Unsupervised Attributed Network Embedding via Cross Fusion

Guosheng Pan!, Yuan Yao', Hanghang Tong?, Feng Xu!, Jian Lu!
IState Key Laboratory for Novel Software Technology, Nanjing University, China
2University of Illinois at Urbana-Champaign, USA
pgs@smail.nju.edu.cn,{y.yao,xf lj}j@nju.edu.cn,htong@illinois.edu

ABSTRACT

Attributed network embedding aims to learn low dimensional node
representations by combining both the network’s topological struc-
ture and node attributes. Most of the existing methods either prop-
agate the attributes over the network structure or learn the node
representations by an encoder-decoder framework. However, prop-
agation based methods tend to prefer network structure to node
attributes, whereas encoder-decoder methods tend to ignore the
longer connections beyond the immediate neighbors. In order to
address these limitations while enjoying the best of the two worlds,
we design cross fusion layers for unsupervised attributed network
embedding. Specifically, we first construct two separate views to
handle network structure and node attributes, and then design cross
fusion layers to allow flexible information exchange and integration
between the two views. The key design goals of the cross fusion
layers are three-fold: 1) allowing critical information to be propa-
gated along the network structure, 2) encoding the heterogeneity
in the local neighborhood of each node during propagation, and 3)
incorporating an additional node attribute channel so that the at-
tribute information will not be overshadowed by the structure view.
Extensive experiments on three datasets and three downstream
tasks demonstrate the effectiveness of the proposed method.

CCS CONCEPTS

« Information systems — Data mining; Social networks.

KEYWORDS

Network embedding, network structure, local community, node
attributes

ACM Reference Format:

Guosheng Pan!, Yuan Yao!, Hanghang Tong?, Feng Xu!, Jian Lu!. 2021. Un-
supervised Attributed Network Embedding via Cross Fusion. In Proceedings
of the Fourteenth ACM International Conference on Web Search and Data
Mining (WSDM ’21), March 8-12, 2021, Virtual Event, Israel. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/XXXXXX XXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM °21, March 8-12, 2021, Virtual Event, Israel

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8297-7/21/03...$15.00

https://doi.org/10.1145/XXXXXX XXXXXX

e e
6 6

ey e e |
1 .\ 4 1 .\ 4
2 /71:@ 2 /-71:1::::1

Figure 1: An illustrative example. The color of boxes repre-
sents the existence of node attributes, and the node color in-
dicates class label. The left is the original attributed network
and the right is the version after applying the propagation
based methods. Nodes 5 and 6 with the same label/color can
be easily predicted due to the propagated attributes, while
Nodes 1 and 2 with different labels/colors become more in-
distinguishable after propagation.

1 INTRODUCTION

Attributed network embedding has attracted growing attention
in recent years. The basic idea is to learn low dimensional repre-
sentations/embeddings for network nodes by combining both the
network’s topological structure and the attributes of nodes. The
learned embeddings have been shown to be effective in many down-
stream tasks including node classification [46], node clustering [20],
and link prediction [40].

To date, existing attributed network embedding methods can
be roughly divided into three categories. The first category is
based on the matrix factorization framework (e.g., TADW [46] and
AANE [15]) where matrices containing the network structure and
node attributes are constructed and jointly factorized. However,
these shallow models might fall short in capturing the non-linearity
of the two information sources [12]. The second category is related
to graph neural networks (e.g., GCN [18] and GraphSAGE [14]).
These methods, which are referred to as propagation based methods
in this work, recursively aggregate node representations by apply-
ing the graph convolution operation among each node’s immediate
neighbors. While such smoothing techniques have achieved state-
of-the-art results on several graph analysis tasks, they tend to suffer
from the “over-smoothing” problem [21, 49], i.e., they may lose dis-
criminative features in the original node attributes and hence prefer
network structure to node attributes. Methods in the third cate-
gory adopt the encoder-decoder framework (e.g., DANE [12] and
ANRL [52]). Compared to the second category, node attributes are
specially handled so that their discriminative features can be main-
tained; however, methods in this category treat network structure
in a fixed manner and thus cannot propagate critical information
along the network edges, beyond the immediate neighbors (we
name this limitation as the “under-smoothing” problem).

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

To illustrate the advantages and disadvantages of the existing
methods, we present an illustrative example in Fig. 1. In this exam-
ple, we propagate the node attributes along the network edges as
the propagation based methods do. Node 5 and Node 6 (with the
same label as indicated by color in the figure) show the advantage of
such propagation based methods. That is, although they have quite
different attributes and network structure before propagation, these
two nodes share three identical attributes after propagation, mak-
ing it easier to predict their labels. However, propagation could also
bring side effects. For example, Node 1 and Node 2 (with different
labels) have their respective discriminative attributes (as indicated
by grey and light blue boxes) before propagation. After propagation,
these two nodes tend to have the same attributes, rendering a more
difficult prediction task to distinguish between them. In this case,
an independent treatment on the node attributes as methods in the
third category would be more appropriate.

