
Real-Time Operating Systems for Cyber-Physical
Systems: Current Status and Future Research

Anthony Serino *
Computer Science Program

Misericordia University
Dallas, PA 18612

serinoa1@misericordia.edu

Liang Cheng
Department of Computer Science and Engineering

Lehigh University
Bethlehem, PA 18015

cheng@lehigh.edu

Abstract—This paper studies the current status and future
directions of RTOS (Real-Time Operating Systems) for time-
sensitive CPS (Cyber-Physical Systems). GPOS (General Purpose
Operating Systems) existed before RTOS but did not meet
performance requirements for time sensitive CPS. Many GPOS
have put forward adaptations to meet the requirements of
real-time performance, and this paper compares RTOS and
GPOS and shows their pros and cons for CPS applications.
Furthermore, comparisons among select RTOS such as VxWorks,
RTLinux, and FreeRTOS have been conducted in terms of
scheduling, kernel, and priority inversion. Various tools for
WCET (Worst-Case Execution Time) estimation are discussed.
This paper also presents a CPS use case of RTOS, i.e. JetOS
for avionics, and future advancements in RTOS such as multi-
core RTOS, new RTOS architecture and RTOS security for CPS.

Index Terms—Real-time Operating Systems; Worst-Case Exe-
cution Time; Cyber-Physical Systems.

I. INTRODUCTION

Real-time operating systems (RTOS) are used in a wide
range of cyber-physical systems (CPS) including industrial
systems, such as process control systems, avionics, and nuclear
power plants. Most RTOS run on embedded systems consisting
of pieces of hardware that work as controllers with dedicated
functions within mechanical and/or electronic systems. Real-
time operating systems are critical for those mechanical and/or
electronic systems with real-time requirements because they
could not be operated safely without RTOS. In many real-time
CPS a missed deadline can lead to disastrous consequences.

A. Hard Real Time vs. Soft Real Time Systems
Cyber-physical systems include hard real-time systems and

soft real-time systems [12]. The primary difference between
hard real-time and soft real-time is that the consequences
of missing a deadline differ from each other. For instance,
performance (e.g. stability) of a hard real-time system such
as an avionic control system or a nuclear power plant, is
dependent on both the timeliness of the operation results
and the correctness of the results. However, for soft real-
time systems such as a multimedia on-demand system, their
performance is largely dependent on the results. A hard real-
time system is used in systems that are time sensitive and

* This work was done when A. Serino was with a REU program hosted by
the Department of Computer Science and Engineering at Lehigh University.

must meet their deadlines in order to avoid system failures.
However, deadlines in soft real-time systems are less strict so
that if they miss their deadlines it does not result in disasters.
Note that hard real-time systems do not have an easy way to
recover from a failure, whereas a soft real time system can be
time-elastic.

B. Challenges and Contributions

When researchers and engineers design and implement
time-sensitive CPS, it is important and challenging to select
and optimize RTOS suitable for the targeted applications.
There are many existing studies on RTOS and their results are
scattered in a large number of publications. Therefore, CPS
researchers and engineers may spend a lot of time in sifting
through papers and comparing various RTOS techniques to
select a proper RTOS for their applications while considering
many factors such as scheduling mechanisms and priority
inversion solutions influencing their selection decisions.

This paper surveys CPS-related RTOS technologies, dis-
cusses select topics including new adaptations on solving pri-
ority inversion, a newly purposed platform for WCET (worst-
case execution time) tool development, and a RTOS that
supports multi-core processing. The contribution of this paper
is that it provides a quick reference of RTOS technologies for
CPS researchers and engineers and helps them identify the
proper RTOS and techniques for their CPS applications.

This paper starts with a comparison between GPOS and
RTOS and discusses their advantages and disadvantages for
general computing and for real-time cyber-physical systems.
Section II presents different techniques used to handle task
scheduling and address priority inversion. Section III provides
a comparison between three RTOS implementations, namely
VxWorks, RTLinux, and FreeRTOS. This comparison cov-
ers kernels of the operating systems, schedulers used, and
how they solve priority inversion. The next section discusses
WCET analysis tools used today in industry along with the
development of a new platform to build and compare these
tools. Section V provides a use case of a recently developed
RTOS, i.e. JetOS in avionics. The final section of this paper
discusses future research and developments of RTOS for CPS
ranging from a multi-core RTOS (HIPPEROS) to a new RTOS
platform (HERCULES).



