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ABSTRACT

Attributed network embedding aims to learn low dimensional node

representations by combining both the network’s topological struc-

ture and node attributes. Most of the existing methods either prop-

agate the attributes over the network structure or learn the node

representations by an encoder-decoder framework. However, prop-

agation based methods tend to prefer network structure to node

attributes, whereas encoder-decoder methods tend to ignore the

longer connections beyond the immediate neighbors. In order to

address these limitations while enjoying the best of the two worlds,

we design cross fusion layers for unsupervised attributed network

embedding. Specifically, we first construct two separate views to

handle network structure and node attributes, and then design cross

fusion layers to allow flexible information exchange and integration

between the two views. The key design goals of the cross fusion

layers are three-fold: 1) allowing critical information to be propa-

gated along the network structure, 2) encoding the heterogeneity

in the local neighborhood of each node during propagation, and 3)

incorporating an additional node attribute channel so that the at-

tribute information will not be overshadowed by the structure view.

Extensive experiments on three datasets and three downstream

tasks demonstrate the effectiveness of the proposed method.
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Figure 1: An illustrative example. The color of boxes repre-

sents the existence of node attributes, and the node color in-

dicates class label. The left is the original attributed network

and the right is the version after applying the propagation

based methods. Nodes 5 and 6 with the same label/color can

be easily predicted due to the propagated attributes, while

Nodes 1 and 2 with different labels/colors become more in-

distinguishable after propagation.

1 INTRODUCTION

Attributed network embedding has attracted growing attention

in recent years. The basic idea is to learn low dimensional repre-

sentations/embeddings for network nodes by combining both the

network’s topological structure and the attributes of nodes. The

learned embeddings have been shown to be effective in many down-

stream tasks including node classification [46], node clustering [20],

and link prediction [40].

To date, existing attributed network embedding methods can

be roughly divided into three categories. The first category is

based on the matrix factorization framework (e.g., TADW [46] and

AANE [15]) where matrices containing the network structure and

node attributes are constructed and jointly factorized. However,

these shallow models might fall short in capturing the non-linearity

of the two information sources [12]. The second category is related

to graph neural networks (e.g., GCN [18] and GraphSAGE [14]).

These methods, which are referred to as propagation basedmethods

in this work, recursively aggregate node representations by apply-

ing the graph convolution operation among each node’s immediate

neighbors. While such smoothing techniques have achieved state-

of-the-art results on several graph analysis tasks, they tend to suffer

from the “over-smoothing” problem [21, 49], i.e., they may lose dis-

criminative features in the original node attributes and hence prefer

network structure to node attributes. Methods in the third cate-

gory adopt the encoder-decoder framework (e.g., DANE [12] and

ANRL [52]). Compared to the second category, node attributes are

specially handled so that their discriminative features can be main-

tained; however, methods in this category treat network structure

in a fixed manner and thus cannot propagate critical information

along the network edges, beyond the immediate neighbors (we

name this limitation as the “under-smoothing” problem).
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To illustrate the advantages and disadvantages of the existing

methods, we present an illustrative example in Fig. 1. In this exam-

ple, we propagate the node attributes along the network edges as

the propagation based methods do. Node 5 and Node 6 (with the

same label as indicated by color in the figure) show the advantage of

such propagation based methods. That is, although they have quite

different attributes and network structure before propagation, these

two nodes share three identical attributes after propagation, mak-

ing it easier to predict their labels. However, propagation could also

bring side effects. For example, Node 1 and Node 2 (with different

labels) have their respective discriminative attributes (as indicated

by grey and light blue boxes) before propagation. After propagation,

these two nodes tend to have the same attributes, rendering a more

difficult prediction task to distinguish between them. In this case,

an independent treatment on the node attributes as methods in the

third category would be more appropriate.

In this paper, we envision that propagation based methods and

encoder-decoder methods are inherently complementary, and thus

ask: how can we design an attributed network embedding model that
enjoys the best of the two worlds? To answer this question, we pro-

pose an attributed network embedding model with two separate

views to handle network structure and node attributes. Based on

the two views, we design the cross fusion layers to allow flexible

information exchange and integration between them. To be spe-

cific, there are three key advantages of our cross fusion design.

First, the cross fusion layer can be naturally stacked to mimic the

graph convolution operation so that critical information can be

propagated along the network edges (i.e., mitigating the “under-

smoothing” problem of encoder-decoder methods). Second, when

aggregating the node representations from immediate neighbors,

we pay special attention to the local community structure to enable

the assignment of different weights to different neighbors. Third,

we use an additional view to encode node attributes so that the

attribute information will not be overshadowed by the structure

view (i.e., mitigating the “over-smoothing” problem of propagation

based methods). With the learned embeddings from different views,

instead of simply concatenating them like existing work, we add a

view weighting layer to allow each node learn their own relative

weights from the two views. Finally, we learn the node representa-

tions in an unsupervised way by considering the reconstructions

of both network structure and node attributes.