In this paper, we envision that propagation based methods and
encoder-decoder methods are inherently complementary, and thus
ask: how can we design an attributed network embedding model that
enjoys the best of the two worlds? To answer this question, we pro-
pose an attributed network embedding model with two separate
views to handle network structure and node attributes. Based on
the two views, we design the cross fusion layers to allow flexible
information exchange and integration between them. To be spe-
cific, there are three key advantages of our cross fusion design.
First, the cross fusion layer can be naturally stacked to mimic the
graph convolution operation so that critical information can be
propagated along the network edges (i.e., mitigating the “under-
smoothing” problem of encoder-decoder methods). Second, when
aggregating the node representations from immediate neighbors,
we pay special attention to the local community structure to enable
the assignment of different weights to different neighbors. Third,
we use an additional view to encode node attributes so that the
attribute information will not be overshadowed by the structure
view (i.e., mitigating the “over-smoothing” problem of propagation
based methods). With the learned embeddings from different views,
instead of simply concatenating them like existing work, we add a
view weighting layer to allow each node learn their own relative
weights from the two views. Finally, we learn the node representa-
tions in an unsupervised way by considering the reconstructions
of both network structure and node attributes.

To show the effectiveness of the proposed method, we conduct
experimental evaluations by utilizing the learned embeddings for
three downstream tasks (i.e., node classification, node clustering,
and visualization) on three widely-used benchmark datasets. The
results show that the proposed method significantly outperforms
the existing methods in terms of prediction accuracy. Additionally,
the proposed unsupervised method can even achieve comparable
results with semi-supervised ones in node classification. Finally,
consistent with the above analysis, we have experimentally found
that propagation based methods perform better on datasets where
network structure matters more, and encoder-decoder methods
become better when node attributes play a more prominent role.

In summary, the main contributions of this paper include:

o A multi-view framework CFANE with cross fusion layers for
attributed network embedding. CFANE seamlessly enjoys the

Table 1: Symbols.

Symbol ‘ Definition and Description

G the input network

v the node set of the input network

& the edge set of the input network

A the adjacency matrix of the input network
X the attributes of all nodes

Y the learned representations of all nodes
X; the attributes of node v;

Vi the learned representation of node v;

Vi the node representation of structure view
\Z) the node representation of attribute view
cf the intermediate representation vectors

k the attribute dimension

d the embedding dimension

advantages of both propagation based methods and encoder-
decoder methods.

o Extensive experiments demonstrating the superior perfor-
mance of the proposed method. For example, the proposed
CFANE achieves up to 60.4% improvement over its best com-
petitors in the node clustering task.

The rest of the paper is organized as follows. Section 2 provides
the problem statement. Section 3 describes the proposed method,
and Section 4 presents the experimental results. Section 5 reviews
related work, and Section 6 concludes.

2 PROBLEM STATEMENT

In this section, we state the problem definition. Table 1 lists the
main symbols we use throughout the paper. Following conventions,
we use calligraphic letters to represent sets. For example, the node
set and edge set of a network are denoted as V and &, respectively.
We use bold capital letters to indicate matrices and bold lowercase
letters to indicate (row) vectors. For example, we use A € RIVIXIVI
to denote the adjacency matrix of the input network, and X €
RIVI¥k to denote the matrix of node attributes where k is the
attribute dimension. We also use the corresponding lowercase to
indicate the row vectors of the matrix. For example, we use x; to
denote the i-th row of X. With the above notations, we first define
an attributed network as follows.

Definition 1. Attributed Networks. An attributed network is de-
noted as G = (V, &, X), where V is the node set and & is the edge
set. X contains the node attributes, with its i-th row x; describing
the attributes for the i-th node v; € V.

Attributed network embedding aims to learn the node represen-
tations by taking into account both the network structure and the
node attributes. We use Y € RIV1*? to denote all the learned node
representations where d is the dimension of the learned embed-
dings. y; € R4 indicates the i-th row of Y. We then define the
attributed network embedding problem as follows.

Definition 2. Attributed Network Embedding. Given an attributed
network G = (V, §,X), attributed network embedding aims to
learn a function f : v; + y; that maps each node v; € V to a
low-dimensional representation vector y;.

The Input @ Multi-view @) View @ Multi-task
Attributed Cross Fusion Weighting Reconstruction
Network
% The Learned %
Structure Embeddings Structure
Cross Cross Reconstruction
Fusion | ... | Fusion
Layer Layer
_
Attribute Attribute

Reconstruction
Figure 2: The overview of CFANE.

3 THE PROPOSED APPROACH

In this section, we present the proposed approach CFANE.

3.1 Model Overview

Fig. 2 shows the overview of the proposed CFANE. In particular, to
allow special treatment on node attributes, we first input the net-
work structure and node attributes into two different views. Then
the key issue becomes how to flexibly exchange and integrate infor-
mation between the two views so as to enjoy the advantages from
both propagation based methods and encoder-decoder methods.
For this purpose, the core of CFANE is the design of cross fusion
layers with three key advantages as mentioned in introduction,
i.e., 1) propagating critical information along network structure, 2)
encoding neighbor heterogeneity during propagation and aggrega-
tion, and 3) maintaining discriminative features in node attributes.
After the cross fusion layers, we further introduce a view weight-
ing layer to let each node integrate its own representation with
different weights from the two views. Finally, to obtain the learned
embeddings in an unsupervised setting, we formulate multi-task
reconstruction objective functions to guide the embeddings to pre-
serve both network structure and node attributes.

3.2 Cross Fusion Layer

We next describe the proposed cross fusion layer as illustrated in
Fig. 3. It takes both the network structure and node attributes as
input. In the following, we take the n-th cross fusion layer as an
example, and use subscripts to indicate the two views for clarity.
For example, we use two vectors vi"), vgn) [S Rle(n) to denote the
representations of each node in the current layer for the network
structure view and the node attribute view, respectively. We will
remove the superscript for brevity when it is clear from the context.

