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A simple construction of adaptive confidence sets is proposed in isotonic, convex and unimodal regression. In

univariate isotonic regression, the proposed confidence set enjoys uniform coverage over all non-decreasing re-

gression functions. Furthermore, the diameter of the proposed confidence set automatically adapts to the unknown

number of pieces of the true parameter, in the sense that the diameter is bounded from above by the minimax risk

over the class of k-piecewise constant functions. The diameter of the confidence set is a simple increasing function

of the number of jumps of the isotonic least-squares estimate.

A similar construction is proposed in convex regression where the true regression function is convex and piece-

wise affine. Here, the confidence set enjoys uniform coverage and its diameter automatically adapts to the number

of affine pieces of the true regression function. The diameter of the confidence set is an increasing function of the

number of affine pieces of the convex least-squares estimate.

We explain how to extend this technique to a non-convex set by proposing a similar adaptive confidence set

in unimodal regression. The confidence set automatically adapts to the number of jumps of the true unimodal

regression function and its diameter is an increasing function of the number of jumps of the unimodal least-squares

estimate.

Keywords: adaptive confidence set; convex regresion; isotonic regression; piecewise affine; piecewise constant;

shape constraints; unimodal regression

1. Introduction

Let K ⊂R
n be a closed convex set. Assume that we have the observations

Yi = μi + ξi, i = 1, . . . , n,

where the vector µ = (μ1, . . . ,μn)
T ∈ K is unknown, ξ = (ξ1, . . . , ξn)

T is a noise vector with n-

dimensional Gaussian distribution N (0, σ 2In×n) where σ > 0 and In×n is the n × n identity matrix.

Denote by Eµ and Pµ the expectation and the probability measure corresponding to the distribution of

the random variable

y = µ + ξ , ξ ∼N
(

0, σ 2In×n

)

. (1.1)

The vector y = (Y1, . . . , Yn)
T is observed and the goal is to estimate µ. Consider the scaled norm ‖ · ‖n

defined by

‖u‖2
n = 1

n

n
∑

i=1

u2
i , u = (u1, . . . , un)

T ∈R
n.

The error of an estimator µ̂ of µ is given by ‖µ̂ − µ‖2
n. Let | · |22 be the squared Euclidean norm, so

that 1
n
| · |22 = ‖ · ‖2

n. For a finite set E, let |E| denote its cardinality. We use bold face for vectors and

the components of any vector v ∈ R
n are denoted by v1, . . . , vn. If v ∈ R

n and T ⊂ {1, . . . , n}, we
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may view v as a function from {1, . . . , n} to R and denote by vT = (vi, i ∈ T ) ∈ R
T the restriction

of this function to T . If it is clear from context, we identify the linear space R
T with R

|T | with the

canonical isomorphism that maps (vi, i ∈ T ) to (vk1
, . . . , vk|T |) ∈ R

|T | where T = {k1, . . . , k|T |} with

k1 < k2 < · · · < k|T |.
In this paper, we consider the particular case where K is a polyhedron, that is, an intersection of a

finite number of half-spaces. If the true parameter µ lies in a low-dimensional face of the polyhedron

K , it has been shown that for some polyhedra K , the rate of estimation is of order dσ 2

n
up to loga-

rithmic factors, where d is the dimension of the smallest face that contains µ [3,11,12,18,19,21]; see

also the survey [20]. This phenomenon appears, for example, if the polyhedron K is the cone of non-

decreasing sequences [3,11] or the cone of convex sequences [3,19]. For these examples, if µ lies in a

d-dimensional face of the polyhedron K , the Least Squares estimator over K satisfies risk bounds and

oracle inequalities with the parametric rate dσ 2

n
, up to logarithmic factors. We consider the problem of

confidence sets in this context. In particular, the present paper addresses the following questions.

• Is it possible to estimate or bound from below by a data-driven quantity the dimension d of the

smallest face of the polyhedron K that contains the true parameter µ?

• Is it possible to construct a confidence set Ĉn such that:

1. It enjoys uniform coverage over all µ ∈ K (i.e., µ ∈ Ĉn with high probability).

2. It adapts to the smallest low-dimensional face that contains µ (i.e., the diameter of Ĉn should

be of the order dσ 2

n
up to logarithmic factors if the smallest face that contains µ has dimen-

sion d).

In this paper, we answer these questions for two particular convex polyhedra, the cone of nondecreasing

sequences and the cone of convex sequences, as well as for the non-convex set of unimodal sequences.

The construction of adaptive confidence sets in isotonic or convex regression has been studied in

[6,7,15]. These papers show that if the true regression function is simultaneously smooth and mono-

tone, then it is possible to construct confidence sets that adapt to the unknown smoothness of the true

regression function. In the present paper, there is no smoothness assumption and the goal is to construct

confidence sets that adapt to the dimension d of the smallest face of the polyhedron. A related litera-

ture studies the optimal separation rates for testing and construction of confidence sets in sparse mean

models and sparse linear regression [2,8,9,26,30]. This literature is reviewed in Section 4.2 where we

discuss piecewise constant signals.

The rest of the paper is organized as follows. Section 2 gives the definition of honest and adaptive

confidence sets. Section 3 defines the cone of nondecreasing sequences and recalls some material from

[1,24] on the statistical dimension and the intrinsic volumes of closed convex cones. In Section 4, hon-

est and adaptive confidence sets are provided for the cone of nondecreasing sequences and Section 4.2

shows that, on the other hand, such honest and adaptive confidence sets do not exist for piecewise

constant sequences. Section 4.3 discusses the case of unknown noise level. Honest and adaptive con-

fidence sets are then given in Section 5 for the cone of convex sequences. In Section 6, we show that

a similar construction is possible for the non-convex set of unimodal sequences, which shows that our

construction of confidence sets does not require convexity of the model.

2. Honest and adaptive confidence sets

Let (Ek)k∈J be a collection of subsets K indexed by some possibly infinite set J . We will refer to

the sets (Ek)k∈J as the models. Most collection of models considered in the paper will be finite and

ordered by inclusion, that is,

E1 ⊂ · · · ⊂ EkMAX
= K (2.1)
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where J = {1, . . . , kMAX}. For any model Ek ⊂ K , the minimax risk on Ek is the quantity

R∗
E
(Ek) = inf

µ̂
sup

µ∈Ek

Eµ‖µ̂ − µ‖2
n,

where the infimum is taken over all estimators, that is, all random variables of the form µ̂ = g(y) where

g : Rn →R
n is a Borel function. If J = {1, . . . , kMAX} and (2.1) holds, the minimax risks satisfy

R∗
E
(E1) ≤ · · · ≤ R∗

E
(EkMAX

).

In that case, the collection (Ek)k=1,...,kMAX
represents models of increasing complexity.

Similarly, if a confidence value α ∈ (0,1) is given, one may define the minimax quantity

R∗
α(Ek) = inf

{

R > 0 : sup
µ̂

inf
µ∈Ek

Pµ

(

‖µ̂ − µ‖2
n ≤ R

)

≥ 1 − α
}

(2.2)

for all k ∈ J , where the supremum is taken over all estimators. This quantity represents the small-

est radius, in a minimax sense, of a confidence ball with confidence level 1 − α. Similarly, if

J = {1, . . . , kmax} and the models are ordered by inclusion as in (2.1), this quantity is an increasing

function of k and we have

R∗
α(E1) ≤ · · · ≤ R∗

α(EkMAX
)

for all α ∈ (0,1).

The goal of this paper is to study confidence sets in shape restricted regression. A confidence set is

a region Ĉn such that with high probability, the unknown parameter µ belongs to Ĉn. Let α ∈ (0,1). If

µ ∈ Ek∗ for some k∗ ∈ J , the quantity (2.2) may be used to define the oracle region

Ĉ∗
n

(

k∗) :=
{

u ∈R
n : ‖u − µ̂‖2

n ≤ R∗
α(Ek∗)

}

,

where µ̂ is an estimator that achieves the supremum in (2.2) (we assume here that all infima and

suprema in (2.2) are attained). Then, by definition of R∗
α(·), we have that µ ∈ Ĉ∗

n(k∗) with probability

at least 1 − α. We call Ĉ∗
n(k∗) an oracle region since it is inaccessible for two reasons. First, the radius

R∗
α(Ek∗) and the integer k∗ must be known in order to construct Ĉ∗

n(k∗), that is, the knowledge of

the smallest model that contains µ is needed. Second, the oracle region Ĉ∗
n(k∗) is an Euclidean ball

centered around the estimator µ̂ that achieves the infimum in (2.2), and this estimator is unknown.

This paper studies the construction of data-driven confidence sets Ĉn. We consider only 1 − α con-

fidence sets, which means that the true parameter µ belongs to Ĉn with probability at least 1 − α,

uniformly over all µ ∈ K .

We also want the diameter of the confidence set Ĉn to be of the same order as the diameter of

the oracle region Ĉ∗
n(k∗), that is, the value R∗

α(Ek∗). Furthermore, the construction of Ĉn should not

require the knowledge of the smallest model that contains the true parameter µ: The knowledge of k∗

is not needed to construct the confidence region Ĉn. In that case, we say that the confidence set Ĉn is

adaptive.

We now give a formal definition of these properties. For any A ⊂ R
n, define the diameter of A for

the scaled norm ‖ · ‖n by

diamA := sup
v,u∈A

‖v − u‖n.

In the following definition, for any µ we consider a probability space (�,A,Pµ) rich enough so that

y in (1.1) is a random variable. (For instance, one may take � = R
n and A the Lebesgue measure on

R
n.)
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Definition 2.1. Let α ∈ (0,1). Let K ⊂ R
n be a closed convex set and let (Ek)k∈J be a collection of

subsets of K indexed by an arbitrary set J . Denote by Ĉn :Rn → {B ⊂R
n} a function such that (i) the

event {µ ∈ Ĉn(y)} is A-measurable, and (ii) diam(Ĉn(y)) is a random variable in (�,A,Pµ). If clear

from context, we will write Ĉn = Ĉn(y) for brevity. We say that Ĉn is an honest confidence set if

inf
µ∈K

Pµ(µ ∈ Ĉn) ≥ 1 − α. (2.3)

We say that an honest confidence set Ĉn is adaptive in probability if for all γ ∈ (0,1),

inf
k∈J

inf
µ∈Ek

Pµ

(

diam(Ĉn)
2 ≤ c′R∗

α(Ek) log

(

en

γ α

)c)

≥ 1 − γ, (2.4)

where c′ > 0 and c ≥ 0 are numerical constants. Alternatively to (2.4), we say that the confidence set

Ĉn is adaptive in expectation if for all k ∈ J ,

sup
µ∈Ek

Eµ

[

diam(Ĉn)
2
]

≤ c′R∗
E
(Ek) log

(

en

α

)c

, (2.5)

where c′ > 0 and c ≥ 0 are numerical constants.

