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Since its formulation, Turán’s hypergraph problems have 
been among the most challenging open problems in extremal 
combinatorics. One of them is the following: given a 3-uniform 
hypergraph F on n vertices in which any five vertices span 
at least one edge, prove that |F| ≥ (1/4 − o(1))

(
n
3
)
. The 

construction showing that this bound would be best possible 
is simply 

(
X
3
)
∪

(
Y
3
)

where X and Y evenly partition the 
vertex set. This construction has the following more general 
(2p + 1, p + 1)-property: any set of 2p + 1 vertices spans 
a complete sub-hypergraph on p + 1 vertices. One of our 
main results says that, quite surprisingly, for all p > 2 the 
(2p + 1, p + 1)-property implies the conjectured lower bound.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a finite set and 
(
X
r

)
the collection of all its r-subsets. Subsets H of 

(
X
r

)
are 

called r-uniform hypergraphs. Members of H are called edges. If 
(
Y
r

)
⊂ H, then Y is said 
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to be a clique and |Y | is its size. We denote by Kr
t the r-uniform t-vertex clique. Note 

that every edge is a clique of size r.
For integers q ≥ p ≥ r ≥ 2, we say that H has property (q, p) if for every Z ∈

(
X
q

)
there exists Y ∈

(
Z
p

)
spanning a clique in H, that is, 

(
Y
r

)
⊂ H.

Definition 1.1. Let Tr(n, q, p) = min{|H| : H ⊂
([n]

r

)
, H has property (q, p)}. Set also 

tr(n, q, p) = Tr(n, q, p)/
(
n
r

)
.

Eighty years ago, Turán [10] determined T2(n, q, 2) and this result served as the start-
ing point for a lot of research that led to the creation of the field of extremal graph theory. 
About two decades later Turán [11] proposed two conjectures concerning T3(n, 4, 3) and 
T3(n, 5, 3). To state their asymptotic forms, let us mention that Katona, Nemetz and 
Simonovits [6] used a simple averaging argument to show that tr(n, q, p) is monotone 
increasing as a function of n. Consequently the limit

lim
n→∞

tr(n, q, p) =: tr(q, p)

exists.

Conjecture 1.2 (Turán).

t3(4, 3) = 4
9 . (1)

t3(5, 3) = 1
4 . (2)

Even though this conjecture has been around for quite a long time, neither statement 
was proved. For (1) the best known bound stands as t3(4, 3) ≥ 0.438334 by Razborov [8]
using flag algebra. As for (2), the construction providing the upper bound is very simple, 
namely H =

(
X1
3
)
∪
(
X2
3
)
, with X1 �X2 = [n], |X1| = �n

2 �, |X2| = 	n
2 
.

Let us mention that in [2] it was shown that for the graph case,

t2(q, p) = 1/
⌊
q − 1
p− 1

⌋
. (3)

For general r, Frankl and Stechkin [4] proved that

tr(q, p) = 1 if q ≤ r

r − 1(p− 1). (4)

It is easy to check that H =
(
X1
r

)
∪
(
X2
r

)
has property (2p + 1, p + 1) for all p ≥ r − 1. 

Consequently,

tr(2p + 1, p + 1) ≤ 1
. (5)
2r−1
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For the case r = 3, it was proved by the first author [3] that

lim
p→∞

t3(2p + 1, p + 1) = 1
4 . (6)

By developing the methods used in [3], in Section 2 we generalize (6) to the r-uniform 
case.

Theorem 1.3. For integers r ≥ 2 and a ≥ 2,

lim
p→∞

tr(ap + 1, p + 1) = 1
ar−1 .

In the 3-uniform case (when r = 3), we are able to determine the exact value of 
t3(2p + 1, p + 1), for all p ≥ 3, which strengthens (6).

Theorem 1.4. For every integer p ≥ 3,

t3(2p + 1, p + 1) = 1
4 .

