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Abstract

The article considers the problem of estimating a high-dimensional sparse parameter in the pres-

ence of side information that encodes the sparsity structure. We develop a general framework that

involves first using an auxiliary sequence to capture the side information, and then incorporating the

auxiliary sequence in inference to reduce the estimation risk. The proposed method, which carries

out adaptive SURE-thresholding using side information (ASUS), is shown to have robust performance

and enjoy optimality properties. We develop new theories to characterize regimes in which ASUS far

outperforms competitive shrinkage estimators, and establish precise conditions under which ASUS is

asymptotically optimal. Simulation studies are conducted to show that ASUS substantially improves

the performance of existing methods in many settings. The methodology is applied for analysis of data

from single cell virology studies and microarray time course experiments.
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1 Introduction

The recent technological advancements have made it possible to collect vast amounts of data with various

types of side information such as domain knowledge, expert insights, covariates in the primary data, and

secondary data from related studies. In a wide range of fields including genomics, neuroimaging and sig-

nal processing, incorporating side information promises to yield more accurate and meaningful results.

However, few analytical tools are available for extracting and combining information from different data

sources in high-dimensional data analysis. This article aims to develop new theory and methodology for

leveraging side information to improve the efficiency in estimating a high-dimensional sparse parame-

ter. We study the following closely related issues: (i) how to properly extract or construct an auxiliary

sequence to capture useful sparsity information; (ii) how to combine the auxiliary sequence with the pri-

mary summary statistics to develop more efficient estimators; and (iii) how to assess the relevance and

usefulness of the side information, as well as the robustness and optimality of the proposed method.

1.1 Motivating applications

Sparsity is an essential phenomenon that arises frequently in modern scientific studies. In a range of data-

intensive application fields such as genomics and neuroimaging, only a small fraction of data contain

useful signals. The detection, estimation and testing of a high-dimensional sparse object have many im-

portant applications and have been extensively studied in the literature (Abramovich et al., 2006, Donoho

and Jin, 2004, Johnstone and Silverman, 2004). For instance, in the RNA-seq study that will be analyzed

in Section 4.3, the goal is to estimate the true expression levels of n = 53, 216 genes for the virus strain

VZV, which is the causative agent of varicella (chickenpox) and zoster (shingles) in humans (Zerboni

et al., 2014). The parameter of interest (the population mean vector of gene expression) is sparse as it is

known that very few genes in the generic RNA-seq kits express themselves in these single-cell virology

studies (Sen et al., 2018). The accurate identification and estimation of nonzero large effects is helpful

for the discovery of novel genetic biomarkers, which constitutes a key step in the development of new

treatments and personalized medicine (Erickson et al., 2005, Holland et al., 2016, Matsui, 2013). Another

example arises from microarray time-course (MTC) experiments that will be analyzed in Section E of

the Supplementary Material. The goal is to identify genes that exhibit a specific pattern of differential

expression over time. The temporal pattern, which can be revealed by estimating the differences in ex-

pression levels of genes between two time points, would help gain insights into the mechanisms of the

underlying biological processes (Calvano et al., 2005, Sun and Wei, 2011). After baseline removal, the

parameter of interest is the difference between two mean vectors that are both individually sparse.

In practice, the intrinsic sparsity structure of the high-dimensional parameter is often captured by side
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information, which can be obtained as either summary statistics from secondary data sources or can be

constructed as a covariate sequence from the original data. For instance, in the RNA-seq data, expression

levels corresponding to other four experimental conditions (C1, C2, C3 and C4) are also available for the

same n genes through related studies conducted in the lab. The heat map in Figure 1 shows that the sparse

structure of the mean transcription levels of the genes for VZV is roughly maintained by the same set

of genes in subjects from the other four conditions. The common structural information shared by both

cases (VZV) and controls (C1 to C4) can be exploited to construct more efficient estimation procedures.

In the two-sample sparse estimation problem considered in the MTC study (analyzed in Section E of the

Supplementary Material), we illustrate that a covariate sequence can be constructed from the original data

matrix to assist inference by capturing the sparseness of the mean difference. Intuitively, incorporating

side information promises to improve the efficiency of existing methods and interpretability of results.

However, in conventional practice, such useful auxiliary data have been largely ignored in analysis.

Figure 1: Heat map showing the average expression levels in the RNA-seq study. Left panel: VZV; right
panel from top to bottom: C1, C2, C3 and C4, where the number of replicates (patients) is shown in
parenthesis. We can see that 80-90% of the genes under the VZV condition are unexpressed (black),
and the same sparse structure seems to be roughly maintained in the other four experimental conditions.
Useful side information on sparsity can be extracted from secondary data (C1-C4) and be combined with
the primary data (VZV) to construct more efficient estimators.
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1.2 ASUS: a general framework for leveraging side information

In this article, we develop a general integrative framework for sparse estimation that is capable of han-

dling side information that may be extracted from (i) prior or domain-specific knowledge, (ii) covariate

sequence based on the same (original) data, or (iii) summary statistics based on secondary data sources.

Let θ = (θ1, · · · , θn) be an unknown high-dimensional sparse parameter. Our study focuses on the class

of non-linear thresholding estimators [See Chs 8, 13 of Johnstone (2015) and Ch 11 of Mallat (2008)],

which have been widely used in the sparse case where many coordinates of θ are small or zero.

The proposed estimation framework involves two steps: first constructing an auxiliary sequence S =

(Si : 1 ≤ i ≤ n) to capture the sparse structure, and second combining S with the primary statistics,

denoted YYY = (Yi : 1 ≤ i ≤ n), via a group-wise adaptive thresholding algorithm. Our idea is that

the coordinates of θθθ become nonexchangeable in light of side information. To reflect this heterogeneity,

we divide all coordinates into K groups based on Si. The side information is then incorporated in

our estimation procedure by applying soft-thresholding estimators separately, thereby fine tuning the

group-wise thresholds to capture the varied sparsity levels across groups. The optimal grouping and

thresholds are chosen adaptively via a data-driven approach, which employs the Stein’s unbiased risk

estimate (SURE) criterion to minimize the total estimation risk. The proposed method, which carries out

adaptive SURE-thresholding using side information (ASUS), is shown to have robust performance and

enjoy optimality properties. ASUS is simple and intuitive, but nevertheless provides a general framework

for information pooling in sparse estimation problems. Concretely, since ASUS does not rely on any

functional relationships between S and θ, it is robust and effective in leveraging side information in a

wide range of scenarios. In Section 2.2, we demonstrate that this flexible framework can be applied to

various sparse estimation problems.