The role of the constant c ≥ 0 is to allow for logarithmic factors. Inequality (2.3) requires that the

true sequence µ lies in Ĉn with probability 1 − α for all µ ∈ K . Inequality (2.4) implies that if the

true parameter satisfies µ̂ ∈ Ek∗ for some k∗ ∈ J , then the diameter of Ĉn is of the same order as the

minimax quantity (2.2) of the model Ek∗ , up to logarithmic factors.

We now consider a special case: confidence balls centered at the Least Squares estimator. The Least

Squares estimator over a closed convex set K is defined by

µ̂
LS

(K) = argmin
u∈K

‖y − u‖2
n = �K (y)

where �K denotes the convex projection onto K . By definition of the convex projection onto K , we

have (u − �K(y))T (y − �K(y)) ≤ 0 for all u ∈ K , which can be rewritten as

∥

∥µ̂
LS

(K) − y
∥

∥

2

n
≤ ‖u − y‖2

n −
∥

∥u − µ̂
LS

(K)
∥

∥

2

n
. (2.6)

If the confidence set Ĉn is an Euclidean ball, it is characterized by its center and its radius. Let

α ∈ (0,1) be a confidence value, typically α = 0.05. Let K ⊂R
n be a closed convex set and let (Ek)k∈J

be a collection of subsets of K indexed by an arbitrary set J . Let r̂ be a positive random variable

measurable with respect to y and let µ̂
LS

(K) be the Least Squares estimator over K . The set

Ĉn =
{

v ∈ R
n :
∥

∥µ̂
LS

(K) − v
∥

∥

2

n
≤ r̂

}

(2.7)

is an honest confidence ball if (2.3) holds. The confidence ball Ĉn is said to be adaptive in probability

if (2.4) holds, that is, for all γ ∈ (0,1),

inf
k∈J

inf
µ∈Ek

Pµ

(

r̂ ≤ c′R∗
α(Ek) log

(

en

γ α

)c)

≥ 1 − γ, (2.8)
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for all γ ∈ (0,1) where c′ > 0 and c ≥ 0 are numerical constants. The confidence ball Ĉn is said to be

adaptive in expectation if (2.5), that is,

sup
µ∈Ek

Eµ[r̂] ≤ c′R∗
E
(Ek) log

(

en

α

)c

, (2.9)

for all k ∈ J , where c′ > 0 and c ≥ 0 are numerical constants.

3. Preliminaries

Throughout the paper, C1,C2,C3, . . . denote positive absolute constants.

3.1. The cone of nondecreasing sequences and the models (S
↑
n (k))k=1,...,n

Let S
↑
n be the set of all nondecreasing sequences, defined by

S↑
n :=

{

u = (u1, . . . , un)
T ∈R

n : ui ≤ ui+1, i = 1, . . . , n − 1
}

.

For n = 1, let S
↑
n =R. For all n ≥ 1, define the cone of non-increasing sequences by S

↓
n := −S

↑
n .

For any u ∈ S
↑
n ∪S

↓
n , let k(u) := |{ui, i = 1, . . . , n}| where |A| denotes the cardinality of set A. The

integer k(u) is the smallest positive integer such that u is piecewise constant with k(u) pieces. The

integer k(u) − 1 is also the number of jumps of u, that is, the number of inequalities ui ≤ ui+1 that are

strict. Define the sets

S↑
n (k) =

{

u ∈ S↑
n : k(u) ≤ k

}

, k = 1, . . . , n. (3.1)

The set S
↑
n (1) is the subspace of all constant sequences while S

↑
n (2), . . . ,S

↑
n (n − 1) are closed non-

convex sets. This defines a collection of models ordered by inclusion,

S↑
n (1) ⊂ S↑

n (2) ⊂ · · · ⊂ S↑
n (n) = S↑

n .

The minimax risk over the sets S
↑
n (k) satisfies

C4σ
2k log log(16n/k)/n ≤ R∗

E

(

S↑
n (k)

)

≤ C5σ
2k log log(16n/k)/n, (3.2)

for k ≥ 2, cf. [17]. The lower bound in (3.2) is proved in [17] using Fano’s inequality, which actually

yields a lower bound in probability and thus C6k log log(16n/k)/n ≤ R∗
α(S

↑
n (k)) for α ∈ (0,C7). For

for the upper bound, Markov’s inequality implies that R∗
α(S

↑
n (k)) ≤ R∗

E
(S

↑
n (k))/α. In summary, for

R∗
α(S

↑
n (k)),

C8(α)σ 2k log log(16n/k)/n ≤ R∗
α

(

S↑
n (k)

)

≤ α−1C9σ
2k log log(16n/k)/n (3.3)

for constants that only depend on α ∈ (0,1). Existing results also show that the dependence in α in the

upper bound is at most logarithmic by properties of the Least-Squares estimator: for any µ ∈ S
↑
n (k),

the Least-Squares estimator satisfies

R∗
α

(

S↑
n (k)

)

≤ 2σ 2k log(en/k)/n + 4σ 2 log(1/α)/n,

cf. [3], Theorem 3.2. Thus, the quantity R∗
α(S

↑
n (k)) is of order kσ 2/n, up to logarithmic factors in n

and 1/α.
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3.2. Statistical dimension and intrinsic volumes of cones

We recall here some properties of closed convex cones. Most of the material of the present section

comes from [1,24]. In the present paper, a cone is always pointed at 0. A polyhedral cone is a closed

convex cone of the form

K =
{

u ∈ R
n : uT vj ≤ 0 for all j = 1, . . . , p

}

, (3.4)

where v1, . . . ,vp are vectors in R
n, that is, K is the intersection of a finite number of half-spaces. The

polar cone of K is defined as

K◦ :=
{

θ ∈ R
n : vT θ ≤ 0 for all v ∈ K

}

.

If K is a polyhedral cone, the face of K with outward vector θ ∈ R
n is the set

F(θ) :=
{

u ∈ K : uT θ = sup
v∈K

vT θ
}

. (3.5)

The face F(θ) is nonempty if and only if θ ∈ K◦. If K is the polyhedral cone (3.4) defined by the

vectors v1, . . . ,vk , a face of a polyhedral cone K has to be of the form

{

u ∈ K : uT vj = 0 for all j ∈ T
}

for some T ⊂ {1, . . . , k}. The dimension of a face F is the dimension of the affine span of F .

Definition 3.1 (Statistical dimension, Amelunxen et al. [1]). For any closed convex cone K ⊂ R
n,

define

δ(K) := E
[∣

∣�K(g)
∣

∣

2

2

]

= E
[

gT �K(g)
]

= E

[(

sup
θ∈K:|θ |2≤1

gT θ
)2]

,

where g ∼N (0, In×n). The quantity δ(K) is called the statistical dimension of the cone K .

It is also known that the following holds almost surely

∣

∣�K(g)
∣

∣

2

2
= gT �K(g) =

(

sup
θ∈K:|θ |2≤1

gT θ
)2

, (3.6)

cf. [1], Proposition 3.1. The random variable (3.6) concentrates around its expectation. Indeed,

the function g �→ |�K (g)|2 is 1-Lipschitz so that the Gaussian concentration theorem [5], Theo-

rem 5.5, states that |�K(g)|2 ≤ E|�K(g)|2 +
√

2 log(1/α) holds with probability at least 1 −α. Since

E|�K(g)|2 ≤ δ(K)1/2 by Jensen’s inequality, this implies a concentration result for the random vari-

able (3.6): on the same event of probability at least 1 − α, one has

∣

∣�K(g)
∣

∣

2

2
≤ δ(K) + 2

√

2 log(1/α)δ(K) + 2 log(1/α) ≤ 2δ(K) + 4 log(1/α). (3.7)

Our proofs also rely on the following facts given in [1], Proposition 3.1 (9), or [24], Section 5.2. If

K1,K2 ⊂ R
n are two convex cones such that K1 ⊂ E1, K2 ⊂ E2 for two subspaces E1, E2 with

E1 ⊥ E2, then K = K1 + K2 satisfies almost surely �K1
(g) = �K1

(�E1
(g)),

�K(g) = �K1
(g) + �K2

(g),
∣

∣�K(g)
∣

∣

2

2
=
∣

∣�K1
(g)

∣

∣

2

2
+
∣

∣�K2
(g)

∣

∣

2

2
.
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Consequently �K1
(g) and �K2

(g) are independent if g ∼ N(0, In×n) and

δ(K) = δ(K1) + δ(K2). (3.8)

If K1 ∈ R
q , K2 ∈ R

n−q and K = K1 × K2 then (3.8) still holds by applying the previous argument to

the two cones K1 × {0, . . . ,0} ⊂R
n and {0, . . . ,0} × K2 ⊂R

n.

We now define the intrinsic volumes of a polyhedral cone, which are closely related to the statistical

dimension.

Definition 3.2 (Intrinsic volumes of a polyhedral cone [1]). Let K ⊂ R
n be a polyhedral cone and

let g ∼N (0, In×n). The intrinsic volumes of K are the real numbers

νk(K) = P
(

�K(g) lies in the relative interior of a k-dimensional face of K
)

,

for all k = 0, . . . , n.