(A) Ego-network partition and aggregation. On one hand, due
to the state-of-the-art performance of propagation based meth-
ods, we aim to take advantage of these methods by following the
idea of recursively aggregating node representations among each
node’s immediate neighbors. On the other hand, when aggregat-
ing the node representations from immediate neighbors, different
neighbors may have different impact/weights on the aggregated
node representations, making it necessary to distinguish their roles.
Consequently, to encode such heterogeneity among immediate
neighbors, a natural choice is to learn different weights for different

neighbors. In the following, we introduce a flexible aggregation
method based on the partition in the ego-network [9].

An ego-network is a subgraph induced by the immediate neigh-
bors of each node, defined as follows,

Glu] = (N, 8 NNy X Ny,) (1)

where N, is the set of immediate neighbors of node u, and X means
the Cartesian product. We then partition the ego-network of each
node into several communities as follows,

par(Glul) = {Ny, N2, ... N})

where par is the partition function, G[u] is the ego-network of
node u as defined in Eq. (1), N} contains the set of nodes in the i-th
partition, and ¢, is the number of resulting partitions of node u’s
ego-network.

Based on the partition results, we adopt a hierarchical smoothing
method to aggregate the representations of each node from its
immediate neighbors. First, we assign the same weight for nodes
in the same community. For example, given the j-th community of
node u, we use the average aggregation as follows,

n l n
S = DI)
N INJ | +1. 5
ieN;U{u}
where v(") R4 indicates the current representation of node i

in the network structure view. Next, we combine #,, representation
vectors by learning different weights to different communities in
the ego-network. In particular, we compute the weighted average
representations over the communities as follows,

cin) = Z (vj - c(n) @)
jelLt]
where c(" e R*4™ stands for the intermediate node representa-

tions after the ego-network aggregation, and y; is the importance
coefficient computed by the following attention mechanism,

exp((viy, Il €7)b)

Yj= (5)
Siefn] exp((v | c<”>>bT>

where row vector by is the parameter and || means the concatena-
tion operation.

For the partition function par, since the size of ego-networks
is usually small, we follow existing work [10] by treating each
connected component of the ego-network as a community in this
work. This setting helps encode the local community structure into
the final network embeddings. Note that we can also use other
partition functions. For example, if we put all the neighbors into
one community, the above aggregation method degenerates to the
GCN [18] model; if we treat each neighbor as a partition, the above
method resembles the GAT [37] model. In other words, the pro-
posed aggregation method provides flexibility in terms of balancing
between the complexity (i.e., parameter size) and efficiency.

(B) Feature exchange between views. In addition to encoding neigh-
bor heterogeneity, the other two design goals of CFANE are to prop-
agate critical information along network structure and maintain
discriminative features in node attributes. For these purposes, we
keep an additional view to encode the node attributes, and utilize
the self-attention mechanism [36] to exchange features between

Cross Fusion
Ego-network

Partition & Aggregation

Feature Exchange

View Weighting

Structure E
Strue g I ™ N ()
vy ! ot
1 —_ NI —] !
% | ;
A ky 4 E
Y ! N
o D 1 :
Concatenate u E v I Y
k2 aq ‘
v — !
Attribute (n+1) E (N)
View VZ H VZ

Figure 3: Cross Fusion and View Weighting.

views. The intuitions are two-fold. First, self-attention can learn the
importance of the two views, without having one view overshad-
owed the other. Second, self-attention can output one vector for
each view, so that the cross fusion layer can be naturally stacked.
Specifically, we first transform the features of the two views via

c Rd(ﬂ) xd(n+1)

a projection matrix W as follows,

fi=c"WE f=vPwWF ©)

(W () ¢ pixd™

where ¢, v, indicate the two representations for

each node in the current layer, f1, f; € RIXd(nH) are the intermedi-
ate results, and d("*1) is the embedding dimension of the next layer.
Typically, d"*1) is smaller than d(”) meaning that W¥ helps to
reduce the dimension size. Next, following standard self-attention,
we calculate the query vector q and key vector k for each node,

qi = Cin)wQ, q = Vgn)WQ (7)
ki = ci")WK, ko = Vé")WK
where WQ, wK ¢ Rd<n) xd) denote the transformation matrices
for query vectors and key vectors, respectively. Then, we fuse the

new node representations Vinﬂ) and vénﬂ) with the following
computation,
exp(q,-kJT)
aij = T
2ke{k; k,} exp(qik®)
Vinﬂ) = p(erafr +a12fs)
vg"“) = plozfy + o2f2) ®)

where o denotes the relative weights of the intermediate features
f; and f; for the new node representations, and y indicates the
activation function. In this work, to add non-linear relationships
between layers, we use the LeakyReLU as the default y. In our exper-
iments, we observed similar results of other non-linear activation
functions such as ReLU.

3.3 View Weighting

After cross fusion layers, we combine the outputs of two views into a
unified representation matrix Y. Existing work mainly concatenates
the representations from different views. However, the network
structure view could be more informative for some nodes, while
the node attributes may contribute more for others. In this work,
we propose a view weighting layer (also shown in Fig. 3) to allow
each node to choose their own relative weights between the two
views. That is,

y= AlviN) + /'12V§N) ©)
where we suppose N cross fusion layers, and VgN) and véN) are the

node representations from the last layer. View weighting weights
A1 and Ay are computed as follows,
N
exp(vf)bz)
M= Wy Npr (10)
exp(v, bA) +exp(v, bA)

where row vector b is the parameter.