TABLE I: Priority Inversion Methods

Priority Inversion Method Ensures execution of
the highest priority task

Swaps the pri-
ority of tasks

Expands the amount
of priorities available

Finishes running lower priority
tasks to free up critical sections

Priority Inheritance 3 3
Priority Ceiling 3 3
Priority Remapping 3 3 3
Priority Exchange 3 3 3

II. GPOS VS RTOS

A general comparison between RTOS and GPOS is provided
in this section to show the advantages and weaknesses of these
operating systems when used for real-time cyber-physical
system applications.

A. Task Scheduling

The first part of differences is the way where GPOS and
RTOS perform their task scheduling. Generally speaking, a
GPOS utilizes a fairness policy that allows all processes to
share the processor. This hinders the GPOS’ ability to handle
time sensitive tasks because it cannot guarantee task dispatch
latencies. In contrast, RTOS use priority based preemptive
scheduling mechanisms to enable high priority tasks to take
the processor from lower priority tasks and allow the high
priority tasks to run without interruption. A RTOS may also
utilize every resource at its disposal to get peak performance.

1) Scheduling techniques:
a) Round robin scheduling: This form of scheduling uses

processor time sharing and gives every process with the same
priority a set of time slices [4] [5], each of which corresponds
to a fixed amount of processor or CPU time. When a process
uses up a CPU time slice the scheduler forces it out of the
CPU so that it takes turns to use the CPU resource with
other processes. This may lead to relatively large overhead
of context switching.

b) First-in-first-out (FIFO) scheduling: The FIFO sched-
uler will try to execute the task with the highest priority
first, but when the processes have the same priority they are
scheduled in the order of their arrivals. The first task there
will run to completion before starting the next one, or until a
higher priority task takes the processor [4] [5].

c) Rate-monotonic scheduling: This scheduling method
is a static-priority algorithm that sets the priority level for
each task in the order of their period information. Short period
tasks execute frequently, and a long period refers to infrequent
execution. Short period tasks are given higher priorities while
long period ones are given low priorities. This lets high priority
tasks run first, and it is best used when there are well defined
periodic tasks with the same CPU run time length [4] [5].

d) Earliest-deadline-first (EDF) scheduling: This
scheduling method computes the priority of processes
dynamically based on their arrival time, execution
requirements and deadlines so that it schedules the task
with the earliest deadline first [4] [5]. EDF scheduler is more
capable of making all deadlines to be met when system load
is high comparing to rate-monotonic scheduling.

2) Kernel: Generally the GPOS does not support preemp-
tion. Preemption is when processes and threads with higher
priorities can take the processor from lower priority tasks.
By not allowing preemption the GPOS suffers when trying
to complete a task that is time sensitive as it can make the
task wait and thus miss its deadline. The GPOS is unable
to cancel system calls even if they are from a lower priority
task, which leads to unpredictable delays. The advantages
of its kernel are in its support for widely used application
programming interfaces (APIs) and customizable operating
system components for application-specific demands.

The RTOS fully supports preemption where it imposes an
upper bound on how long the preemption has its interrupts
disabled. This allows a high priority task to run to completion
without interruption and thus let time sensitive tasks in CPS
meet their deadlines. The kernel of a RTOS tries to use the
least amount of resources possible. To keep it simple only
services with short execution paths are allowed in the kernel,
and its process loading happens outside along with its file
systems. This architecture makes it so that if one of these
systems fails it does not corrupt other services or the kernel.
The benefit of the RTOS kernel is that there is only a small
core of fundamental operating system services in the kernel,
which are signals, timers, and the scheduler [14].

B. Priority Inversion

Priority inversion occurs when a high-priority task (H)
shares a resource or critical section with a low-priority task
(L) and waits for the L to finish its task while L is preempted
by a middle-priority task (M), which does not use the shared
resource nor run the critical section. In this scenario H has to
wait for M to finish so that the control can be given back to
L for its release of the shared resource or completion of the
critical section, and thus in effect the higher priority task has
to wait for the middle-priority task even though H does not
shared any resource or critical section with M. This is an issue
for time sensitive tasks as it can prevent them from meeting
their deadlines by forcing them to wait for the availability of
needed resources. This needs to be fixed as it can result in
blocking including chain blocking or worse a full deadlock.
There are a few protocols to solve priority inversion.

