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Abstract

■ Moments of inattention to our surroundings may be essential
to optimal cognitive functioning.Here, we investigated the hypoth-
esis that humans spontaneously switch between two opposing
attentional states during wakefulness—one in which we attend
to the external environment (an “online” state) and one in which
wedisengage from the sensory environment to focus our attention
internally (an “offline” state).We created a data-drivenmodel of this
proposed alternation between “online” and “offline” attentional
states in humans, on a seconds-level timescale. Participants (n =
34) completed a sustained attention to response task while under-
going simultaneous high-density EEG and pupillometry recording
and intermittently reporting on their subjective experience.
“Online” and “offline” attentional states were initially defined
using a cluster analysis applied to multimodal measures of (1)

EEG spectral power, (2) pupil diameter, (3) RT, and (4) self-
reported subjective experience. We then developed a classifier
that labeled trials as belonging to the online or offline cluster with
>95% accuracy, without requiring subjective experience data.
This allowed us to classify all 5-sec trials in this manner, despite
the fact that subjective experience was probed on only a small
minority of trials. We report evidence of statistically discriminable
“online” and “offline” states matching the hypothesized character-
istics. Furthermore, the offline state strongly predicted memory
retention for oneof two verbal learning tasks encoded immediately
prior. Together, these observations suggest that seconds-
timescale alternation between online and offline states is a
fundamental feature of wakefulness and that this may serve a
memory processing function. ■

INTRODUCTION

“Zoning out” is often considered a waste of time, for exam-
ple, when an inattentive student daydreams during a lec-
ture. However, to the contrary, such “offline” moments
of disengagement from the sensory environment may
serve a critical cognitive function. Recent studies demon-
strate that a brief period of eyes-closed waking rest after
learning can facilitate the consolidation of new memories
(Wamsley, 2019; Brokaw et al., 2016; Dewar, Alber,
Butler, Cowan, & Della Sala, 2012) as well as promote cog-
nitive processes including creativity (Ritter, Strick, Bos,
van Baaren, & Dijksterhuis, 2012; Cai, Mednick, Harrison,
Kanady, & Mednick, 2009), insight (Craig, Ottaway, &
Dewar, 2018), and decision-making (Strick, Dijksterhuis,
& van Baaren, 2010; Dijksterhuis, Bos, Nordgren, & van
Baaren, 2006). Offline states like rest and sleep are thought
to facilitate internally focused cognitive processing by
virtue of reduced encoding demands (Mednick, Cai,
Shuman, Anagnostaras, & Wixted, 2011) as well as state-
specific neurophysiological events actively promoting con-
solidation (Wamsley, 2019; Brokaw et al., 2016).

To date, the literature on offline cognitive processing has
focused on the effect of relatively long durations of offline
time (ranging from a few minutes of rest to a full night of

sleep). However, accumulating evidence suggests that we
may intermittently enter an offline state for brief moments
during wakefulness, even while ostensibly engaged in a
task (Reimer et al., 2016; Handy & Kam, 2015; Harris &
Thiele, 2011; Schooler et al., 2011). In the current study,
we explore the hypothesis that seconds-long bouts of
offline wakefulness interspersed throughout our daily
activities are a fundamental feature of wakefulness that
supports memory consolidation.
Two primary lines of evidence suggest that this could

be the case. First, a psychological literature on “mind
wandering” describes our subjective experience as alter-
nating between an external focus on what we are doing
and an internal focus on task-unrelated thoughts, feelings,
and imagery (mind wandering; Wang, Poerio, et al., 2018;
Smallwood & Schooler, 2015; Smallwood, Beach, Schooler,
& Handy, 2008). Mind wandering and task-related pro-
cessing are proposed to be mutually exclusive, as the fre-
quency of mind wandering is inversely related to the
attentionaldemandsofongoingcognitive tasks and itsoccur-
rence can predict performance decrements (Stawarczyk,
Majerus, Maquet, & D’Argembeau, 2011; Smallwood &
Schooler, 2006; Antrobus, Singer, Goldstein, & Fortgang,
1970; Antrobus, Singer, & Greenberg, 1966), although
not all studies have reported a clear link with impaired
performance (Konishi, Brown, Battaglini, & Smallwood,
2017). Neurophysiological studies have linked mindFurman University, Greenville, SC
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wandering to changes in the scalp-recorded EEG (Compton,
Gearinger, & Wild, 2019; Dhindsa et al., 2019; Kawashima &
Kumano, 2017; Grandchamp, Braboszcz, & Delorme, 2014)
and pupil diameter (Konishi et al., 2017; Grandchamp
et al., 2014; Smallwood et al., 2012). These observations
are proposed to indicate that mind wandering arises from
an intermittent “perceptual decoupling,” during which
we disengage from the sensory environment in favor of
internally focused processing (Schooler et al., 2011). Thus,
this research suggests an intermittent “switching” between
externally and internally focused attentional states that may
be a pervasive but little-noticed feature of wakefulness.
However, defining “mind wandering” based on partici-

pant self-report limits the ability to track movement
between attentional states over time. First, participants
are only sometimes aware that they have begunmind wan-
dering (Schooler et al., 2011). Second, even if the subjec-
tive experience of mind wandering is accurately recalled
and reported, participants’ experience may nonetheless
be imperfectly correlated with the underlying neurobio-
logical states of interest. Here, our interest is in the global
neurobiological state of being “offline,” rather than in
participants’ conscious experience of their attentional
state per se. Third, participants can be queried about their
subjective experience only infrequently, as the very act of
reporting on attention lapses itself interferes with fluctua-
tion of attention. The current study seeks to overcome
some of these limitations inherent to defining attentional
states based on subjective report alone.
In parallel, an emerging animal literature provides evi-

dence of a seconds-timescale alternation between dis-
tinct and behaviorally relevant “cortical states” during
wakefulness, defined using single-unit and local field po-
tential (LFP) recordings during animal behavior. During
what has been termed the “synchronized” state, cortical
neurons show coordinated fluctuations in firing rate on a
timescale of ≅100 msec, resulting in increased low-
frequency power in the LFP (Harris & Thiele, 2011). In
contrast, in the “desynchronized” state, this coordinated
fluctuation in unit firing rate is not observed, and low-
frequency power in the LFP is reduced. Fluctuation be-
tween “synchronized” and “desynchronized” states occurs
every few seconds and is seen even during extended pe-
riods of immobility, indicating that changes in state are not
driven solely by the onset of movement/behavior (Reimer
et al., 2014). These states are behaviorally relevant in
animals, with the desynchronized state predicting better
behavioral performance in monkeys (Beaman, Eagleman,
& Dragoi, 2017) and modulating evoked responses in
rodents (McGinley et al., 2015). Mirroring the human
literature, fluctuation between synchronized and desyn-
chronized states is correlated with rapid changes in pupil
diameter, with pupil diameter tracking rapid changes in
noradrenergic and cholinergic neuromodulation (Reimer
et al., 2016).
Thus, both the human and animal literature suggest

at least two substates that spontaneously occur during

immobile wakefulness—one in which attention to external
sensory stimuli is enhanced, pupil diameter is increased,
and cortical neuronal activity is desynchronized, and an
opposing state in which processing of external sensory
stimuli is decreased, the pupil constricts, and cortical neu-
ronal activity is synchronized. No data-driven description of
the substates of wakefulness has yet emerged to become
widely accepted, however, and entry into offline wakeful-
ness has never been tracked on a rapid, seconds-level time-
scale in human participants. As a result, the vast majority of
research in cognitive neuroscience has continued to treat
wakefulness as homogenous.

Although the structure and characteristics of these wak-
ing states remain poorly understood in humans, recent
work has made progress in defining the various forms that
subjective experience might take during wakefulness as
well as their neural correlates. One useful approach has
been to apply data-driven techniques to decompose com-
plex subjective report data into a discrete set of fundamen-
tal experience dimensions (Turnbull et al., 2019; Sormaz
et al., 2018; Wang, Bzdok, et al., 2018; Wang, Poerio,
et al., 2018). Much of this work suggests the existence of
more than two categories of waking experience, potentially
including multiple forms of “off-task” thought (Turnbull
et al., 2019; Sormaz et al., 2018; Wang, Bzdok, et al.,
2018). Neurophysiological correlates of subjective experi-
ence categories have then been explored using techniques
including fMRI (Turnbull et al., 2019; Sormaz et al., 2018)
and EEG (Compton et al., 2019; Dhindsa et al., 2019;
Kawashima & Kumano, 2017).