3.4 Training

Finally, to learn the parameters in our model as well as to make
the learned embeddings more generic, we use multiple objective
functions for preserving both the network structure and node at-
tributes.

For the network structure, we aim to minimize the sum of the
negative logarithmic probability of the node pairs in the same
context,

Z log U(YJ'YiT) (11)

(i.j)eC

Lskip—gram ==

where y; is the learned embedding for node v;, and ¢ is the sigmoid
function. We adopt the standard skip-gram model [27] to sample the
node context C via truncated random walks and conduct negative
sampling. For node attributes, we directly reconstruct them from
the learned embeddings. We reconstruct the node attributes by

adding three feed-forward layers! with the following loss function,

V]
Lrecons = Z [Ix; —)A(l”% (12)
i=1

where x; and %; are the original attributes and reconstructed at-
tributes of node v;, respectively. Finally, we combine the two recon-
struction tasks as the final objective function.

L= Lskip—gram + BLrecons (13)
where f is a balancing hyper-parameter.

3.5 Discussions and Analyisis

Comparison with existing multi-view encoder-decoder methods. Some
existing work also adopts the multi-view framework for attrib-
uted network embedding (e.g., MVC-DNE [47] and DANE [12]).
Compared to the proposed framework, the limitations of these two
methods are two-fold. First, both MVC-DNE and DANE directly
adopt auto-encoders which prevents propagating and smoothing
features along the network structure; in contrast, we take advan-
tage of the propagation based methods by smoothing the neighbors’
features in the structure view. Second, they simply concatenate the
learned embeddings of the two auto-encoders which ignores the
relative weights/importance of different views; in contrast, our
model is likely to assign higher weights to key characteristics in
the original node attributes, which will be in turn propagated and
preserved to the future layers.

Comparisons with existing propagation based methods. Similar
to the graph convolution operator in existing propagation based
GNNs [18, 37, 44], the information from immediate/one-hop neigh-
bors is aggregated in one cross fusion layer. If we stack multiple
layers, we can potentially propagate critical information to long-
distance neighbors. Different from existing GNNs, we encode the
local community structure in one-hop neighbors, and add an ad-
ditional channel to encode node attributes to mitigate the over-
smoothing problem (i.e., the attribute information will not be over-
shadowed by the network structure).

Complexity analysis and computation speedup. By ignoring the
layer number and the dimension size which are usually small con-
stants, CFANE shares the same time complexity O(|V| + |E|) with
GCN [18] and GAT [37], i.e., scaling linearly w.r.t. the number of
edges and nodes in the network. We could also speed up the compu-
(n)
1

tation in several aspects. For example, in Eq. (7), we could use v

instead of ci") for better efficiency. By doing so, we can compute

self-attention in parallel with the ego-net partition and aggregation.
For f;, we can compute it from right to left as the second dimension
of WF is usually much smaller than that of V.

4 EXPERIMENTAL EVALUATIONS

In this section, we present the experimental results. We evaluate
the effectiveness of the learned node representations in three tasks
including node classification, clustering, and visualization.

Table 2: Statistics of the datasets.

Dataset Nodes Edges Attributes Classes
Cora 2708 5429 1433 7
Citeseer 3312 4732 3703 6
BlogCatalog | 5196 171743 8189 6

4.1 Experimental Setup

Datasets. In our experiment, we use three widely-used attributed
network datasets [15, 46]: Cora, Citeseer, and BlogCatalog. Cora and
Citeseer are paper citation networks and BlogCatalog is an interac-
tion network between bloggers. The statistics of these datasets are
summarized in Table 2.

Comparison Methods. Since CFANE is unsupervised, we first
compare it with the following unsupervised attributed network
embedding baselines.

e DeepWalk [30]. This is a classic network embedding method
preserving the network structure only.

e HARP [4]. HARP extends DeepWalk by considering the hier-
archical structure in networks.

o AutoEncoder. While the above two methods use the network
structure only, we also compare the case when only node
attributes are used via an auto-encoder.

e TADW [46]. TADW incorporates node features and network
structure into a matrix factorization framework.

o GAE and VGAE [17]. These two methods are based on graph
convolutional networks to propagate attributes along net-
work edges. They can be seen as unsupervised GCNs [18].

e GraphSAGE [14]. It extends GCN by defining several aggrega-
tors to aggregate the attributes from a sampled set of neigh-
bors. We use its unsupervised version with mean-aggregator
by default.

e DGI [38]. DGI is an unsupervised representation learning
method that adapts the mutual information maximization
idea from image domain to graph domain.

e ANRL [52]. ANRL uses one encoder for node attributes and
two decoders for node attributes and node neighborhood.

e DANE [12]. It employs two auto-encoders for network struc-
ture and node attributes, and then concatenates the two
resulting embeddings.

To show the effectiveness of CFANE, We also compare with some
semi-supervised methods in the node classification task.

e GCN [14]. GCN is a semi-supervised network embedding
method that applies average aggregation in the local neigh-
borhood.

e GAT [37]. GAT learns the aggregation weights in the neigh-
borhood by a node-level attention mechanism.

Parameters and Reproducibility. For all the baseline methods,
we use the implementations provided by either their authors or
open source libraries.? By default, we stack two cross fusion layers
(N = 2) following GCN. The output dimensions of the two layers
are 256 and 128, respectively. For fairness, the final embedding

IThe size of the feed-forward layers depends on the attribute dimension of the input
network.