The amount of efficiency gain of ASUS depends on two factors: (i) the usefulness of the side in-

formation; and (ii) the effectiveness in utilizing the side information. To understand the first issue, we

formulate in Section 3 a hierarchical model to assess the informativeness of an auxiliary sequence. Our

theoretical analysis characterizes the conditions under which methods ignoring side information are sub-

optimal compared to an “oracle” with perfect knowledge on sparsity structure. To investigate the second

issue, Section 3 establishes precise conditions under which ASUS is asymptotically optimal, in the sense

that its maximal risk is close to the theoretical limit that is attained by the oracle. Finally, we carry out

a theoretical analysis on the robustness of ASUS; our results show that pooling non-informative side in-

formation would not harm the performance of data combination procedures. Our asymptotic results are

built upon the elegant higher-order minimax risk evaluations developed by Johnstone (1994).
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1.3 Connections with existing work and our contributions

ASUS is a non-linear shrinkage estimator that incorporates relevant side information by choosing data-

adaptive thresholds to reflect the varied sparsity levels across groups. We use the SURE criterion for

simultaneous tuning of the grouping and shrinkage parameters. Our methodology is related to Xie et al.

(2012), Tan et al. (2015) and Weinstein et al. (2018), which utilized SURE to devise algorithms reflecting

optimal shrinkage directions. However, these works are developed for different purposes (addressing the

heteroscedasticity issue in the data) and do not cover the sparse case.

The notion of side information in estimation has been explored in several research fields. In informa-

tion theory for instance, sparse source coding with side information is a well studied problem (Wyner,

1975; Cover and Thomas, 2012; Watanabe et al., 2015). However, these methodologies focus on very

different goals and cannot be directly applied to our problem. In the statistical literature, the use of side

information in sparse estimation problems has been mainly limited to regression settings where the side

information must be in the form of a linear function of θ (Ke et al., 2014, Kou and Yang, 2015). By con-

trast, our estimation framework utilizes a more flexible scheme that does not require the specification of

any functional relationship between θ and the side information. The proposed ASUS algorithm is simple

and intuitive but nevertheless enjoys strong numerical and theoretical properties. Our simulation studies

show that it can substantially outperform competitive methods in many settings. ASUS is a robust data

combination procedure in the sense that asymptotically it would not under-perform methods ignoring

side information when the auxiliary data are non-informative (see Theorem 4).

The proposed research makes several new theoretical contributions. First, we develop general prin-

ciples for constructing and pooling the side information, which guarantees proper information extraction

and robust performance of ASUS. Second, we formulate a theoretical framework to assess the usefulness

of side information. Third, we establish precise conditions under which ASUS is asymptotically optimal.

Finally, we extend the sparse minimax decision theory of Johnstone (2015), which provides the founda-

tion for a range of sparse inference problems (Abramovich et al., 2006, 2007, Cai et al., 2014, Collier

et al., 2017, Tibshirani et al., 2014), to derive new high-order characterizations of the maximal risk of

soft-thresholding estimators.

1.4 Organization of the paper

Section 2 describes the proposed ASUS procedure. Section 3 presents theoretical analyses. The numer-

ical performances of ASUS are investigated using both simulated and real data in Section 4. Section 5

concludes with a discussion. Additional numerical results and proofs are given in the Supplementary

materials.
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2 Adaptive Sparse Estimation with Side Information

This section first describes the model and assumptions (Section 2.1), then discusses how to construct the

auxiliary sequence (Section 2.2), and finally proposes the methodology (Section 2.3).

2.1 Model and assumptions

To conduct a systematic study of the influence of side information for estimating θ, we consider a hier-

archical model that relates the primary and auxiliary data sets through a latent vector ξ = (ξ1, . . . , ξn),

which represents the noiseless side information that encodes the sparsity information of θ. The latent

vector ξ cannot be observed directly but may be partially revealed by an auxiliary sequence (noisy side

information) S = (S1, · · · , Sn). For instance, in the RNA-seq example, the parameter of interest is

the population mean of the gene expression levels for diseased patients, and the latent variable ξi may

represent the quantitative outcome of a complex gene regulation process that determines whether gene i

expresses itself under the influence of a certain experimental condition. The primary and secondary data

respectively correspond to gene expression levels for the patients from the concerned (i.e. VZV infected)

and other related groups. The primary and auxiliary statistics Yi and Si for gene i can be constructed

based on the corresponding sample means.

For n parallel units, the summary statistic Yi for the ith unit is modeled by

Yi = θi + εi, εi ∼ N(0, σ2
i ), (1)

where, by convention, σ2
i are assumed to be known or can be well estimated from data (e.g. (Brown and

Greenshtein, 2009, Weinstein et al., 2018, Xie et al., 2012)). We further assume that both θ and S are

related to the latent vector ξ through some unknown real-valued functions hθ and hs:

θi = hθ(ξi, η1i), (2)

Si = hs(ξi, η2i), (3)

where η1i and η2i follow some unspecified priors, and represent independent random perturbations that

are independent of ξi; concrete examples for Models 1 to 3 are discussed in Section 2.2.

Remark 1. The above model can be conceptualized as a Bayesian hierarchical model:

Yi|(θi, Si) ∼ N(θi, σ
2
i ), (θi, Si)|ξi ∼ f1(θ|ξi)f2(s|ξi), ξi

iid∼ f3(ξ),
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where f1, f2, f3 are unknown densities. In Equations 2 and 3, ξi is a random quantity and independent of

η1i and η2i. As a special case of Equation 2, we can write θi = hθ(ξi) without the random perturbations

η1i. Our theory is mainly stated in terms of random ξi’s for ease of presentation. However, we note that

our theoretical results still hold even when ξi is deterministic because the theory in Section 2.3 is derived

conditional on ξi, and the proof in Section 3 is built upon an empirical density function (10).

The hierarchical Models 1 to 3 provide a general and flexible framework for our methodological and

theoretical developments. In particular, it covers a wide range of scenarios by allowing the strength of the

side information to vary from completely non-informative (e.g., when ξi is useless, or when Si and ξi are

independent for all i) to perfectly informative (e.g. when θi = ξi and Si = ξi for all i). In Section 3, the

usefulness of the latent vector ξ is investigated via Equation 2, and the informativeness of the auxiliary

sequence S is characterized by Equations 2 and 3.