The intrinsic volumes of a polyhedral cone K define a probability distribution on the discrete set

{0, . . . , n}. More precisely, define the random variable

VK =
n
∑

k=0

k1{�K (g) lies in the relative interior of a k-dimensional face of K}, (3.9)

where 1{·} is the indicator function. The random variable VK is valued in {0, . . . , n} and satisfies

P(VK = k) = νk(K) for all k = 0, . . . , n. The following identity was derived in [1,24]:

δ(K) =
n
∑

k=0

kνk(K), (3.10)

that is, the statistical dimension δ(K) is the expectation of the random variable VK . Furthermore, the

random variable VK concentrates around its expected value. The following concentration inequality is

given in [24], Corollary 4.10,

P
(

VK − δ(K) ≥ λ
)

≤ exp

(

−δ(K)

2
h

(

λ

δ(K)

))

, for all λ > 0,

where h(t) = (1 + t) log(1 + t) − t . Using the estimate h−1(t) ≤
√

2t + 3t (cf. [5], Corollary 12.12),

we obtain

P
(

VK − δ(K) ≥ 2
√

xδ(K) + 6x
)

≤ exp(−x), for all x > 0. (3.11)

Deriving upper and lower bounds on the statistical dimension of a cone K may be a challenging

problem. Some recipes to derive such bounds are proposed in [1,10]. An exact formula is available for

the statistical dimension of the cone S
↑
n [1], (D.12). It is given by

δ
(

S↑
n

)

= δ
(

S↓
n

)

=
n
∑

k=1

1

k
, so that logn ≤ δ

(

S↑
n

)

≤ log(en). (3.12)

Finally, we will need the following characterization of the faces of the cone S
↑
n .
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Proposition 3.1. Let k ∈ {1, . . . , n}.

(i) The faces of dimension k of the cone S
↑
n are the sets

F(S) :=
{

u = (u1, . . . , un)
T ∈ S↑

n : ui−1 = ui if i ∈ S
}

(3.13)

where S ⊆ {2, . . . , n} with |S| = n − k. The cone S
↑
n has no face of dimension 0.

(ii) For k = 1, . . . , n, the set S
↑
n (k) is the union of all faces of dimension k.

(iii) For K = S
↑
n , the random variable VK in (3.9) is equal to k(�K (g)).

Proof. (i) Let K = S
↑
n . Our definition of a face is given by an outward vector θ ∈ R

n, and the corre-

sponding face is given in (3.5). Every outward vector θ gives a (possibly empty face) of K , and two

distinct vectors θ1, θ2 may produce the same face in (3.5). The face with outward vector θ is non-empty

if and only if supv∈K vT θ = 0.

Here, u ∈ S
↑
n if and only if u = Xv for some

v ∈R
n with v2 ≥ 0, . . . , vn ≥ 0 (3.14)

and X = (Xij ) ∈ R
n×n is the matrix with Xij = 1 if j ≤ i and Xij = 0 if j > i. Hence the face with

outward vector θ is non-empty if and only if XT θ ≤ 0 and
∑n

i=1 θi = 0. Let S ⊂ {2, . . . , n} be the set

{i ∈ {2, . . . , n} : θi + θi+1 + · · · + θn < 0}, that is, the indices of strict inequalities in XT θ ≤ 0. Then it

is clear that if u ∈ S
↑
n is of the form u = Xv with v in (3.14), inequality uT θ = 0 implies vT XT θ = 0

and vi = 0 for i ∈ S. Since vi = ui − ui−1, if the face (3.5) for outward vector θ is non-empty, then

this face is of the form (3.13). Finally, the dimension of the face (3.13) is the rank of the matrix X with

rows indexed in S removed, that is, n − |S|.
(ii) and (iii) follow by definition of S

↑
n (k) in (3.1) since �K(g) belongs to the relative interior of a

face F(S) if and only if F(S) is the smallest face of K containing �K(g). �

4. Nondecreasing sequences

4.1. Adaptive confidence sets for nondecreasing sequences

The estimator µ̂
LS

(S
↑
n ) is the projection of y onto S

↑
n , so the vector µ̂

LS
(S

↑
n ) is nondecreasing. Let

k̂ = k(µ̂
LS

(S
↑
n )) be the number of constant pieces of the Least Squares estimator. Using this notation,

we define the statistic

r̂↑ = σ 2

n

(

√

k̂ log(en/k̂) +
√

2
(

log(n/α) + k̂ log(en/k̂)
))2

. (4.1)

Theorem 4.1. For all α ∈ (0,1) and all µ ∈ S
↑
n , the statistic r̂↑ defined in (4.1) satisfies

Pµ

(∥

∥µ̂
LS
(

S↑
n

)

− µ
∥

∥

2

n
≤ r̂↑

)

. (4.2)

The above proposition shows that the confidence set (2.7) with r̂ = r̂↑ satisfies condition (2.3). Up

to constants and logarithmic factors, the number of constant pieces k̂ of the Least Squares estimator

µ̂
LS

(S
↑
n ) bounds the loss ‖µ̂LS

(S
↑
n ) − µ‖2

n from above with high probability. Since µ̂
LS

(S
↑
n ) can be
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computed in linear time, the integer k̂ and the statistic r̂↑ can also be computed in linear time. It is easy

to compute k̂ visually by drawing the estimator µ̂
LS

(S
↑
n ) and counting the number of jumps.

The proof of Theorem 4.1 relies on concentration properties of the random variable (3.6).

Proof of Theorem 4.1. Throughout the proof, we will consider partitions (T1, . . . , Tk) of {1, . . . , n}
such that each Tj satisfies maxTj < minTj+1 as well as

Tj = {minTj ,minTj + 1, . . . ,maxTj }, (4.3)

that is, Tj contains all consecutive integers from minTj to maxTj .

Let µ̂ = µ̂
LS

(S
↑
n ) for notational simplicity. Then (2.6) with u replaced by µ can be rewritten as

|µ̂−µ|22 ≤ 2ξT (µ̂−µ)−|µ̂−µ|22, which implies that |µ̂−µ|2 ≤ ξT θ̂ where θ̂ = (µ̂−µ)/|(µ̂−µ)|2
has Euclidean norm 1. By definition of k(·), there exists a partition (T̂1, . . . , T̂k̂

) of {1, . . . , n} such that

µ̂
LS

(S
↑
n ) is constant on each T̂j , j = 1, . . . , k̂. Since µ ∈ S

↑
n , both (µ̂ − µ) and θ̂ belong to the product

cone

Ĉ := S
↓
|T̂1|

× S
↓
|T̂2|

× · · · × S
↓
|T̂

k̂
|. (4.4)

By the Gaussian concentration theorem [5], Theorem 5.5, 5.6,

sup
θ∈C:|θ |2=1

ξT θ ≤ E sup
θ∈C:|θ |2=1

ξT θ + σ
√

2x (4.5)

with probability at least 1 − e−x . Furthermore, E supθ∈C:|θ |2=1 ξT θ ≤ σδ(C)1/2 by Jensen’s inequality,

and if C is of the form C = S
↓
n1

× · · ·×S
↓
nk

for positive integers n1, . . . , nk such that n1 + · · ·+ nk = n,

then δ(C) =
∑k

j=1 δ(S
↓
nj

) ≤
∑k

j=1 log(enj ) ≤ k log(en/k) thanks to (3.12) and (3.8).

Let k = 1, . . . , n be fixed. There are
(

n−1
k

)

partitions of {1, . . . , n} of the form (T1, . . . , Tk) with

maxTj < minTj+1 for all j = 1, . . . , k − 1 (each such partition defines a unique configuration of

jumps). By the union bound and the inequality log
(

n−1
k

)

≤ k log(en/k), we have with probability at

least 1 − e−x the bound

sup
(T1,...,Tk)

(

sup

θ∈S↓
|T1|×···×S

↓
|Tk |:|θ |2=1

ξT θ
)

≤ σ
√

k log(en/k) + σ

√

2
(

x + k log(en/k)
)

.

Finally, we apply the union bound over all k ∈ {1, . . . , n} and set x = log(n/α). We have established

that with probability at least 1 − α, for any random partition (T̂1, . . . , T̂k̂
) and Ĉ in (4.4),

sup

θ∈Ĉ:|θ |2=1

ξT θ ≤ σ

√

k̂ log(en/k̂) + σ

√

2
(

log(n/α) + k̂ log(en/k̂)
)

. (4.6)

In particular, this is true for the partition (T̂1, . . . , T̂k̂
) induced by µ̂

LS
(S

↑
n ) defined in the previous

paragraph. Note also that the right-hand side of the previous display is equal to (nr̂↑)1/2. On this event

of probability at least 1 − α we have |µ̂ − µ|2 ≤ ξT θ̂ ≤ (nr̂↑)1/2 and the proof is complete. �

We have established the existence of an honest confidence interval of the form

Ĉn :=
{

v ∈ S↑
n :

∥

∥v − µ̂
LS
(

S↑
n

)
∥

∥

2

n
≤ r̂

}

.
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This confidence set has uniform coverage over all µ ∈ S
↑
n , that is, it satisfies (2.3). The next result

implies that the diameter of this confidence set is minimax optimal up to logarithmic factors.

Theorem 4.2. Let (T1, . . . , Tk) be a partition of {1, . . . , n} with maxTj < minTj+1 for every j =
1, . . . , k − 1, and assume that µ is constant on each Tj Let γ ∈ (0,1). The random variable k̂ =
k(µ̂

LS
(S

↑
n )) satisfies

k̂ ≤ k log(en/k) + 2
√

log(1/γ )k log(en/k) + 6 log(1/γ )

≤ 2k log(en/k) + 7 log(1/γ )) (4.7)

with probability greater than 1 − γ as well as

Eµ[k̂] ≤ k log(en/k). (4.8)

Furthermore sup
µ∈S↑

n (k)
Eµ[k̂] ≥ k log(n/k) when k divides n so that (4.8) is sharp.

Note that in Theorem 4.2 µ is only assumed to be piecewise constant, but not necessarily monotone.

This will be useful in Section 6.

Proof of Theorem 4.2. Define the closed convex cone

K = S
↑
|T1| × S

↑
|T2| × · · · × S

↑
|Tk | ⊂R

n (4.9)

and let µ̂
∗ = �K(y). It is clear that

min
u∈K

k
∑

j=1

|yTj
− uTj

|22 = min
u1∈S↑

|T1|,...,uk∈S↑
|Tk |

k
∑

j=1

|yTj
− uTj

|22 =
k
∑

j=1

min
uj ∈S↑

|Tj |

|yTj
− uTj

|22.

Thus, as y = µ + ξ and µ is constant on each Tj , we have

µ̂
∗
Tj

= �
S

↑
|Tj |

(yTj
) = �

S
↑
|Tj |

(µTj
+ ξTj

) = µTj
+ �

S
↑
|Tj |

(ξTj
).