Instead of defining waking states on the basis of sub-
jective experience, here we aim to define a set of mind–
brain states inwhich participants’ self-reported experience
is only one of several imperfect indicators of a waking
state. Wang et al.’s work provides a rare example of this
approach in the human literature, using fMRI in combina-
tion with self-report data to jointly define mind–brain
states (Wang, Bzdok, et al., 2018; Wang, Poerio, et al.,
2018). Here, we extend this general approach to define
mind–brain states based on the multimodal neurocogni-
tive measurements of (1) high-density EEG, (2) pupillo-
metry, (3) RT, and (4) subjective experience.

Critically, the function of entering an offline state during
wakefulness remains unknown. From a survival perspec-
tive, it would perhaps seemmost adaptive to maintain con-
stant attention to the external environment. Why should it
be necessary to go “offline” at all? A clue may come from
evidence that extended periods of offline time during sleep
(Tucker et al., 2006; Stickgold, 2005; Mednick, Nakayama,
& Stickgold, 2003; Walker, Brakefield, Morgan, Hobson, &
Stickgold, 2002; Plihal & Born, 1997) and waking rest
(Wamsley, 2019; Brokaw et al., 2016; Dewar et al., 2012;
Mednick et al., 2011; Mednick, Makovski, Cai, & Jiang,
2009) both facilitatememory. Thememory benefits of sleep
and rest have been attributed to a neurobiological milieu
favoring the consolidation of memory, characterized by
EEG slowing, decreased cholinergic neuromodulation,
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reduced processing of sensory stimuli, and the emergence
of hippocampal ripples (strongly linked to the offline re-
activation of memory; for a review, see Buzsáki, 2015).
However, notably, some of these consolidation-promoting
features arealsoengagedduringbriefer, seconds-longbouts
of offline time. As a result, we hypothesize that even very
brief, seconds-long bouts of an offline state might support
the earliest stages ofmemory consolidation (see Table 1).

To test these hypotheses, we modeled the alternation
between online and offline waking states during the perfor-
mance of an attentional task in human participants. To do
so, we applied machine learning algorithms to multimodal
neurocognitive measurements of (1) high-density EEG,
(2) pupillometry, (3) RT, and (4) subjective experience.
Our goals were, first, to develop a data-driven method of
defining “offline” time with high temporal resolution,
without relying exclusively on self-report. Second, using
this data-driven definition of offline time, we tested the
hypothesis that spontaneously entering an offline state
for even a few seconds might support the early stages
of memory consolidation. Thus, we examined the amount
of “offline time” after a learning task as a predictor of sub-
sequent memory retention.

METHODS

Overview of the Approach

During two laboratory visits, participants’ EEG, pupil diam-
eter, and RTs were recorded while they performed a sus-
tained attention to response task (SART; see below). On 24
of 324 total SART trials (“thought probe trials”), participants
also self-reported the current contents of their subjective
experience. Using these data, our initial goals were to (1)
define statistically discriminable substates of wakefulness
and (2) determine which state participants were in during
each 5-sec SART trial. To accomplish this, first, we used an
expectation maximization (EM) algorithm to optimally sep-
arate SART trials into two clusters, which we term the “on-
line” and “offline” states. This initial clustering was applied

only to thought probe trials. After labeling each thought
probe trial as “online” or “offline,” we used these labeled
trials to train a classifier to categorize SART trials using
the EEG, pupil diameter, and RT data alone. As a final step,
we used this classifier to now label all trials as either “on-
line” or “offline,” even when subjective report data were
not present. This approach allowed us to model partici-
pants’ movement between online and offline states during
the entirety of the 30-min SART, with 5-sec temporal reso-
lution, and to calculate the proportion of this interval that
each participant spent offline. This information was then
used to predict participants’ subsequent memory for two
verbal learning tasks encoded before the SART.

Participants

Participants were full-time students between 18 and 30
years old, were native English speakers, and reported no
prior knowledge of the Icelandic language (because of
the nature of one of the memory tasks). By self-report, par-
ticipants had not been diagnosed with any sleep disorders
or attention-deficit disorders. Thirty-four participants meet-
ing these criteria successfully completed the study (Mage =
19.9 years, SD = 1.2; 31 female, three male). This research
was approved by Furman University’s institutional review
board. All participants signed informed consent and were
compensated for their participation with either payment or
course credit. Participants were asked to keep a regular
sleep schedule for the three nights before the study and
to refrain from consuming caffeine after 10 a.m. on the
day of the study. Table 2 summarizes participant-level char-
acteristics including measures of sleepiness, task perfor-
mance, and questionnaire responses.

Procedures

All participants completed two sessions in counterbalanced
order, utilizing a different verbal memory task during each
session. In one session, the memory task was the Short

Table 1. Hypothesized Characteristics of Online and Offline Waking States

Measurement Online State Offline State

EEG ↓ Alpha and slow oscillation ↑ Alpha and slow oscillation

Pupillometry ↑ Pupil diameter reflecting increased NE
and ACh neuromodulation

↓ Pupil diameter reflecting decreased NE and
ACh neuromodulation

Mental experience Focus on the present sensory environment Focus on task-unrelated thought and imagery

RT ↓ SART RTs reflecting increased attention
to the present sensory environment

↑ SART RTs reflecting decreased attention to
the present sensory environment

Memory processes ↑ Encoding ↓ Encoding

↓ Consolidation ↑ Consolidation

The current study was motivated by the hypothesized existence of at least two statistically discriminable states of wakefulness—an “online” state
optimized for encoding the present sensory environment and an “offline” state optimized for consolidation of previously encoded information.
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Story Task, and in the other session was the Icelandic Word
Pairs Task, each described below. These tasks were selected
because both have been observed to benefit from short
durations of posttraining rest (Mercer, 2015; Dewar et al.,
2012). Upon arrival for their first session, participants signed

informed consent and completed initial questionnaires in-
cluding demographics forms, the Epworth Sleepiness Scale
( Johns, 1991), the daydream frequency subscale of the
Imaginal Processes Inventory (a measure of trait daydream
frequency [Singer & Antrobus, 1972]), the Mindfulness
Attention and Awareness Scale (a measure of trait mind-
wandering propensity [Brown & Ryan, 2003]), and a two-
night retrospective sleep log.

Participants were then prepared for EEG and pupillome-
try recording. Sixty-four EEG electrode locations were re-
corded using a high-density cap following the 10–10
system of electrode placement. Impedance was kept under
10 kΩ. Participants’ heads were immobilized in a chin rest
positioned a fixed distance from the computer monitor, to
facilitate the accurate recording of pupil data using an
EyeTribe infrared eye tracker positioned below the com-
puter monitor. Participants then completed measures of
state sleepiness, including the Stanford Sleepiness Scale
(Johns, 1991) and visual analog scales assessing perceived
ability to concentrate and how refreshed participants felt.

Participants then trained on one of the two memory
tasks, just before beginning a ≈30-min SART (see Figure 1

Figure 1. Experimental paradigm. (A) Participant undergoing simultaneous EEG and pupillometry while completing the SART. (B) During the SART,
participants responded to successive numeric stimuli with a button press but were instructed to withhold response to the target digit (“3”). (C) Experience
was intermittently sampled using a forced-choice thought probe that prompted participants to categorize their immediately preceding experience as
either related or unrelated to the experimental stimuli and either externally or internally directed.