We should remark that the proof of this result is relying on earlier Turán-type results 
of Mubayi and Rödl [7], and Baber and Talbot [1]. We are going to state these results 
in Section 3 before proving Theorem 1.4. In Section 4 we mention some open problems.

2. Proof of Theorem 1.3

Throughout the proof of Theorem 1.3, we assume r ≥ 3, and a ≥ 2 to be fixed, since 
the r = 2 case is already covered by (3). With r fixed, we also set t(q, p) = tr(q, p). For 
the pair (q, p) with q ≤ ap, we call ap − q the excess e(q, p) of the pair (q, p). Note that 
since q ≥ p, we always have e(q, p) ≤ aq − q = (a − 1)q. For F ⊂

(
Y
r

)
, a set Z is a 

(w, v)-hole if |Z| = w, the clique number of F|Z (the sub-hypergraph of F induced by 
Z) is v, and w > av. We first establish the following two lemmas.

Lemma 2.1. Suppose G ⊂
(
Y
r

)
has property (q, p), and Z is a (w, v)-hole of G with w < q, 

then G|Y \Z has property (q − w, p − v).

Proof. Take an arbitrary set U ∈
(
Y \Z
q−w

)
, then U ∪ Z ∈

(
Y
q

)
. Since G has property (q, p), 

G|U∪Z contains a clique of size p. Hence G|U contains a clique of size p − v. �
Lemma 2.2. Suppose an r-uniform hypergraph F has property (q, p) for all pairs (q, p)
with q ≤ a� and p = �q/a� (in other words F does not have a (w, v)-hole with a� ≥ w >

av). Then for all Y ∈
(
X
a�

)
,

∣∣∣∣F ∩
(
Y
)∣∣∣∣ ≥ a

(
�
)
.

r r
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Proof. Instead of this we prove the following stronger statement. Let (r − 1)a ≤ s ≤ a�

and Y ∈
(
X
s

)
. Suppose further that s = (a − b)t + b(t − 1) for some 0 ≤ b < a, then

∣∣∣∣F ∩
(
Y

r

)∣∣∣∣ ≥ (a− b)
(
t

r

)
+ b

(
t− 1
r

)
.

Note that the right-hand side is 0 when s ≤ (r− 1)a, so the inequality is trivially true in 
this range. To prove the general case, we use induction on s. Since s = (a −b)t +b(t −1) ∈
{at − a + 1, · · · , at}, F has the (s, t) property from the assumption. Let R ∈

(
Y
t

)
span a 

clique and fix y ∈ R. There are 
(
t−1
r−1

)
edges in 

(
R
r

)
∩ F containing y. Remove y from F

and apply the inductive hypothesis to F \ {y}. We infer that

∣∣∣∣F ∩
(
Y \ {y}

r

)∣∣∣∣ ≥ (a− b− 1)
(
t

r

)
+ (b + 1)

(
t− 1
r

)
.

Considering the at least 
(
t−1
r−1

)
edges containing y, we have

∣∣∣∣F ∩
(
Y

r

)∣∣∣∣ ≥ (a− b− 1)
(
t

r

)
+ (b + 1)

(
t− 1
r

)
+

(
t− 1
r − 1

)

= (a− b)
(
t

r

)
+ b

(
t− 1
r

)
. �

Now we can proceed as follows to prove Theorem 1.3. The upper bound limp→∞ tr(ap +
1, p + 1) ≤ 1

ar−1 is immediate, since Hn,r,a :=
(
X1
r

)
∪ · · · ∪

(
Xa

r

)
with X1 � · · · �Xa = [n], 

|Xi| ∈ {	n/a
, �n/a�} has property (ap + 1, p + 1) and edge density 1/ar−1 + o(1). For 
the remainder of this section we focus on proving the lower bound.