As adding the constant sequence µTj
does not modify the number of constant pieces (or the number of

jumps), we have

k
(

µ̂
∗
Tj

)

= k
(

µTj
+ �

S
↑
|Tj |

(ξTj
)
)

= k
(

�
S

↑
|Tj |

(ξTj
)
)

= k
((

�K(ξ)
)

Tj

)

.

Let VK be the random variable defined in (3.9). By the properties of product cones given in [24],

Section 5.2, VK has the same distribution as

V
S

↑
|T1|

+ · · · + V
S

↑
|Tk |

and the random variables V
S

↑
|T1|

, . . . , V
S

↑
|Tk |

are independent (cf. [24], (5.2)). By Proposition 3.1, for

all j = 1, . . . , k we have k(µ̂
∗
Tj

) = V
S

↑
|Tj |

so that VK and
∑k

j=1 k(µ̂
∗
Tj

) have the same distribution. By

(3.10), EVK = δ(K) and by (3.11), with probability greater than 1 − γ we have

VK ≤ δ(K) + 2
√

log(1/γ )δ(K) + 6 log(1/γ ).
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To bound δ(K) from above, we use that the statistical dimension of a direct product of cones is the

sum of the statistical dimensions (cf. [1], Proposition 3.1, or the discussion preceding (3.8)),

δ(K) =
k
∑

j=1

δ
(

S
↑
|Tj |

)

≤
k
∑

j=1

log
(

e|Tj |
)

≤ k log(en/k),

where we have used (3.12) and Jensen’s inequality for the two inequalities.

The random variable VK is distributed as
∑k

j=1 k(µ̂
∗
Tj

). Thus, to complete the proof, it is enough to

prove that almost surely, k̂ := k(µ̂
LS

(S
↑
n )) ≤

∑k
j=1 k(µ̂

∗
Tj

). Let µ̂ = µ̂
LS

(S
↑
n ) for notational simplicity.

It is clear that

k(µ̂) =
∣

∣{μ̂i, i = 1, . . . , n}
∣

∣≤
k
∑

j=1

k(µ̂Tj
) =

k
∑

j=1

∣

∣{μ̂i, i ∈ Tj }
∣

∣,

since a piece counted on the left-hand side must be counted at least once (and possibly multiple times)

on the right-hand side. For all j = 1, . . . , k, the vectors µ̂Tj
and µ̂

∗
Tj

are solutions of the minimization

problems

µ̂
∗
Tj

= argmin

v∈S↑
|Tj |

|v − yTj
|22, µ̂Tj

= argmin

v∈S↑
|Tj |:

µ̂min(Tj )≤v1,

v|Tj |≤µ̂max(Tj )

|v − yTj
|22.

This means that µ̂Tj
solves a minimization problem with additional constraints at the boundary. By

Lemma B.1, we have

k(µ̂Tj
) ≤ k

(

µ̂
∗
Tj

)

for all j = 1, . . . , k, which completes the proof of Equation (4.8).

To show that sup
µ∈S↑

n (k)
Eµ[k̂] ≥ k log(n/k) when k divides n, consider a partition (T1, . . . , Tk) with

|Tj | = n/k and maxTj ≤ minTj+1 and set μi = xj if i ∈ Tj for some parameter x > 0. The jumps of

µ have amplitude x. In the event x > 2 maxn
i=1 |ξi | we have µ̂

LS
(S

↑
n ) = µ̂

LS
(K) where K is the cone

(4.9). By dominated convergence and using the fact that adding a constant vector to u ∈R
|Tj | does not

change the number of jumps of �
S

↑
|Tj |

(u),

lim
x→+∞

Eµ

[

k
(

µ̂
LS
(

S↑
n

))]

= Eµ

[

k
(

µ̂
LS

(K)
)]

= E0

[

k
(

µ̂
LS

(K)
)]

= δ(K) =
k
∑

j=1

δ
(

S↑
n

(

|Tj |
))

.

This quantity is greater than k log(n/k) due to the lower bound in (3.12). �

Corollary 4.3. Let J = {1, . . . , n} and define the collection of models (Ek)k∈J = (S
↑
n (k))k∈J . The

random variable r̂↑ defined in (4.1) satisfies (4.2), (2.8) and (2.9) with r̂ replaced by r̂↑. Thus, the ball

centered at µ̂
LS

(S
↑
n ) of radius

√

r̂↑ is an honest confidence set, which is adaptive in probability and in

expectation with respect to the models (S
↑
n (k))k=1,...,n.

Proof. To show that (2.9) holds, for any µ ∈ S
↑
n (k) we have

Eµ[r̂↑]1/2 ≤ σn−1/2
(
√

2 log(n/α) + (1 +
√

2)

√

Eµ

[

k̂ log(en/k̂)
])
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thanks to
√

a + b ≤ √
a +

√
b and the triangle inequality for Eµ[(·)2]1/2. Since x �→ x log(en/x)

is concave on [1, n], Eµ[k̂ log(en/k̂)] ≤ Eµ[k̂] log(en/Eµ[k̂]). The bound (4.8) then yields Eµ[k̂] ×
log(en/Eµ[k̂]) ≤ k log(en/k)2 which completes the proof of (2.9) for the minimax risk given in (3.2),

since (2.9) allows logarithmic factors.

To show that (2.8) holds for the minimax risk in (3.3), we instead use (4.7). This yields that with

probability at least 1 − γ ,

r̂
1/2
↑ ≤ σn1/2

(
√

2 log(n/α) + (1 +
√

2)

√

k̂ log(en/k̂)
)

≤ σn1/2
(
√

2 log(n/α) + (1 +
√

2)
√

2k log(en/k) log(en) + 7 log(1/γ ) log(en)
)

.

This completes the proof since (2.8) allows logarithmic factors. �

4.2. Adaptive confidence sets do not exist for piecewise constant signal

The existence of honest and adaptive confidence sets with respect to the models (S
↑
n (k))k=1,...,n is

surprising given the negative results for seemingly similar models. For the problem of constructing

adaptive confidence sets in sparse linear regression with p covariates and n ≤ p observations, where

one observes

Yi =
p
∑

j=1

Xijβ
∗
j + ξi, i = 1, . . . , n where Xij , ξi ∼iid N (0,1),

Nickl and van de Geer [26], Theorem 2, shows the impossibility to construct confidence sets for β∗

that are (a) honest over all sparsity levels k1 ∈ {k = 1,2,3, . . . : k ≤ n/ logp} and (b) adaptive over

sparsity levels k0 ∈ {k = 1,2,3, . . . , : k1 ≤ √
n/ logp}. This impossibility result holds as n,p, k →

+∞ with |β∗|0 = p1−η for some constant η ∈ (0,1). Due to this impossibility result, confidence sets

over all sparsity levels k1 ∈ {k = 1,2,3, . . . : k ≤ n/ logp} cannot have squared radius smaller than the

minimax estimation rate |β∗|0 log(p)/n for |β∗|0 ≤ √
n/ logp. This impossibility result for honest and

adaptive confidence sets in sparse linear regression builds upon impossibility results for signal detection

[22]. Similar impossibility results have been obtained for testing sparsity levels in the Gaussian mean

model [2,9] and for testing sparsity levels in linear regression [8]. We refer the reader to Carpentier

and Verzelen [9] and Table 1 therein for a complete characterization of the different phase transitions

for testing sparsity levels in the Gaussian mean model, and [8], Table 1, for the corresponding phase

transitions in sparse linear regression.

The models (S
↑
n (k))k=1,...,n can be related to sparse linear regression in the following way:

S↑
n (k) =

{

Xv,v ∈ R×R
n−1
+ with ‖v‖0 = k − 1

}

(4.10)

and X ∈ R
n×n is the design matrix with entries Xij = Ii≤j . Here, R+ = [0,+∞) and Ii≤j is the

indicator function equal to 1 if and only if i ≤ j . Thus, the model S
↑
n (k) can be seen as a sparse

linear regression model with design X and at most k nonzero entries, with an additional non-negativity

constraint.

The major difference in (4.10) compared to sparse linear regression is the non-negativity of

v2, . . . , vn in (4.10), which encodes the shape constraint. If one drops the non-negativity constraints,

the above model becomes the set of piecewise constant signals with k − 1 jumps:

Bn(k) =
{

v ∈ R
n :
∣

∣{i = 2, . . . , n : vi �= vi−1}
∣

∣= k − 1
}

.
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The minimax rate over Bn(k) satisfies

R∗
E

(

Bn(k)
)

≍

⎧

⎪

⎨

⎪

⎩

σ 2/n if k = 1,

k log log(16n/k)σ 2/n if k = 2,

k log(en/k)σ 2/n if k ≥ 3,

(4.11)

cf. [17], Theorem 4.1. The following result shows that honest and adaptive confidence sets do not exist

for the models (Bn(k))k=1,...,n. This a consequence of the lower bound in [2].

Proposition 4.4. Let α ∈ (0,1/8) independent of n. In the model (1.1), let Ĉn be a confidence set such

that, for all k ≤ n1/2 inequality infµ∈Bn(k) Pµ(µ ∈ Ĉn) ≥ 1 − α holds. Then there exists an absolute

constant C12 such that

E0

[

diam(Ĉn)
2
]

≥ σ 2C12n
−1/2 (4.12)

for all n larger than some absolute constant C10 > 0.

Thus a confidence set Ĉn that is honest with respect to the models (Bn(k))k≤√
n must incur a squared

radius of order at least σ 2n−1/2 which is larger than the minimax rate in (4.11) for k ≪
√

n. Fur-

thermore, the discrepancy between the best possible squared radius and the minimax rate (4.11) is

polynomial in n when k = ⌊nκ⌋ for κ < 1/2:

E0[diam(Ĉn)
2]

R∗
E
(Bn(⌊nκ⌋)) ≥ C11(κ)

n1/2−κ

logn

for all confidence sets that are honest over (Bn(k))k≤√
n. The constant in the previous display depends

on κ only. The σ 2n−1/2 lower bound in (4.12) also appears for confidence sets in sparse regression

[8,22,26] and testing sparsity levels in sparse mean models [2,9]. The non-decreasing shape constraint

of the previous section leads to a fundamentally different behavior: Theorems 4.1 and 4.2 show that it

possible to construct confidence sets that are both honest and adaptive (up to logarithmic factors) over

all models in (3.1), i.e., with squared radius of the same order as the minimax rate.

