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Since its formulation, Turén’s hypergraph problems have
been among the most challenging open problems in extremal
combinatorics. One of them is the following: given a 3-uniform
hypergraph F on n vertices in which any five vertices span
at least one edge, prove that |F| > (1/4 — 0(1))(3) The
construction showing that this bound would be best possible
is simply ();) U (};) where X and Y evenly partition the
vertex set. This construction has the following more general
(2p + 1,p + 1)-property: any set of 2p + 1 vertices spans
a complete sub-hypergraph on p + 1 vertices. One of our
main results says that, quite surprisingly, for all p > 2 the
(2p + 1, p + 1)-property implies the conjectured lower bound.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a finite set and ()f ) the collection of all its r-subsets. Subsets H of (}f) are
called r-uniform hypergraphs. Members of H are called edges. If (}T/) C H, then Y is said
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to be a clique and |Y] is its size. We denote by K| the r-uniform ¢-vertex clique. Note
that every edge is a clique of size r.

For integers ¢ > p > r > 2, we say that H has property (q,p) if for every Z € ();)
there exists Y € (i) spanning a clique in H, that is, ():) CH.

Definition 1. 1 Let T.(n,q,p) = min{|H| : H C ([:’]), ‘H has property (¢,p)}. Set also
tr(n,q,p) = Tr(n,q,p)/ (7).

Eighty years ago, Turén [10] determined T%(n, ¢,2) and this result served as the start-
ing point for a lot of research that led to the creation of the field of extremal graph theory.
About two decades later Turén [11] proposed two conjectures concerning T5(n, 4, 3) and
T5(n,5,3). To state their asymptotic forms, let us mention that Katona, Nemetz and
Simonovits [6] used a simple averaging argument to show that ¢.(n,q,p) is monotone
increasing as a function of n. Consequently the limit

lim tr(n, q,p) = tr(Q»P)
n—oo
exists.

Conjecture 1.2 (Turdn).

(1)
(2)

Even though this conjecture has been around for quite a long time, neither statement
was proved. For (1) the best known bound stands as t3(4, 3) > 0.438334 by Razborov [8]
using flag algebra. As for (2), the construction providing the upper bound is very simple,
namely H = (%) U (¥?), with X1 U Xo = [n], | Xi| = [2], [ Xo| = [2].

Let us mention that in [2] it was shown that for the graph case,

qg—1
t =1/|—|.
e 0
For general r, Frankl and Stechkin [4] proved that
) r
tr@p)=1 ifg<-—@p-1) (4)

It is easy to check that H = ()il) U ({2) has property (2p+ 1,p+ 1) for all p > r — 1.
Consequently,

1
t2p+1,p+1)< 5T (5)
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For the case r = 3, it was proved by the first author [3] that
lim 5(2p+ 1,p+1) = (6)
p—roo 3(4p P - 4’

By developing the methods used in [3], in Section 2 we generalize (6) to the r-uniform
case.

Theorem 1.3. For integers r > 2 and a > 2,
. 1
lim t.(ap+1,p+1) = —.
p—>00 a™—

In the 3-uniform case (when r = 3), we are able to determine the exact value of
ts(2p+ 1,p + 1), for all p > 3, which strengthens (6).

Theorem 1.4. For every integer p > 3,

1
ts2p+1,p+1)= 1

We should remark that the proof of this result is relying on earlier Turan-type results
of Mubayi and Rédl [7], and Baber and Talbot [1]. We are going to state these results
in Section 3 before proving Theorem 1.4. In Section 4 we mention some open problems.

2. Proof of Theorem 1.3

Throughout the proof of Theorem 1.3, we assume r > 3, and a > 2 to be fixed, since
the r = 2 case is already covered by (3). With r fixed, we also set t(q,p) = t-(¢,p). For
the pair (gq,p) with ¢ < ap, we call ap — g the excess e(q,p) of the pair (¢q,p). Note that
since ¢ > p, we always have e(g,p) < ag —q = (a — 1)g. For F C (%), a set Z is a
(w, v)-hole if |Z| = w, the clique number of F|z (the sub-hypergraph of F induced by
Z) is v, and w > av. We first establish the following two lemmas.