Table I lists and compares different priority inversion meth-
ods. It shows how these methods can manipulate the priority of
tasks to achieve priority inversion inside RTOS. Most of these
methods are expansions of Priority Inheritance, which let L
inherit the priority of H when L is using the shared resource
or in the critical section at the time when H starts pending
for the shared resource of the critical section. Both Priority



Remapping and Priority Exchange use priority inheritance as
a base for their priority inversion solutions. The key difference
is the adjustment that these methods make to Priority Inher-
itance. Priority Remapping doubles the amount of priorities
assigned to tasks, but only using the added odd ones as marks
for lower priority tasks trying to attain resources when there is
a higher priority task using the resources. Priority Exchange
changes the way in which it gets the lower priority task to run
such that it will not indefinitely restrict the critical section.
Priority Ceiling is unique in the bunch listed here as it tests
whether a task to be scheduled can reach a higher priority than
that of the current running task and all its inherited properties,
and if it fails to meet this priority then the pending task gets
suspended.

1) Priority inheritance: The priority inheritance protocol
is where if a higher priority process is waiting for a lower
priority process for a shared resource the process scheduling
algorithm gives the higher or the highest priority to the lower
priority task on the processor so that it cannot be preempted
by a different task until it completes the execution of its
critical section [2]. For example, there is a process A on the
processor of priority 2 and there is a higher priority process B
of priority 7 that could not preempt it. The process scheduling
algorithm would assign process A priority 9 temporarily so that
it finishes its critical section on the processor without being
interrupted by other processes which could delay process B
further. This allows process B to get access to the resource as
fast as possible, and once the resource is freed by process A
the process scheduling algorithm reverts process A’s priority
back to its original priority of 2.

2) Priority ceiling: The priority ceiling is where each
resource is assigned a priority ceiling where the priority is
equal to the highest priority of any task which may lock
the resource. This works by temporarily raising the priority
of tasks in certain situations. Basically if process A tries to
preempt the critical section of another process to execute in
its own critical section, then the priority of the new section
should be higher than the priority of inherited properties of all
the preempted sections. If this fails then process A is denied
entry into the critical section and is suspended [2].

3) Other priority inversion solutions:

a) Priority remapping: As an improvement to the pri-
ority inheritance protocol, the priority remapping method
expands the highest priority from 64 to 128 without changing
the interface of the task creation function by multiplying the
priority of a task by 2 as its internal priority. This means that
users still only see 64 priorities while their internal priority set
is extended to {0,2,4,...,126,128}. The odd internal priorities
are left for changing when priority inversion happens.

b) Priority exchange: This method is also an improve-
ment of the priority inheritance method. It swaps the tasks’
priorities when a higher priority task is blocked by a lower
priority task. The priorities will be swapped back after the
lower priority task finishes running the critical section [3].

C. Modified GPOS

A modified GPOS is the result of adapting and changing
GPOS to have the same capabilities of both GPOS and RTOS.
It has a major advantage in that if it works like GPOS it
can be used more widely for a greater amount of tasks, and
if it has the capabilities of RTOS then it supports tasks for
time critical CPS. For example, Linux 2.6 added preemption
[11]. Generally when a GPOS is directly modified to support
RTOS functionality high-resolution timers will be used. This
modification enables the process scheduler to make the system
more reactive and event-driven. However, it is not as fast as
other RTOS and the low latency patches for the GPOS timers
do not solve the priority inversion issue [14].

Another way to improve GPOS is by introducing a new
architecture called dueling kernels where the GPOS is ran on
top of an RTOS [14]. This architecture sends real-time tasks
to run on the RTOS, with a higher priority than other tasks
running on the GPOS. The RTOS gives these tasks the ability
to preempt the tasks on GPOS, and then gives the CPU back to
the GPOS when it finishes running the high priority tasks. This
system has an issue where the tasks running on the RTOS have
limited use of the GPOS services due to preemption issues.
This causes RTOS to recreate services that exist in the GPOS.
RTOS tasks also cannot use the memory management unit
which is used by the GPOS for non-realtime processes. GPOS
services that are ported often have different vendor extensions
that do not work with other vendor’s extensions.

III. VXWORKS, FREERTOS, RTLINUX

Figure 1. RTLinux Architecture Overview

The RTOS chosen for comparisons in this paper are some
top competing RTOS in industry. VxWorks and RTLinux have
been extensively compared to each other through research
due to the continuing development on both the commercially
available VxWorks and the free RTLinux. FreeRTOS being
a more recent RTOS compared to VxWorks and RTLinux
has seen little comparisons with either VxWorks or RTLinux



directly. Important aspects to compare them include their
kernels, schedulers, and how they handle priority inversion.

