

Contents lists available at [ScienceDirect](#)

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

On local Turán problems

Peter Frankl^a, Hao Huang^{b,*1}, Vojtěch Rödl^{b,2}

^a Renyi Institute, Budapest, Hungary

^b Department of Mathematics, Emory University, Atlanta, USA

ARTICLE INFO

Article history:

Received 4 May 2020

Received in revised form 11 August 2020

Accepted 29 August 2020

Available online 18 September 2020

ABSTRACT

Since its formulation, Turán's hypergraph problems have been among the most challenging open problems in extremal combinatorics. One of them is the following: given a 3-uniform hypergraph \mathcal{F} on n vertices in which any five vertices span at least one edge, prove that $|\mathcal{F}| \geq (1/4 - o(1))\binom{n}{3}$. The construction showing that this bound would be best possible is simply $\binom{X}{3} \cup \binom{Y}{3}$ where X and Y evenly partition the vertex set. This construction has the following more general $(2p+1, p+1)$ -property: any set of $2p+1$ vertices spans a complete sub-hypergraph on $p+1$ vertices. One of our main results says that, quite surprisingly, for all $p > 2$ the $(2p+1, p+1)$ -property implies the conjectured lower bound.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a finite set and $\binom{X}{r}$ the collection of all its r -subsets. Subsets \mathcal{H} of $\binom{X}{r}$ are called r -uniform hypergraphs. Members of \mathcal{H} are called edges. If $\binom{Y}{r} \subset \mathcal{H}$, then Y is said

* Corresponding author.

E-mail addresses: peter.frankl@gmail.com (P. Frankl), hao.huang@emory.edu (H. Huang), vrodl@emory.edu (V. Rödl).

¹ Research supported in part by a Collaboration Grant #417222 from the Simons Foundation, NSF CAREER grant DMS-1945200, and an Alfred P. Sloan Fellowship.

² Research supported in part by NSF grant DMS-1764385.

to be a clique and $|Y|$ is its size. We denote by K_t^r the r -uniform t -vertex clique. Note that every edge is a clique of size r .

For integers $q \geq p \geq r \geq 2$, we say that \mathcal{H} has property (q, p) if for every $Z \in \binom{X}{q}$ there exists $Y \in \binom{Z}{p}$ spanning a clique in \mathcal{H} , that is, $\binom{Y}{r} \subset \mathcal{H}$.

Definition 1.1. Let $T_r(n, q, p) = \min\{|\mathcal{H}| : \mathcal{H} \subset \binom{[n]}{r}, \mathcal{H} \text{ has property } (q, p)\}$. Set also $t_r(n, q, p) = T_r(n, q, p)/\binom{n}{r}$.

Eighty years ago, Turán [10] determined $T_2(n, q, 2)$ and this result served as the starting point for a lot of research that led to the creation of the field of extremal graph theory. About two decades later Turán [11] proposed two conjectures concerning $T_3(n, 4, 3)$ and $T_3(n, 5, 3)$. To state their asymptotic forms, let us mention that Katona, Nemetz and Simonovits [6] used a simple averaging argument to show that $t_r(n, q, p)$ is monotone increasing as a function of n . Consequently the limit

$$\lim_{n \rightarrow \infty} t_r(n, q, p) =: t_r(q, p)$$

exists.

Conjecture 1.2 (Turán).

$$t_3(4, 3) = \frac{4}{9}. \quad (1)$$

$$t_3(5, 3) = \frac{1}{4}. \quad (2)$$

Even though this conjecture has been around for quite a long time, neither statement was proved. For (1) the best known bound stands as $t_3(4, 3) \geq 0.438334$ by Razborov [8] using flag algebra. As for (2), the construction providing the upper bound is very simple, namely $\mathcal{H} = \binom{X_1}{3} \cup \binom{X_2}{3}$, with $X_1 \sqcup X_2 = [n]$, $|X_1| = \lceil \frac{n}{2} \rceil$, $|X_2| = \lfloor \frac{n}{2} \rfloor$.

Let us mention that in [2] it was shown that for the graph case,

$$t_2(q, p) = 1 / \left\lfloor \frac{q-1}{p-1} \right\rfloor. \quad (3)$$

For general r , Frankl and Stechkin [4] proved that

$$t_r(q, p) = 1 \quad \text{if } q \leq \frac{r}{r-1}(p-1). \quad (4)$$

It is easy to check that $\mathcal{H} = \binom{X_1}{r} \cup \binom{X_2}{r}$ has property $(2p+1, p+1)$ for all $p \geq r-1$. Consequently,

$$t_r(2p+1, p+1) \leq \frac{1}{2^{r-1}}. \quad (5)$$

For the case $r = 3$, it was proved by the first author [3] that

$$\lim_{p \rightarrow \infty} t_3(2p+1, p+1) = \frac{1}{4}. \quad (6)$$

By developing the methods used in [3], in Section 2 we generalize (6) to the r -uniform case.