To show the effectiveness of the proposed method, we conduct

experimental evaluations by utilizing the learned embeddings for

three downstream tasks (i.e., node classification, node clustering,

and visualization) on three widely-used benchmark datasets. The

results show that the proposed method significantly outperforms

the existing methods in terms of prediction accuracy. Additionally,

the proposed unsupervised method can even achieve comparable

results with semi-supervised ones in node classification. Finally,

consistent with the above analysis, we have experimentally found

that propagation based methods perform better on datasets where

network structure matters more, and encoder-decoder methods

become better when node attributes play a more prominent role.

In summary, the main contributions of this paper include:

• A multi-view framework CFane with cross fusion layers for

attributed network embedding. CFane seamlessly enjoys the

Table 1: Symbols.

Symbol Definition and Description

𝐺 the input network

V the node set of the input network

E the edge set of the input network

A the adjacency matrix of the input network

X the attributes of all nodes

Y the learned representations of all nodes

x𝑖 the attributes of node 𝑣𝑖
y𝑖 the learned representation of node 𝑣𝑖
v1 the node representation of structure view

v2 the node representation of attribute view

c, f the intermediate representation vectors

𝑘 the attribute dimension

𝑑 the embedding dimension

advantages of both propagation based methods and encoder-

decoder methods.

• Extensive experiments demonstrating the superior perfor-

mance of the proposed method. For example, the proposed

CFane achieves up to 60.4% improvement over its best com-

petitors in the node clustering task.

The rest of the paper is organized as follows. Section 2 provides

the problem statement. Section 3 describes the proposed method,

and Section 4 presents the experimental results. Section 5 reviews

related work, and Section 6 concludes.

2 PROBLEM STATEMENT

In this section, we state the problem definition. Table 1 lists the

main symbols we use throughout the paper. Following conventions,

we use calligraphic letters to represent sets. For example, the node

set and edge set of a network are denoted asV and E, respectively.
We use bold capital letters to indicate matrices and bold lowercase

letters to indicate (row) vectors. For example, we useA ∈ R |V |×|V |

to denote the adjacency matrix of the input network, and X ∈
R |V |×𝑘

to denote the matrix of node attributes where 𝑘 is the

attribute dimension. We also use the corresponding lowercase to

indicate the row vectors of the matrix. For example, we use x𝑖 to
denote the 𝑖-th row of X. With the above notations, we first define

an attributed network as follows.

Definition 1. Attributed Networks. An attributed network is de-

noted as 𝐺 = (V, E,X), where V is the node set and E is the edge

set. X contains the node attributes, with its 𝑖-th row x𝑖 describing
the attributes for the 𝑖-th node 𝑣𝑖 ∈ V .

Attributed network embedding aims to learn the node represen-

tations by taking into account both the network structure and the

node attributes. We use Y ∈ R |V |×𝑑
to denote all the learned node

representations where 𝑑 is the dimension of the learned embed-

dings. y𝑖 ∈ R1×𝑑 indicates the 𝑖-th row of Y. We then define the

attributed network embedding problem as follows.

Definition 2. Attributed Network Embedding. Given an attributed

network 𝐺 = (V, E,X), attributed network embedding aims to

learn a function 𝑓 : 𝑣𝑖 ↦→ y𝑖 that maps each node 𝑣𝑖 ∈ V to a

low-dimensional representation vector y𝑖 .
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Figure 2: The overview of CFane.

3 THE PROPOSED APPROACH

In this section, we present the proposed approach CFane.

3.1 Model Overview

Fig. 2 shows the overview of the proposed CFane. In particular, to

allow special treatment on node attributes, we first input the net-

work structure and node attributes into two different views. Then

the key issue becomes how to flexibly exchange and integrate infor-

mation between the two views so as to enjoy the advantages from

both propagation based methods and encoder-decoder methods.

For this purpose, the core of CFane is the design of cross fusion

layers with three key advantages as mentioned in introduction,

i.e., 1) propagating critical information along network structure, 2)

encoding neighbor heterogeneity during propagation and aggrega-

tion, and 3) maintaining discriminative features in node attributes.

After the cross fusion layers, we further introduce a view weight-

ing layer to let each node integrate its own representation with

different weights from the two views. Finally, to obtain the learned

embeddings in an unsupervised setting, we formulate multi-task

reconstruction objective functions to guide the embeddings to pre-

serve both network structure and node attributes.

3.2 Cross Fusion Layer

We next describe the proposed cross fusion layer as illustrated in

Fig. 3. It takes both the network structure and node attributes as

input. In the following, we take the 𝑛-th cross fusion layer as an

example, and use subscripts to indicate the two views for clarity.