A. Kernel

1) RTLinux: RTLinux has a special design for its kernel
because it has two kernels as illustrated in Figure 1. RTLinux
uses a specialized real-time kernel called the RTCore [4]. The
second kernel is the standard Linux kernel which is used
for regular applications that do not have time constraints.
Both interrupt handling and thread handling are controlled by
RTCore, which will send these interrupts to the appropriate
interrupt handler. The RTCore also restricts the Linux kernel
by making it unable to disable interrupts to make sure it does
not interfere with process scheduling. Thus the Linux kernel
can only run when there is a task that is not realtime. Real-
time applications can communicate with Linux kernels through
first-in-first-out pipes. The duel kernels gives RTLinux the full
functionality of Linux while adding real-time capabilities [6].

2) VxWorks: VxWorks uses a single micro-kernel to handle
basic kernel functions [4]. Additional functions like file shar-
ing and networking have to be loaded from provided libraries.
This system provides flexibility to fit its functionality without
loosening its constraints on available memory and resources
[8] [9].

3) FreeRTOS: FreeRTOS also utilizes a single micro-
kernel to handle real-time tasks. This kernel supports dynamic
scheduling or a priority based scheduler, blocking and dead-
lock avoidance, and scheduler suspension. It can utilize fully
featured API, or a lightweight API [8] [9].

These kernels are similar in how they all have a means
to handle real-time tasks. Some of the major contrasts for
RTLinux is that it supports a duel kernel which allows it to
handle a wide variety of tasks at the cost of being a larger
kernel by having both the standard Linux kernel and the
RTCore. The architecture of VxWorks and FreeRTOS are
similar in using micro-kernels.

Figure 2. Architecture for VxWorks and FreeRTOS

B. Scheduler

The scheduler of RTOS is an important part of how an
RTOS decides the next task to be run on the processor, and
to make sure that all tasks meet their deadlines. This section
will discuss similarities and differences between the schedulers
used by RTLinux, VxWorks, and FreeRTOS.

1) RTLinux: RTLinux has a flexible scheduler by allow-
ing different scheduling techniques to be used based on
the program’s needs. The RTLinux scheduler supports FIFO
scheduling, EDF scheduling, and rate-monotonic scheduling.
This enables different systems to use different schedulers
suitable for achieving their real-time requirements [5].

2) VxWorks: VxWorks uses a preemptive round-robin
scheduling algorithm. Task priorities can range from 0 to 255
where 0 is the highest priority [11]. If a task with a higher
priority than the one on the processor is ready to run, then
the lower priority task will be suspended so that the higher
priority task can be ran. If the two tasks have the same priority
then they go into round-robin scheduling. If a resource is
unavailable then the processor swaps back to the lower priority
task until the resource is available. VxWorks supports POSIX
API which makes the system FIFO. This provides flexibility
to meet different industrial needs [5].

3) FreeRTOS: FreeRTOS uses a dynamic preemptive pri-
ority based scheduling algorithm [9]. This scheduler can allow
the user to choose running processes in a cooperative manner
or using a preemptive policy. The difference is that the
preemptive policy always runs the highest priority task, and
when two tasks have the same priority they share CPU time.
The cooperative manner allows context switches to occur by
calling a function or when a task gets blocked.

Both RTLinux and VxWorks use the priority inheritance
protocol. However, FreeRTOS does not use one of the typical
ways of dealing with priority inversion; it deals with deadlocks
formed by priority inversion by enforcing non-blocking tasks
and by blocking tasks for fixed amounts of time.

IV. WCET TOOLS

As delays may impact the stability and correctness of
cyber-physical systems, it is important to analyze the delays
introduced by the operating systems [17] and by the networks
[22] for CPS applications. WCET (Worst-Case Execution
Time) analysis tools give an estimated worst case execution
time of a task. Modern processor components like caches and
pipelines complicate the task of estimating the WCET [17]. If
a tool does not take pipeline or cache behaviors into account it
may overestimate the WCET by multiple orders of magnitude.