Theorem 1.3. *For integers $r \geq 2$ and $a \geq 2$,*

$$\lim_{p \rightarrow \infty} t_r(ap+1, p+1) = \frac{1}{a^{r-1}}.$$

In the 3-uniform case (when $r = 3$), we are able to determine the exact value of $t_3(2p+1, p+1)$, for all $p \geq 3$, which strengthens (6).

Theorem 1.4. *For every integer $p \geq 3$,*

$$t_3(2p+1, p+1) = \frac{1}{4}.$$

We should remark that the proof of this result is relying on earlier Turán-type results of Mubayi and Rödl [7], and Baber and Talbot [1]. We are going to state these results in Section 3 before proving Theorem 1.4. In Section 4 we mention some open problems.

2. Proof of Theorem 1.3

Throughout the proof of Theorem 1.3, we assume $r \geq 3$, and $a \geq 2$ to be fixed, since the $r = 2$ case is already covered by (3). With r fixed, we also set $t(q, p) = t_r(q, p)$. For the pair (q, p) with $q \leq ap$, we call $ap - q$ the *excess* $e(q, p)$ of the pair (q, p) . Note that since $q \geq p$, we always have $e(q, p) \leq aq - q = (a-1)q$. For $\mathcal{F} \subset \binom{Y}{r}$, a set Z is a (w, v) -hole if $|Z| = w$, the clique number of $\mathcal{F}|_Z$ (the sub-hypergraph of \mathcal{F} induced by Z) is v , and $w > av$. We first establish the following two lemmas.

Lemma 2.1. *Suppose $\mathcal{G} \subset \binom{Y}{r}$ has property (q, p) , and Z is a (w, v) -hole of \mathcal{G} with $w < q$, then $\mathcal{G}|_{Y \setminus Z}$ has property $(q-w, p-v)$.*

Proof. Take an arbitrary set $U \in \binom{Y \setminus Z}{q-w}$, then $U \cup Z \in \binom{Y}{q}$. Since \mathcal{G} has property (q, p) , $\mathcal{G}|_{U \cup Z}$ contains a clique of size p . Hence $\mathcal{G}|_U$ contains a clique of size $p-v$. \square

Lemma 2.2. *Suppose an r -uniform hypergraph \mathcal{F} has property (q, p) for all pairs (q, p) with $q \leq al$ and $p = \lceil q/a \rceil$ (in other words \mathcal{F} does not have a (w, v) -hole with $al \geq w > av$). Then for all $Y \in \binom{X}{al}$,*

$$\left| \mathcal{F} \cap \binom{Y}{r} \right| \geq a \binom{\ell}{r}.$$

Proof. Instead of this we prove the following stronger statement. Let $(r-1)a \leq s \leq al$ and $Y \in \binom{X}{s}$. Suppose further that $s = (a-b)t + b(t-1)$ for some $0 \leq b < a$, then

$$\left| \mathcal{F} \cap \binom{Y}{r} \right| \geq (a-b) \binom{t}{r} + b \binom{t-1}{r}.$$

Note that the right-hand side is 0 when $s \leq (r-1)a$, so the inequality is trivially true in this range. To prove the general case, we use induction on s . Since $s = (a-b)t + b(t-1) \in \{at - a + 1, \dots, at\}$, \mathcal{F} has the (s, t) property from the assumption. Let $R \in \binom{Y}{t}$ span a clique and fix $y \in R$. There are $\binom{t-1}{r-1}$ edges in $\binom{R}{r} \cap \mathcal{F}$ containing y . Remove y from \mathcal{F} and apply the inductive hypothesis to $\mathcal{F} \setminus \{y\}$. We infer that

$$\left| \mathcal{F} \cap \binom{Y \setminus \{y\}}{r} \right| \geq (a-b-1) \binom{t}{r} + (b+1) \binom{t-1}{r}.$$