Given ε > 0, let us fix a large integer � > �0(a, r, ε), to be determined later. Then fix 
a much larger integer L ≥ 2a3�2, and consider a sufficiently large r-uniform hypergraph 
F0 ⊂

([n]
r

)
having property (q, p) with q = aL, p = L. Our aim is to find a subset 

X ⊂ [n] with |
(
X
r

)
| > (1 − ε/2)

(
n
r

)
such that F0 ∩

(
X
r

)
has no (w, v)-hole with w ≤ a�

and r − 1 ≤ v.
To this end, we start with F0 and define Fi inductively. Let q0 = q, p0 = p, X0 = [n]. 

Suppose that Fi ⊂
(
Xi

r

)
has property (qi, pi) and it still has a (wi, vi)-hole. Then we let 

Zi ⊂ Xi be such a (wi, vi)-hole, and set

Xi+1 = Xi \ Zi, Fi+1 = Fi ∩
(
Xi+1

r

)
.

By Lemma 2.1, Fi+1 has property (qi − wi, pi − vi). Moreover, the new excess satisfies

e(qi − wi, pi − vi) = a(pi − vi) − (qi − wi) = (api − qi) − (avi − wi) ≥ e(qi, pi) + 1.
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Set qi+1 = qi − wi, pi+1 = pi − vi and continue. At every step

a(r − 1) ≤ avi < |Xi| − |Xi−1| = wi ≤ a�.

Furthermore, since vi ≥ r − 1 for every i, we have i ≤ p/(r − 1). Suppose at step i, the 
hypergraph Fi no longer contains a (w, v)-hole with w ≤ a�. In this case, we choose a 
subset Q of size a� of V (Fi) uniformly at random. Then by Lemma 2.2,

|Fi|(
Xi

r

) =
E|Fi ∩

(
Q
r

)
|(

a�
r

) ≥
a
(
�
r

)
(
a�
r

) .

For sufficiently large � > �0(a, r, ε), this quantity is greater than (1 − ε/2) · 1
ar−1 . On the 

other hand, |Xi| ≥ n − ia� ≥ n − pa�/(r − 1). Therefore when n is sufficiently large, 
|
(
Xi

r

)
| > (1 − ε/2)

(
n
r

)
and therefore

|F0| ≥ |Fi| ≥ (1 − ε/2) · 1
ar−1

(
|Xi|
r

)
≥ (1 − ε) · 1

ar−1

(
n

r

)
.

Otherwise suppose this process continues to produce (w, v)-holes. Let m be the first 
index such that qm < 2a�. In view of e(qm, pm) ≤ (a − 1)qm and that e(qi, pi) strictly 
increases after each step, m ≤ (a − 1)qm follows. Thus

aL = q0 = qm +
m−1∑
i=0

wi ≤ 2a� + ma� ≤ 2a� + (a− 1) · 2a� · a� < 2a3�2,

contradicting L ≥ 2a3�2.
Summarizing the two cases above, we have that limL→∞ tr(aL, L) ≥ 1/ar−1. Note 

that a hypergraph having property (aL + 1, L + 1) must also have property (aL, L). 
Therefore,

lim
p→∞

tr(ap + 1, p + 1) ≥ 1/ar−1.

Together with the construction in the introduction that gives tr(ap +1, p +1) ≤ 1/ar−1, 
we conclude the proof of Theorem 1.3.

Remark. Since Hn,r,a also has property (ap, p), we have actually proved a result slightly 
stronger than Theorem 1.3, namely for every a, r ≥ 2,

lim tr(ap, p) = 1
r−1 .
p→∞ a
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3. The 3-uniform case

Note that Theorem 1.3, when applied to a = 2, gives

lim
p→∞

tr(2p + 1, p + 1) = 1
2r−1 .

In this section, we determine the exact value of tr(2p + 1, p + 1) for r = 3 and all 
p ≥ 3, establishing Theorem 1.4. Our proof is based on two previously known Turán-
type results. To apply them, let us change to the complementary notion of excluded 
configuration.