Because any k/2-sparse vector is is also piecewise constant with at most k jumps, Proposition 4.4 is

a straightforward consequence of the lower bound given in [2], Theorem 1.

Proof of Proposition 4.4. Let r2
n = 8E0[diam(Ĉn)

2]. We follow the argument laid out in [26], Sec-

tion 3.1, to relate confidence sets to signal detection problems. Let k1 = ⌊√n⌋ be the largest integer

smaller or equal to
√

n and consider testing

H0 : µ = 0, against H1 : µ ∈ Bn(k1) with ‖µ‖2
n ≥ r2

n .

With a minor abuse of notation, we denote by H1 the set H1 = {u ∈ Bn(k1) with ‖u‖2
n ≥ r2

n}. Consider

the test statistic Tn valued in {0,1} defined by Tn = 1 if Ĉn ∩ H1 �= ∅ and Tn = 0 otherwise. The type

I and type II errors of Tn are bounded as follows:

• Under the null, on the event �0 = {0 ∈ Ĉn}∩ {diam(Ĉn)
2 < 8E0[diam(Ĉn)

2]} we have Ĉn ∩H1 =
∅ so that P0(Tn = 1) ≤ P(�c

0) ≤ α + 1/8 by the union bound and Markov’s inequality.

• Under the alternative, if µ ∈ H1 then Pµ(Tn = 0) ≤ Pµ(µ /∈ Ĉn) ≤ α.
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The sum of type I and type II errors of the above test is thus at most 2α + 1/8. Define now H ′
1 = {µ ∈

R
n : |µ|0 ≤ k1/2}. Since any (k1/2)-sparse vector is also piecewise constant with k1 pieces, H ′

1 ⊂ H1

holds and

P0(Tn = 1) + sup
µ∈H ′

1

Pµ(Tn = 0) ≤ P0(Tn = 1) + sup
µ∈H1

Pµ(Tn = 0)

≤ 2α + 1/8 ≤ 3/8.

By [2], Theorem 1, if r2
n ≤ C12σ

2n−1/2 for some absolute constant C12 > 0, there exists no test Tn with

sum of type I and type II errors less than 3/8 for testing H0 : µ = 0 against H ′
1. This implies (4.12) and

completes the proof. �

4.3. Adaptivity to unknown noise level in non-decreasing sequences

Although the radius r̂↑ in (4.1) depends on σ 2, Theorem 4.1 is also helpful to construct estimators σ̂ 2

of σ 2. Indeed, Theorem 4.1 implies that with probability at least 1 − α − β ,

∣

∣1 − σ−1
∥

∥y − µ̂
LS
(

S↑
n

)
∥

∥

n

∣

∣≤
∣

∣1 − σ−1‖ξ‖n

∣

∣+ σ−1
∥

∥µ̂
LS
(

S↑
n

)

− µ
∥

∥

n

≤
√

2/n
(

1 +
√

log(1/β)
)

+ σ−1r̂
1/2
↑ (4.13)

where we used that ξ → |‖ξ‖n − σ | is a n−1/2-Lipschitz function of ξ with E[|‖ξ‖n − σ |]2 ≤ 2σ 2(1 −√
1 − 1/n) ≤ 2σ 2/n and the Gaussian concentration result [5], Theorem 5.5, which gives |‖ξ‖n −σ | ≤

σ
√

2/n + σ
√

2 log(1/β)/n. Now let

ǫ̂ = n−1/2
(
√

2 +
√

2 log(1/β) +
√

k̂ log(en/k̂) +
√

2
(

log(n/α) + k̂ log(en/k̂)
))

be the right-hand side in (4.13), which only depends on α, k̂, n. Set also σ̂ 2 = ‖y − µ̂
LS

(S
↑
n )‖2

n. Then

on the above event of probability at least 1 − 2α, we have

|1 − σ̂ /σ | ≤ ǫ̂, σ (1 − ǫ̂)+ ≤ σ̂ ≤ σ(1 + ǫ̂), (1 + ǫ̂)−1σ̂ ≤ σ ≤ (1 − ǫ̂)−1
+ σ̂

so that for instance (1 − ǫ̂)−1σ̂ provides a fully data-driven, high-probability upper bound for σ as

soon as ǫ̂ is bounded away from 1. We obtain, as a consequence, the following data-driven analog of

the results of the previous section with fully data-driven radius.

Theorem 4.5 (Unknown σ ). Let α,β ∈ (0,1) be fixed constants independent of n. Consider the above

notation for ǫ̂ and define

r̃↑ = ‖y − µ̂
LS

(S
↑
n )‖2

n

(1 − ǫ̂)2
+n

(

√

k̂ log(en/k̂) +
√

2
(

log(n/α) + k̂ log(en/k̂)
))2

.

Then we have

(i) P(‖µ̂LS
(S

↑
n ) − µ‖2 ≤ r̃↑) ≥ 1 − α − β .

(ii) k(µ)/n → 0 as n → +∞ implies ǫ̂ → 0 in probability.

(iii) k(µ)/n → 0 as n → +∞ implies r̃↑ = OP(σ 2(k(µ)/n) log(en/k(µ))2.
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Hence the fully data-driven radius r̃↑ is honest and shrinks adaptively with respect to the models

(S
↑
n (k))k≤nan for any sequence an → 0. Alternatively, one may use the median absolute deviation to

estimate σ 2 as explained, for instance, in Remark 3.1 of [17].

Proof of Theorem 4.5. (i) follows from Theorem 4.1 and (4.13). For (ii), if an = k(µ)/n converges

to 0 then by Theorem 4.2 with γ = 1/n we have k̂/n ≤ 2an log(ea−1
n ) + C13 log(n)/n =: bn with

probability at least 1/n. Furthermore, an → 0 implies bn → 0. On the same event we have ǫ̂ ≤ (1 +√
2){bn log(eb−1

n )}1/2 + C14

√

log(en)/n which also converges to 0. For (iii), ǫ̂ → 0 in probability

implies that σ̂ 2(1 − ǫ̂)−2
+ = OP(σ 2), so that and Theorem 4.2 provide the required upper bound on

r̃↑. �

5. Adaptive confidence sets for convex sequences

Confidence sets can also be obtained in univariate convex regression. If n ≥ 3, define the set of convex

sequences S∪
n by

S∪
n :=

{

u = (u1, . . . , un)
T ∈R

n : 2ui ≤ ui+1 + ui−1, i = 2, . . . , n − 1
}

,

and define S∪
n =R if n = 1 and S∪

n =R
2 if n = 2. For all n ≥ 1, define the cone of concave sequences

by S∩
n := −S∪

n .

For any u ∈ S∪
n , let q(u) − 1 ≥ 0 be the number of inequalities 2ui ≤ ui+1 + ui−1, i = 2, . . . , n − 1

that are strict. The integer q(u) is also the smallest positive integer such that u is piecewise affine with

q(u) pieces. Define the sets

S∪
n (q) =

{

u ∈ S∪
n : q(u) ≤ q

}

, q = 1, . . . , n − 1.

The set S∪
n (1) is the subspace of all affine sequences while S∪

n (2), . . . ,S∪
n (n−2) are closed non-convex

sets. We have

S∪
n (1) ⊂ S∪

n (2) ⊂ · · · ⊂ S∪
n (n − 1) = S∪

n .

These sets represent models of increasing complexity.

There exist numerical constants c, c′ > 0 such that for all α ≤ (0,min(c,1)) and any q = 1, . . . , n −
1, we have

c′σ 2q

n
≤ R∗

α

(

S∪
n (q)

)

≤ 16σ 2q log(en/q)

n
+ 4 log(1/α)

n
, (5.1)

cf. [3], Theorem 4.3, for the upper bound and [4], Proposition 7, for the lower bound. Thus, for α > 0

small enough, the quantity R∗
α(S∪

n (q)) is of order qσ 2/n, up to logarithmic factors.

The statistical dimension of the cone S∪
n satisfies [3], Theorem 4.1,

δ
(

S∪
n

)

= δ
(

S∩
n

)

≤ 8 log(en). (5.2)

It is not known whether this upper bound is sharp. However, the fact that the statistical dimension of

S∪
n grows slower than a logarithmic function of n is enough for the purpose of the present paper.

The following bound on the risk of µ̂
LS

(S∪
n ) will be useful.
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Proposition 5.1. Let µ ∈ S∪
n . Then

Eµ

∣

∣µ̂
LS
(

S∪
n

)

− µ
∣

∣

2

2
≤ Eµ

[(

sup
v∈Tµ:|v|2≤1

ξT v
)2]

= σ 2δ(Tµ) ≤ 8σ 2q(µ) log
en

q(µ)
,

where Tµ is the tangent cone at µ defined by Tµ := {u − tµ,u ∈ S∪
n , t ∈R}.

An outline of the proof of this result is as follows. More details may be found in [3], Proposition 4.3.

Outline of the proof of Proposition 5.1. The inequality Eµ|µ̂LS
(S∪

n )−µ|22 ≤ σ 2δ(Tµ) was proved by

[27] and it is a direct consequence of (2.6) with u = µ. To bound from above the statistical dimension

of Tµ, we have the inclusion

Tµ ⊂ S∪
|T1| × · · · × S∪

|Tq (µ)|,

where (T1, . . . , Tq(µ)) is a partition of {1, . . . , n} such that µ is affine on each Tj , j = 1, . . . , q(µ).

The formula for the statistical dimension of a direct product of cones (cf. [1], Proposition 3.1, or the

discussion preceding (3.8)) yields

δ
(

S∪
|T1| × · · · × S∪

|Tq (µ)|
)

=
q(µ)
∑

j=1

δ
(

S∪
|Tj |

)

≤ 8

q(µ)
∑

j=1

log
(

e|Tj |
)

≤ 8 log
(

en/q(µ)
)

,

where we used (5.2) and Jensen’s inequality. �

We now turn to the construction of confidence sets. Recall that if u ∈ S∪
n is a convex sequence, q(u)

is the number of pieces in the piecewise affine decomposition of u. Let q̂ := q(µ̂
LS

(S∪
n )) be the number

of affine pieces of the Least Squares estimator. Then, define the statistic

r̂∪ = σ 2q̂(16 + 24 log(n) + 4 log(1/α))

n
. (5.3)

Similarly to the case of the statistic r̂↑ in isotonic regression, the following result shows that the confi-

dence ball (2.7) with r̂ = r̂∪ enjoys uniform coverage over all µ ∈ S∪
n .