2.2 Constructing the auxiliary sequence: principles and examples

A key step in our methodological development is to properly extract side information using an auxiliary

sequence. The sequence SSS can be constructed from various data sources including the following three

basic settings: (i) prior or domain-specific knowledge; (ii) covariates or discard data in the same primary

data set; or (iii) secondary data from related studies. We stress that our estimation framework is valid for

all three settings as long as SSS fulfills the following two fundamental principles.

The first principle is informativeness, which requires that Si should be chosen or constructed in a

way to encode the sparse structure effectively. The second principle is conditional independence, which

requires that Si must be conditionally independent of Yi given the latent variable ξi. The conditional

independence assumption, which is implied by Models 1 to 3, ensures proper shrinkage directions and

plays a key role in establishing the robustness of ASUS. Examples 1 to 4 below present specific instances

of auxiliary sequences fulfilling such principles, wherein the auxiliary sequences may either be readily

available from distinct but related experiments or can be carefully constructed from the same (original)

data to capture important structural information that is discarded by conventional practice.

Example 1. Prioritized subset analysis (PSA, Li et al., 2008). In genome wide association studies, prior

data and domain knowledge such as known gene functions or interactions may be used to construct an

auxiliary sequence S that can prioritize the discovery of SNPs in certain genomic regions. Typically, the

primary data set can be summarized as a vector Y = (Y1, · · · , Yn), where Yi are either taken as differ-

ential allele frequencies between diseased and control groups, or z-values based on χ2-tests assessing the

association between the allele frequency and the disease status. Let S = (S1, · · · , Sn) ∈ {−1, 1}n be an

auxiliary sequence, where Si = 1 if SNP i is in the prioritized subset and Si = −1 otherwise. S can be
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viewed as perturbations of the true state sequence ξ = (ξ1, · · · , ξn), where ξi = 1 if SNP i is associated

with the disease and ξi = −1 otherwise. The informativeness and independence principles are fulfilled

when (i) the prioritized subset contains SNPs that are more likely to hold disease susceptible variants and

(ii) the perturbations of ξ are random (hence Yi and Si are conditionally independent given ξi). Both (i)

and (ii) seem reasonable assumptions in PSA studies.

Example 2. One-sample inference. In the RNA-seq study, let the primary data be {Yi,j : i =

1, · · · , n; j = 1, · · · , ky} that record the expression levels of n genes from ky subjects infected by

VZV. The primary statistics are Y = (Ȳ1, · · · , Ȳn), where Ȳi = k−1
y

∑ky
j=1 Yi,j . Let the secondary

data be {Xi,j : i = 1, · · · , n; j = 1, · · · , kx} that record the expression levels of the same n genes

for kx subjects but under different Conditions C1 to C4. The auxiliary sequence can be constructed as

S = (S1, · · · , Sn) = (|X̄1|, · · · , |X̄n|), where X̄i = k−1
x

∑kx
j=1Xi,j . Thus although we record the ex-

pression levels of the same set of n genes, in the case of the primary data the genes are infected with the

VZV virus whereas for the secondary data the expression levels are recorded under the influence of agents

that are different from that of the VZV virus. The latent state ξi represents whether gene i expresses it-

self under any of the conditions. Now we check whether the two information extraction principles are

fulfilled. First, the informativeness principle holds since, as demonstrated by the heat map in Figure 1,

inactive genes under VZV are likely to remain inactive under the other conditions. The sparse structure

is captured by the auxiliary sequence, where a small Si signifies an inactive gene. Second, Section 2.1

has explained how the RNA-seq data may be sensibly conceptualized via Models (1) to (3), where Ȳi and

Si are conditionally independent given the latent variable ξi, fulfilling the second principle.

Example 3. Two-sample inference. Consider the MTC study discussed in the introduction (and analyzed

in Section E of the Supplementary Material). Let {Yi,j,td : i = 1, . . . , n; j = 1, . . . , ki; d = 0, 1, 2}

record the expression levels of n genes from ki subjects at time points t0 (baseline), t1 and t2. Let

Ȳi,d = k−1
i

∑ki
j=1(Yi,j,td − Yi,j,t0) be the average expression levels of gene i at time point td after

baseline adjustment, d = 1, 2. Denote µi,d = E(Ȳi,d) and µµµd = (µi,d : 1 ≤ i ≤ n). Then both µµµ1 and

µµµ2 are individually sparse. The parameter of interest is θi = µi,1 − µi,2, which can be estimated by the

primary statistic Yi = Ȳi,1 − Ȳi,2. Denote the union support U = {i : µi,1 6= 0 or µi,2 6= 0}. Then U

can be exploited to screen out zero effects since if i /∈ U , we must have θi = 0. Consider the sequence

Si = |Ȳi,1 + κiȲi,2|, where κi = σ̂i,1/σ̂i,2 and σ̂2
i,d = (ki − 1)−1

∑ki
j=1(Yi,j,td − Yi,j,t0 − Ȳi,d)2. Then

the auxiliary sequence is informative since a large Si provides strong evidence that i ∈ U . The union

support encodes the sparse structure of θθθ. Moreover, Yi and Si are asymptotically independent with our

choice of κi (Proposition 6 in Cai et al., 2018). Hence both principles are fulfilled.

Example 4. Estimation under the ANOVA setting. This example is an extension of Example 3 to
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multi-sample inference. Consider m conditions d = 1, . . . ,m, m ≥ 2. The parameter of interest is

θn×1 = Γa, where Γn×m = (µ1, . . . ,µm), µi,d = E(Ȳi,d) and am×1 is a vector of known weights.

Here θ may represent a weighted average of true transcription levels of n genes across m time points.

Let Di = (Ȳi,1, . . . , Ȳi,m) be the vector of average expression level of gene i for the m time points

after baseline adjustment and denote Dn×m = (D1, . . . ,Dn)T . To estimate θ, our proposed framework

suggests using the usual unbiased estimatorYYY = Da as the primary statistic, andSSS = Db as the auxiliary

sequence for some weights b. The informativeness principle from Example 3 continues to hold under

this setting. To fulfil the independence principle, we choose b such that Cov(YYY ,S) = 0.

In Examples 3 and 4, the auxiliary sequence S is constructed from the same original data matrix.