For example, we use two vectors v(𝑛)
1

, v(𝑛)
2

∈ R1×𝑑 (𝑛)
to denote the

representations of each node in the current layer for the network

structure view and the node attribute view, respectively. We will

remove the superscript for brevity when it is clear from the context.

(A) Ego-network partition and aggregation. On one hand, due

to the state-of-the-art performance of propagation based meth-

ods, we aim to take advantage of these methods by following the

idea of recursively aggregating node representations among each

node’s immediate neighbors. On the other hand, when aggregat-

ing the node representations from immediate neighbors, different

neighbors may have different impact/weights on the aggregated

node representations, making it necessary to distinguish their roles.

Consequently, to encode such heterogeneity among immediate

neighbors, a natural choice is to learn different weights for different

neighbors. In the following, we introduce a flexible aggregation

method based on the partition in the ego-network [9].

An ego-network is a subgraph induced by the immediate neigh-

bors of each node, defined as follows,

𝐺 [𝑢] = (N𝑢 , E ∩ N𝑢 × N𝑢 ) (1)

whereN𝑢 is the set of immediate neighbors of node𝑢, and ×means

the Cartesian product. We then partition the ego-network of each

node into several communities as follows,

𝑝𝑎𝑟 (𝐺 [𝑢]) = {N1

𝑢 ,N2

𝑢 , ...,N
𝑡𝑢
𝑢 } (2)

where 𝑝𝑎𝑟 is the partition function, 𝐺 [𝑢] is the ego-network of

node 𝑢 as defined in Eq. (1),N𝑖
𝑢 contains the set of nodes in the 𝑖-th

partition, and 𝑡𝑢 is the number of resulting partitions of node 𝑢’s

ego-network.

Based on the partition results, we adopt a hierarchical smoothing

method to aggregate the representations of each node from its

immediate neighbors. First, we assign the same weight for nodes

in the same community. For example, given the 𝑗-th community of

node 𝑢, we use the average aggregation as follows,

c(𝑛)
N 𝑗
𝑢

=
1

|N 𝑗
𝑢 | + 1

∑
𝑖∈N 𝑗

𝑢∪{𝑢 }

v(𝑛)
1,𝑖

(3)

where v(𝑛)
1,𝑖

∈ R1×𝑑 (𝑛)
indicates the current representation of node 𝑖

in the network structure view. Next, we combine 𝑡𝑢 representation

vectors by learning different weights to different communities in

the ego-network. In particular, we compute the weighted average

representations over the communities as follows,

c(𝑛)
1

=
∑

𝑗 ∈[1,𝑡𝑢 ]
(𝛾 𝑗 · c(𝑛)N 𝑗

𝑢

) (4)

where c(𝑛)
1

∈ R1×𝑑 (𝑛)
stands for the intermediate node representa-

tions after the ego-network aggregation, and 𝛾 𝑗 is the importance

coefficient computed by the following attention mechanism,

𝛾 𝑗 =

exp((v(𝑛)
1,𝑢

∥ c(𝑛)
N 𝑗
𝑢

)b𝑇𝛾 )∑
𝑖∈[1,𝑡𝑢 ] exp((v

(𝑛)
1,𝑢

∥ c(𝑛)N𝑖
𝑢

)b𝑇𝛾 )
(5)

where row vector b𝛾 is the parameter and ∥ means the concatena-

tion operation.

For the partition function 𝑝𝑎𝑟 , since the size of ego-networks

is usually small, we follow existing work [10] by treating each

connected component of the ego-network as a community in this

work. This setting helps encode the local community structure into

the final network embeddings. Note that we can also use other

partition functions. For example, if we put all the neighbors into

one community, the above aggregation method degenerates to the

GCN [18] model; if we treat each neighbor as a partition, the above

method resembles the GAT [37] model. In other words, the pro-

posed aggregation method provides flexibility in terms of balancing

between the complexity (i.e., parameter size) and efficiency.

(B) Feature exchange between views. In addition to encoding neigh-
bor heterogeneity, the other two design goals of CFane are to prop-

agate critical information along network structure and maintain

discriminative features in node attributes. For these purposes, we

keep an additional view to encode the node attributes, and utilize

the self-attention mechanism [36] to exchange features between
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Figure 3: Cross Fusion and View Weighting.

views. The intuitions are two-fold. First, self-attention can learn the

importance of the two views, without having one view overshad-

owed the other. Second, self-attention can output one vector for

each view, so that the cross fusion layer can be naturally stacked.