Table 2. Participant Characteristics

Mean SD

Epworth Sleepiness score 14.3 3.2

MAAS score 3.9 0.5

Daydream frequency score 34.2 9.5

Baseline Icelandic words correct (of 20) 8.5 3.7

Baseline story elements recalled (of 25) 15.6 3.9

SART % trials correct 90.3 15.1

RT to nontarget SART trials (msec) 515.5 201.5

Daydream frequency score = total score from the daydream frequency
subscale of the Imaginal Processes Inventory; MAAS score = mean
score on the Mindfulness Attention Awareness Scale.
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and below). During the SART, EEG and pupillometry data
were continuously recorded as participants completed the
task in a dimly lit room. The eye tracker was calibrated be-
fore beginning the SART, and pupil diameter of both eyes
was recorded at 30 Hz for the duration of the task (mea-
sured in arbitrary units). EEG data were acquired at 400 Hz
for the duration of the SART. Immediately after completion
of the SART, participants were again tested on their memory
for the verbal learning task, as described below.

Finally, participants completed an exit questionnaire
about their subjective experiences during the SART re-
tention interval. Participants were first asked to indicate,
using a 5-point scale, the extent to which they had “thought
about,” “imagined,” or “tried to remember” the verbal
learning task while completing the SART. They were then
asked to indicate the proportion of the SART interval
they spent in one or more of 13 predefined mental cate-
gories: “thinking about the [short story/word pairs] from
earlier,” “thinking about the past” (something earlier
today/yesterday to a week ago/past year or several years
ago), “imagining the future” (remainder of the day/tomorrow
to next week/next year or several years), “thinking about
the numbers task,” “mind was blank,” “counting the time,”
“doing focused meditation,” “sleeping,” and “other.” For
purposes of analysis, these categories were collapsed
into the superordinate groupings of (1) thinking about
the past, (2) thinking about the future, (3) thinking
about the SART, and (4) other. Finally, participants pro-
vided an open-ended response to the question “Please
describe your thoughts, feelings, or daydreams while
performing the numbers task in as much detail as you
can remember.”

Tasks

SART

The SART is a simple attention task designed to facilitate
mind wandering while also measuring fluctuations in RT
(Stawarczyk, Majerus, Maquet, et al., 2011; Christoff,
Gordon, Smallwood, Smith, & Schooler, 2009).
Participants were serially presented with the digits 1–9
on the computer monitor and were instructed to press
the spacebar as quickly as possible as each digit appeared
but to refrain from responding to the digit “3” (the “tar-
get”). Each digit was on-screen for 450 msec, with a 5-sec
SOA. This relatively long SOA was necessary to be certain
that evoked pupil and EEG responses returned to base-
line well in advance of the next stimulus, allowing epochs
of tonic prestimulus activity to be selected for analysis,
uncontaminated by evoked responses.

Stimulus sequences were randomly generated with the
following constraints: (1) Target probability was set to
0.29; (2) digit sequences were generated in blocks of 9,
12, 15, or 18 stimuli, with each of these blocks containing
at least one but no more than three targets; and (3) tar-
gets were always separated by at least one nontarget.

Two different randomized sequences were generated,
with a different sequence presented on each of the two
experimental visits (order counterbalanced) to guard
against sequence-specific learning effects. The last trial
in every block was a “probe trial,” in which the digit stim-
ulus (always a nontarget) was followed by a forced-choice
question asking participants to reflect on the content of
their current subjective experience. As illustrated in
Figure 1C, participants classified their experience into
one of five categories: (a) external focus on sensory as-
pects of the experimental stimuli (“external task-
related”); (b) external focus on other sensory stimuli in
the environment (“external task-unrelated”); (c) internal
thoughts, feelings, or imagery about the experimental
stimuli (“internal task-related”); (d) internal thoughts,
feelings, or imagery unrelated to the current sensory en-
vironment (“internal task-unrelated,” e.g., daydreaming);
or (e) mind blank/unable to recall any experience. There
were 324 total trials, including 24 probe trials. Total task
duration was approximately 30 min, with participants al-
lowed a short break at the halfway point, during which
they could stretch and reposition themselves.

Icelandic Word Task

Participants learned a list of 20 Icelandic words paired
with their English translation (e.g., “árekstur – crash”).
During encoding, participants were presented with each
pair in sequence. Trials began with a 100-msec fixation
cross, followed by display of the Icelandic–English pair
for 5 sec, and then a 3-sec intertrial interval. An immedi-
ate recall test was then administered, in which partici-
pants were presented with the full list of 20 Icelandic
words and were asked to type the corresponding
English translation for each. An identical cued recall test
was again administered after the SART.

Short Story Task

This short story recall task was adapted from the
Wechsler Memory Scale (Wechsler, 1987) following
Dewar et al. (2012). Participants listened to a digital re-
cording of a short story, approximately 3 sec long, and
then freely recalled as much of this story as they could,
and as accurately as possible, by typing everything that they
remembered into an electronic form. They were given as
much time as needed to complete their responses. After
the 30-min SART, a delayed recall test was administered
in which they again typed everything they could remember
about the short story. Free recall responses were scored by
two raters blind to the experimental condition. Correctly
recalled elements were scored according to the methods
described in the Wechsler Memory Scale manual. All
reports were scored by both raters, and the final score
for each report was calculated as the average score of the
two raters.
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Data Preprocessing

EEG Recordings

EEG analyses were conducted in BrainVision Analyzer 2.
Before analysis, recordings were filtered at 0.3–35 Hz, and
bad channels were removed and interpolated using spher-
ical splines. Ocular artifacts were then removed using an in-
dependent component analysis, and any remaining artifacts
were manually marked via visual inspection. For all artifact-
free trials, power spectral density was calculated for the
4-sec window of prestimulus EEG ending 200 msec before
stimulus presentation (to account for jitter in EEG marker
timing), in five a priori frequency bands known to covary
with vigilance and mind wandering (Braboszcz & Delorme,
2011): slow oscillation (0.3–1 Hz), delta (1–4 Hz), theta (4–
7Hz), alpha (8–12 Hz), and beta (13–35Hz). Power was nor-
malized to the 0.3- to 100-Hz frequency range and then
z scored before further analysis. To avoid excessive redun-
dancy in the features provided to the cluster analysis (in a
pilot study, this impededour ability to arrive at ameaningful
clustering model), only a single electrode (Fz) was consid-
ered for this procedure. The specific choice of Fzwas based,
first, on a prior study from our laboratory, which found the
strongest associations between EEG andmemory retention
across rest frontally (Brokaw et al., 2016). In addition, we
hypothesized that inhibition of frontal attention and execu-
tive control networks might be a relevant feature of the off-
line state that could be reflected in the EEG. Trials marked
as including excessive artifacts were excluded from all sub-
sequent analysis steps.

Pupil Diameter

Datapoints during which the pupil failed to be detected
because of blinks or other artifact were deleted, as were
datapoints where extreme variations in score were present
(defined as a change of ≥1 in a single sample, after a
10-Hz low-pass filter). Linear interpolation was used to re-
place missing datapoints. Overall signal quality was then
quantified by calculating the percentage of interpolated
points across the whole recording, and only the eye with
the highest overall signal quality was passed on for further
processing. Data were then low-pass filtered at 10 Hz and
z scored before obtaining the mean pupil diameter for the
1-sec window just before each SART stimulus presenta-
tion (less than a 6-datapoint buffer to allow for stimulus
marker jitter). The 1-sec window was chosen to ensure
that the pupil response evoked by the previous stimulus
had returned to baseline, such that our analysis reflects
only tonic, baseline pupil size just before presentation
of the next stimulus.
Some participants had large amounts of missing pupil

data because of failure of the tracker to maintain accurate
pupil detection for the duration of the recording. Thus,
individual trials were included in further analysis only when
≤20% of the datapoints for that trial were interpolated,
and experimental sessions were included in further analysis

only if at least 25% of trials from the session were usable
according to this criterion. For these reasons, n= 7 partic-
ipants were completely excluded from further analysis, and
an additional n= 9 participants had one of their two exper-
imental session excluded from further analysis. As a result,
the final data set consisted of n = 45 sessions collected
from n = 27 participants.