2For the proposed method CFANE, we will make the code publicly available upon
acceptance.

Table 3: Node classification results. The proposed CFANE significantly outperforms the existing methods in most cases. The
bold numbers mean that the proposed CFANE significantly outperforms all the competitors with p-values < 0.001.

Datasets Cora Citeseer BlogCatalog
Labeled Nodes 10% 30% 50% 10% 30% 50% 10% 30% 50%
DeepWalk 0.729 0.771 0.785 | 0.442 0.505 0.513 | 0.496 0.548 0.573
HARP 0.716 0.771 0.785 | 0.475 0.509 0.522 | 0.505 0.541 0.555
AutoEncoder | 0.587 0.665 0.693 | 0.594 0.633 0.649 | 0.707 0.733 0.741
TADW 0.673 0.716 0.733 | 0.578 0.638 0.653 | 0.742 0.753 0.759
Macro-F1 GAE 0.779 0.807 0.815 | 0.595 0.624 0.634 - - -
VGAE 0.770 0.816 0.826 | 0.533 0.594 0.614 - - -
GraphSAGE | 0.536 0.675 0.708 | 0.484 0.524 0.536 | 0.423 0.462 0.475
DGI 0.311 0.604 0.674 | 0.579 0.627 0.631 | 0.621 0.735 0.747
ANRL 0.719 0.748 0.759 | 0.660 0.682 0.688 | 0.694 0.705 0.709
DANE 0.750 0.811 0.822 | 0.605 0.649 0.660 | 0.749 0.768 0.772
CFANE 0.814 0.842 0.847 | 0.669 0.697 0.705 | 0.776 0.788 0.791
DeepWalk 0.740 0.795 0.808 | 0.482 0.555 0.575 | 0.585 0.646 0.676
HARP 0.733 0.782 0.794 | 0.517 0.556 0.574 | 0.595 0.637 0.654
AutoEncoder | 0.627 0.694 0.717 | 0.644 0.680 0.696 | 0.826 0.857 0.866
TADW 0.701 0.742 0.757 | 0.614 0.681 0.699 | 0.867 0.880 0.887
. GAE 0.790 0.818 0.825 | 0.652 0.687 0.699 - - -
Micro-F1
VGAE 0.785 0.827 0.836 | 0.579 0.644 0.662 - - -
GraphSAGE | 0.626 0.713 0.735 | 0.560 0.600 0.611 | 0.511 0.557 0.570
DGI 0.484 0.709 0.758 | 0.678 0.726 0.732 | 0.748 0.861 0.874
ANRL 0.747 0.769 0.777 | 0.717 0.732 0.739 | 0.815 0.828 0.832
DANE 0.779 0.825 0.835 | 0.673 0.716 0.725 | 0.877 0.898 0.903
CFANE 0.832 0.853 0.858 | 0.733 0.753 0.758 | 0.908 0.921 0.925

dimension d of all methods is set to 128. For methods that concate-
nate two vectors as the final result, we set the dimension of each
vector to 64. For the § parameter, we search it through {0.5, 1, 2} via
cross-validation, and fix # = 2 on BlogCatalog, f = 0.5 on the other
two datasets for simplicity. Other hyper-parameters are set as the
default values provided in the corresponding papers. For training
CFANE, we need to learn parameters wF , WQ, WX in each cross
fusion layer, and parameters b, and b, for ego-network aggrega-
tion and view weighting. There are in total 4.3M, 10.1M, and 21.5M
parameters for Cora, Citeseer, and BlogCatalog, respectively. All
the experiments are run on a server with 8 cores of Intel Core CPU
4.00GHz and 64GB RAM. Note that we do not report the results of
GAE and VGAE on BlogCatalog as they run out of the memory.

4.2 Experimental Results

(A) Effectiveness Comparisons in Node Classification. For node classi-
fication, we randomly select 10%, 30%, 50% labeled data as training
set and use the remaining nodes as test set. Following existing
work [30], we train a logistic regression classifier on the learned
embeddings to predict the node labels. We repeat this process for
10 times and report the average Micro-F1 and Macro-F1 scores as
the evaluation metrics. The results are shown in Table 3.

There are several observations from the table. First, the proposed
CFANE outperforms all the competitors in all cases. For example,
on the Cora data, compared with the best competitor (i.e., DANE),
CFANE improves it by 2.8% to 8.5% in terms of Macro-F1/Micro-F1
scores; on BlogCatalog, the relative improvements range from 2.4%
to 3.6% compared to DANE. We also conduct a significance test

and the results show that most of the improvements are significant
with p-values < 0.001. The reasons for the superior performance
of CFANE are as follows. CFANE is better than the first three base-
lines (DeepWalk, HARP, and AutoEncoder) as they consider either
network structure or node attributes only. For TADW, it integrates
network structure and node attributes in a shallow matrix factor-
ization framework, and thus cannot capture the non-linearity of
the two information sources. CFANE is better than GAE, VGAE,
GraphSAGE, and DGI, as these propagation based methods tend
to prefer network structure to node attributes (see more discus-
sions in the following two paragraphs). For ANRL and DANE, their
performance is inferior to CFANE as they treat network structure
in a fixed manner. In contrast, CFANE can better handle network
structure by propagating the attribute information to neighbors.