Specifically, we first transform the features of the two views via

a projection matrix W𝐹 ∈ R𝑑 (𝑛)×𝑑 (𝑛+1)
as follows,

f1 = c(𝑛)
1

W𝐹 , f2 = v(𝑛)
2

W𝐹
(6)

where c(𝑛)
1

, v(𝑛)
2

∈ R1×𝑑 (𝑛)
indicate the two representations for

each node in the current layer, f1, f2 ∈ R1×𝑑 (𝑛+1)
are the intermedi-

ate results, and 𝑑 (𝑛+1) is the embedding dimension of the next layer.

Typically, 𝑑 (𝑛+1) is smaller than 𝑑 (𝑛) meaning that W𝐹
helps to

reduce the dimension size. Next, following standard self-attention,

we calculate the query vector q and key vector k for each node,

q1 = c(𝑛)
1

W𝑄 , q2 = v(𝑛)
2

W𝑄

k1 = c(𝑛)
1

W𝐾 , k2 = v(𝑛)
2

W𝐾
(7)

where W𝑄 ,W𝐾 ∈ R𝑑 (𝑛)×𝑑 (𝑛+1)
denote the transformation matrices

for query vectors and key vectors, respectively. Then, we fuse the

new node representations v(𝑛+1)
1

and v(𝑛+1)
2

with the following

computation,

𝛼𝑖, 𝑗 =
exp(q𝑖k𝑇𝑗 )∑

k∈{k1,k2 } exp(q𝑖k𝑇 )

v(𝑛+1)
1

= 𝜇 (𝛼1,1f1 + 𝛼1,2f2)

v(𝑛+1)
2

= 𝜇 (𝛼2,1f1 + 𝛼2,2f2) (8)

where 𝛼.,. denotes the relative weights of the intermediate features

f1 and f2 for the new node representations, and 𝜇 indicates the

activation function. In this work, to add non-linear relationships

between layers, we use the LeakyReLU as the default 𝜇. In our exper-

iments, we observed similar results of other non-linear activation

functions such as ReLU.

3.3 View Weighting

After cross fusion layers, we combine the outputs of two views into a

unified representation matrix Y. Existing work mainly concatenates

the representations from different views. However, the network

structure view could be more informative for some nodes, while

the node attributes may contribute more for others. In this work,

we propose a view weighting layer (also shown in Fig. 3) to allow

each node to choose their own relative weights between the two

views. That is,

y = 𝜆1v
(𝑁 )
1

+ 𝜆2v
(𝑁 )
2

(9)

where we suppose 𝑁 cross fusion layers, and v(𝑁 )
1

and v(𝑁 )
2

are the

node representations from the last layer. View weighting weights

𝜆1 and 𝜆2 are computed as follows,

𝜆𝑖 =
exp(v(𝑁 )

𝑖
b𝑇
𝜆
)

exp(v(𝑁 )
1

b𝑇
𝜆
) + exp(v(𝑁 )

2
b𝑇
𝜆
)

(10)

where row vector b𝜆 is the parameter.

3.4 Training

Finally, to learn the parameters in our model as well as to make

the learned embeddings more generic, we use multiple objective

functions for preserving both the network structure and node at-

tributes.

For the network structure, we aim to minimize the sum of the

negative logarithmic probability of the node pairs in the same

context,

L𝑠𝑘𝑖𝑝−𝑔𝑟𝑎𝑚 = −
∑

(𝑖, 𝑗) ∈C
log𝜎 (y𝑗y𝑇𝑖 ) (11)

where y𝑖 is the learned embedding for node 𝑣𝑖 , and 𝜎 is the sigmoid

function.We adopt the standard skip-grammodel [27] to sample the

node context C via truncated random walks and conduct negative

sampling. For node attributes, we directly reconstruct them from

the learned embeddings. We reconstruct the node attributes by



adding three feed-forward layers
1
with the following loss function,

L𝑟𝑒𝑐𝑜𝑛𝑠 =
|V |∑
𝑖=1

∥x𝑖 − x̂𝑖 ∥22 (12)

where x𝑖 and x̂𝑖 are the original attributes and reconstructed at-

tributes of node 𝑣𝑖 , respectively. Finally, we combine the two recon-

struction tasks as the final objective function.

L = L𝑠𝑘𝑖𝑝−𝑔𝑟𝑎𝑚 + 𝛽L𝑟𝑒𝑐𝑜𝑛𝑠 (13)

where 𝛽 is a balancing hyper-parameter.

3.5 Discussions and Analyisis

Comparison with existing multi-view encoder-decoder methods. Some

existing work also adopts the multi-view framework for attrib-

uted network embedding (e.g., MVC-DNE [47] and DANE [12]).

Compared to the proposed framework, the limitations of these two

methods are two-fold. First, both MVC-DNE and DANE directly

adopt auto-encoders which prevents propagating and smoothing

features along the network structure; in contrast, we take advan-

tage of the propagation based methods by smoothing the neighbors’

features in the structure view. Second, they simply concatenate the

learned embeddings of the two auto-encoders which ignores the

relative weights/importance of different views; in contrast, our

model is likely to assign higher weights to key characteristics in

the original node attributes, which will be in turn propagated and

preserved to the future layers.