Considering the at least $\binom{t-1}{r-1}$ edges containing y , we have

$$\begin{aligned} \left| \mathcal{F} \cap \binom{Y}{r} \right| &\geq (a-b-1) \binom{t}{r} + (b+1) \binom{t-1}{r} + \binom{t-1}{r-1} \\ &= (a-b) \binom{t}{r} + b \binom{t-1}{r}. \quad \square \end{aligned}$$

Now we can proceed as follows to prove Theorem 1.3. The upper bound $\lim_{p \rightarrow \infty} t_r(ap+1, p+1) \leq \frac{1}{a^{r-1}}$ is immediate, since $\mathcal{H}_{n,r,a} := \binom{X_1}{r} \cup \dots \cup \binom{X_a}{r}$ with $X_1 \sqcup \dots \sqcup X_a = [n]$, $|X_i| \in \{\lfloor n/a \rfloor, \lceil n/a \rceil\}$ has property $(ap+1, p+1)$ and edge density $1/a^{r-1} + o(1)$. For the remainder of this section we focus on proving the lower bound.

Given $\varepsilon > 0$, let us fix a large integer $\ell > \ell_0(a, r, \varepsilon)$, to be determined later. Then fix a much larger integer $L \geq 2a^3\ell^2$, and consider a sufficiently large r -uniform hypergraph $\mathcal{F}_0 \subset \binom{[n]}{r}$ having property (q, p) with $q = aL$, $p = L$. Our aim is to find a subset $X \subset [n]$ with $|\binom{X}{r}| > (1 - \varepsilon/2) \binom{n}{r}$ such that $\mathcal{F}_0 \cap \binom{X}{r}$ has no (w, v) -hole with $w \leq al$ and $r-1 \leq v$.

To this end, we start with \mathcal{F}_0 and define \mathcal{F}_i inductively. Let $q_0 = q$, $p_0 = p$, $X_0 = [n]$. Suppose that $\mathcal{F}_i \subset \binom{X_i}{r}$ has property (q_i, p_i) and it still has a (w_i, v_i) -hole. Then we let $Z_i \subset X_i$ be such a (w_i, v_i) -hole, and set

$$X_{i+1} = X_i \setminus Z_i, \quad \mathcal{F}_{i+1} = \mathcal{F}_i \cap \binom{X_{i+1}}{r}.$$

By Lemma 2.1, \mathcal{F}_{i+1} has property $(q_i - w_i, p_i - v_i)$. Moreover, the new excess satisfies

$$e(q_i - w_i, p_i - v_i) = a(p_i - v_i) - (q_i - w_i) = (ap_i - q_i) - (av_i - w_i) \geq e(q_i, p_i) + 1.$$

Set $q_{i+1} = q_i - w_i$, $p_{i+1} = p_i - v_i$ and continue. At every step

$$a(r-1) \leq av_i < |X_i| - |X_{i-1}| = w_i \leq a\ell.$$

Furthermore, since $v_i \geq r-1$ for every i , we have $i \leq p/(r-1)$. Suppose at step i , the hypergraph \mathcal{F}_i no longer contains a (w, v) -hole with $w \leq a\ell$. In this case, we choose a subset Q of size $a\ell$ of $V(\mathcal{F}_i)$ uniformly at random. Then by Lemma 2.2,

$$\frac{|\mathcal{F}_i|}{{X_i \choose r}} = \frac{\mathbb{E}|\mathcal{F}_i \cap {Q \choose r}|}{{a\ell \choose r}} \geq \frac{a{a\ell \choose r}}{{a\ell \choose r}}.$$

For sufficiently large $\ell > \ell_0(a, r, \varepsilon)$, this quantity is greater than $(1 - \varepsilon/2) \cdot \frac{1}{a^{r-1}}$. On the other hand, $|X_i| \geq n - i a\ell \geq n - p a\ell / (r-1)$. Therefore when n is sufficiently large, $|{X_i \choose r}| > (1 - \varepsilon/2) {n \choose r}$ and therefore

$$|\mathcal{F}_0| \geq |\mathcal{F}_i| \geq (1 - \varepsilon/2) \cdot \frac{1}{a^{r-1}} {X_i \choose r} \geq (1 - \varepsilon) \cdot \frac{1}{a^{r-1}} {n \choose r}.$$

Otherwise suppose this process continues to produce (w, v) -holes. Let m be the first index such that $q_m < 2a\ell$. In view of $e(q_m, p_m) \leq (a-1)q_m$ and that $e(q_i, p_i)$ strictly increases after each step, $m \leq (a-1)q_m$ follows. Thus

$$aL = q_0 = q_m + \sum_{i=0}^{m-1} w_i \leq 2a\ell + mal \leq 2a\ell + (a-1) \cdot 2a\ell \cdot a\ell < 2a^3\ell^2,$$

contradicting $L \geq 2a^3\ell^2$.

