which, like before, is solved using an alternating approach,
performing initial thresholding, or target counting, on S =
(s + s& + s%), with (25) modified to update z =
[zr; zq; zB] € R3M instead of z:

—t >t ~t—1 N5 \at—1
p,z' ]| = argmmf Hy Ac D(p))s H
7] = aren ~0EE, o

+ Ue,00)Ne (P ( ) + L[0,00)3Nt (Z)

The scene s is updated by solving (26) in parallel for each
color channel. This concatenation of the color channel mea-
surements enforces consensus among channels in the range
estimate and angular extent of a given hidden target, thus
avoiding the spurious range estimates observed in the /¢;-
regularized solutions of the linear inverse problem formulation
(Fig. 9).

V. EXPERIMENTAL EVALUATION USING REAL DATA

Performances of the algorithms presented in Sections IV-C
and IV-D were evaluated in a variety of conditions, using the
scaled-down laboratory setup shown in annotated photograph
Fig. 10a. A tripod-mounted FLIR Grasshopper3 camera model
GS3-U3-4154C-C equipped with a Tamron M118FM16 lens
was used to photograph the floor (C) on the visible side of
occluding wall (A). The camera was positioned approximately
1 meter off the ground, directly above the observation region.
A tuneable light source consisting of an array of LEDs,
positioned behind the occluding wall, was used to illuminate
the hidden scene region (B). The camera’s exposure time was
adjusted for each experimental run to avoid saturation while
still using the full dynamic range. Camera automatic gain
correction and gamma correction were turned off. The floor
in region (B) was covered with a large paper polar grid for
reference. Black tape secures the corner of this paper to keep
it flush with the floor. In this work, we reconstruct a region
that extends 7/2 radians into the hidden scene. In principle,
the full 7 radians of hidden scene may be reconstructed by
extending the photograph region (C) to the right.
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Fig. 11: Evaluation of algorithm performance for a single target at
four different ranges, in five different noise conditions, placed at ¢ =
45°. The standard deviation of the range estimate (a), o, increases
with increasing range p, and the standard deviation of the angular
estimate (b), o, is small at all ranges. Bias for the range estimate
(c) increases with increasing range, while the bias for the angular
estimate remains small at all ranges.

A. Empirical Performance Evaluation: Single Target

To evaluate performance, a single white cylindrical target,
shown in Fig. 10a, was placed at different positions (p1, ¢1)
in range and angle. For each position, with a camera FOV of
0.16 mx0.16 m, 150 snapshots of the visible floor were taken.
By combining 1, 2, 4, 8, and 20 randomly selected snapshots
(without replacement), we emulated decreasing measurement
noise levels. Estimates’ bias and variance were computed using
the recovery results from 60 repetitions of each configuration.
In each trial, scalar range parameter estimates ¢ and angular
profiles S are recovered for the target, as shown in Fig. 10c. We
use the peak value of S (after up-sampling) as a proxy for o1,
to compute its bias and variance. We take the measured center,
in angle, of the target as the true ¢;. While it is expected that
they are close, this measured center of the cylinder may not
exactly match the brightest illuminated region of the cylinder.

1) Varying Range: Fig. 11 shows estimate bias and standard
deviation computed for ¢; = 45° and ranges p; = 0.09 mm,
0.18 mm, 0.27 mm, and 0.36 mm. As shown in Fig. 1la,
range estimate standard deviation increases in noisier con-
ditions (i.e., fewer combined frames) and at greater ranges.
Fig. 11b shows that, as predicted by the CRB analyses
in Section III, the standard deviation of estimate ¢; remains
small at every position in range.

Fig. 11c and Fig. 11d show the bias for range and angle
estimates respectively, at the four ranges in the same five noise
conditions. For both range and angle estimates, bias is constant
at a given range, regardless of the noise level. In both cases,
the bias is orders of magnitude larger than the corresponding
standard deviation. For the range estimate, we attribute this

1.2 0.12

—o—1
1t |—o—2 0.1
—o 4
08 |—o—8 0.08
_ —o— ®
F 06— _ = 0.06
N

e w2

o,

A

o—
G o °
0 0
20 40 60 20 40 60

True Angle [deg] True Angle [deg]

(@) op vs. ¢ (b) o vs. &
0.01g 4
0.005 354
0 =
T ERE
2 -0.005 =
A Z 25
-0.01 =
0015 2
002 15
20 40 60 20 40 60

True Angle [deg]
(c) Bias, vs. ¢

True Angle [deg]
(d) Biasg vs. ¢
Fig. 12: Evaluation of algorithm performance for a single target at
five different angles, in five different noise conditions, placed at p =
0.18 m. The standard deviation of the range estimate (a), o, is
greatest when ¢ = 75°, when the fewest pixels on the floor are
exposed to penumbra. The standard deviation of the angular estimate
(b), oy is small at all angles.

bias to model mismatch due to unmodelled reflections, nonzero
target height, and edge imperfections. As shown in Fig. 11d,
angular bias is much smaller, and may correctly reflect the
fact that the brightest part of the cylinder changes in angle,
as the cylinder moves with respect to the fixed hidden scene
illumination.