Theorem 5.2. For all α ∈ (0,1) and all µ ∈ S∪
n , the statistic r̂∪ defined in (4.1) satisfies

∥

∥µ̂
LS
(

S∪
n

)

− µ
∥

∥

2

n
≤ r̂∪, (5.4)

with probability at least 1 − α.

The above result is analogous to Theorem 4.1. The numerical constants are slightly worse in the

case of the present section because the upper bound (5.2) on the statistical dimension of the cone S∪
n

is slightly worse than (3.12). The proof of Theorem 5.2 is similar to the proof of Theorem 4.1 and can

be found in Appendix C.

Now, the goal is to show that the statistic r̂∪ is of the same order as the minimax quantity (5.1). We

employ a different strategy than in the previous section. For any function g : Rn →R
n which is weakly

differentiable, the divergence of g is the random variable

Dg(y) = σ 2
n
∑

i=1

∂

∂yi

g(y)i .
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It is well known that by Stein’s identity, under suitable conditions on g (cf. [25], Section 2, or [29],

Lemma 3.6), we have

σ 2
EµDg(y) = Eµ

[

ξT g(y)
]

. (5.5)

The divergence of the estimator µ̂
LS

(S∪
n ) = �S∪

n
(y) is given in [14], Proposition 2.7, (see also [25]).

Namely, we have the following result.

Proposition 5.3 ([14,25]). If g(·) = �S∪
n
(·) is the projection onto the cone of convex sequences, then

(5.5) holds and we have

Dg(y) = q̂ + 1

almost surely, where q̂ = q(µ̂
LS

(S∪
n )).

This result can be used to bound from above the expected radius of the statistic r̂∪.

Theorem 5.4. Let µ ∈ S∪
n . Then

Eµ[q̂] ≤ 8q(µ) log
en

q(µ)
− 1. (5.6)

Consequently, for all α ∈ (0,1), the statistic (5.3) satisfies

Eµ[r̂∪] ≤ σ 2q(µ)polylog(n,1/α)

n
. (5.7)

where polylog(n,1/α) = 8 log(en)(16 + 24 log(n) + 4 log(1/α)).

Proof. By Proposition 5.3 and (5.5), we have

σ 2
Eµ[1 + q̂] = Eµ

[

ξT �S∪
n
(y)

]

= Eµ

[

ξT
(

�S∪
n
(y) − µ

)]

. (5.8)

By the Cauchy–Schwarz inequality, we have

σ 2
Eµ[1 + q̂] ≤ E

1/2
µ

[(

ξT (�S∪
n
(y) − µ)

|�S∪
n
(y) − µ|2

)2]

E
1/2
µ

∣

∣�S∪
n
(y) − µ

∣

∣

2

2
,

≤ σ
√

δ(Tµ)E
1/2
µ

∣

∣�S∪
n
(y) − µ

∣

∣

2

2
.

Using Proposition 5.1 completes the proof of (5.6). Inequality (5.7) is a direct consequence of (5.6)

and of the definition of r̂∪. �

The above result is different from Theorem 4.2 in isotonic regression. Theorem 4.2 controls both the

expectation and the deviations of k̂. In this section, Theorem 5.4 only controls the expectation of q̂ .

This comes from the use of Stein’s identity in the proof of Theorem 5.4, which yields a result only in

expectation.

The arguments used to prove Theorem 4.2 are based on the concentration properties of the intrin-

sic volumes of cones, while the proof of Theorem 5.4 relies on Stein’s identity and Proposition 5.3.

Thus, we have presented two methods to bound from above the expected diameter of the confidence

sets constructed in the present paper. The concentration inequalities used in Theorem 4.2 for non-

decreasing sequences provides exponential deviation inequalities, which are much stronger than the
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bounds in expectation obtained in Theorem 5.4 (Indeed, bounds in expectation only imply weak de-

viation bounds by Markov’s inequality). On the other hand, the argument based on Stein’s formula

in Theorem 5.4 has wider applicability. For instance, it readily applies to k̂ from Section 4: Since

Eµ[k̂]σ 2 = Eµ[ξT (µ̂
LS

(S
↑
n ) − µ)] holds [25], we have

Eµ[k̂] ≤ E
[∣

∣µ̂
LS
(

S↑
n

)

− µ
∣

∣

2

2

]1/2
σδ(Tµ)1/2 ≤ σ 2k(µ) log

(

en/k(µ)
)

for µ ∈ S
↑
n by the same argument as in (5.8) for the first inequality and [3], Theorem 3.2, for the

second, Tµ = {u− tµ, (t,u) ∈ R×S
↑
n } is the tangent cone. This provides an alternative proof of (4.8).

We end this section with the following consequence of Theorems 5.2 and 5.4.

Corollary 5.5. Let J = {1, . . . , n−1} and define the collection of models (Ek)k∈J = (S∪
n (k))k=1,...,n−1.

The random variable r̂∪ defined in (5.3) satisfies (5.4) and (2.9) with r̂ replaced by r̂∪. Thus, the ball

centered at µ̂
LS

(S∪
n ) of radius

√

r̂∪ is an honest confidence set, which is adaptive in expectation with

respect to the models (S∪
n (k))k=1,...,n−1.

The proof follows by combining Theorems 5.2 and 5.4, similarly to the proof of Corollary 4.3 for

non-decreasing sequences.

6. Non-convexity: Adaptive confidence sets for unimodal sequences

Let m ∈ {1, . . . , n}. A sequence u ∈ R
n is unimodal with mode at position m if and only if u{1,...,m} is

non-increasing and u{m,...,n} is nondecreasing–in other words, u belongs to the set

Km :=
{

u = (u1, . . . , un)
T ∈R

n : u1 ≥ · · · ≥ um ≤ um−1 ≤ · · · ≤ un

}

.

Next, by taking the union over all possible locations for the mode, we define the set of all unimodal

sequences as

U :=
⋃

m=1,...,n

Km.

The set U is non-convex for n ≥ 3.

Recall that if u ∈ S
↑
n ∪ S

↓
n is monotone, k(u) = |{ui, i = 1, . . . , n} is the smallest positive integer

k such that u is piecewise constant constant with k pieces. We extend the function k to the set of

unimodal sequences by setting

∀u ∈ U , k(u) = min
{

k ≥ 1 : ∃ partition (T1, . . . , Tk) : uTj
is constant for all j = 1, . . . , k

}

,

where the partition (T1, . . . , Tk) is a partition of {1, . . . , n} with maxTj < minTj+1 for all j =
1, . . . , k − 1. A unimodal sequence u ∈ U has k(u) − 1 jumps. Similarly to isotonic regression, de-

fine the models

U(k) =
{

u ∈ U : k(u) ≤ k
}

, k = 1, . . . , n. (6.1)

These sets define models of increasing complexity since

U(1) ⊂ U(2) ⊂ · · · ⊂ U(n) = U
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It is known that there exist numerical constants c, c′, c′′ such that for all α ≤ c,

c′σ 2k/n ≤ R∗
α

(

U(k)
)

≤ c′′σ 2
(

k log(en/k) + log(n/α)
)

/n. (6.2)

Indeed, the lower bound is a consequence of (3.3) and the inclusion R∗
α(S

↑
n (k)) ⊂ R∗

α(U(k)), while the

upper bound is proved in [3,13,16], see [3], Appendix C, for explicit constants. Thus, for α > 0 small

enough, the quantity R∗
α(S

↑
n (k)) is of order kσ 2/n, up to logarithmic factors in n and 1/α. Similarly,

the minimax risk over the sets U(k) satisfies

c′σ 2k/n ≤ R∗
E

(

U(k)
)

≤ sup
µ∈U(k)

Eµ

∥

∥µ̂
LS

(U) − µ
∥

∥

2

n
≤ c′′σ 2k log(en/k)/n, (6.3)

for some numerical constants c′, c′′ > 0 for instance by integrating the bounds of [3], Appendix C,

where µ̂
LS

(U) ∈ argminu∈U ‖u − y‖ is the non-convex unimodal Least-Squares estimator (if the non-

convex optimization problem has several solutions, we break ties arbitrarily).

The results below show that, using the number of constant pieces k̂ = p(µ̂
LS

(U)) of the unimodal

Least-Squares estimator, one can construct adaptive confidence sets with respect to the collection of

models (6.1).

Theorem 6.1. Let p̂ = k(µ̂
LS

(U)) be the smallest integer such that µ̂
LS

(U) is piecewise constant on p̂

contiguous pieces. For all α ∈ (0,1) and all μ ∈ U , the statistic

r̂uni := 4σ 2

n

(

√

(p̂ + 3) log

(

en

p̂ + 3

)

+
√

2 log

(

n2

α

)

+ 2(p̂ + 3) log

(

en

p̂ + 3

))2

(6.4)

satisfies

Pµ

(
∥

∥µ̂
LS

(U) − µ
∥

∥

2

n
≤ r̂uni

)

≥ 1 − α. (6.5)

Proof. Let µ̂ = µ̂
LS

(U) for brevity. By definition of µ̂
LS

(U), inequality |µ̂ − y|22 ≤ |µ − y|22 holds.