Comparisons with existing propagation based methods. Similar

to the graph convolution operator in existing propagation based

GNNs [18, 37, 44], the information from immediate/one-hop neigh-

bors is aggregated in one cross fusion layer. If we stack multiple

layers, we can potentially propagate critical information to long-

distance neighbors. Different from existing GNNs, we encode the

local community structure in one-hop neighbors, and add an ad-

ditional channel to encode node attributes to mitigate the over-

smoothing problem (i.e., the attribute information will not be over-

shadowed by the network structure).

Complexity analysis and computation speedup. By ignoring the

layer number and the dimension size which are usually small con-

stants, CFane shares the same time complexity 𝑂 ( |V| + |E|) with
GCN [18] and GAT [37], i.e., scaling linearly w.r.t. the number of

edges and nodes in the network. We could also speed up the compu-

tation in several aspects. For example, in Eq. (7), we could use v(𝑛)
1

instead of c(𝑛)
1

for better efficiency. By doing so, we can compute

self-attention in parallel with the ego-net partition and aggregation.

For f1, we can compute it from right to left as the second dimension

ofW𝐹
is usually much smaller than that of V1.

4 EXPERIMENTAL EVALUATIONS

In this section, we present the experimental results. We evaluate

the effectiveness of the learned node representations in three tasks

including node classification, clustering, and visualization.

Table 2: Statistics of the datasets.

Dataset Nodes Edges Attributes Classes

Cora 2708 5429 1433 7

Citeseer 3312 4732 3703 6

BlogCatalog 5196 171743 8189 6

4.1 Experimental Setup

Datasets. In our experiment, we use three widely-used attributed

network datasets [15, 46]: Cora, Citeseer, and BlogCatalog. Cora and
Citeseer are paper citation networks and BlogCatalog is an interac-

tion network between bloggers. The statistics of these datasets are

summarized in Table 2.

Comparison Methods. Since CFane is unsupervised, we first

compare it with the following unsupervised attributed network

embedding baselines.

• DeepWalk [30]. This is a classic network embedding method

preserving the network structure only.

• HARP [4]. HARP extends DeepWalk by considering the hier-

archical structure in networks.

• AutoEncoder. While the above two methods use the network

structure only, we also compare the case when only node

attributes are used via an auto-encoder.

• TADW [46]. TADW incorporates node features and network

structure into a matrix factorization framework.

• GAE and VGAE [17]. These two methods are based on graph

convolutional networks to propagate attributes along net-

work edges. They can be seen as unsupervised GCNs [18].

• GraphSAGE [14]. It extends GCN by defining several aggrega-

tors to aggregate the attributes from a sampled set of neigh-

bors. We use its unsupervised version with mean-aggregator

by default.

• DGI [38]. DGI is an unsupervised representation learning

method that adapts the mutual information maximization

idea from image domain to graph domain.

• ANRL [52]. ANRL uses one encoder for node attributes and

two decoders for node attributes and node neighborhood.

• DANE [12]. It employs two auto-encoders for network struc-

ture and node attributes, and then concatenates the two

resulting embeddings.

To show the effectiveness of CFane, We also compare with some

semi-supervised methods in the node classification task.

• GCN [14]. GCN is a semi-supervised network embedding

method that applies average aggregation in the local neigh-

borhood.

• GAT [37]. GAT learns the aggregation weights in the neigh-

borhood by a node-level attention mechanism.

Parameters and Reproducibility. For all the baseline methods,

we use the implementations provided by either their authors or

open source libraries.
2
By default, we stack two cross fusion layers

(𝑁 = 2) following GCN. The output dimensions of the two layers

are 256 and 128, respectively. For fairness, the final embedding

1
The size of the feed-forward layers depends on the attribute dimension of the input

network.

2
For the proposed method CFane, we will make the code publicly available upon

acceptance.



Table 3: Node classification results. The proposed CFane significantly outperforms the existing methods in most cases. The

bold numbers mean that the proposed CFane significantly outperforms all the competitors with 𝑝-values < 0.001.