We give some intuitions to explain why S is useful. The conventional practice reduces the original data

into a vector of summary statistics Y . However, this data reduction step often causes significant loss of

information and thus leads to suboptimal procedures. Specifically, the information on the sparseness of

the union support U is lost in the data reduction step. The key idea in Example 3 is that the auxiliary

sequence SSS captures the structural information on sparsity, which is discarded by conventional practice.

Therefore by incorporating SSS into the inferential process we can improve the efficiency of existing meth-

ods. Note that Y is not a sufficient statistic for estimating θθθ, the minimax estimation error based on

(Y ,S) can greatly improve the performance of all estimators that are based on Y alone; a rigorous theo-

retical analysis is carried out in the proof of Theorem 2. To summarize, the above examples illustrate that

the side information can be either “external” (Examples 1-2) or “internal” (Examples 3-4). The key in the

proposed estimation framework, which we discuss next, is to construct a proper auxiliary sequence that

fulfills the two fundamental principles. We shall develop a unified estimation framework that is capable

of handling both internal and external side information.

We conclude this section with two remarks. First, the conditional independence assumption can be

relaxed; the methodology would work as long as Yi and Si are conditionally uncorrelated (c.f. Propo-

sition 1). Second, we do not require Yi or θi to be related to Si through any functional forms; hence

classical regression techniques (even nonparametric models) cannot be applied in the above scenarios.

We aim to develop a general information pooling strategy that does not involve any prescribed functional

relationships; a methodology in this spirit is described next.
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2.3 The ASUS estimator and its risk properties

Let YYY and S denote the primary statistics and auxiliary sequence obeying Models (1) to (3). Let ηt(.) be

a soft-thresholding operator such that

ηt(Yi) =


−Yiσ−1

i , if |Yiσ−1
i | ≤ t;

−t sign(Yiσ
−1
i ), otherwise.

The proposed ASUS estimator operates in two steps: first constructing K groups using S, and second

applying soft-thresholding within each group using Y . The construction of the groups relies only on S.

The tuning parameters for both grouping and shrinkage are determined using the SURE criterion.

Procedure 1. For k = 1, . . . ,K and τ = {τ1 < . . . < τK−1}, denote Îτk = {i : τk−1 < Si ≤ τk} with

τ0 = −∞, τK =∞. Consider the following class of shrinkage estimators:

θ̂SIi (T ) := Yi + σiηtk(Yi) if i ∈ Îτk , (4)

where, T = {τ1, . . . , τK−1, t1, . . . , tK} and each of the threshold hyper-parameters t1, . . . , tK varies

in [0, tn] with tn = (2 log n)1/2. Thus, the set of all possible hyper-parameter T values is Hn =

RK−1
+ × [0, tn]K . Define the SURE function

S(T ,YYY ,S) = n−1

 n∑
i=1

σ2
i +

K∑
k=1

∑
i∈Îτk

{
σ2
i (|Yiσ−1

i | ∧ tk)2 − 2σ2
i I(|Yiσ−1

i | ≤ tk)
} . (5)

Let T̂ = arg minT ∈Hn S(T ,YYY ,S). Then, the ASUS estimator is given by θ̂SIi (T̂ ).

Remark 2. When θ is very sparse, the empirical fluctuations in the SURE function would have non-

negligible effects on thresholding procedures. We suggest choosing t1, . . . , tk for a given grouping by

implementing a hybrid scheme that is similar to the SureShrink estimator of Donoho and Johnstone

(1995), e.g. setting tk = tn if |Îτk |−1
∑
i∈Îτk

(Y 2
i /σ

2
i ) ∧ t2n − 1 ≤ n−1/2 log3/2 n.

We present a toy example to illustrate why ASUS works. Consider the two-sample inference problem

described by Example 3 in Section 2.2. Let θi = µi,1 − µi,2 and Ȳi,d ∼ N(µi,d, 0.25), where d = 1, 2,

i = 1, . . . , n, and n = 104. Forµ1 we generate the first 20% of its coordinates randomly from Unif(4, 6),

the next 20% randomly from Unif(2, 3) and set the remaining coordinates to 0. For µ2, the first 20% are

from Unif(1, 2), the next 20% from Unif(1, 6) and the remaining 0. Finally, we let Ȳi = Ȳi,1 − Ȳi,2 and

Si = |Ȳi,1 + Ȳi,2|. The left panel in Figure 2 presents the histogram of YYY = (Ȳi : 1 ≤ i ≤ n), where

the lighter shade corresponds to Ȳi with θi = 0. The SureShrink estimator in Donoho and Johnstone
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(1995) chooses threshold t = 0.6 for all observations, resulting in an MSE of 0.338. Imagine that an

oracle has the perfect knowledge about the two groups (θi = 0 vs. θi 6= 0). In group 0, SureShrink

chooses t0 = 4.2, whereas in group 1, SureShrink chooses t0 = 0.15. The total MSE is reduced to 0.20

by adopting varied thresholds for the two groups. In practice, the groups cannot be identified perfectly

but can be partially revealed by the auxiliary statistic Si = |Ȳi,1 + Ȳi,2|, where a small Si signifies a

possible zero effect. Our simulation studies in Section 4 show that by exploiting the side information in

Si, ASUS achieves substantial gain in performance over conventional methods.

𝑡 = 0.6

True zeros

True non-zeros

𝑡0 = 4.2

Group 0

𝑡1 = 0.15

Group 1

Figure 2: Toy example depicting ASUS. Left: SureShrink estimator at t = 0.6. Middle: ASUS with
group 0 and t0 = 4.2. Right: ASUS with group 1 and t1 = 0.15.

Let ln(θ, θ̂) = n−1‖θ̂−θ‖22 denote the squared error loss of estimating θ using θ̂. For each member

θ̂SI(T ) in our class of estimators, T ∈ Hn, denote its risk by rn(T ;θ) = E
[
ln

{
θ, θ̂SI(T )

}]
, where

the expectation is taken with respect to the joint distribution of (Yi, Si). The next proposition shows that

(5) provides an unbiased estimate of the true risk.

Proposition 1. Consider Models (1) to (3). Then given ξi, the pair
{

(Yi − θi)ηtk(Yi), I(i ∈ Îτk )
}

are

uncorrelated. It follows that rn(T ;θ) = E{S(T ,YYY ,S)}.