Lemma 2.1. Suppose G C (}T/) has property (q,p), and Z is a (w,v)-hole of G with w < q,
then G|y\z has property (¢ —w,p — v).

Proof. Take an arbitrary set U € (Y\Z), then UUZ € (g) Since G has property (g, p),

q—w
Gluuz contains a clique of size p. Hence G|y contains a clique of size p —v. O

Lemma 2.2. Suppose an r-uniform hypergraph F has property (q,p) for all pairs (q,p)
with ¢ < af and p = [q/a] (in other words F does not have a (w,v)-hole with afl > w >

av). Then for ollY € (52),
T r
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Proof. Instead of this we prove the following stronger statement. Let (r — 1)a < s < af
and Y € (¥). Suppose further that s = (a — b)t + b(t — 1) for some 0 < b < a, then

Fa (D) za-n(l) o).

Note that the right-hand side is 0 when s < (r — 1)a, so the inequality is trivially true in
this range. To prove the general case, we use induction on s. Since s = (a—b)t+b(t—1) €
{at —a+1,---,at}, F has the (s,t) property from the assumption. Let R € (}t/) span a
clique and fix y € R. There are (;:i) edges in (f) N F containing y. Remove y from F
and apply the inductive hypothesis to F \ {y}. We infer that

’]—'m (Y\T{yw > (a—b—l)@ +(b+1)<t;1>.

Considering the at least (f:i) edges containing y, we have

P (lze-s-n() reen () +(02))
(ab)(;)+b(t;1).

Now we can proceed as follows to prove Theorem 1.3. The upper bound lim,,_, o ¢, (ap+
L,p+1) < a—l,l is immediate, since Hy, rq = ()ff) U---uU ()i“) with X; U---U X, = [n],
|X;| € {|[n/a],[n/a]} has property (ap + 1,p + 1) and edge density 1/a"~! + o(1). For
the remainder of this section we focus on proving the lower bound.

Given € > 0, let us fix a large integer ¢ > {y(a,r,€), to be determined later. Then fix
a much larger integer L > 2a3¢?, and consider a sufficiently large r-uniform hypergraph
Fo C ([Z]) having property (¢,p) with ¢ = aL, p = L. Our aim is to find a subset
X C [n] with |():)| > (1 —¢/2)(") such that Fo N ():) has no (w, v)-hole with w < af
and r — 1 <w.

To this end, we start with 7y and define F; inductively. Let ¢o = ¢, po = p, Xo = [n].
Suppose that F; C ()i) has property (g;,p;) and it still has a (w;, v;)-hole. Then we let

Z; C X; be such a (w;, v;)-hole, and set
X;
Xip1 =Xi\Zi, Fipp=F0N ( ;1)-

By Lemma 2.1, F;41 has property (g¢; — w;, p; — v;). Moreover, the new excess satisfies

e(qi —wi,pi —v;) = a(p; —vi) — (¢ — w;) = (ap; — ¢;) — (av; — w;) > e(qi, ps) + 1.
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Set ¢i+1 = ¢; — w;, Pit1 = p; — v; and continue. At every step
alr—1) <av; < |X;] = | Xi—1| = w; < al.
Furthermore, since v; > r — 1 for every i, we have ¢ < p/(r — 1). Suppose at step 4, the

hypergraph F; no longer contains a (w,v)-hole with w < af. In this case, we choose a
subset @ of size af of V(F;) uniformly at random. Then by Lemma 2.2,

1Fl_EFEN )] al)
(%) ) TG

For sufficiently large ¢ > £y(a,r, ), this quantity is greater than (1 —¢/2)- —2+. On the

other hand, |X;| > n —ial > n — pal/(r — 1). Therefore when n is sufficiently large,
|(5)| > (1 —¢/2)(") and therefore

Rl 215 2 0-e) o (M) 2 a- a0 25 (7).