A. AbsInt aiT

AbsInT aiT is a worst-case execution time analysis tool. It
addresses the cache and pipeline issue by statically analyzing
a task’s cache and pipeline behaviors, which enables obtaining
a correct upper bound of WCET of the task. This tool uses
the technique of abstract interpretation, offers a graphical
user interface to visualize the WCET path, and allows for
an interactive way to inspect pipelines and caches [17]. The



TABLE II: WCET Tools

Tool Name Analysis Target Analysis Method Goal Source
AbsInt aiT Cache and pipeline

behaviors
Static analysis and
abstract interpretation

Find WCET for
RTOS

https://www.absint.com/ait/index.htm

Bound-T Tool Code Presburger-arithmetic
based analysis

Find WCET for
RTOS

http://www.bound-t.com/

OTAWA Toolbox N/A N/A Help compare WCET
tools to each other

https://www.tracesgroup.net/otawa/

abstract interpretation uses a semantic based method for safe
and static program analyses.

The overall method applied by AbsInT aiT has multiple
steps in finding the WCET. (1) Reconstruction of the control
flow; (2) Value analysis: computation of address ranges for
instructions’ access memory; (3) Cache analysis: classifies
memory references as cache hits or misses; (4) Pipeline analy-
sis: predicts the behavior of the program on the processor; (5)
Path analysis: determines the worst case execution path; and
(6) Analysis of loops and recursive procedures. Steps 2, 3, and
4 are done with abstract interpretation and the path analysis
is done using integer linear programming [17].

B. Bound-T Tool

The Bound-T tool is software used for static analysis of
code to estimate its WCET and stack usage for embedded
systems. This tool in its current state is not going through
further development, and it is currently open source. The
Bound-T tool uses the same static analysis approach as that
used by AbsInT aiT. The Bound-T tool was developed for
local and safe analysis of simple control flows. It uses a PA
(Presburger Arithmetic)-based analysis where an approximate
model of computer arithmetic is used, which assumes that
integer variables never overflow or wrap around. However,
this approximation leads to an issue of not being able to find a
feasible execution path. In order for the Bound-T tool to start
getting back on track to find WCET for embedded systems it
either has to drop the PA-based analysis or find a new form
of preliminary analysis to ensure that the PA analysis can be
applied [15].

C. OTAWA Toolbox

The OTAWA toolbox is a WCET analysis tool framework
that supports hosting researchers’ WCET algorithms and in-
cludes an abstraction layer that separates the hardware analysis
from the instruction set architecture. This framework should
also allow the comparison between tools and support the
development of new tools. The OTAWA toolbox was used in
the MERASA project to help find the most optimal WCET
analysis tool for a multicore processor running mixed-critical
workloads [16].

Table II summarizes and compares the WCET tools dis-
cussed in terms of analysis targets, analysis methods and
design goals. Two out of these three tools are designed to find
WCET of a task in RTOS. The OTAWA toolbox is designed
to help researchers to be able to run multiple WCET tools on
the same architecture.

Both the AbsInt aiT tool and the Bound-T tool use static
analysis to find the WCET. The difference is that Bound-T has
run into trouble in that it uses PA-based analysis that may not
be able to reliably find upper bounds. The AbsInt aiT tool is a
popular tool for specific processors. The OTAWA framework
should allow for newly developed WCET analysis tools to be
compared with existing tools, and help further development
of WCET tools by offering a standard framework and C++
library [16].

V. A CPS USE CASE OF RTOS

Avionics is a good example where real time cyber-physical
systems are used. There has been recent development of a
specific type of RTOS, i.e. JetOS, to fully meet the ARINC653
international standard for aircraft usage. JetOS originates
from POK RTOS, an open source project, which partially
meets the ARINC653 standards. The critical parts that have
been reworked or added to meet the standard include POK’s
scheduler, network stack, memory manager, added separate
memory, and a reduction of the kernel size for less errors. The
system uses ordinary partitions which separates memory, and
system partitions are used to utilize services outside of the
ARINC653 standard. Both of these types of partitions from
the kernel point of view are the same. Currently there are a
working prototype of JetOS and its extensions [13] [23].

The kernel of JetOS dropped POK’s AADL (Architecture
Analysis and Design Language) configuration tools for XML
based configuration files. Furthermore it dropped the SPARC
platform in favor of building JetOS on top of a platform that
other avionic systems use. The platform chosen to replace it
was the x86 and powerPC.