2) Varying Angle: Fig. 12 shows estimate standard devi-
ation and bias for fixed range p; = 0.18m a set of angles
o1 = 15°, 30°, 45°, 60°, and 75°. We similarly observe lower
estimate standard deviation in less noisy conditions, greater
standard deviation in range than angle, and substantially higher
bias than standard deviation for both range and angle.

3) Varying Ambient Light: Measurements were also taken
of this same target in a fixed position, with different levels
of ambient light. A constant light source on the visible side
introduced ambient light while a light source on the hidden
side was tuned to vary penumbra brightness. Fig. 13a, Fig. 13b,
Fig. 13c, and Fig. 13d show measurements as the penumbra
becomes faint to the point of not being visible to the naked
eye; Fig. 13e, Fig. 13f, Fig. 13g, and Fig. 13h show the
corresponding reconstructions with the true target location
marked by a red dot. All four reconstructions correctly pick
out the target in angle demonstrating robustness to a surprising
amount of ambient light, although the higher SNR case is both
sharper in angle and more accurate in range estimation.

B. Color Reconstructions

The RGB nonlinear inversion algorithm was tested on
scenes with colored objects in several different configurations.
Testing was also performed on a multi-object, colored scene
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Fig. 13: Demonstration of performance degradation as the penumbra becomes fainter. The true location of the hidden object, a white cylinder,
is shown in red. When the penumbra is brighter, (a) and (e), the estimated range p is closer to the truth, and s contains a sharp peak at the
true angular location of the hidden object. When the penumbra is more faint, (d) and (h), the estimated range p is further from the truth

and the peak in § less sharp.

in the presence of increasingly bright ambient light to demon-
strate algorithm robustness to low SNR conditions.

1) Multiple Targets: Measurement and hidden scene pairs
are shown in Fig. 14a and Fig. 14c, where the same two
colored objects have been placed in reverse positions. Recon-
structions Fig. 14b and Fig. 14d show that in both cases, the
two targets are accurately found in angle, and placed in range
correctly with respect to each other. High angular resolution
is demonstrated in both reconstructions, with the red-green
object correctly portrayed to have a slightly wider red section,
just like the yellow-blue object has a slightly wider yellow
section. The scenario and measurement shown in Fig. 14e tests
our algorithm on a scene that includes three targets instead of
two. The reconstruction shown in Fig. 14f accurately picks out
all three targets in angle and places them at ranges that are
correct with respect to each other.

2) Varying Ambient Light: In Fig. 15, we demonstrate
algorithm robustness to increasing amounts of ambient light.
Here, the hidden scene, arranged as shown in Fig. 15e, consists
of the yellow-blue target and a more distant, in both range and
angle, white cylinder. With an angular location close to /2,
very few pixels in the measurement are exposed to light from
the white cylinder making range estimation more challenging.
Still, all but the lowest SNR reconstructions correctly place the
white cylinder at a greater range than the yellow-blue target.
All four reconstructions demonstrate high angular resolution,
even resolving the sharp boundary between the yellow and
blue portions of the yellow-blue target.

VI. DISCUSSION
A. Technical Conclusions

We proposed and tested two inversion algorithms: one based
on a conventional linear model and the other on an alternating
approach that more directly inverts the nonlinear forward
model (9). Both make use of regularization to solve an ill-
conditioned problem and demonstrate high angular resolution

and significantly coarser range resolution in reconstruction
results, owing to the conditioning of range estimation. While
the linear model (17) enjoys simplicity, it omits the opacity
assumption that is naturally embedded in the nonlinear model
(9), thus allowing multiple nonzero pixels in a single angle.
In addition, without enforcing a single range per target, this
method also raises questions about how to effectively promote
coincident pixels across the color channels. The second (non-
linear) method benefits from the natural separation of range
and angle estimation problems, enabling a highly effective
alternating recovery algorithm.