Otherwise suppose this process continues to produce (w,v)-holes. Let m be the first

index such that ¢, < 2af. In view of e(¢m,pm) < (a — 1)g, and that e(q;, p;) strictly
increases after each step, m < (a — 1)g,, follows. Thus

m—1
al =qo=qm+ sz < 2al +mal < 2al + (a—1) - 2al - al < 2a°?
i=0
contradicting L > 2a3¢2.
Summarizing the two cases above, we have that limy_, t.(aL, L) > 1/a"~!. Note
that a hypergraph having property (aL + 1,L + 1) must also have property (aL,L).
Therefore,

lim ¢,.(ap+1,p+1)>1/a" L.
p—o

Together with the construction in the introduction that gives t,.(ap+1,p+1) < 1/a" 1,
we conclude the proof of Theorem 1.3.

Remark. Since H,, , o, also has property (ap, p), we have actually proved a result slightly
stronger than Theorem 1.3, namely for every a,r > 2,

1

plggo tr(ap,p) = ar—1’
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3. The 3-uniform case

Note that Theorem 1.3, when applied to a = 2, gives

. 1
pli{glo tr(2p + 1ap + 1) - 27-_1 .

In this section, we determine the exact value of ¢.(2p + 1,p + 1) for r = 3 and all
p > 3, establishing Theorem 1.4. Our proof is based on two previously known Turan-
type results. To apply them, let us change to the complementary notion of excluded
configuration.

Definition 3.1. For an r-uniform hypergraph F C ([:f]). Let «(F) be its independence
number, that is, a(F) = max{|A| : A C [n], F N (’;‘) =0}.

Let F¢ = ([:’]) \ F be the complementary r-uniform hypergraph. Now F has property
(¢,p) if and only if «(H) > p for all induced sub-hypergraphs H = F¢ N (g), Q C [n],
QI =q.

For a collection of Gy, -+ , G, of r-uniform hypergraphs, let
t(n,Gi, - ,Gs) = max{|}"  F C ([n]), JF contains no copy of G;,i =1, ,s} .
r

It is easily seen that t(n,Gi,---,G,)/(") is a monotone decreasing function of n.
Consequently lim,, o t(n, Gy, - - ,gs)/(:) exists. This limit is denoted by 7(Gy, - -+, Gs),
and it is usually called the Turén density of {Gy,---,G,}.

Consider the following three hypergraphs from [7]:

Ry = (@) U{(a,z,y):a € [4],z,y € {567}z #y},

Rl = RO \ {{17 57 6}7 {27 57 7}7 {37 67 7}}7
722 = RO \ {{1? 57 6}7 {L 57 7}7 {3’ 67 7}}

It is easy to check that «(R;) = 3 for i = 0,1,2. To prove t3(7,4) = 1/4, it suffices to
prove

TRy, Ry) = % (7)

Actually Mubayi and the third author [7] proved a considerably stronger statement.
Set R = Ro \ {1,5,6}. Then

Proposition 3.2. (/7)) m(R) = 2.
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Since the proof of Proposition 3.2 is rather short let us include it. Suppose that
e > 0,n > no(e) and H C ([g"]) satisfies |H| > (3/4 + €)(3). Then for a 4-element
set Y C [n] chosen uniformly at random, the expected size of |H N (%)| = 4|H|/(3) >
3 + €. Consequently, H contains many complete 3-uniform hypergraphs on 4 vertices.
(As a matter of fact, instead of 3/4 to ensure that, Razborov [8] proved that 0.516- - -
would be sufficient to ensure the existence of K3.) By symmetry, suppose ([g]) C H.
For i € [4] define the link graphs H(i) = {(z,y) C [5,n] : (i,z,y) € H}. Let G be the
multigraph whose edge set is the union (with multiplicities) H(1) U --- U H(4). Should
G| > 3(";") + n — 6 hold, we can apply a result of Fiiredi and Kiindgen [5] which
guarantees that there are three vertices in G spanning at least 11 edges, which corresponds
to a copy of R in . In the opposite case |H(i)| < (3/4 +¢/2)(}) for some i € [4], then
we remove the vertex ¢ and iterate. Either we find R or we arrive at a contradiction with
|H| > (3/4+¢)(5).