Summarizing the two cases above, we have that $\lim_{L \rightarrow \infty} t_r(aL, L) \geq 1/a^{r-1}$. Note that a hypergraph having property $(aL+1, L+1)$ must also have property (aL, L) . Therefore,

$$\lim_{p \rightarrow \infty} t_r(ap+1, p+1) \geq 1/a^{r-1}.$$

Together with the construction in the introduction that gives $t_r(ap+1, p+1) \leq 1/a^{r-1}$, we conclude the proof of Theorem 1.3.

Remark. Since $\mathcal{H}_{n,r,a}$ also has property (ap, p) , we have actually proved a result slightly stronger than Theorem 1.3, namely for every $a, r \geq 2$,

$$\lim_{p \rightarrow \infty} t_r(ap, p) = \frac{1}{a^{r-1}}.$$

3. The 3-uniform case

Note that Theorem 1.3, when applied to $a = 2$, gives

$$\lim_{p \rightarrow \infty} t_r(2p+1, p+1) = \frac{1}{2^{r-1}}.$$

In this section, we determine the exact value of $t_r(2p+1, p+1)$ for $r = 3$ and all $p \geq 3$, establishing Theorem 1.4. Our proof is based on two previously known Turán-type results. To apply them, let us change to the complementary notion of excluded configuration.

Definition 3.1. For an r -uniform hypergraph $\mathcal{F} \subset \binom{[n]}{r}$. Let $\alpha(\mathcal{F})$ be its independence number, that is, $\alpha(\mathcal{F}) = \max\{|A| : A \subset [n], \mathcal{F} \cap \binom{A}{r} = \emptyset\}$.

Let $\mathcal{F}^c = \binom{[n]}{r} \setminus \mathcal{F}$ be the complementary r -uniform hypergraph. Now \mathcal{F} has property (q, p) if and only if $\alpha(\mathcal{H}) \geq p$ for all induced sub-hypergraphs $\mathcal{H} = \mathcal{F}^c \cap \binom{Q}{p}$, $Q \subset [n]$, $|Q| = q$.

For a collection of $\mathcal{G}_1, \dots, \mathcal{G}_s$ of r -uniform hypergraphs, let

$$t(n, \mathcal{G}_1, \dots, \mathcal{G}_s) = \max \left\{ |\mathcal{F}| : \mathcal{F} \subset \binom{[n]}{r}, \mathcal{F} \text{ contains no copy of } \mathcal{G}_i, i = 1, \dots, s \right\}.$$

It is easily seen that $t(n, \mathcal{G}_1, \dots, \mathcal{G}_s)/\binom{n}{r}$ is a monotone decreasing function of n . Consequently $\lim_{n \rightarrow \infty} t(n, \mathcal{G}_1, \dots, \mathcal{G}_s)/\binom{n}{r}$ exists. This limit is denoted by $\pi(\mathcal{G}_1, \dots, \mathcal{G}_s)$, and it is usually called the Turán density of $\{\mathcal{G}_1, \dots, \mathcal{G}_s\}$.

Consider the following three hypergraphs from [7]:

$$\begin{aligned} \mathcal{R}_0 &= \binom{[4]}{3} \cup \{(a, x, y) : a \in [4], x, y \in \{5, 6, 7\}, x \neq y\}, \\ \mathcal{R}_1 &= \mathcal{R}_0 \setminus \{\{1, 5, 6\}, \{2, 5, 7\}, \{3, 6, 7\}\}, \\ \mathcal{R}_2 &= \mathcal{R}_0 \setminus \{\{1, 5, 6\}, \{1, 5, 7\}, \{3, 6, 7\}\}. \end{aligned}$$

It is easy to check that $\alpha(\mathcal{R}_i) = 3$ for $i = 0, 1, 2$. To prove $t_3(7, 4) = 1/4$, it suffices to prove

$$\pi(\mathcal{R}_1, \mathcal{R}_2) = \frac{3}{4}. \tag{7}$$

Actually Mubayi and the third author [7] proved a considerably stronger statement. Set $\mathcal{R} = \mathcal{R}_0 \setminus \{1, 5, 6\}$. Then

Proposition 3.2. ([7]) $\pi(\mathcal{R}) = \frac{3}{4}$.