Hence, |µ̂ − µ|22 ≤ 2ξT (µ̂ − µ) and

|µ̂ − µ|2 ≤ 2ξT θ̂ where θ̂ = (µ̂ − µ)/|µ̂ − µ|2. (6.6)

We split {1, . . . , n} into a partition (L,C,R) as follows: L is the largest set of indices of the form

{1,2, . . . , |L|} such that both µ̂L and µL are non-increasing, R is the largest set of indices of the form

{n − |R| + 1, n − |R| + 2, . . . , n} such that µ̂R and µR are both non-decreasing, and C = {1, . . . , n} \
(R ∪ L) contains the remaining central indices, where by definition, µ̂C − µC is either increasing or

decreasing. Let k̂L be the number of constant pieces of µ̂ on L, and let (Ŝ1, . . . Ŝk̂L
) be a partition of L

such that µ̂L is constant on each Ŝj . Similarly, let k̂R be the number of constant pieces of µ̂ on R and

(T̂1, . . . , T̂k̂R
) be a partition of R such that µ̂R is constant on each T̂j . Then both µ̂ − µ and θ̂ belong

to either one of the cones

D̂+ :=
(

S
↑
|Ŝ1|

× · · · × S
↑
|Ŝ

k̂L
|
)

× S
↑
|C| ×

(

S
↓
|T̂1|

× · · · × S
↓
|T̂

k̂R
|
)

.

or

D̂− :=
(

S
↑
|Ŝ1|

× · · · × S
↑
|Ŝ

k̂L
|
)

× S
↓
|C| ×

(

S
↓
|T̂1|

× · · · × S
↓
|T̂

k̂R
|
)

,
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the only difference being the direction on the central indices in C. We now argue similarly to (4.6) as

follows. If C is a nonrandom cone of the form

C = S↑
n1

× · · · × S↑
nk

× S↓
m1

× · · · × S↓
ml

(6.7)

for positive integers n1, . . . , nk,m1, . . . ,ml such that n1 + · · · + nk + m1 + · · · + ml = n, then by

the Gaussian concentration theorem, (4.5) holds with probability at least 1 − e−x . Furthermore,

E supθ∈C:|θ |2=1 ξT θ ≤ σδ(C)1/2 by Jensen’s inequality, and δ(C) =
∑k

j=1 log(enj )+
∑l

j=1 log(emj ) ≤
(k + l) log(en/(k + l) thanks to (3.12) and the fact that the statistical dimension of a product of cones

is equal to the sum of the statistical dimensions (cf. [1], Proposition 3.1, or the discussion preceding

(3.8)).

Let s = 1, . . . , n be fixed. There are fewer than n
(

n−1
s

)

cones of the form (6.7) with k + l = s. By

the union bound and inequality log
(

n−1
s

)

≤ s log(en/s), we have with probability at least 1 − e−x the

bound

sup
C

(

sup
θ∈C:|θ |2=1

ξT θ
)

≤ σ
√

s log(en/s) + σ

√

2
(

x + logn + s log(en/s)
)

where the supremum is taken over all cones C of the form (6.7) with k + l = s. Finally, we apply the

union bound over all s ∈ {1, . . . , n} and set x = log(n/α). We have established that with probability at

least 1 − α,

sup

θ∈D̂+∪D̂−:|θ |2=1

ξT θ ≤ σ
√

ŝ log(en/ŝ) + σ

√

2
(

log
(

n2/α
)

+ ŝ log(en/ŝ)
)

.

where ŝ = k̂L + k̂R + 1. The proof is completed by combining this bound with (6.6), and observing

that ŝ = k̂R + 1 + k̂L ≤ p̂ + 3. �

Finally, the following result shows that the confidence set of the previous theorem has optimal radius

up to logarithm factors.

Theorem 6.2. If µ ∈ U , then

p̂ := k
(

µ̂
LS

(U)
)

≤ 4k(µ) log
(

en/k(µ)
)

+ 14 log(2n/γ )

with probability at least 1 − γ . Furthermore, E[p̂] ≤ 4k(µ) log(en/k(µ)) + 14 log(2en).

Proof. If µ̂ = µ̂
LS

(U) is a unimodal fit and m̂ is the location of its mode, then the following facts hold

true [28]: (a) the value of μ̂m̂ of µ̂ at m̂ is equal to ym̂, (b) µ̂{1,...,m̂} is equal to the isotonic (decreasing)

fit of y{1,...,m̂}, and (c) µ̂{m̂,...,n} is equal to the isotonic (increasing) fit of y{m̂,...,n}. Hence, we can bound

from above the number of constant pieces of µ̂ by the number of constant pieces of two isotonic fits,

one on {1, . . . , m̂} and the other on {m̂, . . . , n}.
If m is a deterministic mode location, and µ{1,...,m} has k(µ{1,...,m}) pieces, by Theorem 4.2 the

isotonic (decreasing) fit of y{1,...,m} has at most

2k(µ{1,...,m}) log
(

em/k(µ{1,...,m})
)

+ 7 log(1/γ )

constant pieces with probability 1 − γ . Similarly, with at least probability 1 − γ , the isotonic (increas-

ing) fit of y{m,...,n} has at most

2k(µ{m,...,n}) log
(

e(n − m + 1)/k(µ{m,...,n})
)

+ 7 log(1/γ )
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constant pieces with probability at least 1 − γ . By the union bound, the two previous sentences hold

uniformly over all possible modes m = 1, . . . , n with probability at least 1 − 2nγ .

Hence, with probability at least 1−2nγ , the number of constant pieces of the unimodal least-squares

µ̂ is bounded from above by

2k(µ{1,...,m̂}) log

(

em̂

k(µ{1,...,m̂})

)

+ 2k(µ{m̂,...,n}) log

(

e(n − m̂ + 1)

k(µ{m̂,...,n})

)

+ 14 log
1

γ
.

We first use that m̂ ≤ n and (n − m̂ + 1) ≤ n to bound from above the numerator inside the logarithms.

Next, we use k(µ{1,...,m̂}) ≤ k(µ) and the fact that x log(en/x) is increasing on [1, n] to conclude

that the previous display is bounded from above by 4k(µ) log(en/k(µ)) + 14 log(1/γ ). The result

in expectation is obtained by integration, using the identity E[Z] =
∫∞

0 P(Z > t) dt for every non-

negative random variable Z. �

Corollary 6.3. Let J = {1, . . . , n} and define the collection of models (Ek)k∈J = (U(k))k=1,...,n. The

random variable r̂uni defined in (6.4) satisfies (6.5), (2.8) and (2.9) with r̂ replaced by r̂uni . Thus, the

ball centered at µ̂
LS

(S∪
n ) of radius

√

r̂uni is an honest confidence set, which is adaptive in expectation

with respect to the models (U(k))k=1,...,n.

The proof follows by combining Theorems 6.1 and 6.2, similarly to the proof of Corollary 4.3 for

non-decreasing sequences.

7. Concluding remarks

We have provided a simple construction of honest and adaptive confidence sets for isotonic, convex

and unimodal regression. Our construction reveals that the complexity of the Least-Squares estimator

in these problems, e.g. the number of jumps of the isotonic Least-Squares or the number of changes

of slope of the convex Least-Squares, can be used to bound from above the error of the estimator

(cf. Theorems 4.1, 5.2 and 6.1). Furthermore, the complexity of the Least-Squares estimator is these

problems is not larger, up to logarithmic factors, than the complexity of the true mean vector (cf.

Theorems 4.2, 5.4 and 6.2).

The construction of honest confidence sets in Theorems 4.1, 5.2 and 6.1 relies on a careful ap-

plication of the Gaussian concentration theorem combined with union bounds and upper bounds on

statistical dimensions of tangent cones. Such techniques can readily be extended to the setting of [12,

18,21], where bounds on the statistical dimensions of tangent cones are readily available. However, the

techniques used in Theorems 4.2, 5.4 and 6.2 to control the size of such confidence sets do not directly

extend to the settings considered in [12,18,21] and it is unclear at this point how to control adaptively

the radius of the confidence sets in these settings.

For the piecewise constant signals without the monotonicity constraint studied in Section 4.2, con-

struction of honest and adaptive confidence sets are impossible. This provides additional evidence that

shape constraints make it possible to construct adaptive and honest confidence sets or confidence bands

for models where such task is impossible in the absence of the shape constraint [6,7,15].

The present paper tackles shape constraint regression problems with fixed design: if x1 <

· · · < xn are ordered design points then the model S
↑
n of nondecreasing sequences is equal to

{(f (x1), . . . , f (xn))
T , f : R → R nondecreasing}, Hence, the results of the paper readily extend

to random design isotonic regression, provided that the loss is measured with the empirical loss
1
n

∑n
i=1(f̂ (xi) − f ∗(xi))

2 where f ∗ is the true regression function and x1 < · · · < xn are the ran-

dom design points, by setting μi = f ∗(xi). For convex regression, if x1 < · · · < xn are equispaced
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(i.e., |xi+1 − xi | is the same for all i), the model S∪
n is the same as {(f (x1), . . . , f (xn))

T , f : R →
R convex}. If the design points are not equispaced, then {(f (x1), . . . , f (xn))

T , f : R → R convex}
defines a model different than S∪

n , but the same logarithmic bounds on the statistical dimension hold

for non-equispaced design points [3], cf. Proposition 4.2, and consequently the results of Section 5

extend to non-equispaced designs.

Regarding random design, in order to extend the results of the present paper to i.i.d. real val-

ued design points x1, . . . , xn, one would need to establish a relationship between the empirical loss
1
n

∑n
i=1(f̂ (xi) − f ∗(xi))

2 and the population loss Ex∼F [(f̂ (x) − f ∗(x))2|f̂ ] where F is the distribu-

tion of the design. The random design analysis in [21] is a good starting point for this purpose. Finally,

let us mention that if the design is Gaussian and high-dimensional, upper bounds based on statistical

dimensions can be obtained similarly as in the sequence model [23] and some techniques of the present

paper may thus be applicable. We leave this research direction open for future work.

Appendix A: Nondecreasing sequences with bounded total variation

Let V > 0. If the unknown parameter µ satisfies μn − μ1 ≤ V , the risk of the Least Squares estimator

satisfy [31], (28),

Eµ

∥

∥µ̂
LS
(

S↑
n

)

− µ
∥

∥

2

n
≤ σ 2κ2

((

V

σn

)2/3

+ log(en)

n

)

,

where κ ≤ 3.6. Thus, an explicit constant is readily available [31], (2.8).

In this section, we explain how to construct confidence sets with diameter of the same order as the

right-hand side of the previous display. We proceed as follows.