Datasets Cora Citeseer BlogCatalog

Labeled Nodes 10% 30% 50% 10% 30% 50% 10% 30% 50%

Macro-F1

DeepWalk 0.729 0.771 0.785 0.442 0.505 0.513 0.496 0.548 0.573

HARP 0.716 0.771 0.785 0.475 0.509 0.522 0.505 0.541 0.555

AutoEncoder 0.587 0.665 0.693 0.594 0.633 0.649 0.707 0.733 0.741

TADW 0.673 0.716 0.733 0.578 0.638 0.653 0.742 0.753 0.759

GAE 0.779 0.807 0.815 0.595 0.624 0.634 - - -

VGAE 0.770 0.816 0.826 0.533 0.594 0.614 - - -

GraphSAGE 0.536 0.675 0.708 0.484 0.524 0.536 0.423 0.462 0.475

DGI 0.311 0.604 0.674 0.579 0.627 0.631 0.621 0.735 0.747

ANRL 0.719 0.748 0.759 0.660 0.682 0.688 0.694 0.705 0.709

DANE 0.750 0.811 0.822 0.605 0.649 0.660 0.749 0.768 0.772

CFane 0.814 0.842 0.847 0.669 0.697 0.705 0.776 0.788 0.791

Micro-F1

DeepWalk 0.740 0.795 0.808 0.482 0.555 0.575 0.585 0.646 0.676

HARP 0.733 0.782 0.794 0.517 0.556 0.574 0.595 0.637 0.654

AutoEncoder 0.627 0.694 0.717 0.644 0.680 0.696 0.826 0.857 0.866

TADW 0.701 0.742 0.757 0.614 0.681 0.699 0.867 0.880 0.887

GAE 0.790 0.818 0.825 0.652 0.687 0.699 - - -

VGAE 0.785 0.827 0.836 0.579 0.644 0.662 - - -

GraphSAGE 0.626 0.713 0.735 0.560 0.600 0.611 0.511 0.557 0.570

DGI 0.484 0.709 0.758 0.678 0.726 0.732 0.748 0.861 0.874

ANRL 0.747 0.769 0.777 0.717 0.732 0.739 0.815 0.828 0.832

DANE 0.779 0.825 0.835 0.673 0.716 0.725 0.877 0.898 0.903

CFane 0.832 0.853 0.858 0.733 0.753 0.758 0.908 0.921 0.925

dimension 𝑑 of all methods is set to 128. For methods that concate-

nate two vectors as the final result, we set the dimension of each

vector to 64. For the 𝛽 parameter, we search it through {0.5, 1, 2} via

cross-validation, and fix 𝛽 = 2 on BlogCatalog, 𝛽 = 0.5 on the other

two datasets for simplicity. Other hyper-parameters are set as the

default values provided in the corresponding papers. For training

CFane, we need to learn parametersW𝐹
,W𝑄

,W𝐾
in each cross

fusion layer, and parameters b𝛾 and b𝜆 for ego-network aggrega-

tion and view weighting. There are in total 4.3M, 10.1M, and 21.5M

parameters for Cora, Citeseer, and BlogCatalog, respectively. All

the experiments are run on a server with 8 cores of Intel Core CPU

4.00GHz and 64GB RAM. Note that we do not report the results of

GAE and VGAE on BlogCatalog as they run out of the memory.

4.2 Experimental Results

(A) Effectiveness Comparisons in Node Classification. For node classi-
fication, we randomly select 10%, 30%, 50% labeled data as training

set and use the remaining nodes as test set. Following existing

work [30], we train a logistic regression classifier on the learned

embeddings to predict the node labels. We repeat this process for

10 times and report the average Micro-F1 and Macro-F1 scores as

the evaluation metrics. The results are shown in Table 3.

There are several observations from the table. First, the proposed

CFane outperforms all the competitors in all cases. For example,

on the Cora data, compared with the best competitor (i.e., DANE),

CFane improves it by 2.8% to 8.5% in terms of Macro-F1/Micro-F1

scores; on BlogCatalog, the relative improvements range from 2.4%

to 3.6% compared to DANE. We also conduct a significance test

and the results show that most of the improvements are significant

with 𝑝-values < 0.001. The reasons for the superior performance

of CFane are as follows. CFane is better than the first three base-

lines (DeepWalk, HARP, and AutoEncoder) as they consider either

network structure or node attributes only. For TADW, it integrates

network structure and node attributes in a shallow matrix factor-

ization framework, and thus cannot capture the non-linearity of

the two information sources. CFane is better than GAE, VGAE,

GraphSAGE, and DGI, as these propagation based methods tend

to prefer network structure to node attributes (see more discus-

sions in the following two paragraphs). For ANRL and DANE, their

performance is inferior to CFane as they treat network structure

in a fixed manner. In contrast, CFane can better handle network

structure by propagating the attribute information to neighbors.

Second, DeepWalk and HARP use network structure only and

AutoEncoder uses node attributes only. We can see that DeepWalk

and HARP perform relatively well on Cora, whereas AutoEncoder is

better on Citeseer and BlogCatalog. This result indicates that node

attributes play a more important role on Citeseer and BlogCatalog,

and network structure matters more on Cora.