Clustering and Classification Procedures

Identification of Waking States via Cluster Analysis

Clustering and classification analyses were carried out
using Weka 3.8 (Hall et al., 2009). Only nontarget trials
were considered. To define waking states in a data-driven
manner, an EM cluster analysis was applied to all probe
trials. Input features included EEG spectral power at Fz
(preprocessed and z scored as described above), RT to
SART stimuli (RTs > 1000 msec excluded as extreme
values), pupil diameter (preprocessed and z scored as
described above), and participants’ forced-choice re-
sponse to the experience sampling probe (Figure 2).
Finally, for all measures, datapoints more than 4 SDs
above or below the mean were removed before EM clus-
tering. Three different EM clustering models were evalu-
ated (describing the data using two, three, or four
clusters). Distance metrics (including the Silhouette in-
dex, Davies–Bouldin index, and Calinski–Harabasz index;
see Table 3) uniformly confirmed that optimal cluster
separation was obtained with two clusters, which we
term the “online” and “offline” states. All subsequent
analyses considered only this two-state model.

Classification of Nonprobe Trials into “Online” and
“Offline” States

Because mind wandering is reduced when experience is
sampled too frequently (Seli, Carriere, Levene, & Smilek,
2013), probes of conscious experience were adminis-
tered at only 24 time points per session, and the above
cluster analysis included only these trials. Yet, the full 30-min
retention interval contains much richer data collected
across hundreds of 5-sec trials, each with EEG, pupillo-
metry, and associated RT data. Because of our interest
in examining seconds-level fluctuations in waking state,
a primary analytic goal was to be able to classify all trials
into EM-defined online and offline states, even when ex-
perience sampling data were not present on that trial. As a
next step, we thus trained a classifier to determine the EM
cluster assignment (online vs. offline) of each probe trial
based on the EEG, pupil, and RT data alone.

Selection of the classification approach. The classifica-
tion approach best suited to our data was empirically de-
termined by building five classifiers using different
algorithms (ZeroR, OneR, J48, support vector machine,
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and naive Bayes) and comparing their performance in
correctly determining the cluster assigned to trials by
the EM algorithm. Classifier performance was assessed
using 10 iterations of stratified 10-fold cross-validation.
The naive Bayes classifier significantly outperformed all
other approaches, achieving an average of 95.4% accuracy
in correctly labeling trials by cluster using EEG, pupil, and
RT data alone (relative to 53.9% accuracy for ZeroR, 73.4%
for OneR, 89.9% for J48, and 88.1% for support vector ma-
chine). We thus chose to move forward using the naive
Bayes classification approach.

Development and validation of the classifier. The naive
Bayes classifier was initially trained on data from two thirds
of the participants (n=18). Classifier performancewas then
tested on data from the remaining one third of the partici-
pants (n= 9), which the classifier had not been exposed to.
On the test set, 95.4% accuracy was achieved in determining
cluster assignment using EEG, pupil, and RT data alone.

Applying the classifier to assign “online” and “offline”
labels to all trials. Having developed a classifier able
to accurately determine waking state cluster based on
EEG, pupil, and RT data alone, we then moved forward
in applying this classifier to label all trials as “online” or
“offline,” allowing us to define these states across the full
length of the recording with 5-sec temporal resolution.

Statistical Analyses

Parametric statistics were used to describe the features of
these data-driven “online” and “offline” states. To test for

an association between time spent in the offline state and
memory retention, for each participant, we calculated off-
line probability as the mean probability of being offline
during the SART (posterior probability that a trial belongs
to the offline state, as determined by the naive Bayes clas-
sifier and averaged across all trials for that participant).
This metric was used to assess the association between
offline time and memory retention for each of the verbal
learning tasks.

Calculation of Bout Length

Online and offline bout lengths were calculated as mean
number of trials that participants remained in the current
state (online or offline) before switching states. As
described above, participants often had missing trials
because of low pupil detection quality and/or EEG artifact.
To avoid the influence of missing data discontinuities on

Figure 2. Example raw data for a single participant. Example pupil diameter (top) and EEG (bottom) time series for five consecutive 5-sec trials in a
single participant. Dotted lines indicate the onset of SART stimuli. Labels indicate whether each stimulus was a “target” (requiring a button press) or a
“nontarget” (requiring response withholding). RT is in milliseconds. Pupil diameter is expressed in z-score units.

Table 3. Distance-Based Cluster Evaluation Metrics

Number of Clusters

2 3 4

Calinski–Harabasz index 74.88 20.31 24.72

Davies–Bouldin index 2.13 7.32 24.82

Silhouette index 0.17 −0.05 −0.21

For the Calinski–Harabasz and Silhouette indices, higher values indicate
a greater separation between clusters. For the Davies–Bouldin index,
lower values indicate greater cluster separation.
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this calculation, individual bouts were assessed only within
continuous runs of trials with no missing data and not
across points of missing-trial discontinuity.

Regression Models

Finally, we used multiple linear regression to predict
memory retention based on a combination of features in-
cluding offline state probability, EEG, pupil diameter, RT,
and thought probe responses. These exploratory analy-
ses were motivated by our strong hypothesis that mem-
ory consolidation can best be predicted by a combination
of features that together index a brain state, rather than
by any single of these measurements alone. Because we
reasoned that our definition of “offline state” might not
perfectly capture the particular feature combinations rel-
evant to memory, multiple regression constituted a com-
plementary method for exploring how neurophysiology
during the SART might relate to consolidation. We sepa-
rately predicted memory for the Icelandic Word and
Short Story tasks, applying backward elimination linear
regression ( p ≥ .1 removal criterion) using the following
predictors: mean offline state probability, proportion of
thought probe responses in each of the five categories
(external task-related, external task-unrelated, internal
task-related, internal task-unrelated, and mind blank),
mean RT on the SART, mean pupil diameter, and spectral
power in the slow oscillation (0.3–1 Hz), delta (1–4 Hz),
theta (4–7 Hz), alpha (8–12 Hz), and beta (13–35 Hz) fre-
quency ranges.

RESULTS

Task Performance and Subjective Experience

Participants were highly accurate in their SART responses,
performing correctly on 90.3 ± 15.1% SD of trials
(Table 2). As expected, accuracy was greater for nontarget
than for target stimuli (target percent correct: 69.0 ±
18.6% SD; nontarget percent correct: 94.5 ± 18.9% SD).
Subsequent clustering and classification analyses considered
only nontarget trials yielding a correct response. Baseline
recall scores for the Icelandic Word and Short Story tasks
were consistent with past observations (Brokaw et al.,
2016; Mercer, 2015).
During the SART, thought probe responses most fre-

quently indicated internal task-unrelated thought (37.6 ±
23.3% SD of probes), followed by external task-related
(25.2 ± 22.1% SD), internal task-related (18.6 ± 16.5% SD),
external task-unrelated (12.6 ± 11.7% SD), and mind
blank (6.0± 8.3% SD) responses. On the retrospective exit
questionnaire, participants most commonly indicated that
they had been thinking about the future (31.1 ± 21.2% SD
of time), followed by thinking about the SART (29.3 ±
26.9% SD), thinking about the past (22.2 ± 19.9% SD), and
“other” categories of thought (17.4 ± 24.1% SD).

Cluster and Classification Analyses

Cluster Analysis of Thought Probe Trials to Define States
of Wakefulness

States of wakefulness were initially defined by applying EM
cluster analysis to thought probe trial EEG, RT, pupil, and
subjective experience data (n = 579 trials; see Methods).
This revealed two distinct clusters of trials, which we refer
to as the “online” trial cluster (46% of trials, green points in
Figure 3A) and the “offline” trial cluster (54% of trials, blue
points in Figure 3A). A moderately positive silhouette index
of 0.17 indicated that trials tended to be relatively closer in
multidimensional state space to points in their own cluster
and relatively farther away from points in the other cluster.

As illustrated in Figure 3, cluster characteristics largely
matched our a priori predictions. Relative to the online
cluster, the offline cluster was characterized by slowed
RTs, t(537) = 8.65, p < 1 × 10−10, d = 0.72 (Figure 3B);
increased alpha and slow oscillation EEG power (alpha:
t(577) = 9.76, p < 1 × 10−10, d = 0.81; slow oscillation:
t(577) = 6.99, p < 1 × 10−10, d = 0.58; Figure 3C); and
decreased theta, t(577) = 7.74, p < 1 × 10−10, d = 0.64
(Figure 3C), and delta, t(577) = 17.43, p< 1 × 10−10, d=
1.45, power (Figure 3C). The offline cluster was also asso-
ciated with decreased subjective focus on the SART (exter-
nal task-related thought probe response: χ2(1, n= 579) =
30.50, p=3.34× 10−8, d=0.47; Figure 3D) and an increase
in internal task-unrelated thought, χ2(1, n = 579) = 19.07,
p= 1.26 × 10−5, d = 0.37 (Figure 3D). The remaining
thought probe categories did not differ significantly be-
tween clusters. Neither pupil diameter nor beta power
differed significantly between clusters.