The following result was proved by Baber and Talbot [1] using flag algebra.

Proposition 3.3. (Theorem 18 in [1]) Let T be the 6-vertex 3-uniform vertex hypergraph
with

T = <[g}> \ {{1,5,6},{2,4,6}, {2,5,6},{3,4,6), {3,4,5} ).

Then 7(T) = 3/4.

Now we are ready to prove Theorem 1.4. Observe that if G and ‘H are two hypergraphs
and F is their vertex-disjoint union, then n(F) = max{n(G),7(H)}.

Proof of Theorem 1.4. We have the upper bound ¢3(2p+1,p+1) < 1/4 from (5). There-
fore it suffices to establish a matching lower bound. By considering the complement of
the host hypergraph, it boils down to showing that if the edge density of a 3-uniform
hypergraph G is greater than 3/4 + o(1), then G contains a sub-hypergraph H on 2p + 1
vertices with a(H) < p. In other words, we need 7(#H) < 3/4.

For odd p > 3, we let H; be the vertex-disjoint union of R and (p — 3)/2 copies
of K3. It is straightforward to check that H; has 7+ 4 - (p — 3)/2 = 2p + 1 vertices,
independence number 3 + (p — 3) = p, and 7(H;) = max{m(R),7(K3)} = 3/4. This
gives t3(2p+ 1,p+ 1) > 1/4 for all odd p > 3.

For even p > 4, we take T from Proposition 3.3, and blow up its vertices 1,2,3
twice, and vertices 4,5,6 once to obtain a 9-vertex hypergraph 7’. Note that a blow-
up could only have lower Turdn density, therefore w(7") < w(7) = 3/4. Moreover the
independence number of 7 is 4, since all the five non-edges of 7 contain at most one
vertex from {1,2,3} and {4, 5,6} itself is an edge. We then let Hy be the vertex-disjoint
union of 7" with (p —4)/2 copies of K3. Then Hy has 9 +4- (p—4)/2 = 2p+ 1 vertices,
a(Ha) =4+ (p—4) = p, and 7(Hz) = max{n(T"),7(K3)} < 3/4. Therefore for all even
p > 4, we also have t3(2p + 1,p + 1) > 1/4. This completes the proof. O
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4. Concluding remarks

In this paper, we showed that for 3-uniform hypergraphs and p > 3, the (2p+1,p+1)
property implies the edge density is at least 1/4 — o(1). Maybe this can be extended to
r-uniform hypergraphs and we wonder if the following holds:

Conjecture 4.1. For integers r > 2, and p sufficiently large,

tr(2p+1,p+1) = 5=

Our Theorem 1.3 indicates this is true in the limit, and Theorem 1.4 settles the r = 3
case except for p = 2, which corresponds to Turédn’s famous open problem for K32. As we
were informed by Sasha Sidorenko [9], the r = 4, p = 3 case of Conjecture 4.1 fails to be
true since t3(7,4) < 113721/(2!7 - 10) = 0.08676 - - - < 1/8.

Here we remark that 7 in Proposition 3.3 with the edge {1,4,5} removed still has
all the properties needed for the proof of Theorem 1.4. Perhaps one could find a simpler
proof that this new hypergraph, much more symmetric than 7, still has Turdn density
3/4. Such proof might provide some new insights on the above conjecture.

To determine t,.(g,p), we essentially seek r-uniform hypergraph H with low indepen-
dence number a(H) relative to its number of vertices, and low Turdn density (). In
light of this observation and the results (3) and (4), could it possibly be true that for
every positive real number v > 0,

li : 1 1)=1— mi =1 "

Jim ¢ (yp+1,p+1) min w(#) = 1/{7]",

where F is family of all the r-uniform hypergraph satisfying |V (H))| > va(H)?
Finally, motivated by the asymptotic result (7) we propose the following conjecture:

Conjecture 4.2. There exists ng such that for all integers n > ny,

t(2n, Ry, Ry) = <2;‘> - 2(2)

Remark. We would like to thank Alexander Sidorenko for helpful comments on an earlier
version of this paper.
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