The function f : Rn → R
n defined by f (v) = ‖�

S
↑
n
(µ + σv) − µ‖n is Lipschitz with coefficient

σ/
√

n as for all v,v′ ∈R
n,

∣

∣f (v) − f
(

v′)∣
∣≤

∥

∥�
S

↑
n
(µ + σv) − �

S
↑
n

(

µ + σv′)∥
∥

n

≤ σ
∥

∥v − v′∥
∥

n
= (σ/

√
n)
∣

∣v − v′∣
∣

2
. (A.1)

By the Gaussian concentration inequality [5], Theorem 5.6, the following holds with probability greater

than 1 − α

∥

∥µ̂
LS
(

S↑
n

)

− µ
∥

∥

n
≤ Eµ‖µ̂LS

(

S↑
n

)

− µ‖n + σ

√

2 log(1/α)

n
.

Using that (a+b)2 ≤ 2a2 +2b2, we obtain the following for all α ∈ (0,1): If µ ∈ S
↑
n and μn −μ1 ≤ V ,

then

∥

∥µ̂
LS
(

S↑
n

)

− µ
∥

∥

2

n
≤ 2κ2σ 2

(

V

σn

)2/3

+ 2κ2σ 2 log(en) + 4σ 2 log(1/α)

n

with probability greater than 1 − α.

Let Vµ = μn − μ1 and V̂ = yn − y1. The random variable V̂ − Vµ is a centered Gaussian with

variance 2σ 2, so that

Vµ ≤ V̂ + 2σ
√

log(1/α)

with probability greater than 1 − α. Thus, we have established the following.



88 P.C. Bellec

Proposition A.1. Let µ ∈ S
↑
n . Define the statistic ŝ↑ by

ŝ↑ = 2κ2σ 2

(

V̂ + 2σ
√

log(1/α)

σn

)2/3

+ 2κ2σ 2 log(en) + 4σ 2 log(1/α)

n

where κ ≤ 3.6 is the constant from [31] that appears in (A.1). Then we have ‖µ̂LS
(S

↑
n ) − µ‖2

n ≤ ŝ↑
with probability greater than 1 − 2α.

Furthermore, it is clear that V̂ ≤ Vµ + 2σ
√

log(1/γ ) with probability greater than 1 − γ for all

γ ∈ (0,1).

Proposition A.2. Let µ ∈ S
↑
n and let V = μn − μ1. Then the statistic ŝ↑ defined above satisfies

ŝ↑ ≤ 2κ2σ 2

(

V̂ + 2σ
√

log(1/(γ α))

σn

)2/3

+ 2κ2σ 2 log(en) + 4σ 2 log(1/α)

n
(A.2)

with probability at least 1 − γ for all γ ∈ (0,1).

Theorem A.3. Let µ ∈ S
↑
n . The statistic min(r̂↑, ŝ↑) satisfies

∥

∥µ̂
LS
(

S↑
n

)

− µ
∥

∥

2

n
≤ min(r̂↑, ŝ↑)

with probability at least 1 − 3α. Furthermore, for all γ ∈ (0,1), the statistic min(r̂↑, ŝ↑) is bounded

from above with probability at least 1 − 2γ , by the minimum of the right-hand side of (4.7) and the

right-hand side of (A.2).

For all V ≥ σ and all k = 1, . . . , n, define the class

S↑
n (k,V ) :=

{

v = (v1, . . . , vn)
T ∈ S↑

n : k(v) ≤ k and vn − v1 ≤ V
}

.

Since

cσ 2 min

((

V

σn

)2/3

,
k log log(16n/k)

n

)

≤ R∗
E

(

S↑
n (k,V )

)

for some absolute constant c > 0 by combining the lower bound in (3.2) with the lower bound in [31],

(2.9). Thus, the statistic min(r̂↑, ŝ↑) of Theorem A.3 provides an honest confidence ball centered at the

Least Squares estimator, and this confidence ball is adaptive in expectation for the collection of models

(

S↑
n (k,V )

)

k∈{1,...,n},V ∈[σ,+∞)
.

Appendix B: Technical lemma

Lemma B.1. In the present lemma, all quantities are deterministic. Let a ∈ [−∞,+∞) and b ∈
(−∞,+∞] such that a ≤ b. Let y ∈ R

n. Define θ and θ∗ as the unique solutions of the minimiza-

tion problems

θ∗ ∈ argmin

v∈S↑
n

|y − v|22, (B.1)
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θ ∈ argmin

v∈S↑
n (a,b)

|y − v|22 (B.2)

where S
↑
n (a, b) := {v = (v1, . . . , vn)

T ∈ S
↑
n : a ≤ v1, vn ≤ b}. Then k(θ) ≤ k(θ∗).

The intuition behind this lemma is that if a constraint is not saturated for θ , this constraint is not

saturated for θ∗ either, so θ∗ has at least as many jumps as θ .

Proof of Lemma B.1. Let Ta = {i = 1, . . . , n : θ̂∗
i ≤ a}, Tb = {i = 1, . . . , n : θ̂∗

i ≥ b} and Tc = {i =
1, . . . , n : a < θ̂∗

i < b}. We will prove that the unique minimizer θ of the problem (B.2) is

θTa = a1Ta , θTc = θ∗
Tc

, θTb
= b1Tb

, (B.3)

where 1 = (1, . . . ,1)T ∈R
n. Then it is clear that k(θ) = 1 + k(θ∗

Tc
) + 1 ≤ k(θ∗

Ta
) + k(θ∗

Tc
) + k(θ∗

Tb
) =

k(θ∗).
First, by strong convexity there exists a unique solution to the minimization problem (B.2), and a

unique solution to the minimization problem (B.1). Second, by the characterization of the projection

onto the closed convex set S
↑
n (a, b), if θ satisfies

Au := (u − θ)T (y − θ) ≤ 0

for all u ∈ S
↑
n (a, b), then θ is the unique solution to the minimization problem (B.2). Let θ be defined

by (B.3). By simple algebra, for all u ∈ S
↑
n (a, b),

Au =
(

uTa − a1Ta + θ∗
Ta

− θ∗
Ta

)T (
yTa − θ∗

Ta

)

+ (uTa − a1Ta )
T
(

θ∗
Ta

− a1Ta

)

+
(

uTb
− b1Tb

+ θ∗
Tb

− θ∗
Tb

)T (
yTb

− θ∗
Tb

)

+ (uTb
− b1Tb

)T
(

θ∗
Tb

− b1Tb

)

+
(

uTc − θ∗
Tc

)T (
yTc − θ∗

Tc

)

.

If a vector v has nonnegative entries and a vector x has non-positive entries, then vT x ≤ 0, so (uTa −
a1Ta )

T (θ∗
Ta

− a1Ta ) ≤ 0 and (uTb
− b1Tb

)T (θ∗
Tb

− b1Tb
) ≤ 0. Thus,

Au ≤
(

uTa − a1Ta + θ∗
Ta

− θ∗
Ta

)T (
yTa − θ∗

Ta

)

+
(

uTb
− b1Tb

+ θ∗
Tb

− θ∗
Tb

)T (
yTb

− θ∗
Tb

)

+
(

uTc − θ∗
Tc

)T (
yTc − θ∗

Tc

)

,

and the right-hand side of the previous display is equal to

(

v − θ∗)T (y − θ∗), (B.4)

where v ∈R
n is defined by

vTa := uTa − a1Ta + θ∗
Ta

, vTc := uTc , vTb
:= uTb

− b1Tb
+ θ∗

Tb
.

We have v ∈ S
↑
n by definition of Ta , Tc and Tb . The quantity (B.4) is non-positive because θ∗ is the

projection of y onto the convex set S
↑
n . Thus, we have established that Au ≤ 0 for all u ∈ S

↑
n (a, b), so

that the unique solution of the minimization problem (B.2) is given by the expression (B.3). �
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Appendix C: Proofs for convex sequences

Proof of Theorem 5.2. For any set T of the form (4.3), using the concentration property (3.7) of the

random variable (3.6) with K = S∩
|T |, we have with probability greater than 1 − α,

∣

∣�S∩
|T |

(ξT )
∣

∣

2

2
≤ 2δ

(

S∩
|T |
)

+ 4 log(1/α) ≤ 16 log(en) + 4 log(1/α),

where we used (5.2) for the last inequality. There are less that n2 sets T ⊂ {1, . . . , n} of the form (4.3).

Using the union bound for all sets T of the form (4.3), we have P(�(α)) ≥ 1 − α where

�(α) :=
{

sup
T ⊂{1,...,n} of the form (4.3)

∣

∣�S∩
|T |

(ξT )
∣

∣

2

2
≤ σ 2

(

16 log(en) + 4 log

(

n2

α

))}

.

Let µ̂ = µ̂
LS

(S∪
n ) for notational simplicity. Then (2.6) with u replaced by µ can be rewritten as

|µ̂ − µ|22 ≤ 2ξT (µ̂ − µ) − |µ̂ − µ|22.

By definition of q(·), there exists a partition (T̂1, . . . , T̂q̂) of {1, . . . , n} such that µ̂
LS

(S∪
n ) is affine on

each T̂j , j = 1, . . . , q̂ . Furthermore, each T̂j has the form (4.3) because µ̂
LS

(S∪
n ) ∈ S∪

n . We have

2ξT (µ̂ − µ) − |µ̂ − µ|22 =
q̂
∑

j=1

2ξT

T̂j
(µ̂ − µ)

T̂j
−
∣

∣(µ̂ − µ)Tj

∣

∣

2

2
,

≤
q̂
∑

j=1

(ξT

T̂j
(µ̂ − µ)

T̂j

|(µ̂ − µ)
T̂j

|2

)2

,

where we have used 2ab − a2 ≤ b2. By definition of (T̂1, . . . , T̂q̂), µ̂ is affine on T̂j for each j =
1, . . . , q̂ , thus the vector (µ̂ − µ)

T̂j
∈ S∩

|T̂j | is a concave sequence. By taking the supremum, we obtain

|µ̂ − µ|22 ≤
q̂
∑

j=1

sup
v∈S∩

|T̂j |:|v|22≤1

(

ξT

T̂j
v
)2 =

q̂
∑

j=1

∣

∣�S∩
|T̂j |

(ξ |T̂j |)
∣

∣

2

2
,

where we used (3.6) for the last equality. On the event �(α) and by definition of r̂∪,

|µ̂ − µ|22 ≤
q̂
∑

j=1

∣

∣�S∩
|T̂j |

(ξ |T̂j |)
∣

∣

2

2
≤ σ 2q̂

(

16 log(en) + 4 log
(

n2/α
))

= nr̂∪.
�
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