Classification of Non-Thought-Probe Trials into Online
and Offline States

To categorize the remaining trials (those not including
thought probes) as online or offline, we developed a naive
Bayes classifier. This classifier was 95.4% accurate in label-
ing an independent test set of probe trials by their EM-
defined cluster, using EEG, RT, and pupil diameter alone
(seeMethods). Developed and tested using probe trial data,
the classifier was then applied to label all trials, including
n= 4916 without thought probes, as online or offline. For
this much larger sample of trials, we describe the character-
istics of online and offline states in two ways: (1) Trial-level
statistics compare the characteristics of all online trials ver-
sus those of all offline trials, using the individual “trial” as
the unit of analysis, and (2) participant-level statistics are
computed by first calculating participant averages for each
variable, separately for online and offline trials. We then use
paired-samples t tests to compare the characteristics of the
online versus offline state using “participant” as the unit of
analysis.

Trial-level statistics. Applying this classifier to all n =
5945 trials, 55% were classified into the online state, and
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45% were classified into the offline state. On a per-trial ba-
sis, the offline state was again characterized by slowed RTs,
t(5628) = 24.86, p < 1 × 10−10, d = 0.67 (Figure 4B),
along with increased EEG alpha, t(5943) = 31.35, p < 1 ×
10−10, d = 0.82 (Figure 4C) and slow oscillation power,
t(5943) = 25.13, p < 1 × 10−10, d = 0.66 (Figure 4C), as
well as decreased theta, t(5943) = 23.49, p < 1 × 10−10,
d = 0.61 (Figure 4C) and delta activity, t(5943) = 52.98,
p < 1 × 10−10, d = 1.38 (Figure 4C). Again, trials in the
offline cluster were associated with a decrease in focus
on the SART (external task-related thought: χ2(1, n =
579) = 13.93, p = .0002; Figure 4D) and an increase in in-
ternal task-unrelated thought, χ2(1, n = 579) = 7.92, p =
.005 (Figure 4D). The remaining thought probe categories

did not differ significantly between online and offline trials,
nor did pupil diameter or beta-frequency EEG power.

Participant-level statistics. Every participant was classi-
fied as having a mix of online and offline trials. On aver-
age, participants were classified as spending 56.6% of the
SART in an online state (range = 25.4–83.2% online,
SD= 12.5%). Mirroring the trial-level comparisons, relative
to their own online trials, participants’ RTs were slowed
when they were offline, t(26) = 6.62, p = .0000006,
dz = 1.30, and alpha and slow oscillation power were
substantially increased (alpha: t(26) = 13.30, p < 1 ×
10−10, dz = 2.56; slow: t(26) = 6.89, p = .0000003, dz =
1.33), whereas both theta, t(26) = 14.13, p < 1 × 10−10,

Figure 3. EM cluster analysis to define online and offline states using n= 579 thought probe trials. EM-based clustering indicated optimal separation
using two states, the features of which largely conformed to our a priori hypotheses. Data for the “online” state cluster are shown in green, and for
the “offline” state cluster, data are shown in blue. (A) Representative scatterplots illustrating the shape of the online and offline clusters in selected
2-D state spaces. (B) RT was significantly slower on offline, relative to online, trials. (C) EEG spectral power differed between states in the alpha,
theta, delta, and slow oscillation bands. (D) During the offline state, participants indicated daydreaming more frequently (internal task-unrelated
thought) and indicated that they were attending to the SART less frequently (external task-related thought).
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dz= 2.72, and delta, t(26) = 42.48, p< 1× 10−10, dz= 8.17,
power were substantially decreased. Again, while offline,
there was an increase in internal task-unrelated thought,
t(26) = 1.98, p= .02, dz= 0.35. Accompanying this, there
was a marginal decrease in focus on the SART (external
task-related: t(26) = 1.81, p = .08, dz = 0.49) and also
in external task-unrelated thought, t(26) = 1.98, p = .06,
dz= 0.39. Again, pupil diameter did not differ significantly
between states ( p = .24), although the mean difference
was in the hypothesized direction, with pupil size being
numerically larger during the online state (−0.08 ± 0.03 SEM)
and numerically smaller during the offline state (−0.13 ±
0.05 SEM).

Temporal features of the transition between states. As
predicted, the offline state became increasingly prevalent
as time on task increased (r = .40, p < 1 × 10−10;
Figure 5). Mean duration of any one bout of online or off-
line time (see Methods) was approximately equal between
states (mean number of trials spent online before switching
states = 1.9 ± 0.09 SEM, mean number of trials spent off-
line before switching states = 1.7 ± 0.09 SEM; p = .26).

EEG features of online and offline states. As described
above, state classification relied on EEG activity from a single
electrode (Fz), in a selection five a priori frequency bands.
However, after classification, we described spatiotemporal

Figure 4. Naive Bayes classifier results: characteristics of online versus offline trials. Applying the naive Bayes classifier to label all n = 5495 trials by
state yielded state features that strongly mirrored the initial EM cluster analysis of probe trials. (A) Representative scatterplots illustrating the shape of
the online and offline clusters in selected 2-D state spaces. (B) RTs were significantly slowed during offline trials. (C) EEG spectral power again
differed between states in the alpha, theta, delta, and slow oscillation bands. (D) Pupil diameter was nonsignificantly smaller during offline, relative to
online, trials. (E) Using classifier-based labeling, the offline state was again characterized by increased daydreaming (internal task-unrelated thought)
and decreased attention to the SART (external task-related thought).
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features of the EEG in more detail by examining spectral
power during online and offline trials, across all electrode
sites and frequencies. After Benjamini–Hochberg correction
for multiple comparisons, mean EEG spectral power across
electrode sites differed significantly between offline and
online trials in the slow oscillation and alpha ranges as
well as at select frequencies in the delta, theta, and beta
ranges (Figure 6A). Time–frequency decomposition re-
vealed that the prominent increase in alpha power during
offline trials was, on average, strongest early in the SART trial
(Figure 6B). Finally, we examined the scalp topography of
offline–online differences in spectral power. After correction
for multiple comparisons, offline trials were associated with
significant increases in slow oscillation and alpha power pri-
marily over frontal electrode sites (Figure 6C). Meanwhile,
offline trials were also characterized by significant decreases
in delta power over frontal electrodes (Figure 6C). No indi-
vidual electrode comparisons survived correction for multi-
ple comparisons in the theta or beta bands (Figure 6C).

Predictors of Memory Retention

Probability of the Offline State as a Predictor of
Memory Retention

There was a nonsignificant positive association between par-
ticipants’probability of beingofflineduring theSARTand their
subsequent improvement on the Story Recall Task, r(18) =
.31, p=.19 (Figure 8, top). This association did not reach sig-
nificance for the Icelandic Word Task, r(22) = −.12. Offline
probability was not associated with baseline memory perfor-
mance before the SART, for either the Icelandic Word Task
(r=.20, p=.36) or the Story Recall Task (r=−.12, p=.63).

Component Features of the Offline State as Predictors of
Memory Retention

Next, we examined the association betweenmemory change
across the SART and each of the component features used

to define the online and offline states (Table 4). Multiple
metrics of subjective experience during the SART predicted
subsequent memory for the Icelandic Word Task. First,
internal task-unrelated thought (i.e., daydreaming) was
negatively associated with retention of memory for the
word pairs (Table 4). This was mirrored in a similar nega-
tive correlation between trait daydreaming propensity and
memory for the Icelandic words (Table 4). Conversely, ex-
ternal task-related thought (i.e., focus on the SART) was
positively associated with subsequent memory for the
Icelandic words (Table 4).