Third, as discussed above, propagation based methods (e.g., GAE

and VGAE) tend to put more emphasis on the network structure

compared to node attributes. This is consistent with the observation

that GAE and VGAE perform close to or even better than ANRL

and DANE on Cora where the network structure is relatively more

important, yet they perform significantly worse than ANRL and

DANE on Citeseer where node attributes are more important.



CFane GCN GAT

0.5

0.6

0.7

0.8

0.9

1

Macro-F1

Micro-F1

(a) Cora

CFane GCN GAT

0.5

0.6

0.7

0.8

0.9

Macro-F1

Micro-F1

(b) Citeseer

Figure 4: Comparison with semi-supervised methods. The

unsupervised CFane achieves comparable results with the

semi-supervised competitors.

Table 4: Clustering results. The proposed CFane signifi-

cantly outperforms all the competitors in most cases with

𝑝-values < 0.001.

Datasets Cora Citeseer BlogCatalog

NMI

Deepwalk 0.374 0.132 0.234

HARP 0.367 0.131 0.187

AutoEncoder 0.247 0.165 0.121

TADW 0.375 0.286 0.066

GAE 0.454 0.225 -

VGAE 0.462 0.193 -

GraphSAGE 0.340 0.171 0.111

DGI 0.504 0.435 0.455

ANRL 0.376 0.337 0.312

DANE 0.483 0.188 0.414

CFane 0.577 0.447 0.730

Purity

Deepwalk 0.583 0.401 0.423

HARP 0.547 0.371 0.346

AutoEncoder 0.475 0.394 0.325

TADW 0.593 0.518 0.205

GAE 0.618 0.405 -

VGAE 0.609 0.361 -

GraphSAGE 0.565 0.454 0.369

DGI 0.694 0.713 0.595

ANRL 0.575 0.575 0.455

DANE 0.654 0.430 0.585

CFane 0.743 0.701 0.890

(B) Comparison with Semi-supervised Competitors. We further

compare our unsupervised CFane with semi-supervised methods

GCN and GAT. In this experiment, we follow the experimental

setting of GCN and GAT by randomly selecting 20 labels per class

as known labels. The average Micro-F1 and Macro-F1 scores of

10 runs on Cora and Citeseer are shown in Table 4. As we can

see from the table, CFane achieves comparable results with the

semi-supervised competitors.

(C) Effectiveness Comparisons in Node Clustering. Next, we evalu-
ate the performance of the learned embeddings in the clustering

task. Specifically, we first run the K-means clustering algorithm

on the embeddings generated by all the compared methods, and

then evaluate the clustering results with normalized mutual infor-

mation (NMI) and purity metrics. The results are shown in Table 4.

Table 5: The ablation study results. The four design choices

of CFane are useful for the learned embeddings.

Variants

Classification Clustering

Macro-F1 Micro-F1 NMI Purity

CFane 0.791 0.925 0.730 0.890

CFane – CF 0.769 0.899 0.462 0.611

CFane – VW 0.767 0.897 0.587 0.756

CFane – NR 0.741 0.866 0.201 0.378

CFane – AR 0.774 0.905 0.666 0.856

As we can see, the proposed CFane significantly outperforms all

the competitors in most cases. For example, in terms of the NMI

metric, CFane achieves 14.5%, 2.8%, and 60.4% relative improve-

ments compared to the best competitor (DGI) in Cora, Citeseer, and

BlogCatalog, respectively.

(D) Ablation Study. Here, we conduct an ablation study by delet-

ing some of the design choices shown in Fig. 2. The classification

and clustering results on BlogCatalog are shown in Table 5. For

all the ablation studies and parameter sensitivity studies, similar

results are observed in other datasets and are thus omitted for

brevity. In the table, ‘CFane – CF’ means substituting the cross

fusion layers in CFane with separate GCN and auto-encoder to deal

with network structure and node attributes, ‘CFane – VW’ means

deleting the view weighting layer, ‘CFane – NR’ means deleting

the network reconstruction loss, and ‘CFane – AR’ means deleting

the attribute reconstruction in the loss function. As we can see

from the table, all the four design choices are effective in terms of

improving the embedding results for both node classification and

node clustering.

(E) Parameter Sensitivity. We also study the sensitivity of the two

major hyper-parameters (i.e., embedding dimension 𝑑 and cross

fusion layer number 𝑁 ) in CFane. For 𝑑 , we compare CFane with

two best competitors DANE and ANRL, and the node classification

and clustering results (we report Micro-F1 and NMI scores for

brevity) with 50% training data on BlogCatalog are shown in Fig. 5(a)

and Fig. 5(b), respectively. As we can see, our method consistently

outperforms the two competitors as 𝑑 varies.