Next we study the large-sample behavior of the proposed SURE criterion. As in Xie et al. (2012), we

impose the following assumption on the fourth moment of the noise distributions:

(A1) lim
n→∞

1

n

n∑
i=1

σ4
i <∞ .

The following theorem shows that the risk estimate S(T ,YYY ,S) is uniformly close to the true risk

as well as the loss, justifying our proposed hyper-parameter estimate T̂ . Compared to Xie et al. (2012)

(theorem 3.1) and Brown et al. (2017) (theorem 4.1), we obtain explicit rates of convergence by tracking

the empirical fluctuations in the SURE function through sharper concentration inequalities.
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Theorem 1. Under Assumption A1, with cn = n1/2(log n)−δ for any δ > 3/2, we have

(a) lim
n→∞

cn E
{

sup
T ∈Hn

∣∣∣S(T ,YYY ,S)− rn(T ;θ)
∣∣∣} = 0,

(b) lim
n→∞

cn E
[

sup
T ∈Hn

∣∣∣S(T ,YYY ,S)− ln{θ, θ̂SI(T )}
∣∣∣] = 0,

where the expectation is with respect to the joint distribution of YYY ,S.

Define T OL as the minimizer of the true loss function: T OL = arg minT ∈Hn ln{θ, θ̂
SI(T )}. T OL

is referred to as the oracle loss hyper-parameter as it involves the knowledge of of θ. It provides the the-

oretical limit that one can reach if allowed to minimize the true loss. Let θ̂SI(T OL) be the corresponding

oracle loss estimator. The following corollary establishes the asymptotic optimality of T̂ .

Corollary 1. Under assumption A1, if limn→∞ cn n
−1/2 logδ n = 0 for any δ > 3/2, then

(a) The loss of θ̂SI(T̂ ) converges in probability to the loss of θ̂SI(T OL):

lim
n→∞

P
[
ln

{
θ, θ̂SI(T̂ )

}
≥ ln

{
θ, θ̂SI(T OL)

}
+ c−1

n ε
]

= 0 for any ε > 0 .

(b) The risk of θ̂SI(T̂ ) converges to the risk of the oracle loss estimator:

lim
n→∞

cn E
[
ln

{
θ, θ̂SI(T̂ )

}
− ln

{
θ, θ̂SI(T OL)

}]
= 0 .

2.4 Approximating the Bayes rule by ASUS

This section discusses a Bayes setup and illustrates how ASUS may be conceptualized as an approxima-

tion to the Bayes oracle estimator.

Consider a hierarchical model where θi has an unspecified prior and Yi
ind.∼ N(θi, σ

2
i ) with σ2

i known.

In the absence of any auxiliary sequence S and when σi are all equal to, say σ, the optimal estimator is

δπi = E(θi|yi) = yi + σ2 f
′(yi)

f(yi)
, (6)

which is known as Tweedie’s formula (Efron, 2011). When the marginal densities f(yi) are unknown,

(6) can be implemented in an empirical Bayes (EB) framework. For example, Brown and Greenshtein

(2009) used kernel methods to estimate unknown densities and showed that the resulting EB estimator is

asymptotically optimal under mild conditions. Under the sparse setting, an effective approach to incor-

porate the sparsity structure is to consider, for example, spike-and-slab priors (Johnstone and Silverman,

2004). In decision theory it has been established that the posterior median is minimax optimal under
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spike-and-slab priors; see Thoerem 1 of Johnstone and Silverman (2004). Hence the soft-threshold es-

timators can be viewed as good surrogates to the Bayes rule under sparsity. When the sparsity level is

unknown, the threshold should be chosen adaptively using a data-driven method.

For a given pair of primary and auxiliary statistics (Yi, Si), the Bayes oracle estimator is

δπi = E(θi|Yi, Si). (7)

Equation (7) extends (6) to the bivariate setting. The direct implementation of (6) involves estimating

bivariate densities f(yi, si) and their partial derivatives, which can be complicated in practice. ASUS

can be viewed as a two-step approximation to the oracle estimator (7). The first step involves using the

auxiliary sequence to divide the n coordinates into K groups: δπi ≈ δ̂k(Yi) = E(θi|Yi, i ∈ Gk) =

E(θi|Yi, S∗i = k), which can be viewed as a discrete approximation to the oracle rule (7) by discretizing

Si as a categorical variable S∗i taking values k = 1, · · · ,K. The second step involves setting thresholds

for separate groups to incorporate the updated structural information from the auxiliary sequence. This

step makes sense because under the sparse regime, it is natural to use the class of soft-thresholding

estimators as a convenient surrogate to the Bayes rule, and ideally the threshold should be set differently

to reflect the varied sparsity levels across the groups. Finally the optimal grouping and optimal thresholds

are chosen by minimizing a SURE criterion.

This Bayesian interpretation reveals that ASUS may suffer from information loss in the discretization

step. However, fully utilizing the auxiliary data by modeling S as a continuous variable is practically

impossible under the ASUS framework since the search algorithm cannot deal with a diverging number

of groups. Moreover, directly implementing (7) using bivariate Tweedie approaches is highly nontrivial

and requires further research. ASUS, thus, seems to provide a simple, feasible yet effective framework

to incorporate the side information.

3 Theoretical Analysis

This section studies the theoretical properties of ASUS under the important setting where θ is sparse.

By contrast, the results of Section 2.3 hold for any sequence θ. To simplify the presentation, we focus

on a class of thresholding estimators that utilize two groups. The two-group model provides a natural

choice for some important applications such as the prioritized subset analysis and RNA-seq study, but

the proposed ASUS framework can handle more groups. The major goal of our theoretical analysis is

to gain insights on sparse inference with side information, for which the simple two-group setup helps

in two ways. First, it leads to a concise and intuitive characterization of the potential influence of side
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information on simultaneous estimation. Second, it enables us to develop precise conditions under which

ASUS is asymptotically optimal.