Second, DeepWalk and HARP use network structure only and
AutoEncoder uses node attributes only. We can see that DeepWalk
and HARP perform relatively well on Cora, whereas AutoEncoder is
better on Citeseer and BlogCatalog. This result indicates that node
attributes play a more important role on Citeseer and BlogCatalog,
and network structure matters more on Cora.

Third, as discussed above, propagation based methods (e.g., GAE
and VGAE) tend to put more emphasis on the network structure
compared to node attributes. This is consistent with the observation
that GAE and VGAE perform close to or even better than ANRL
and DANE on Cora where the network structure is relatively more
important, yet they perform significantly worse than ANRL and
DANE on Citeseer where node attributes are more important.

Il Macro-F1
[IMicro-F1

Bl Macro-F1

[IMicro-F1 |
0.9 08

CFane GCN GAT - CFane GCN GAT

(a) Cora (b) Citeseer

Figure 4: Comparison with semi-supervised methods. The
unsupervised CFANE achieves comparable results with the
semi-supervised competitors.

Table 4: Clustering results. The proposed CFANE signifi-
cantly outperforms all the competitors in most cases with
p-values < 0.001.

Datasets Cora | Citeseer | BlogCatalog
Deepwalk 0.374 0.132 0.234
HARP 0.367 0.131 0.187
AutoEncoder | 0.247 0.165 0.121
TADW 0.375 0.286 0.066
GAE 0.454 0.225 -
NMI VGAE 0.462 0.193 -
GraphSAGE | 0.340 0.171 0.111
DGI 0.504 0.435 0.455
ANRL 0.376 0.337 0.312
DANE 0.483 0.188 0.414
CFANE 0.577 0.447 0.730
Deepwalk 0.583 0.401 0.423
HARP 0.547 0.371 0.346
AutoEncoder | 0.475 0.394 0.325
TADW 0.593 0.518 0.205
Purity GAE 0.618 0.405 -
VGAE 0.609 0.361 -
GraphSAGE | 0.565 0.454 0.369
DGI 0.694 0.713 0.595
ANRL 0.575 0.575 0.455
DANE 0.654 0.430 0.585
CFANE 0.743 0.701 0.890

(B) Comparison with Semi-supervised Competitors. We further
compare our unsupervised CFANE with semi-supervised methods
GCN and GAT. In this experiment, we follow the experimental
setting of GCN and GAT by randomly selecting 20 labels per class
as known labels. The average Micro-F1 and Macro-F1 scores of
10 runs on Cora and Citeseer are shown in Table 4. As we can
see from the table, CFANE achieves comparable results with the
semi-supervised competitors.

(C) Effectiveness Comparisons in Node Clustering. Next, we evalu-
ate the performance of the learned embeddings in the clustering
task. Specifically, we first run the K-means clustering algorithm
on the embeddings generated by all the compared methods, and
then evaluate the clustering results with normalized mutual infor-
mation (NMI) and purity metrics. The results are shown in Table 4.

Table 5: The ablation study results. The four design choices
of CFANE are useful for the learned embeddings.

Variants Classification Clustering
Macro-F1 Micro-F1 | NMI Purity
CFANE 0.791 0.925 0.730 0.890
CFANE - CF 0.769 0.899 0.462 0.611
CFANE - VW 0.767 0.897 0.587 0.756
CFAaNE - NR 0.741 0.866 0.201 0.378
CFANE - AR 0.774 0.905 0.666 0.856

As we can see, the proposed CFANE significantly outperforms all
the competitors in most cases. For example, in terms of the NMI
metric, CFANE achieves 14.5%, 2.8%, and 60.4% relative improve-
ments compared to the best competitor (DGI) in Cora, Citeseer, and
BlogCatalog, respectively.

(D) Ablation Study. Here, we conduct an ablation study by delet-
ing some of the design choices shown in Fig. 2. The classification
and clustering results on BlogCatalog are shown in Table 5. For
all the ablation studies and parameter sensitivity studies, similar
results are observed in other datasets and are thus omitted for
brevity. In the table, ‘CFANE — CF’ means substituting the cross
fusion layers in CFANE with separate GCN and auto-encoder to deal
with network structure and node attributes, ‘CFANE - VW’ means
deleting the view weighting layer, ‘CFANE — NR’ means deleting
the network reconstruction loss, and ‘CFANE — AR’ means deleting
the attribute reconstruction in the loss function. As we can see
from the table, all the four design choices are effective in terms of
improving the embedding results for both node classification and
node clustering.

(E) Parameter Sensitivity. We also study the sensitivity of the two
major hyper-parameters (i.e., embedding dimension d and cross
fusion layer number N) in CFANE. For d, we compare CFANE with
two best competitors DANE and ANRL, and the node classification
and clustering results (we report Micro-F1 and NMI scores for
brevity) with 50% training data on BlogCatalog are shown in Fig. 5(a)
and Fig. 5(b), respectively. As we can see, our method consistently
outperforms the two competitors as d varies.

For layer number N, we compare CFANE with propagation based
method GAE. Since GAE runs out of memory on BlogCatalog, we
report the results on Cora instead in Fig. 5(c) and Fig. 5(d). As
we can see, when more layers are stacked, the accuracy of GAE
decreases dramatically due to the over-smoothing problem, whereas
CFANE remains relatively stable. This result is consistent with our
analysis that the cross fusion design helps to mitigate the over-
smoothing problem by preserving some discriminative features in
node attributes into future layers.

