
To appear in EPTCS. c© Y.A. Liu & S.D. Stoller

Knowledge of Uncertain Worlds:
Programming with Logical Constraints: An Overview

Yanhong A. Liu Scott D. Stoller
Computer Science Department, Stony Brook University

{liu,stoller}@cs.stonybrook.edu

Programming with logic has allowed many design and analysis problems to be expressed more easily
and clearly at a high level. Examples include problems in program analysis, network management, se-
curity frameworks, and decision support. However, when sophisticated problems require reasoning with
negation and recursion, possibly causing contradiction in cyclic reasoning, programming with logic has
been a challenge. Many languages and semantics have been proposed, but they have different underlying
assumptions that are conflicting and subtle, and each is suitable for only certain kinds of problems.

Liu and Stoller [3] describes a unified language, DA logic, which stands for Design and Analysis
logic, for programming with logic using logical constraints. It supports logic rules with unrestricted
negation in recursion, as well as unrestricted universal and existential quantification. It is based on the
unifying founded semantics and constraint semantics [1, 2], which give a single three-valued model and a
set of two-valued models, respectively, and it supports the power and ease of programming with different
intended semantics without causing contradictions in cyclic reasoning.

1. The language provides meta-constraints on predicates. These meta-constraints capture the differ-
ent underlying assumptions of different logic language semantics. They indicate whether: (1) a
predicate is certain (assertions of P are two-valued: true or false) or uncertain (assertions of P
are three-valued: true, false, or undefined); (2) the set of rules specifying a predicate is complete
(hence negative facts ¬P can be inferred using the negations of the hypotheses of those rules) or
not; (3) a predicate is closed (specified assertions of the predicate are considered false if inferring
any of them to be true requires assuming that some of them are true) or not.

2. The language supports the use of uncertain information in the results of different semantics, in the
form of either undefined values or possible combinations of values. The assertions for which P
is true, false, and undefined in founded semantics are captured using three automatically derived
predicates, P.T, P.F, and P.U, respectively. The constraint semantics of a set of rules, facts, and
meta-constraints is captured using an automatically derived predicate CS. For each model m in CS,
the assertion CS(m) holds, and m.P captures the truth values of predicate P in m. All of these
predicates can be used explicitly and directly for further reasoning, unlike with the truth values in
well-founded semantics, stable model semantics, founded semantics, and constraint semantics.

3. The language further supports the use of knowledge units that can be instantiated by any new
predicates, including predicates with additional arguments. A knowledge unit, abbreviated as
kunit, is a set of rules, facts, and meta-constraints. A kunit K can be used in another kunit with an
instantiation of the form use K (P1 =Q1(Y1,1, ...,Y1,bi), ..., Pn =Qn(Yn,1, ...,Yn,bn)), which replaces
each occurrence Pi in K with Qi and passes Yi,1, ...,Yi,bi as additional arguments to Q. This powerful
form of instantiation allows knowledge in a kunit to be re-used in any contexts.

Together, the language allows complex problems to be expressed clearly and easily, where different
assumptions can be easily used, combined, and compared for expressing and solving a problem modu-



2 Knowledge of Uncertain Worlds

larly, unit by unit. We discuss one example below. The paper presents additional examples for different
games that show the power and ease of programming with DA logic.

Example: Unique undefined positions. In an uncertain world, among the most critical information
is assertions that have a unique true or false value in all possible ways of satisfying given constraints but
cannot be determined to be true by just following founded reasoning. Having both founded semantics
and constraint semantics at the same time allows one to find such information.

Consider the following kunits. With default meta-constraints, win, prolog, and asp are complete,
move is certain in win_unit, and unique is certain in cmp_unit. First, win_unit defines win—x is a
winning position if there is a move from x to y and y is not a winning position. Then, pa_unit defines
prolog, asp, and move and uses win_unit. Finally, cmp_unit uses pa_unit and defines unique(x) to be
true if (1) win(x) is undefined in founded semantics, (2) a constraint model of pa_unit exists, and (3)
win(x) is true in all models in the constraint semantics.

kunit win_unit:

win(x) ← move(x,y) ∧ ¬ win(y)

kunit pa_unit:

prolog ← ¬ asp

asp ← ¬ prolog

move(1,0) ← prolog

move(1,0) ← asp

closed(move)

use win_unit ()

kunit cmp_unit:

use pa_unit ()

unique(x) ← win.U(x) ∧ ∃ m ∈ pa_unit.CS ∧ ∀ m ∈ pa_unit.CS | m.win(x)

In pa_unit, founded semantics gives move.U(1,0) (because prolog and asp are undefined), win.F(0)
(because there is no move from 0), and win.U(1) (because win(1) cannot be true or false). Constraint se-
mantics pa_unit.CS has two models: {prolog, move(1,0), win(1)} and {asp, move(1,0), win(1)}.
We see that win(1) is true in all two models. So win.U(1) from founded semantics is imprecise.

In cmp_unit, by definition, unique(1) is true. That is, win(1) is undefined in founded semantics, the
constraint semantics is not empty, and win(1) is true in all models of the constraint semantics. �

Overall, DA logic is essential for general knowledge representation and reasoning, because not only
rules but also different assumptions must be captured, and these rules and different inference results must
be used modularly for scaled up applications.

Acknowledgments. This work was supported in part by ONR under grant N00014-20-1-2751 and NSF
under grants CCF-1954837, CCF-1414078, CNS-1421893, and IIS-1447549.

References
[1] Yanhong A. Liu & Scott D. Stoller (2018): Founded Semantics and Constraint Semantics of Logic Rules.

In: Proceedings of the International Symposium on Logical Foundations of Computer Science (LFCS 2018),
Lecture Notes in Computer Science 10703, Springer, pp. 221–241, doi:10.1007/978-3-319-72056-2 14.

[2] Yanhong A. Liu & Scott D. Stoller (2020): Founded Semantics and Constraint Semantics of Logic Rules.
Journal of Logic and Computation 30(8). To appear. Preprint available at https://arxiv.org/abs/1606.
06269.

[3] Yanhong A. Liu & Scott D. Stoller (2020): Knowledge of Uncertain Worlds: Programming with Logical
Constraints. In: Proceedings of the International Symposium on Logical Foundations of Computer Science
(LFCS 2020), Lecture Notes in Computer Science 11972, Springer, pp. 111–127, doi:10.1007/978-3-030-
36755-8 8. Also https://arxiv.org/abs/1910.10346.

http://dx.doi.org/10.1007/978-3-319-72056-2_14
https://arxiv.org/abs/1606.06269
https://arxiv.org/abs/1606.06269
http://dx.doi.org/10.1007/978-3-030-36755-8_8
http://dx.doi.org/10.1007/978-3-030-36755-8_8
https://arxiv.org/abs/1910.10346