Since the proof of Proposition 3.2 is rather short let us include it. Suppose that $\varepsilon > 0$, $n > n_0(\varepsilon)$ and $\mathcal{H} \subset \binom{[n]}{3}$ satisfies $|\mathcal{H}| \geq (3/4 + \varepsilon)\binom{n}{3}$. Then for a 4-element set $Y \subset [n]$ chosen uniformly at random, the expected size of $|\mathcal{H} \cap \binom{Y}{3}| = 4|\mathcal{H}|/\binom{n}{3} \geq 3 + \varepsilon$. Consequently, \mathcal{H} contains many complete 3-uniform hypergraphs on 4 vertices. (As a matter of fact, instead of $3/4$ to ensure that, Razborov [8] proved that $0.516\ldots$ would be sufficient to ensure the existence of K_4^3 .) By symmetry, suppose $\binom{[4]}{3} \subset \mathcal{H}$. For $i \in [4]$ define the link graphs $\mathcal{H}(i) = \{(x, y) \subset [5, n] : (i, x, y) \in \mathcal{H}\}$. Let \mathcal{G} be the multigraph whose edge set is the union (with multiplicities) $\mathcal{H}(1) \cup \dots \cup \mathcal{H}(4)$. Should $|\mathcal{G}| > 3\binom{n-4}{2} + n - 6$ hold, we can apply a result of Füredi and Kündgen [5] which guarantees that there are three vertices in \mathcal{G} spanning at least 11 edges, which corresponds to a copy of \mathcal{R} in \mathcal{H} . In the opposite case $|\mathcal{H}(i)| < (3/4 + \varepsilon/2)\binom{n}{2}$ for some $i \in [4]$, then we remove the vertex i and iterate. Either we find \mathcal{R} or we arrive at a contradiction with $|\mathcal{H}| > (3/4 + \varepsilon)\binom{n}{3}$.

The following result was proved by Baber and Talbot [1] using flag algebra.

Proposition 3.3. (*Theorem 18 in [1]*) *Let \mathcal{T} be the 6-vertex 3-uniform vertex hypergraph with*

$$\mathcal{T} = \binom{[6]}{3} \setminus \{\{1, 5, 6\}, \{2, 4, 6\}, \{2, 5, 6\}, \{3, 4, 6\}, \{3, 4, 5\}\}.$$

Then $\pi(\mathcal{T}) = 3/4$.

Now we are ready to prove Theorem 1.4. Observe that if \mathcal{G} and \mathcal{H} are two hypergraphs and \mathcal{F} is their vertex-disjoint union, then $\pi(\mathcal{F}) = \max\{\pi(\mathcal{G}), \pi(\mathcal{H})\}$.

Proof of Theorem 1.4. We have the upper bound $t_3(2p+1, p+1) \leq 1/4$ from (5). Therefore it suffices to establish a matching lower bound. By considering the complement of the host hypergraph, it boils down to showing that if the edge density of a 3-uniform hypergraph \mathcal{G} is greater than $3/4 + o(1)$, then \mathcal{G} contains a sub-hypergraph \mathcal{H} on $2p+1$ vertices with $\alpha(\mathcal{H}) \leq p$. In other words, we need $\pi(\mathcal{H}) \leq 3/4$.

For odd $p \geq 3$, we let \mathcal{H}_1 be the vertex-disjoint union of \mathcal{R} and $(p-3)/2$ copies of K_4^3 . It is straightforward to check that \mathcal{H}_1 has $7 + 4 \cdot (p-3)/2 = 2p+1$ vertices, independence number $3 + (p-3) = p$, and $\pi(\mathcal{H}_1) = \max\{\pi(\mathcal{R}), \pi(K_4^3)\} = 3/4$. This gives $t_3(2p+1, p+1) \geq 1/4$ for all odd $p \geq 3$.

For even $p \geq 4$, we take \mathcal{T} from Proposition 3.3, and blow up its vertices 1, 2, 3 twice, and vertices 4, 5, 6 once to obtain a 9-vertex hypergraph \mathcal{T}' . Note that a blow-up could only have lower Turán density, therefore $\pi(\mathcal{T}') \leq \pi(\mathcal{T}) = 3/4$. Moreover the independence number of \mathcal{T}' is 4, since all the five non-edges of \mathcal{T} contain at most one vertex from $\{1, 2, 3\}$ and $\{4, 5, 6\}$ itself is an edge. We then let \mathcal{H}_2 be the vertex-disjoint union of \mathcal{T}' with $(p-4)/2$ copies of K_4^3 . Then \mathcal{H}_2 has $9 + 4 \cdot (p-4)/2 = 2p+1$ vertices, $\alpha(\mathcal{H}_2) = 4 + (p-4) = p$, and $\pi(\mathcal{H}_2) = \max\{\pi(\mathcal{T}'), \pi(K_4^3)\} \leq 3/4$. Therefore for all even $p \geq 4$, we also have $t_3(2p+1, p+1) \geq 1/4$. This completes the proof. \square