3.1 Asymptotic set-up

Consider hierarchical Models (1) to (3). We begin by considering an oracle estimator θ̃SIn (T ORn ) that

directly uses the noiseless side information ξ:

θ̃SIi,n(T ORn ) :=


Yi + σiηt∗1 (Yi) if i ∈ Iτ?1,n,

Yi + σiηt∗2 (Yi) if i ∈ Iτ?2,n,

(8)

where Iτ1,n = {i : ξi ≤ τ}, Iτ2,n = {i : ξi > τ}, and

T ORn := (τ?n, t
∗
1,n, t

∗
2,n) = arg min

T ∈R×[0,tn]×[0,tn]

E ln
{
θ, θ̃SI(T )

}
. (9)

Remark 3. Both the oracle estimator θ̃SIn (T ORn ) and the oracle loss estimator θ̂SI(T OL) assume the

knowledge of θθθ. However, they are different in that the former creates groups based on ξ, whereas the

latter uses SSS. The purposes of introducing these two oracle estimators are different: θ̂SI(T OL) is used

to assess the effectiveness of the SURE criterion; by contrast, θ̃SIn (T ORn ) is employed to evaluate the

usefulness of the noiseless side information, i.e. the maximal improvement in performance that can be

achieved by incorporating ξξξ.

Denote π1,n = n−1
∑n
i=1 I(ξi ≤ τ?n) and π2,n = 1 − π1,n. Intuitively, the optimal partition τ?n

(within the class of thresholding procedures utilizing two groups) is chosen to maximize the “discrep-

ancy” between the two groups. For units in group Iτ?k,n, the mixture density of θi is given by

gk,n(θ) = (1− pk,n) δ0 + pk,n hk,n(θ), k = 1, 2, (10)

where δ0 is a dirac delta function (null effects), hk,n is the (alternative) empirical density of non-null

effects. Following remark 1, our theory developed based on the empirical density (10) can handle both

random and deterministic models; this can be more clearly seen in our proofs of the theorems. Here

pk,n is the conditional proportion of non-null effects for a given group and may be conceptualized as the

probability that a randomly selected unit in group Iτ?k,n is a non-null effect.

We consider an asymptotic set-up based on the sparse estimation framework in chapter 8.6 of John-

stone (2015), which has been widely used in high-dimensional sparse inference (Abramovich et al.,

2006, Cai and Sun, 2017, Donoho et al., 1998, Johnstone and Silverman, 1997, Mukherjee and John-
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stone, 2015). Let p1,n = n−α and p2,n = n−β for some 0 < α < β ≤ 1. Define ρn = π−1
1,nπ2,n.

Consider the following parameter space

Θn(α, β, ρn) =
{
θ ∈ Rn : ‖θ‖0 ≤ n(n−α + ρnn

−β)/(1 + ρn)
}
.

The maximal risk of ASUS over Θn(α, β, ρn) is

RASn (α, β, ρn) = sup
θ∈Θn(α,β,ρn)

rn(T̂ ,θ).

Correspondingly, over the same parameter space Θn(α, β, ρn), we letROSn (α, β, ρn) denote the maximal

risk of the oracle procedure θ̃SIn (T ORn ), and RNSn (α, β, ρn) the minimax risk of all soft thresholding

estimators without side information.

The risk differenceRNSn −ROSn is a key quantity that will be used in later analysis as the benchmark

decision theoretic improvement due to incorporation of side information. Specifically, the noiseless side

information ξξξ is useful if it provides non-negligible improvement on the risk:

lim
n→∞

n(RNSn −ROSn ) =∞. (11)

Moreover, the ASUS estimator is asymptotically optimal if its risk improvement over RNSn (α, β, ρn) is

asymptotically equal to that of the oracle:

RIn =
RNSn −RASn
RNSn −ROSn

→ 1 as n→∞. (12)

3.2 Usefulness of side information

We focus on Model (10), a hypothetical model based on the oracle partition τ?n . We state a few condi-

tions that are needed in later analysis; some are essential for characterizing the situations where the side

information is useful, i.e. the oracle estimator θ̃SIn (T ORn ) would provide non-negligible efficiency gain

over competitive estimators.

(A2.1) limn→∞ ρn n
−γ0 = 0 for some γ0 < β − α.

(A2.2) For some ν < 1/2 and kn = log n, limn→∞ kνn(1− π1,n) =∞.

(A2.3) For some ν < 1/2, limn→∞ nν π1,np1,n =∞.

(A2.4) Let σ̄2
n = n−1

∑n
i=1 σ

2
i and 0 < limn→∞ σ̄2

n ≤ limn→∞ σ̄2
n <∞.
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Remark 4. (A2.1) implies π2,n p2,n/(π1,n p1,n)→ 0, which ensures that the oracle partition is effective

in the sense that the two resulting groups have different sparsity levels. The asymmetric condition can

be easily flipped for generalization. (A2.2) is a mild condition which allows π1,n to approach 1 but at a

controlled rate. (A2.3) prevents the trivial setting where ASUS reduces to the SureShrink procedure with

universal threshold
√

2 log n, i.e. the side information would not have any influence in the estimation

process. See lemma 3 (section B supplementary material) which shows that if limn→∞ n1/2π1,np1,n <

∞, then ASUS reduces to the SureShrink procedure, i.e. there is no need for creating groups. (A2.4) is a

mild condition that is satisfied in most real life applications.

Now we study the usefulness of the noiseless side information. Following the theory in Johnstone

(1994), the next theorem explicitly evaluates the risk difference RNSn − ROSn up to higher order terms.

The analysis overcomes the crudeness of the first order asymptotics for evaluating thresholding rules as

pointed out by Bickel (1983) and Johnstone (1994).

Theorem 2. Consider the oracle estimator defined in (8)-(9). Under assumption A2.1, with kn = log n,

for all ν < 1, we have,

RNSn (α, β, ρn)−ROSn (α, β, ρn) = π1,n p1,n σ̄2
n

{
log π−1

1,n(2− 3α−1k−1
n ) +O(k−νn )

}
.

It follows from (A2.3) that limn→∞ n(RNSn −ROSn ) =∞, establishing (11).