(F) Visualization Results. Finally, we visualize the learned node
representations in a 2D space with t-SNE [26]. Fig. 6 shows the
results on BlogCatalog. In the figures, we also present results from
DeepWalk, ANRL, and DANE for comparison. As we can see, the
result of DeepWalk is relatively cluttered as it does not consider
node attributes. Both ANRL and DANE can identify several types
of nodes in clusters yet many nodes of the same type are scattered
in the space. CFANE achieves the best visualization results, as most
nodes with the same labels are closely gathered for all the labels.

0.8 0.6
0.9 0.7 '\'—'—o—w\
06 05
s 0.5 T o8
o s S —
Bos o4 £ I
= 0.3 =
—e— CFANE 0.2 —e— CFANE
—+— DANE) —+— DANE 0,71 — CFANE 031 —— CFANE
—=— ANRL 0.1 —=— ANRL '] —=— GAE | —a— GAE
7 X
%75 40 60 80 100 0055 40 60 80 100 2 3 4 5 6 7 8 9 10 35 3 4 5 6 7 8 9 10

Embedding Dimension d Embedding Dimension d

(a) d in node classification (b) d in node clustering

Number of layers N Number of layers N

(c) N in node classification (d) N in node clustering

Figure 5: The parameter sensitivity results. The proposed CFANE consistently outperforms the two best competitors as em-
bedding dimension d varies, and CFANE is more stable than GAE when we stack more than two layers.

(a) DeepWalk

(b) ANRL

(d) CFaNE

Figure 6: Visualization results of the learned node representations on BlogCatalog. CFANE achieves better visualization results.

5 RELATED WORK

In this section, we briefly review the related work.

Plain Network Embedding. Plain network embedding aims to
learn node representations by preserving only the structural prop-
erties of the network. For example, DeepWalk [30] employs ran-
dom walks to generate node sequences and learns the embeddings
through the skip-gram model; LINE [34] defines objective functions
to preserve the first- and second-order similarities between nodes;
node2vec [13] extends DeepWalk by introducing DFS and BFS based
searching strategies; NetMF [31] unifies these existing methods into
a matrix factorization framework. Several researchers also propose
to incorporate the community structure [6, 25, 41] when such infor-
mation is available. Other typical examples include [2, 4, 32, 39]. In
contrast to these existing methods, our focus is on the embedding
of attributed networks, which further considers node attributes.

Attributed Network Embedding. We divide existing attrib-
uted network embedding work into three categories. The first cate-
gory is built upon the skip-gram model or equivalently the matrix
factorization framework [19]. For example, TADW [46] uses induc-
tive matrix completion to incorporate both network structure and
the textual features on nodes; AANE [15] factorizes the attribute
affinity matrix with regularization constraints from network edges.
Other examples in this category include [1, 33, 48]. These methods
usually adopt shallow models and thus cannot well capture the
non-linearity of both network structure and node attributes [12].

The second category is based on graph neural networks [17, 18],
where node attributes are propagated and smoothed along the
network edges. For example, GraphSAGE [14] provides several ag-
gregators to aggregate the information from sampled neighbors;

GAT [37] improves GCN [18] with a node-level attention mech-
anism; GIN [44] generalizes GNNs in a simple but powerful way.
Other examples in this category include [5, 7, 29, 38, 43, 45]. Al-
though the graph convolution and smoothing idea in these methods
works well, they tend to prefer network structure to node attributes,
and thus might yield suboptimal embedding results when the node
attributes contain important discriminative features.

In the third category, existing work adopts the encoder-decoder
framework. For example, MVC-DNE [47] uses two autoencoders
and directly copies information between hidden layers; DANE [12]
adds a regularization term to constrain the distance of the two au-
toencoders. ANRL [52] and STNE [23] also adopt similar encoder-
decoder framework. Differently, STNE takes node attributes as
input and reconstructs the node neighborhood, while ANRL takes
node attributes as input and reconstructs both attributes and neigh-
borhood. Other examples in this category include [22, 24]. However,
although methods in this category can provide special treatment
on node attributes, it is difficult for them to flexibly take advantage
of the smoothing idea from propagation based methods.

Different from these three lines of work, we design cross fusion
layers to enjoy the advantages of information smoothing from prop-
agation based methods, and the special treatment on node attributes
from encoder-decoder methods; the cross fusion layers also allow
flexible information exchange between them, and incorporate the
local community structure during propagation.

Other Network Embedding. In addition to embedding attrib-
uted networks, embedding various other types of networks has
also been studied. Examples include signed networks [16], directed
networks [28, 53], dynamic networks [35, 54], heterogeneous net-
works [8, 11, 42, 50], multiplex networks [3, 51], etc.

6 CONCLUSIONS

In this paper, we propose an attributed network embedding ap-
proach CFANE. The core of CFANE is the cross fusion layers which
inherit the smoothing idea from propagation based methods, en-
code local community structure during propagation, and provide
an additional channel for treating node attributes. Experimental
results demonstrate that CFANE significantly improves the state-of-
the-art in both node classification and node clustering. In the future,
we plan to extend CFANE for supervised network embedding, and
explore the possibility of applying cross fusion layers to the other
types of networks such as heterogeneous networks and dynamic
networks.