4. Concluding remarks

In this paper, we showed that for 3-uniform hypergraphs and $p \geq 3$, the $(2p+1, p+1)$ property implies the edge density is at least $1/4 - o(1)$. Maybe this can be extended to r -uniform hypergraphs and we wonder if the following holds:

Conjecture 4.1. *For integers $r \geq 2$, and p sufficiently large,*

$$t_r(2p+1, p+1) = \frac{1}{2^{r-1}}.$$

Our Theorem 1.3 indicates this is true in the limit, and Theorem 1.4 settles the $r = 3$ case except for $p = 2$, which corresponds to Turán's famous open problem for K_5^3 . As we were informed by Sasha Sidorenko [9], the $r = 4, p = 3$ case of Conjecture 4.1 fails to be true since $t_3(7, 4) \leq 113721/(2^{17} \cdot 10) = 0.08676 \dots < 1/8$.

Here we remark that \mathcal{T} in Proposition 3.3 with the edge $\{1, 4, 5\}$ removed still has all the properties needed for the proof of Theorem 1.4. Perhaps one could find a simpler proof that this new hypergraph, much more symmetric than \mathcal{T} , still has Turán density $3/4$. Such proof might provide some new insights on the above conjecture.

To determine $t_r(q, p)$, we essentially seek r -uniform hypergraph \mathcal{H} with low independence number $\alpha(\mathcal{H})$ relative to its number of vertices, and low Turán density $\pi(\mathcal{H})$. In light of this observation and the results (3) and (4), could it possibly be true that for every positive real number $\gamma > 0$,

$$\lim_{p \rightarrow \infty} t_r(\gamma p + 1, p + 1) = 1 - \min_{\mathcal{H} \in \mathcal{F}} \pi(\mathcal{H}) = 1/\lfloor \gamma \rfloor^r,$$

where \mathcal{F} is family of all the r -uniform hypergraph satisfying $|V(\mathcal{H})| \geq \gamma \alpha(\mathcal{H})$?

Finally, motivated by the asymptotic result (7) we propose the following conjecture:

Conjecture 4.2. *There exists n_0 such that for all integers $n > n_0$,*

$$t(2n, \mathcal{R}_1, \mathcal{R}_2) = \binom{2n}{3} - 2 \binom{n}{3}.$$

Remark. We would like to thank Alexander Sidorenko for helpful comments on an earlier version of this paper.

References

- [1] R. Baber, J. Talbot, New Turán densities for 3-graphs, *Electron. J. Comb.* 19 (2) (2012) 1–21.
- [2] P. Erdős, J. Spencer, *Probabilistic Methods in Combinatorics, Probability and Mathematical Statistics*, vol. 17, Academic Press, New York–London, 1974, MR 52.
- [3] P. Frankl, Asymptotic solution of a locally-Turán problem, *Studia Sci. Math. Hung.* 19 (1984) 253–257.
- [4] P. Frankl, B. Stechkin, Local Turán property for k -graphs, *Math. Notes Acad. Sci. USSR* 29 (1) (1981) 45–51.

- [5] Z. Füredi, A. Kündgen, Turán problems for weighted graphs, *J. Graph Theory* 40 (4) (2002) 195–225.
- [6] Gy. Katona, T. Nemetz, M. Simonovits, On a problem of Turán in the theory of graphs, *Mat. Lapok* 15 (1964) 228–238.
- [7] D. Mubayi, V. Rödl, On the Turán number of triple-systems, *J. Comb. Theory, Ser. A* 100 (2002) 136–152.
- [8] A. Razborov, On 3-hypergraphs with forbidden 4-vertex configurations, *SIAM J. Discrete Math.* 24 (3) (2010) 946–963.
- [9] A. Sidorenko, On Turán numbers of the complete 4-graphs, manuscript.
- [10] P. Turán, On an extremal problem in graph theory (in Hungarian), *Mat. Fiz. Lapok* 48 (1941) 436–452.
- [11] P. Turán, Research problems, *Magy. Tud. Akad. Mat. Kut. Intéz. Közl.* 6 (1961) 417–423.