Definition 3.1. For an r-uniform hypergraph F ⊂
([n]

r

)
. Let α(F) be its independence 

number, that is, α(F) = max{|A| : A ⊂ [n], F ∩
(
A
r

)
= ∅}.

Let Fc =
([n]

r

)
\F be the complementary r-uniform hypergraph. Now F has property 

(q, p) if and only if α(H) ≥ p for all induced sub-hypergraphs H = Fc ∩
(
Q
p

)
, Q ⊂ [n], 

|Q| = q.
For a collection of G1, · · · , Gs of r-uniform hypergraphs, let

t(n,G1, · · · ,Gs) = max
{
|F| : F ⊂

(
[n]
r

)
, F contains no copy of Gi, i = 1, · · · , s

}
.

It is easily seen that t(n, G1, · · · , Gs)/
(
n
r

)
is a monotone decreasing function of n. 

Consequently limn→∞ t(n, G1, · · · , Gs)/
(
n
r

)
exists. This limit is denoted by π(G1, · · · , Gs), 

and it is usually called the Turán density of {G1, · · · , Gs}.
Consider the following three hypergraphs from [7]:

R0 =
(

[4]
3

)
∪ {(a, x, y) : a ∈ [4], x, y ∈ {5, 6, 7}, x �= y},

R1 = R0 \ {{1, 5, 6}, {2, 5, 7}, {3, 6, 7}},

R2 = R0 \ {{1, 5, 6}, {1, 5, 7}, {3, 6, 7}}.

It is easy to check that α(Ri) = 3 for i = 0, 1, 2. To prove t3(7, 4) = 1/4, it suffices to 
prove

π(R1,R2) = 3
4 . (7)

Actually Mubayi and the third author [7] proved a considerably stronger statement. 
Set R = R0 \ {1, 5, 6}. Then

Proposition 3.2. ([7]) π(R) = 3 .
4
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Since the proof of Proposition 3.2 is rather short let us include it. Suppose that 
ε > 0, n > n0(ε) and H ⊂

([n]
3
)

satisfies |H| ≥ (3/4 + ε)
(
n
3
)
. Then for a 4-element 

set Y ⊂ [n] chosen uniformly at random, the expected size of |H ∩
(
Y
3
)
| = 4|H|/

(
n
3
)
≥

3 + ε. Consequently, H contains many complete 3-uniform hypergraphs on 4 vertices. 
(As a matter of fact, instead of 3/4 to ensure that, Razborov [8] proved that 0.516 · · ·
would be sufficient to ensure the existence of K3

4 .) By symmetry, suppose 
([4]

3
)
⊂ H. 

For i ∈ [4] define the link graphs H(i) = {(x, y) ⊂ [5, n] : (i, x, y) ∈ H}. Let G be the 
multigraph whose edge set is the union (with multiplicities) H(1) ∪ · · · ∪ H(4). Should 
|G| > 3

(
n−4

2
)

+ n − 6 hold, we can apply a result of Füredi and Kündgen [5] which 
guarantees that there are three vertices in G spanning at least 11 edges, which corresponds 
to a copy of R in H. In the opposite case |H(i)| < (3/4 + ε/2)

(
n
2
)

for some i ∈ [4], then 
we remove the vertex i and iterate. Either we find R or we arrive at a contradiction with 
|H| > (3/4 + ε)

(
n
3
)
.

The following result was proved by Baber and Talbot [1] using flag algebra.

Proposition 3.3. (Theorem 18 in [1]) Let T be the 6-vertex 3-uniform vertex hypergraph 
with

T =
(

[6]
3

)
\ {{1, 5, 6}, {2, 4, 6}, {2, 5, 6}, {3, 4, 6}, {3, 4, 5}}.

Then π(T ) = 3/4.

Now we are ready to prove Theorem 1.4. Observe that if G and H are two hypergraphs 
and F is their vertex-disjoint union, then π(F) = max{π(G), π(H)}.