Regression Models Predicting Memory Based on a
Combination of Features

Finally, we usedmultiple linear regression to predictmemory
retention for the Short Story and Icelandic Word tasks
based on a combination of features including offline proba-
bility, EEG, pupil diameter, RT, and thought probe re-
sponses (see Methods). As summarized in Table 5, for
both tasks, ≈50% of variance in memory retention across
the SART was successfully predicted by a combination of
these metrics.
For the Story Recall Task, the regression model ex-

plained 53% of the variability in memory retention, F(4,
15) = 4.28, p= .02, R2 = .53, adjusted R2 = .41 (Table 5).
Four predictors remained in the model after backward
elimination ( p ≥ .1 elimination criterion). Offline state
probability ( p = .02) and proportion of external task-
related probe responses ( p = .02) were both significant
positive predictors of subsequent memory. Meanwhile,
both delta ( p = .07) and slow oscillation ( p = .07)
power were marginally negatively associated with memory
retention. Thus, as illustrated in Figure 8, although the
above-reported 0.31 zero-order correlation between off-
line state probability and memory retention did not reach
significance, a stronger association was uncovered when
controlling for these other predictors (partial correlation

Figure 5. Offline state
probability increases with time
on task. As hypothesized, the
mean probability of being
offline increased significantly
across trials.
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between offline state probability and percent improve-
ment in story recall, when controlling for delta/slow power
and external task-related thought: r = .57, p = .009;
Figure 8, bottom).

For the Icelandic Word Task, the overall regression
model also significantly predicted memory retention, ex-
plaining 43% of the variability in recall scores, F(3, 24) =
5.33, p = .007, R2 = .43, adjusted R2 = .35 (Table 5). For

Figure 6. EEG features of offline versus online trials. (A) Spectral power averaged across all frequencies and electrodes. Shaded line represents mean
offline–online difference scores, ±SD. ***frequencies at which the difference between online and offline trials reached statistical significance,
controlling for false discovery rate using the Benjamini–Hochberg method. (B) Time–frequency plot displaying offline–online difference scores for
spectral power, across the duration of the 4-sec EEG analysis window. Warm colors indicate time/frequency points at which power was greater during
offline trials, relative to online trials. Apparent is the prominent offline increase in ∼10-Hz alpha power, which was stronger earlier in the SART trial.
As the first second after stimulus onset was excluded from EEG analyses, time = 0 on this plot falls 1 sec after onset of the SART stimuli. (C)
Topographical plots representing the spatial distribution of offline–online differences in spectral power in each frequency band (units = uV∧2 / Hz,
spherical spline interpolation between sensors, *individual electrodes at which the offline–online difference retained statistical significance after
correcting for multiple comparisons).
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this task, three predictors remained in the model after
backward elimination ( p ≥ .1 criterion): EEG alpha pos-
itively predicted subsequent memory ( p = .04), whereas
the proportions of internal task-unrelated ( p = .001) and
internal task-related ( p = .07) probe responses were
both negatively associated with subsequent memory.

Bivariate Associations between
Component Features

Pearson’s correlations were used to examine the bivariate
associations between EEG, pupil, RT, and subjective ex-
perience during the SART, on a per-participant basis
(Figure 7). Pupil diameter was negatively associated with
EEG power in the delta and theta ranges but was positively
associated with slow oscillation EEG power and with
thought probe responses in the external task-unrelated
category. RT showed a significant negative correlation

with EEG spectral power in the delta, theta, and beta
bands. Attention to the SART (external task-related probe
responses) was positively associated with EEG theta
power. As summarized in Figure 7, there were also mod-
erate intracorrelations between EEG variables as well as
between probe response thought categories (Figure 8).

Association of Offline Time with Retrospective Exit
Questionnaire Responses

For the Icelandic Word Task, extent to which participants
reported “thinking about” the words during the SART
was associated with offline state probability, such that
participants who reported “not at all” thinking about
the word pairs had higher offline probabilities than those
who thought of the word pairs “once or twice” ( p =
.006) or “a few times” ( p = .04; one-way ANOVA:
F(2, 22) = 5.49, p = .01). Offline state probability was

Table 4. Retention Interval Features as Predictors of Memory Performance

Icelandic % Change Short Story % Change

n = 24 n = 20

r p r p

Thought probe responses

External task-unrelated thought .297 .159 .075 .754

Internal task-unrelated thought −.489 .015* −.220 .352

External task-related thought .447 .029* .189 .424

Internal task-related thought −.057 .792 −.041 .865

Mind blank −.131 .540 .206 .382

EEG spectral power

Beta (13–35 Hz) .254 .232 .202 .393

Alpha (8–12 Hz) .062 .773 .357 .123

Theta (4–7 Hz) .092 .669 −.293 .210

Delta (1–4 Hz) −.052 .808 −.387 .092

Slow oscillation (0.3–1 Hz) −.025 .907 −.328 .158

SART RT −.118 .582 .141 .565

Pupil diameter −.019 .929 .258 .272

MAAS −.016 .942 .207 .382

Daydream frequency −.375* .038* .027 .892

Offline probability −.119 .580 .305 .191

In this table, Pearson’s correlations between memory performance and features of the retention interval are shown. MAAS = Mindfulness Attention
and Awareness Scale; Daydream frequency score = total score from the daydream frequency subscale of the Imaginal Processes Inventory. Boldface
highlights statistically significant values.

* p < .05.
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not associated with reports of “imagining” or “trying to
remember” the word pairs, nor was it associated with
any form of rehearsal for the Short Story Task. Offline
state probability was not associated with exit question-
naire ratings of the proportion of time that participants
spent thinking about any particular topic, for either learn-
ing task.

DISCUSSION

Psychologists and neuroscientists have traditionally stud-
ied the mind and brain by observing how organisms re-
spond to external stimuli. However, in actuality, we may
spend as little as half of our waking hours attending to
our immediate environment, with the remainder of our

Table 5. Regression Models Predicting Memory Retention from Offline Probability and Component Features

Beta Coeffs t p

Corr with % Recall Change Collinearity

Zero Order Partial Tolerance VIF

Short Story Task: R2 = .53

Probability offline .555 2.673 .017* .305 .568 .722 1.385

External task-related thought .521 2.548 .022* .189 .550 .744 1.345

Delta power −.370 −1.926 .073 −.387 −.445 .843 1.186

Slow oscillation power −.372 −1.980 .066 −.328 −.455 .881 1.136

Icelandic Words Task: R2 = .43

Internal task-unrelated thought −.792 −3.967 .001** −.489 −.654 .678 1.475

Internal task-related thought −.339 −1.895 .072 −.057 −.382 .843 1.187

Alpha power .417 2.227 .037* .061 .437 .772 1.296

Coeffs = coefficients; Corr = correlation; VIF = variance inflation factor. Boldface highlights statistically significant values.

* p < .05.

** p < .01.

Figure 7. Bivariate associations
between participants’ mean RT,
pupil diameter, EEG power, and
proportion of thought probe
responses in each category.
Pearson’s correlations were
used to assess associations
between these individual
component features. Numerical
values and color scaling
represent the correlation
coefficient (r). Only statistically
significant values are plotted
(at p < .05; df = 25 for all
comparisons). Ext = external;
Int = internal.
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time focused on internally generated thoughts, feelings,
and imagery (Smallwood & Schooler, 2006, 2015;
Killingsworth & Gilbert, 2010). Why? Emerging evidence
suggests that periods of inattention to the environment
may support critical cognitive functions (Craig et al., 2018;
Ritter et al., 2012; Cai et al., 2009; Dijksterhuis et al., 2006).
Here, we explore the role that very brief offline moments
play in the consolidation of recently formed memory, even
while we are awake and ostensibly performing a task.