The kernel is built to support multiple schedulers because
different partitions can utilize different schedulers, and it is
configured statically where the number of partitions, partition
memory size, port, names, etc. cannot be changed [13]. Each
partition may have one or more processes. Partitions are
scheduled based on a round-robin algorithm. Intra-partition
schedulers implement lock-wait-unlock and priority schedul-
ing. Resources are pre-allocated to ensure reliability. The
memory is pre-allocated to every partition. These partitions
are scheduled differently than kernel modules where partitions
are run in the user mode with time and space constraints [13].

VI. FUTURE DIRECTIONS

With the rising need for both faster computing speed and
better resource usage, multi-core computing has existed in
general-use computers for a number of years. A multicore
RTOS as new architecture for embedded systems and CPS



needs to aim at providing a major increase in both speed and
resource usage including energy efficiency [10].

A. Multicore RTOS

A challenge in developing multicore RTOS is how to
evaluate it according to industry standards. Uni-core systems
meet the requirements of standards such as ARINC653 and
AUTOSAR. Researchers have put forward the use of general
purpose operating systems, such as Linux, in order to provide
an environment where they could evaluate a multicore real-
time system. Although this approach has the advantage of
being able to reuse code, it runs into issues where Linux
was not built to support hard real-time systems or to meet
the constraints for safety-critical applications. HIPPEROS,
a multicore RTOS project launched in 2010, is built from
scratch so that it can implement hard real-time techniques
with multicore design principles and scale with an increasing
amount of cores [10].

1) Kernel: HIPPEROS’ kernel is able to run on multiple
different architectures and platforms with an arbitrary number
of cores. It uses distributed asymmetric micro-kernel architec-
ture that allows each core to execute a local part of the kernel.
This enables a dedicated core to execute the kernel’s system
calls, scheduler, and resource handling and frees up parts of
the kernel for parallel processing. The kernel is configurable
in that a CPS developer or system designer can select the
scheduling policy or resource allocation protocol at its build
time. To manage hard real-time tasks it uses a process model
that gives executable and timing information like deadline,
period, and worst-case execution time.

a) Asymmetric kernel architecture: The problem with
symmetric kernel architecture design is that the cores are exe-
cuted with the same kernel code and protected data structures
with fine-grained lock mechanisms. The asymmetric design
allows for one core to fully dedicate itself to running the
scheduler and dispatching the processes to other cores. For the
HIPPEROS project the dedicated core is called the master core
and is responsible for managing global resources, scheduler,
system calls, and message passing to allow the kernel to be
executed in parallel. It works as follows. Whenever there is
a scheduling decision the master core must be woken up to
notify the slave core (any core other than the master core) to
perform a context switch. The slave cores can only perform
context switch after receiving an inter-processor interrupt (IPI)
from the master core. This system of master and slave cores
does not require locking mechanisms, and it is expected to be
able to handle up to 8 cores before overloading the master
core without using clustering for enhancement [1] [10].

2) Scheduler: The scheduler’s API is preemptive and prior-
ity based. When a task switches state (e.g. blocked to ready), a
scheduler module is called and it decides if context switching
must occur according to tasks’ priorities. If a task misses
its deadline, then a configurability policy enacts a range of
responses that can terminate the process, ignore the event, or
change the priority of the process [10].

B. HERCULES Framework

HERCULES is a project for the development of a high-
performance real-time architecture for low-power embedded
systems. Estimated features of the HERCULES project include
a reduction in energy consumption, productivity improvement
in programming and maintaining advanced computing sys-
tems, increased concurrency and parallelism in applications,
and enhanced trust of embedded systems. The objective of
the project is to introduce predictability into embedded high-
performance computing. Use cases of HERCULES include
avionic and automobile cyber-physical systems.

The avionic use case considers future airplanes that will
have more complex needs in regards to image processing
or computer vision, which may be used during landing,
surveillance activities, and navigation. Moreover, the number
of cameras on board an airplane is expected to increase to
support possible direct video streams for the pilot and crew and
possible automation based on meaningful data extraction from
the video streams. Machine learning techniques can be applied
and have been proven to perform image processing at the
cost of increasing algorithmic complexity and computational
requirements. A visual object tracking application based on
Airbus high-speed machine learning techniques has been used
to test the HERCULES framework with various programming
models and GPU-based platforms [7].