3.3 Asymptotic optimality of ASUS

To evaluate the efficiency of ASUS, we need to compare the segmentation used by ASUS with that used

by the oracle estimator. For a given segmentation hyper-parameter τ , define

q̃jki,n(τ) := Pn(Îji |I
k
i

)
for j, k ∈ {1, 2}, i = 1, . . . , n,

where Î1
i = {Si ≤ τ}, I1

i = {ξi ≤ τ?n}, Î2
i = R \ Î1

i , I2i = R \ I1
i , and the probability operator Pn is

based on Model (10). Let

qjki,n(τ) = q̃jki,n(τ) if inf
τ∈R

π2,nq̃
12
n (τ) + π1,nq̃

21
n (τ) < inf

τ∈R
π1,nq̃

11
n (τ) + π2,nq̃

22
n (τ)

and otherwise qjki,n(τ) = q̃kki,n(τ) and qkki,n(τ) = 1− qjki,n(τ) for j 6= k. Denote the weighted average

qjkn (τ) =

∑n
i=1 q

jk
i,n(τ)σ2

i∑n
i=1 σ

2
i

, j, k ∈ {1, 2}.
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Viewing the data-driven grouping step of ASUS as a classification procedure with the oracle segmen-

tation corresponding to the true states, we can conceptualize q21
n (τn) and q12

n (τn) as misclassification

rates. Define the efficiency ratio

En =
RNSn −ROSn
RASn −ROSn

. (13)

For notational simplicity, the dependence of this ratio on α, β, ρn is not explicitly marked. It follows

from (12) that RIn = 1 − E−1
n . Hence a larger En signifies better performance of ASUS. In particular,

En → ∞ implies the asymptotic optimality of ASUS. The poly-log rates in the following theorem are

sharp.

Theorem 3. Assume (A2.1) – (A2.4) hold. Let kn = log n. If there exists a sequence {τn}n≥1 such that

lim
n→∞

k2
n q

21
n (τn) = 0 and lim

n→∞
ρn q

12
n (τn) = 0, (14)

then ASUS is asymptotically optimal. In particular, for all ν < 1 we have

lim
n→∞

k−νn En ≥ 2 lim
n→∞

log π−1
1,n. (15)

Next we present two hierarchical models, respectively with sub-Gaussian (SG) and sub-Exponential

(SExp) tails, under which the misclassification rates can be adequately controlled. Let Si|ξi be inde-

pendent random variables with µi := µi(ξi) and (νi(ξi), bi(ξi)) such that E {exp(λ(Si − µi))} ≤

exp(ν2
i λ

2/2) for all i and all |λ| ≤ b−1
i . Let limi bi <∞, limi νi <∞ and b̄n = sup1≤i≤n max(2ν2

i , bi).

When bi = 0, the distribution of Si has sub-Gaussian tails. For two partitions A and B of the set

{1, . . . , n}, define the `1 distance between the two sets {µi : i ∈ A} and {µi : i ∈ B} by dist(A,B) =

inf{|x− y| : x ∈ A, y ∈ B}. Let cn = b̄n(2 log kn + log ρn). The following lemma provides a sufficient

condition under which the requirements on misclassification rates (14) are satisfied. The proof of the

lemma follows directly from the standard bounds for sub-Gaussian and sub-Exponential tails.

Lemma 1. Let I∗1,n = {i : ξi ≤ τ?n} and I∗2,n = {1, . . . , n}\ I∗1,n. The requirements on misclassification

rates given by (14) are satisfied if

lim
n→∞

c−γn dist(I∗1,n, I
∗
2,n) > γ,

where γ is 1/2 if supi bi = 0 and 1 otherwise.
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3.4 Robustness of ASUS

This section carries out a theoretical analysis to address the concern whether the performance of data

combination procedures would deteriorate when pooling non-informative auxiliary data. We first charac-

terize asymptotic regimes under which auxiliary data are non-informative (while the attention is confined

to the prescribed class of two-group ASUS estimators), and then show that under such regimes, ASUS is

robust in performance in the sense that it does not under-perform standard soft-thresholding methods.

Theorem 4. Suppose (A2.1) – (A2.4) hold. Let ρn = nγ0 and kn = log n.

(a) Consider the following situations: (i) limn→∞ k−1
n ρnq

21
n (τn) =∞; and (ii) limn→∞ nρnq

21
n (τn) =

0 but limn→∞ k−1
n ρn q

12
n (τn) = ∞. If for all sequence {τn}n≥1 either (i) or (ii) holds, then we

must have limn→∞ En = 1. Hence, the auxiliary data are non-informative.

(b) We always have lim
n→∞

En ≥ 1. Thus, even when pooling non-informative auxiliary data ASUS would

be at least as efficient as competing soft thresholding based methods that do not use auxiliary data.

Our next result characterizes the performance of soft-thresholding estimators, where their efficacies

are measured by the ratio of their respective maximal risks with respect to that of the oracle. The subse-

quent analysis is carried out using the ratiosRASn
/
ROSn andRNSn

/
ROSn , instead of the ratios of the risk

differences (e.g. RIn and En). In this metric, we see that any optimally tuned soft-thresholding proce-

dure is robust; but the improvement due to the incorporation of the side information can be observed in

the varied convergence rates. Concretely, we show that the maximal risk of any soft thresholding scheme

lies within a constant multiple of the oracle risk ROSn irrespective of the informativeness of the side in-

formation. Particularly, if limn→∞ π1,n > 0, then limn→∞ kνn (RNSn
/
ROSn − 1) = 0 for all ν < 1. By

contrast,RASn
/
ROSn tends to 1 at a faster rate under the conditions of Theorem 3.

Lemma 2. Let cn = log π−1
1,n/{αkn − 1.5 log(2αkn) + 2.5 + log φ(0)} and kn = log n. For any ν < 1,

under assumptions (A2.1) – (A2.4), we have

lim
n→∞

k2ν
n

{
RNSn

/
ROSn −min(1 + cn, β/α)

}
= 0;

lim
n→∞

k2ν
n

{
RASn

/
ROSn −min(1 + cn, β/α)

}
≤ 0.

Under the conditions of Theorem 3, if there exists δ > 0 such that limn→∞ kδn log π−1
1,n =∞, then

lim
n→∞

k1+δ
n (RNSn

/
ROSn − 1) =∞ and lim

n→∞
k2ν
n (RASn

/
ROSn − 1) = 0.

Hence the risk of ASUS approaches the oracle risk at a faster rate.
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4 Numerical Results

In this section we compare the performance of ASUS against several competing methods, including (i) the

SureShrink (SS) estimator in Donoho and Johnstone (1995), (ii) the extended James Stein estimator (EJS)

discussed in Brown (2008), (iii) the Empirical Bayes Thresholding (EBT) in Johnstone and Silverman

(2004), and (iv) the Auxiliary Screening (Aux-Scr) procedure using simulated data in Section 4.2 and a

real dataset in Section 4.3. The “Aux-Scr” method is motivated by a comment for a reviewer. The idea

is to first utilize S to conduct a preliminary screening of the data, then discard coordinates that appear

to contain little information, and finally apply soft-thresholding estimators on remaining coordinates. A

detailed description of the Aux-Scr method is provided in Section A of the Supplement. More simulation

results and an additional real data analysis are provided in Sections D and E of the Supplement. Our

numerical results suggest that ASUS enjoys superior numerical performance and the efficiency gain over

competitive estimators is substantial in many settings.