Proof of Theorem 1.4. We have the upper bound t3(2p +1, p +1) ≤ 1/4 from (5). There-
fore it suffices to establish a matching lower bound. By considering the complement of 
the host hypergraph, it boils down to showing that if the edge density of a 3-uniform 
hypergraph G is greater than 3/4 + o(1), then G contains a sub-hypergraph H on 2p + 1
vertices with α(H) ≤ p. In other words, we need π(H) ≤ 3/4.

For odd p ≥ 3, we let H1 be the vertex-disjoint union of R and (p − 3)/2 copies 
of K3

4 . It is straightforward to check that H1 has 7 + 4 · (p − 3)/2 = 2p + 1 vertices, 
independence number 3 + (p − 3) = p, and π(H1) = max{π(R), π(K3

4 )} = 3/4. This 
gives t3(2p + 1, p + 1) ≥ 1/4 for all odd p ≥ 3.

For even p ≥ 4, we take T from Proposition 3.3, and blow up its vertices 1, 2, 3
twice, and vertices 4, 5, 6 once to obtain a 9-vertex hypergraph T ′. Note that a blow-
up could only have lower Turán density, therefore π(T ′) ≤ π(T ) = 3/4. Moreover the 
independence number of T ′ is 4, since all the five non-edges of T contain at most one 
vertex from {1, 2, 3} and {4, 5, 6} itself is an edge. We then let H2 be the vertex-disjoint 
union of T ′ with (p − 4)/2 copies of K3

4 . Then H2 has 9 + 4 · (p − 4)/2 = 2p + 1 vertices, 
α(H2) = 4 + (p − 4) = p, and π(H2) = max{π(T ′), π(K3

4 )} ≤ 3/4. Therefore for all even 
p ≥ 4, we also have t3(2p + 1, p + 1) ≥ 1/4. This completes the proof. �
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4. Concluding remarks

In this paper, we showed that for 3-uniform hypergraphs and p ≥ 3, the (2p +1, p +1)
property implies the edge density is at least 1/4 − o(1). Maybe this can be extended to 
r-uniform hypergraphs and we wonder if the following holds:

Conjecture 4.1. For integers r ≥ 2, and p sufficiently large,

tr(2p + 1, p + 1) = 1
2r−1 .

Our Theorem 1.3 indicates this is true in the limit, and Theorem 1.4 settles the r = 3
case except for p = 2, which corresponds to Turán’s famous open problem for K3

5 . As we 
were informed by Sasha Sidorenko [9], the r = 4, p = 3 case of Conjecture 4.1 fails to be 
true since t3(7, 4) ≤ 113721/(217 · 10) = 0.08676 · · · < 1/8.

Here we remark that T in Proposition 3.3 with the edge {1, 4, 5} removed still has 
all the properties needed for the proof of Theorem 1.4. Perhaps one could find a simpler 
proof that this new hypergraph, much more symmetric than T , still has Turán density 
3/4. Such proof might provide some new insights on the above conjecture.

To determine tr(q, p), we essentially seek r-uniform hypergraph H with low indepen-
dence number α(H) relative to its number of vertices, and low Turán density π(H). In 
light of this observation and the results (3) and (4), could it possibly be true that for 
every positive real number γ > 0,

lim
p→∞

tr(γp + 1, p + 1) = 1 − min
H∈F

π(H) = 1/	γ
r,

where F is family of all the r-uniform hypergraph satisfying |V (H))| ≥ γα(H)?
Finally, motivated by the asymptotic result (7) we propose the following conjecture:

Conjecture 4.2. There exists n0 such that for all integers n > n0,

t(2n,R1,R2) =
(

2n
3

)
− 2

(
n

3

)
.

Remark. We would like to thank Alexander Sidorenko for helpful comments on an earlier 
version of this paper.
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