For layer number 𝑁 , we compare CFane with propagation based

method GAE. Since GAE runs out of memory on BlogCatalog, we

report the results on Cora instead in Fig. 5(c) and Fig. 5(d). As

we can see, when more layers are stacked, the accuracy of GAE

decreases dramatically due to the over-smoothing problem, whereas

CFane remains relatively stable. This result is consistent with our

analysis that the cross fusion design helps to mitigate the over-

smoothing problem by preserving some discriminative features in

node attributes into future layers.

(F) Visualization Results. Finally, we visualize the learned node

representations in a 2D space with t-SNE [26]. Fig. 6 shows the

results on BlogCatalog. In the figures, we also present results from

DeepWalk, ANRL, and DANE for comparison. As we can see, the

result of DeepWalk is relatively cluttered as it does not consider

node attributes. Both ANRL and DANE can identify several types

of nodes in clusters yet many nodes of the same type are scattered

in the space. CFane achieves the best visualization results, as most

nodes with the same labels are closely gathered for all the labels.
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Figure 5: The parameter sensitivity results. The proposed CFane consistently outperforms the two best competitors as em-

bedding dimension 𝑑 varies, and CFane is more stable than GAE when we stack more than two layers.

(a) DeepWalk (b) ANRL (c) DANE (d) CFane

Figure 6: Visualization results of the learned node representations on BlogCatalog. CFane achieves better visualization results.

5 RELATEDWORK

In this section, we briefly review the related work.

Plain Network Embedding. Plain network embedding aims to

learn node representations by preserving only the structural prop-

erties of the network. For example, DeepWalk [30] employs ran-

dom walks to generate node sequences and learns the embeddings

through the skip-gram model; LINE [34] defines objective functions

to preserve the first- and second-order similarities between nodes;

node2vec [13] extends DeepWalk by introducing DFS and BFS based

searching strategies; NetMF [31] unifies these existing methods into

a matrix factorization framework. Several researchers also propose

to incorporate the community structure [6, 25, 41] when such infor-

mation is available. Other typical examples include [2, 4, 32, 39]. In

contrast to these existing methods, our focus is on the embedding

of attributed networks, which further considers node attributes.

Attributed Network Embedding. We divide existing attrib-

uted network embedding work into three categories. The first cate-

gory is built upon the skip-gram model or equivalently the matrix

factorization framework [19]. For example, TADW [46] uses induc-

tive matrix completion to incorporate both network structure and

the textual features on nodes; AANE [15] factorizes the attribute

affinity matrix with regularization constraints from network edges.

Other examples in this category include [1, 33, 48]. These methods

usually adopt shallow models and thus cannot well capture the

non-linearity of both network structure and node attributes [12].

The second category is based on graph neural networks [17, 18],

where node attributes are propagated and smoothed along the

network edges. For example, GraphSAGE [14] provides several ag-

gregators to aggregate the information from sampled neighbors;

GAT [37] improves GCN [18] with a node-level attention mech-

anism; GIN [44] generalizes GNNs in a simple but powerful way.

Other examples in this category include [5, 7, 29, 38, 43, 45]. Al-

though the graph convolution and smoothing idea in these methods

works well, they tend to prefer network structure to node attributes,

and thus might yield suboptimal embedding results when the node

attributes contain important discriminative features.

In the third category, existing work adopts the encoder-decoder

framework. For example, MVC-DNE [47] uses two autoencoders

and directly copies information between hidden layers; DANE [12]

adds a regularization term to constrain the distance of the two au-

toencoders. ANRL [52] and STNE [23] also adopt similar encoder-

decoder framework. Differently, STNE takes node attributes as

input and reconstructs the node neighborhood, while ANRL takes

node attributes as input and reconstructs both attributes and neigh-

borhood. Other examples in this category include [22, 24]. However,

although methods in this category can provide special treatment

on node attributes, it is difficult for them to flexibly take advantage

of the smoothing idea from propagation based methods.

Different from these three lines of work, we design cross fusion

layers to enjoy the advantages of information smoothing from prop-

agation based methods, and the special treatment on node attributes

from encoder-decoder methods; the cross fusion layers also allow

flexible information exchange between them, and incorporate the

local community structure during propagation.

Other Network Embedding. In addition to embedding attrib-

uted networks, embedding various other types of networks has

also been studied. Examples include signed networks [16], directed

networks [28, 53], dynamic networks [35, 54], heterogeneous net-

works [8, 11, 42, 50], multiplex networks [3, 51], etc.



6 CONCLUSIONS

In this paper, we propose an attributed network embedding ap-

proach CFane. The core of CFane is the cross fusion layers which

inherit the smoothing idea from propagation based methods, en-

code local community structure during propagation, and provide

an additional channel for treating node attributes. Experimental

results demonstrate that CFane significantly improves the state-of-

the-art in both node classification and node clustering. In the future,

we plan to extend CFane for supervised network embedding, and

explore the possibility of applying cross fusion layers to the other

types of networks such as heterogeneous networks and dynamic

networks.
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