The automobile use case is involved with autonomous driv-
ing for valet parking. The HERCULES framework was chosen
to be tested for valet parking for three reasons. First it has
subset functionalities required for self-driving cars, and testing
is affordable within the time frame of the HERCULES project.
Second, the project team has simulators and test environments
to create the scenarios. Third, the agents drive at low speeds,
which offers clear safety advantages. This use case shows
four major areas where algorithms will be applied: perception
(sensor data processing), data fusion (creates environmental
model), decision (action and path planning), and localization
(GPS and MAP data management) [7].

These use case studies show the flexibility of the HER-
CULES framework, which can be adapted to different indus-
tries.

C. Security Research related to RTOS

As RTOS has been used in devices and SCADA (Supervi-
sory Control And Data Acquisition) systems for time-sensitive
and mission-critical tasks, its security is an important area
of research. Several security vulnerabilities of RTOS have
been discussed in the literature, such as lack of authentica-
tion enforcement, inefficiency of encryption, code injection,
exploiting shared memory, priority inversion, denial of service
attacks, and inter-process communication attacks.

Adversaries may attack the devices or embedded systems
through accessing the remote debugging tools of RTOS. For
example, US-Cert Vulnerability Note VU362332 [18] stated
that VxWorks debug service was enabled by default so that
an attacker might be able to fully comprise the embedded
systems and create severe damages to the physical processes



controlled by the SCADA systems through remote memory
dump and remote function calls. Thus security should be a
top priority when designing, implementing, and configuring
RTOS.

RTOS security may be enhanced by detecting attacks based
on systems call timing and sequences [20], network activities,
and power consumption patterns of embedded systems [22].
For example, a class of attacks, known as payload attacks
and successfully launched by Stuxnet, modifies PLC control
programs (i.e., the “payload” for PLC firmware which may be
a RTOS) and causes damages to the physical system. In [20]
the authors studied firmware-level detection of PLC payload
attacks that alter the timing behavior of the payload. WCET
analysis and monitoring have also been used to enhance RTOS
security [21].

RTOS also needs to address the memory fragmentation issue
to improve its reliability and avoid program stalls as field
devices such as PLCs (Programmable Logic Controllers) using
RTOS may continuously run in an extensive period of time in
months and even years without rebooting [19].

VII. CONCLUSION

With the advancement of real-time CPS applications such
as autonomous driving and industry control, RTOS becomes
an important topic for CPS researchers and engineers. This
paper surveys the current status of RTOS and provides a
quick reference of RTOS technologies to help researchers
and engineers identify proper RTOS and related techniques
for their CPS applications. This paper has introduced how
RTOS have been developed from GPOS, and how they have
different advantages and disadvantages for general computing
and dealing with real-time requirements. We have compared
three RTOS implementations that are used in industry, namely
VxWorks, RTLinux, and FreeRTOS, in terms of their kernels,
schedulers, and how they handle priority inversion. The paper
also describes three tools used in industry for WCET analysis.
The discussions of JetOS and HERCULES framework demon-
strate how existing RTOS can be adapted and changed to meet
CPS requirements. This paper also presents future directions
for research and development of RTOS from the perspectives
of multi-core systems and security.

ACKNOWLEDGMENT

The authors would like to thank the supports provided by the
U.S. National Science Foundation (NSF) under Award Num-
bers CNS-1757787 and CNS/CPS-1646458, and by the U.S.
Department of Energy under Award Number DE-OE0000779.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the sponsors of the research.

REFERENCES

[1] Juan Rivas, Joel Goossens, Xavier Poczekajlo, Antonio Paolillo. Imple-
mentation of memory centric scheduling for COTS multi-core real-time
systems. In Proceedings of the 31st Euromicro Conference on Real-time
Systems. 2019.

[2] Lui Sha, Ragunathan Rakumar, John Lehoczky. Priority inheritance
protocols: an approach to real-time synchronization. IEEE Transactions
on Computers, Vol. 39, No. 9, pp. 1175-1185. September 1990.

[3] Silambarasan, Ramanatha Venkatesan. Handling of priority inversion
problem in RTLinux using priority ceiling protocol. In Proceedings of
the International Journal of Advanced Engineering Research and Science
(IJAERS). Vol. 3, Issue 6. June 2016.

[4] Daniel Forsberg and Magnus Nilsson. Comparison between scheduling
algorithms in RTLinux and VxWorks. Technical Report, Computer Sci-
ence and Engineering at the University of Linköping, November 2006.