ACKNOWLEDGMENTS

This work is supported by the Key-Area Research and Development

Program of Guangdong Province (No. 2020B010164003), the Na-
tional Natural Science Foundation of China (No. 61690204, 61672274),
and the Collaborative Innovation Center of Novel Software Technol-
ogy and Industrialization. Hanghang Tong is partially supported by

NSF (1947135, 2003924, and 1939725). Yuan Yao is the corresponding

author.

REFERENCES

[1] Sambaran Bandyopadhyay, N. Lokesh, and M. N. Murty. 2019. Outlier Aware
Network Embedding for Attributed Networks. In AAAL

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-
sentations with global structural information. In CIKM. 891-900.

[3] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang.
2019. Representation Learning for Attributed Multiplex Heterogeneous Network.
In KDD.

[4] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. Harp: Hierar-
chical representation learning for networks. In AAAL

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgen: fast learning with graph
convolutional networks via importance sampling. In ICLR.

[6] Jifan Chen, Qi Zhang, and Xuanjing Huang. 2016. Incorporate group information
to enhance network embedding. In CIKM. 1901-1904.

[7] Wei-Lin Chiang, Xuanging Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An efficient algorithm for training deep and large graph
convolutional networks. In KDD. 257-266.

[8] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD.

[9] Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Ismail Oner Sebe, Ahmed

Taei, and Sunita Verma. 2015. Ego-net community mining applied to friend

suggestion. Proceedings of the VLDB Endowment 9, 4 (2015), 324-335.

Alessandro Epasto, Silvio Lattanzi, and Renato Paes Leme. 2017. Ego-splitting

framework: From non-overlapping to overlapping clusters. In KDD. 145-154.

Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths

in heterogeneous information networks for representation learning. In Proceed-

ings of the 2017 ACM on Conference on Information and Knowledge Management.

1797-1806.

[12] Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding..

In IJCAL

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. In KDD.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in Neural Information Processing Systems.

1024-1034.

[15] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated attributed network

embedding. In SDM.

[16] Junghwan Kim, Haekyu Park, Ji-Eun Lee, and U Kang. 2018. Side: representation

learning in signed directed networks. In WWW.

[17] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. NIPS

Workshop on Bayesian Deep Learning (2016).

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.

[19] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix

factorization. In NIPS.

[20] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.

Attributed network embedding for learning in a dynamic environment. In CIKM.

=
A=A

[
jan

[14

[18

[21

[22

[23

[24

[25

IS
S

[27

[28

[29

[30]

[31

@
£,

[33

(34

[35

[36

[37

[38

@
20,

[40

[41

[42

[43

(44

[46

[47

(48]

[49

[50

[51

o
S

[53

[54

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAL

Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2018. Attributed
social network embedding. TKDE (2018).

Jie Liu, Zhicheng He, Lai Wei, and Yalou Huang. 2018. Content to node: Self-
translation network embedding. In KDD.

Jie Liu, Na Li, and Zhicheng He. 2019. Network Embedding with Dual Generation
Tasks. In IJCAL

Qingging Long, Yiming Wang, Lun Du, Guojie Song, Yilun Jin, and Wei Lin. 2019.
Hierarchical Community Structure Preserving Network Embedding: A Subspace
Approach. In CIKM. 409-418.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
JMLR (2008).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In KDD. 1105-1114.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.
Geom-gen: Geometric graph convolutional networks. In ICLR.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In WSDM.

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In KDD.

Xiaofei Sun, Jiang Guo, Xiao Ding, and Ting Liu. 2016. A General Framework for
Content-enhanced Network Representation Learning. arXiv (2016).

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
DyRep: Learning Representations over Dynamic Graphs. In ICLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998-6008.

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

Petar Velickovi¢, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. In ICLR.

Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In KDD.

Suhang Wang, Charu Aggarwal, Jiliang Tang, and Huan Liu. 2017. Attributed
signed network embedding. In CIKM.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shigiang Yang. 2017.
Community Preserving Network Embedding. In AAAL

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In WWW. 2022-2032.

Felix Wu, Tianyi Zhang, Amaur Holanda de Souza, Christopher Fifty, Tao Yu,
and Kilian Q Weinberger. 2019. Simplifying graph convolutional networks. In
ICML.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML. 5453-5462.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.
Network representation learning with rich text information. In IJCAL

Dejian Yang, Senzhang Wang, Chaozhuo Li, Xiaoming Zhang, and Zhoujun Li.
2017. From properties to links: Deep network embedding on incomplete graphs.
In CIKM.

Hong Yang, Shirui Pan, Ling Chen, Chuan Zhou, and Peng Zhang. 2019. Low-Bit
Quantization for Attributed Network Representation Learning. In IJCAL

Liang Yang, Zhiyang Chen, Junhua Gu, and Yuanfang Guo. 2019. Dual Self-Paced
Graph Convolutional Network: Towards Reducing Attribute Distortions Induced
by Topology. In IJCAL

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In KDD. 793-803.
Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. 2018. Scalable
Multiplex Network Embedding.. In [JCAL

Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang,
Martin Ester, and Can Wang. 2018. ANRL: Attributed Network Representation
Learning via Deep Neural Networks. In [JCAL

Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable
Graph Embedding for Asymmetric Proximity. In AAAL 2942-2948.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
network embedding by modeling triadic closure process. In AAAL

	Abstract
	1 Introduction
	2 Problem Statement
	3 The Proposed Approach
	3.1 Model Overview
	3.2 Cross Fusion Layer
	3.3 View Weighting
	3.4 Training
	3.5 Discussions and Analyisis

	4 Experimental Evaluations
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