The linear approach discretizes the hidden scene into a
polar grid. Even with fine angular discretization and sparsity-
enforcing priors, estimating a range per angle when a hidden
scene likely contains only a few targets is unnecessarily chal-
lenging. In contrast, the initialization step of the alternating
algorithm that we propose for solving the nonlinear problem
(9) allows us to exploit excellent angular resolution to count
the number of targets and estimate only one range per detected
hidden target. In this light, the range update step can be
interpreted as learning the forward model to ultimately allow
for better angular reconstructions, as demonstrated in Fig. 10.
With the few unknown ranges as parameters, the alternating
approach enjoys less model mismatch than the linear inversion
algorithm, because the range parameters are not discretized.

The fact that the alternating algorithm treats unknown
ranges as parameters also lends itself to a natural three-channel
RGB extension. Estimating a single range per fixed angular
extent enforces consensus across color channels. In contrast,
the linear inversion algorithm operates separately on three
color channels and may place RGB values for the same object
at different ranges or angles, as shown in Fig. 9. One way this
may ultimately be improved is by forming a reconstruction
in the YUV color space. Enforcing sparsity on component
Y (i.e., the ‘luma’, or ‘intensity’ component) would penalize
intensities at multiple ranges in the same angular bin.
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Fig. 14: Demonstration of color reconstruction with three different
scenes containing multiple hidden objects. The widths of yellow, blue,
white, green, and red objects are 2.9 cm, 2.7 cm, 2.5 cm, 2.9 cm,
and 4.2 cm respectively. The black arcs on the floor in (a), (c), and
(e) correspond to the ranges marked in white in (b), (d), and (f).

Both algorithms seek to reconstruct a 2D plan view of the
3D hidden scene. Angular information is provided by the edge
occluder, while target range information is contained in the
subtle radial falloff curvature measured by the unoccluded
camera pixels. Shining a spotlight on a hidden target only
changes the intensity scaling of this curve. However, moving a
target in range changes the shape of this curvature, allowing us
to distinguish between targets at different positions. Although
both the height and range of a single hidden point source
may be recoverable in a noiseless setting, in practice, we
contend with measurement noise, ambient light on the visible
side, and more complicated hidden scenes. As demonstrated
by the CRB analysis in Section III, even when the target is
assumed to be in the ground plane, range information in our
measured data is subtle. In fact, when a point source’s vertical
position zg is treated as another unknown parameter, the CRB
for estimating both source range ps and vertical position zg
is even larger, as shown for a point source at z; = 0.2m in
Fig. 16a and Fig. 16b. When it is assumed that the source’s

vertical coordinate zg or range ps is known, as is the case in
Fig. 16¢c and Fig. 16d, uncertainty is reduced. Furthermore,
comparing columns in Fig. 16 illustrates that, at least when a
point source is not very high off the ground, range is the easier
of the two parameters to estimate. These observations support
our choice to reconstruct range (along the floor) rather than
height under the assumption that targets rest on the ground
with heights that are small compared to their range.

When a target has significant vertical extent, our assumption
is violated and our algorithms may be expected to estimate
targets to be further than they truly are. We demonstrate this
using synthetic data in Fig. 17. Here the simulated target spans
35°-55° within the hidden scene and is fixed at range p =
0.15m. Target height extent 7 is varied from Om to 0.3 m and
target range p is estimated using the alternating algorithm for
each target height. Fortunately, even in an extreme case where
the target’s height extent 7 is approximately equal to its range
(p = n ~ 0.15m), the relative error in the estimated range is
still less than 20%. In fact, in many of our experimental results,
targets had some vertical extent but were placed closer to the
corner in reconstruction results, likely due to this effect being
overwhelmed by other sources of model mismatch.

B. Future Outlook

Experimental results presented in Section V were obtained
using an experimental setup with target distances on the order
of half a meter, but we believe both inversion algorithms could
work with a larger experimental setup, given comparable SNR
and larger camera FOV. CRB analysis may be extended to
determine the effect of camera FOV on estimate variance
for targets at a given range. We conjecture that for a given
target range, there may be an optimal camera FOV for range
recovery, although generally speaking a larger camera FOV
makes angular estimation more challenging. In the alternating
algorithm, this trade-off may be managed by taking one photo
with a smaller FOV to use in scene s initialization and update
steps, (24) and (26), and another photo with larger FOV
for range estimation step, (25). Though at the scale of the
experiments in this paper, this was not necessary.