The structure and function of offline waking time still
remain largely unknown, and the absence of a reliable,
objective method of defining the offline state has been
an impediment to research in this area. Although self-
report is a critically important source of information in
human studies, experience can be sampled only infre-
quently and relies on participants’ ability to accurately de-
tect and report attentional shifts. An emerging animal
literature suggests that entry into an offline state can be
measured without need of self-report—recent studies
have described a rapid alternation between distinct “cor-
tical states” in rodents, in which the intermittent emer-
gence of synchronous fluctuations in neuronal firing

rate is accompanied by inhibition of sensory processing
and a decrease in NE and ACh neuromodulation (Reimer
et al., 2014, 2016; Harris & Thiele, 2011). Here, we hy-
pothesized that a rapid, seconds-level alternation be-
tween online attention to the current environment and
offline attention to internally generated thought and im-
agery is a fundamental feature of wakefulness, reflected
in both the human mind-wandering literature and the an-
imal literature on cortical states.
We created a data-driven model of how “online” and

“offline” substates of wakefulness might operate in
humans, illustrating a novel method of operationally
defining this concept without exclusive reliance on self-
report measures. Prior studies have used data-driven
methods to define categories of neurocognitive experi-
ence (Turnbull et al., 2019; Sormaz et al., 2018; Wang,
Bzdok, et al., 2018; Wang, Poerio, et al., 2018) or to predict
mind wandering from neurophysiological data (Dhindsa
et al., 2019; Jin, Borst, & van Vugt, 2019). However, our
model is one of the first using a machine-learning ap-
proach to operationally define the concept of an “offline”
state based on a combination of subjective and objective

Figure 8. The offline state as a
predictor of memory retention.
Although the bivariate association
between offline state probability
and memory retention did not
reach significance (top), offline
state probability was a significant
predictor of memory for the
Short Story Task when included
in a regression model along with
measures of low-frequency EEG
power and external task-related
thought. Thus, offline state
probability strongly predicted
memory for the Short Story
Task in a partial correlation
controlling for delta/slow power
and proportion of external
task-related thought probes
(bottom).
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measures and the first to relate brief, seconds-long bouts
of offline wakefulness to memory consolidation.
Our results are consistent with the notion that contin-

uous recordings of wakefulness can be usefully described
as an alternation between brief periods during which par-
ticipants report paying attention to the sensory environ-
ment (accompanied by rapid RTs + increased theta/delta
EEG power), alternating with brief periods during which
participants report attending to internally generated
thoughts (accompanied by slowed RTs + increased
alpha/slow oscillation power).
Offline trials were characterized by a large increase in

alpha and slow oscillation power. Increased slow oscilla-
tion power during wakefulness is a prominent feature of
the “synchronized” cortical state, as described in the an-
imal literature, arising as a result of synchronized fluctu-
ations in firing rate at the unit level and ultimately
influencing the processing of incoming sensory input
(Beaman et al., 2017; Harris & Thiele, 2011). In our data,
we propose that the offline increase in low-frequency
EEG power similarly indicates transient entry into an al-
tered mode of cortical processing that functions to re-
duce processing of the external sensory environment,
freeing cognitive resources to be devoted to internal pro-
cessing. We interpret large increases in alpha power as
indicating inhibition in task-irrelevant brain regions
(Klimesch, 1997, 2012). Seen through this lens, occipital
alpha is decreased during the offline state because of a
decrease in processing of external visual information.
Meanwhile, alpha increases over the frontal lobe during
offline trials could indicate inhibition of frontal attention
or executive control networks.
Conversely, increased delta and theta power during

online trials could reflect task-related processing. Delta
and theta oscillations have both been previously ob-
served to increase during performance of a go/no-go task
that, much like the SART, requires monitoring for a cue
that will instruct participants whether to respond or with-
hold a response on each trial (Harmony, 2013; Harmony,
Alba, Marroquín, & González-Frankenberger, 2009).
Importantly, classification of trials into online and off-

line states was based on an entirely atheoretical, data-
driven clustering procedure. That the resulting states
largely conform to our theoretically driven a priori hy-
potheses indicates that the latent structure of these data
are indeed consistent with the existence of online and
offline waking substates. In one notable exception, pupil
diameter did not differ between online and offline trials
as hypothesized. Yet, we did observe that trial-by-trial
fluctuations in pupil diameter were associated with both
subjective experience (reports of external task-unrelated
cognition) and multiple EEG features, suggesting that
pupil diameter may yet prove to be relevant to the con-
cepts of interest here. As predicted, the offline state be-
came increasingly frequent with increasing time on task,
mirroring the temporal pattern of subjectively defined
mind wandering (Risko, Anderson, Sarwal, Engelhardt,

& Kingstone, 2012; Stawarczyk, Majerus, Maj, Van der
Linden, & D’Argembeau, 2011).

The Offline State as an Ideal Environment for
Memory Consolidation

Theoretical Basis for Our Predictions

Our interest in the offline state was motivated by evidence
that this form of wakefulness may be ideally suited to sup-
port the early stages of memory consolidation. The initial
encoding of memory and its subsequent consolidation are
thought to be mutually exclusive processes, with consoli-
dation requiring a brain state during which processing of
external sensory stimuli is reduced, while the neuromodu-
latory (Hasselmo & McGaughy, 2004; Hasselmo, 1999)
and electrophysiological ( Jadhav, Kemere, German, &
Frank, 2012; Ego-Stengel & Wilson, 2010; Axmacher,
Elger, & Fell, 2008; Eschenko, Ramadan, Molle, Born, &
Sara, 2008) environment shifts to facilitate consolidation,
as opposed to encoding (Mednick et al., 2011; McClelland
& O’Reilly, 1995). A growing literature thus explores
offline memory consolidation in the context of sleep,
demonstrating that sleep after encoding benefits memory
performance at delayed test (Wamsley, Tucker, Payne, &
Stickgold, 2010; Tucker et al., 2006; Stickgold, James, &
Hobson, 2000; Plihal & Born, 1997). This mnemonic ben-
efit of sleep has been attributed to neurophysiology in-
cluding sleep slow waves (Alger, Lau, & Fishbein, 2012;
Diekelmann, Biggel, Rasch, & Born, 2012; van Dongen
et al., 2012), hippocampal sharp-wave ripples and associ-
ated memory “replay” (Bendor & Wilson, 2012; Ramadan,
Eschenko, & Sara, 2009; Eschenko et al., 2008; Ji &Wilson,
2006), and decreased acetylcholine levels during non–rapid
eye movement sleep (Hasselmo & McGaughy, 2004).

Yet clearly, at least some consolidation processes must
occur balanced with the demands of new encoding during
wakefulness. Local cellular-level consolidation beginning
immediately after encoding is sufficient to stabilize mem-
ory against interference over the short term (hours), even
in the absence of sleep. This is evident, first, in our ability
to recall what we did a few hours ago without taking a nap.
Empirical evidence includes that molecular cascades un-
derlying memory consolidation begin just minutes after
encoding (Redondo & Morris, 2011; Bailey & Kandel,
2008), and behavioral studies showing performance stabi-
lization over minutes to hours of wakefulness (Cohen,
Pascual-Leone, Press, & Robertson, 2005).

The brief moments of offline time under study here
could provide an ideal opportunity for wakeful consolida-
tion, as offline trials share some of the consolidation-
promoting neurophysiological features that have been
attributed to sleep. First, attention to new external stimuli
is reduced during offline trials. In our data, this was evi-
dent in the shift of subjective experience away from task-
focused cognition and toward task-unrelated cognition as
well as in slowed RTs to task stimuli. Second, offline trials
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were characterized by increased power in the <1-Hz
slow oscillation band. The <1-Hz cortical slow oscillation
is hypothesized to play a vital role in the hippocampal–
cortical communication thought to underlie system con-
solidation of declarative memory during sleep (Mölle &
Born, 2011; Marshall, Mölle, Hallschmid, & Born, 2004).
Recent studies now link memory improvements to in-
creased slow oscillation activity during resting wakefulness
as well (Sattari, Whitehurst, Ahmadi, & Mednick, 2019;
Brokaw et al., 2016), suggesting that this EEG rhythm
could retain a similar functional role even outside sleep.
Finally, we had hypothesized that offline trials would be
characterized by decreased pupil diameter, reported to
track reductions in ACh neuromodulation (Reimer et al.,
2016; also thought to favor consolidation [Hasselmo &
McGaughy, 2004; Hasselmo, 1999]). However, as described
above, pupil diameter did not end up differing significantly
between online and offline trials.