[5] Stefan Holmer, Osker Hermansson. A comparison between the scheduling
algorithms used in RTLinux and in VxWorks - both from a theoretical and
a contextual view, Technical Report, Computer Science and Engineering
at the University of Linköping, 2006.

[6] Federico Reghenzani, Glueppe Massari, William Fornaclari. The real-time
Linux kernel: A survey on Preempt RT. ACM Computing Surveys. Vol.
52, No. 1, Feb. 2019.

[7] Marko Bertogna. High-Performance Real-time Architectures for
Low-Power Embedded Systems. H2020-EU.2.1.1. Project Website:
https://cordis.europa.eu/project/rcn/199161/factsheet/en. 2016-2018.

[8] Ming-Yuan Zhu. Understanding FreeRTOS: A Requirement Analysis.
CoreTek Systems, Inc., Beijing, China, Technical Report, 2011.

[9] Rich Goyette. An analysis and description of the inner Workings of
the FreeRTOS kernel.” Course Report for SYSC5701: Operating Sys-
tem Methods for Real-Time Applications, Department of Systems and
Computer Engineering, Carleton University. April 2007.

[10] Antonio Paoillo, Oliver Dersenfans, Vladimir Svoboda, Joel Goossens,
Ben Rodriguez. A New configurable and parallel embedded real-time
micro-kernel for multi-core platforms. In Proceedings of the ECRTS
Workshop on Operating Systems Platforms for Embedded Real-Time
applications (ECRTS-OSPERT’15), July 2015.

[11] Sukhyun Seo, Junsu Kim, Su Min Kim. An analysis of embedded operat-
ing systems: Windows CE, Linux, VxWorks, uC/OS-II, and OSEK/VDX.
Journal of Applied Engineering Research, 12(18), pp. 7976-7981, 2017.

[12] C. M. Krishna and Kang G. Shin. Real-Time Systems (McGraw-Hill
Series in Computer Science). McGraw-Hill College. December 1996.

[13] K.M. Mallachiev, Nikolay Pakulin, and Alexey Khoroshilov. Design and
architecture of real-time operating system. Proceedings of the Institute for
System Programming of the RAS. Vol. 28, pp. 181-192. 2016.

[14] Paul Leroux. RTOS versus GPOS: What is best for embedded develop-
ment? Embedded Computing Design. January 2005.

[15] Niklas Holsti. Status of the Bound-T time and stack analyser.
http://www.bound-t.com/.

[16] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: An Open
Toolbox for Adaptive WCET Analysis. In: Min S.L., Pettit R., Puschner
P., Ungerer T. (eds) Software Technologies for Embedded and Ubiquitous
Systems. SEUS 2010. Lecture Notes in Computer Science, vol 6399.
Springer, Berlin, Heidelberg, 2010.

[17] AbsInt. The Industry Standard for Static Timing Analysis.
https://www.absint.com/ait/index.htm

[18] US-Cert, Vulnerability Note VU362332, Wind River Systems VxWorks
debug service enabled by default, https://www.kb.cert.org/vuls/id/362332/

[19] Bonnie Zhu, Anthony Joseph and Shankar Sastry, A taxonomy of cyber
attacks on SCADA systems. 2011 International Conference on Internet of
Things and 4th International Conference on Cyber, Physical and Social
Computing, Dalian, pp. 380-388, 2011.

[20] Huan Yang, Liang Cheng, and Mooi Choo Chuah, Detecting payload
attacks on programmable logic controllers (PLCs), IEEE Conference
on Communications and Network Security (CNS), Beijing, China, May
2018.

[21] Mohammad Hamad, Zain A. H. Hammadeh, Selma Saidi, Vassilis
Prevelakis, and Rolf Ernst. Prediction of abnormal temporal behavior in
real-time systems. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing (SAC’18). ACM, New York, NY, USA, pp. 359-
367. 2018.

[22] Bjoern Dusza, Christoph Ide, Liang Cheng and Christian Wietfeld,
CoPoMo: a context-aware power consumption model for LTE user
equipment, Transactions on Emerging Telecommunications Technologies,
Vol. 24, No. 6, pp. 615-632, 2013.

[23] HV. Cheptsov and A. Khoroshilov, ”Dynamic Analysis of ARINC 653
RTOS with LLVM,” 2018 Ivannikov Ispras Open Conference (ISPRAS),
Moscow, Russia, 2018, pp. 9-15, doi: 10.1109/ISPRAS.2018.00009.