The alternating algorithm may be further adapted to handle
the common scenario of a few hidden objects with heights
known a priori. Imagine a scene composed of people or cars
that we observed entering the hidden scene from the visible
side. If the heights of hidden objects are known and we assume
a constant radiosity across height for a fixed angle, we may
model the radiosity of the hidden scene as

Si(p, a),

Sh(p, , 2) = { 0 for z € [0,n(p, )];

otherwise,

where at hidden scene floor location (p, «), an object of height
n(p, ) has constant radiosity S (p,«) over its full height.
Now, instead of recovering Sy, (p, ) of the hidden scene, as
defined in (5), we seek to recover S} (p, ). With this explicit
modeling of the z dependence of Sy (p, v, z), our expression
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Fig. 15: Demonstration of RGB alternating inversion algorithm as SNR is reduced. The white cylinder (width 0.025 m) and yellow-blue
stripes (widths 0.029 m and 0.027 m, respectively) were arranged as shown in (e), at 0.21 m and 0.16 m respectively. Note the increased
difficulty due to the white cylinder’s deep placement, in angle, into the scene. In this location, only a small fraction of the measurement
pixels are exposed to light from the cylinder. Still, only the lowest SNR reconstruction fails to place the white cylinder at a greater range
than the yellow-blue object. In all cases, the two objects are resolved in great angular detail. Black arcs on the floor correspond to the ranges

marked in white on the reconstructions.
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Fig. 16: Variation in CRBgo for parameters p and z when both
are unknown (first row) and when the other parameter is assumed
known (second row) The true position of the hidden point source is
varied over [0.2, 1] in the (x, y)-plane, with a fixed vertical posmon
zs = 0.2m. The number of measurement pixels is M = 107 and
the measurement FOV is 0.2m x 0.2 m and noise variance o = 10.

for incident light on the floor (originating from the hidden

0.3

0.25

0.2 o —0—0 ¢

0.15 [Saincd

0.1

—0— Estimated range | |
True range

0.05

Estimated range [m]

005 01 015 02 025 08
Target height [m]

Fig. 17: Demonstration of range estimation error as a function of
target height extent 7). Targets with greater height extent are estimated
to be further away. The simulated target spans 35°-55° within the
hidden scene and is fixed at range p = 0.15m. Target height extent
7 is varied from Om to 0.3 m, and target range p is estimated using
the alternating algorithm. Simulated measurements are noiseless with
M = 155% measurement pixels and the measurement FOV is
0.15m x 0.15m.

scene), (3a), may be rewritten:

") Si(p.a)
w(r, 0) // / (0. p.0) + 2pdzdpdoz
= Silpa n(p, o)
// Ar.0.p )arCtan(d(r,G,p,a) pdpda.
(29)

In the alternating method for inverting our nonlinear model,
using a vector of known target heights i) = [71, 72, . . ., T, | €
RN to recover S¢(p, «) instead of Sy, (p, ) can be appropri-
ately incorporated by replacing (22) with

p; arctan (77 /d(rm, Om, pj, o))
d(Tma gma ﬁj? an)

[D(ﬁ)]m,n = (30)
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when «,, € [dj — Aj/2,07j + Aj/?).

Outside the laboratory, ambient light on the visible side
might be more difficult to describe, and hidden scenes may
be more complicated than a collection of a few targets. As
our CRB results indicate, range information is subtle, making
it easily overwhelmed by model mismatch. For these rea-
sons, our 2D reconstruction algorithms, in their current form,
might lack robustness outside of the controlled laboratory
setting. However, there are ways the ideas in this paper
could be realizable outside of the laboratory. For example,
our algorithms might be adapted to produce reconstructions
of only the moving part of the hidden scene. Like [30], we
could greatly reduce model mismatch through background
subtraction. Unlike [30], the ideas presented in this paper
would allow us to produce 2D, instead of 1D, reconstructions
of these moving targets.

The breadth of recent work on edge-resolved NLOS imaging
[30], [31], including a recent active method [20], allows us to
envision some of the ideas in this paper as part of a larger
hybrid edge-resolved NLOS imaging system. Such a system
might include both active and passive components, allowing
for greater robustness under real world conditions. In this
paper, range is an unknown part of the forward model that
we learn. In a hybrid system, an active module might provide
coarse (in angle) range information that could be plugged
directly into our forward model so it would not need to be
learned. The passive module could then quickly provide high
resolution (in angle) RGB information about the hidden scene.

VII. CONCLUSION

In this work we explore 2D reconstruction of the region
hidden behind a wall using a single photograph of the floor
on the visible side. Unlike previous work, which has assumed
all light sources to be in the far field, we propose a more
complete forward model to describe radial falloff, enabling
2D reconstructions of the hidden scene. Using the Cramér—
Rao bound for a single target, we demonstrate the utility and
difficulty of using penumbra measurements for 2D reconstruc-
tion. We propose an alternating nonlinear inversion algorithm
for 2D reconstruction and provide a comparison to a more
conventional linear inversion algorithm. Experimental results
demonstrate the promise and robustness of both methods.
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