Evidence for a Link between the Offline State and
Memory Consolidation in the Current Study

Our data provide partial support for the hypothesis that
memory is facilitated by brief entry into an offline state,
characterized by momentary EEG slowing and reduced
sensory processing. A regression model including offline
probability successfully explained over 50% of the vari-
ance in memory for a short story learned just prior.
Indeed, the probability of being offline during the 30-min
retention interval was the strongest individual pre-
dictor of subsequent story memory. Surprisingly, the only
other statistically significant predictor of story memory
was external task-related thought (i.e., attending to the
SART)—a feature that was most prevalent during online
trials. This latter unexpected association could have arisen
if attention to the SART acted as a “suppressor” variable
in the regression model, strengthening the relationship
between offline probability and memory by removing
memory-irrelevant variance from these measures. In
support of this conjecture, we note that external task-
related thought had a near-zero bivariate correlation with
memory, only predicting memory retention in combi-
nation with the other factors in the regression. This pat-
tern of results could have arisen from imperfections in
our classification method, such that only a subset of
“offline”-labeled trials are truly part of a functional state
related to memory.

Interestingly, Icelandic word memory was predicted by
entirely different features of the retention interval than
was short story memory. Contrary to our hypotheses,
Icelandic word memory was negatively associated with
both state and trait measures of internally focused thought
and positively associated with reports of being task
focused (as reported in Tables 4 and 5). We originally
hypothesized that both internal-task unrelated thought
and trait daydreaming would be positively associated
with memory, on the basis of prior work showing that

quiet rest, during which such thoughts are prominent, fa-
cilitates memory (Brokaw et al., 2016; Dewar et al., 2012).
However, in addition to the current data, another recent
study from our laboratory similarly found that increased
trait daydreaming was associated with more forgetting of
a verbal learning task across a brief retention interval
(Humiston, Tucker, Summer, & Wamsley, 2019). Thus,
we now hypothesize that within “rest,” moments of high
internal task-unrelated thought may actually not repre-
sent the optimal conditions for memory consolidation
to occur. Instead, although quiet rest enhances memory
relative to an attention-demanding distractor task and
quiet rest tends to be high in internal task-unrelated
thought, the form of rest that most optimally facilitates
consolidation may yet be an offline state in which internal
task-unrelated thought (i.e., daydreaming) is low.
The two verbal memory tasks we employed may have

relied on different mechanisms, causing them to be pro-
moted by different forms of wakefulness. For example,
memory for story narratives relies heavily on temporal,
semantic, and associative features that were less relevant
to the Icelandic Word Task. Notably, prior research has
reported that the offline state of sleep shows a greater
benefit for highly associative materials, perhaps because
of the engagement of the hippocampus in associative
learning tasks (Studte, Bridger, & Mecklinger, 2015).
We thus speculate that memory for the Icelandic words
was better able to be maintained even in tandem with
focused attention to the SART, whereas memory for the
story was preferentially promoted by the proposed
“offline” form of wakefulness, because of its associative
nature.
Together, these observations add to a growing body of

evidence that memory consolidation is not uniformly dis-
tributed throughout all wakefulness but, to the contrary,
occurs preferentially during periods characterized by re-
duced attention to the sensory environment and accom-
panying changes in cortical activity (Wamsley, 2019;
Craig et al., 2018; Brokaw et al., 2016; Dewar et al.,
2012; Mednick et al., 2009). However, unlike prior stud-
ies utilizing relatively long (minutes to tens of minutes)
enforced periods of task-free “rest,” here we report that
even brief, spontaneously occurring bouts of offline time
are similarly associated with a memory benefit. Thus, we
propose that, even while we are ostensibly engaged in
performing a task, the brain is spontaneously entering a
memory-promoting offline state for short, seconds-long
bouts.

Limitations

Limitation of the Two-State Model

The model presented here describes wakefulness as con-
sisting of only two states, one with an external attentional
focus and one with an internal attentional focus. This may
be an oversimplification, as the literature on human mind
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wandering strongly suggests the existence of multiple
distinct forms of task-unrelated thought (Wang, Bzdok,
et al., 2018; Smallwood & Schooler, 2015; Unsworth &
McMillan, 2014; Stawarczyk, Majerus, Maquet, et al.,
2011). In our own data, during periods that participants
report not being focused on the SART, this might be be-
cause they are daydreaming, because they are distracted
by some other sensation in the environment, or because
they simply cannot recall their experience. A dichoto-
mous distinction between “online” and “offline” does
not capture these or other potentially crucial subtleties.
We used a two-state model because this parsing was best
able to describe trial-by-trial variability in our particular
data set. Yet, in reality, we suspect that what we refer
to as the “offline” state may actually consist of multiple
substates.
In support of this latter conjecture, we note that offline

trials were much more variable on several features than
online trials, including RT and alpha power. For example,
as shown in Figure 4A, when participants are classified as
“online,” they invariably have relatively fast RTs in concert
with low alpha power. However, when participants enter
the offline state, this sometimes consists of an increase in
alpha power while maintaining swift RTs, and other
times, this consists of a slowing of RTs without an in-
crease in alpha power. Potentially, this could suggest that
the “offline” state actually reflects multiple forms of off-
line wakefulness, only one of which is associated with
an increase in alpha power. Future studies may discover
ways in which methods similar to those used here can be
leveraged to meaningfully parse several different forms of
“offline” state that better capture the full heterogeneity of
wakefulness.

Limitations of the regression analyses. As a caveat re-
garding the exploratory regression models, we note that,
because of our relatively small sample size, overfitting is a
potential danger. Although these analyses suggest a novel
relationship between offline time and memory retention
for the short story, this should not be accepted as an estab-
lished conclusion until future studies can confirm these
observations using a priori planned analyses.

Possible Influence of Individual Differences

Here, we have interpreted associations between waking
state and memory as consistent with a causal role for off-
line time in promoting memory consolidation. Indeed,
prior work from our laboratory and others has demon-
strated that experimentally induced periods of task-free
rest improve memory for previously learned information
(Brokaw et al., 2016; Dewar et al., 2012). However, be-
cause entry into the offline state was not experimentally
manipulated in the current study, associations between
offline time and memory could also be driven by individ-
ual differences that cause both an increased amount of
offline time and greater retention of short story memory.

Individual differences are also a plausible explanation
for the observed negative associations between internally
focused cognition and Icelandic word memory. Icelandic
word memory was associated not only with internally
focused thought reported during the SART but also with
trait daydreaming frequency as measured by the Imaginal
Processes Inventory. This suggests that a stable trait
related to daydreaming could explain reduced memory
for the Icelandic words in these participants.

There is substantial individual variability in the extent
to which participants engage in mind wandering, which
may be a trait rooted in stable individual differences in
intrinsic network connectivity (Turnbull et al., 2019;
Godwin et al., 2017; Kucyi & Davis, 2014). For example,
connectivity between regions of the default mode net-
work (DMN) is associated with trait mind wandering
(Godwin et al., 2017; Kucyi & Davis, 2014). Given the
strong association of the DMN with memory, it is plausi-
ble that individual differences in DMN connectivity could
predict both the occurrence of the offline state and mem-
ory retention across a period of rest.

Conclusions

Here, we present a method of parsing continuous pe-
riods of wakefulness into “online” and “offline” states,
without the need to exclusively rely on self-report. This
data-driven model suggests that wakefulness can be use-
fully described as a series of transitions between brief
periods during which we are attending to the current
sensory environment, alternating with brief periods dur-
ing which external sensory processing is reduced.
Together with converging evidence from other literature,
these observations suggest that, even while we are osten-
sibly engaged in performing a task, the mind intermittently
disconnects from the current sensory environment in favor
of internal processing.

We suggest that this “offline” state may function to
support the consolidation of recently formed memory.
The offline consolidation of memory has already been ex-
tensively described in studies of sleep (Wamsley et al.,
2010; Ellenbogen, Hu, Payne, Titone, & Walker, 2007;
Tucker et al., 2006; Stickgold et al., 2000; Plihal & Born,
1997) and, more recently, in studies of enforced periods
of postlearning rest (Brokaw et al., 2016; Dewar et al.,
2012). Yet, during our hectic lives, many days pass where
obtaining even a few continuous minutes of unoccupied
rest is impossible. Our current observations provide the
first evidence that spontaneously “going offline” for even
only a few seconds at a time could help us to balance the
demands of new encoding with the offline consolidation
of learned information.
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