4.1 Implementation and R-package asus

The R-package asus has been developed to implement our proposed methodology. In this section, we

provide some implementation details upon which our package has been built.

Our scheme for choosing T involves minimizing S(T ,YYY ,S) with respect to T . In particular, the

optimal T is given by

T̂ = arg min
τ∈∆n,t1,...,tK∈[0,tn]

S(T ,YYY ,S) (16)

where ∆n is a collection ofK−1 dimensional distinct points spanning RK−1
+ and tn denotes the univer-

sal threshold of
√

2 log n. To solve this minimization problem, we proceed as follows: Let S(1), S(n) be

the smallest and largest Si respectively. Consider a set of mn equi-spaced points spanning (S(1), S(n))

and take ∆n to be a
(
mn
K−1

)
× K − 1 matrix where each row is a K − 1 dimensional sorted vector

constructed out of the mn points. For each τ j in the jth row of ∆n, determine {tj1, . . . , t
j
K} by min-

imizing the SURE function for the K groups Îτk . This step can easily be carried out via the hybrid

scheme discussed in Donoho and Johnstone (1995). Using Proposition 1, we compute S(T ,YYY ,S) at

T = {τ j , tj1, . . . , t
j
K}, and repeat this process for j = 1, . . . ,

(
mn
K−1

)
to find T̂ using equation (16). For

choosing an appropriateK, the procedure discussed above can be repeated for each candidate value ofK

and an estimate of K may be taken to be the one that minimizes the SURE estimate of risk of ASUS over

the candidate values of K. In Section F of the Supplementary Material, we present a simple example that

demonstrates this procedure for choosing K. Our practical recommendation is to take mn = 50 log n

and K = 2 which is computationally inexpensive and tends to provide substantial reduction in overall
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risk against the competing estimators in both simulations and real data examples we considered.

4.2 Simulation

This section presents results from two simulation studies, respectively investigating the performances of

ASUS in one-sample and two-sample estimation problems. To reveal the usefulness of side information

and investigate the effectiveness of ASUS, we also include the oracle estimator θ̃SI(T ORn ) in the com-

parison. The MSE of the oracle estimator (OR), which provides the lowest attainable risk, serves as a

benchmark for assessing the performance of various methods. The R code that reproduces our simulation

results can be downloaded from the following link – https://github.com/trambakbanerjee/ASUS.

4.2.1 One-sample estimation with side information

We generate our data based on hierarchical Models (1) to (3), where we fix n = 5000, K = 2, and take

hθ(ξi, η1i) = ξi + η1i. We simulate η1i from a sparse mixture model (1− n−1/2)δ0 + n−1/2N(2, 0.01).

The latent vector ξ is simulated under the following two scenarios:

(S1) ξ ∼
(

Unif(6, 7)︸ ︷︷ ︸
sample size = 50

, Unif(2, 3)︸ ︷︷ ︸
sample size = 200

, 0, . . . . . . , 0︸ ︷︷ ︸
sample size = n− 250

)
,

(S2) ξ ∼
(

Unif(4, 8)︸ ︷︷ ︸
sample size = 200

, Unif(1, 3)︸ ︷︷ ︸
sample size = 800

, 0, . . . . . . , 0︸ ︷︷ ︸
sample size = n− 103

)
with Yi ∼ N(θi, 1). In practice, we only observe an auxiliary sequence S, which can be viewed as

a noisy version of ξ. To assess the impact of noise on the performance of ASUS, we consider four

different settings. In settings 1 and 2, we simulate m samples of η2 = (η21, . . . , η2n) from two different

distributions and generate auxiliary sequences S1 and S2 as follows:

(1) η(1)
2i

i.i.d∼ Laplace(0, 4) with S1 = |ξ + η̄
(1)
2 |,

(2) η(2)
2i

i.i.d∼ χ2
10 with S2 = |ξ + η̄

(2)
2 |,

where η̄(k)
2 is the average of η(k)

2 over them samples. For settings 3 and 4, we first introduce perturbations

in the latent variable vector ξ and then generate auxiliary sequences S3, S4 as follows:

(3) ξ̃i = ξi Iξi 6=0+LogN(0, 5/
√
m) Iξi=0 withS3 = |ξ̃+ρ⊗η̄(1)

2 |, where ρ is a vector of nRademacher

random variables generated independently.

(4) ξ̃i = ξi Iξi 6=0 + t2m/10 Iξi=0 with S4 = |ξ̃ − ρ ⊗ η̄(2)
2 |, where ρ is a vector of n independent

Bernoulli random variables with probability of success 0.75.
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We vary m from 10 to 200 to investigate the impact of noise. The MSEs are obtained by averaging over

N = 500 replications. The results for scenarios S1 and S2 are summarized in table 1 and in Figures 3

and 4 wherein ASUS.j and Aux-Scr.j correspond to versions of ASUS and Aux-Scr that rely on the side

information in the auxiliary sequence Sj , j = 1, . . . , 4.
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Figure 3: One-sample estimation with side information for scenario S1: Estimated risks of different
estimators. Left: ASUS versus EBT and EJS. Right: ASUS verus Aux-Scr.

From the left panels of figures 3 and 4 we see that ASUS exhibits the best performance when com-

pared against EBT, EJS and SureShrink estimators. In particular, ASUS.1, ASUS.2 outperform their

counterparts ASUS.3, ASUS.4. This reveals how the usefulness of the latent sequence ξ would affect

the performance of ASUS. Nonetheless, ASUS.3 and ASUS.4 still provide improvements over, and, cru-

cially, are never worse than the SureShrink estimator. This reveals the impact of the accuracy of the

auxiliary sequence S (in capturing the information in ξ) on the performance of ASUS. The right panels

of figures 3 and 4 present the risk comparison between ASUS and Aux-Scr using the auxiliary sequences

S1, . . . ,S4. Not surprisingly, ASUS and Aux-Scr have almost identical risk performance using the aux-

iliary sequences S1,S2 and S3 for large m. As m increases, the accuracy of these auxiliary sequences

increase but the negative Bernoulli perturbations in S4 interferes with its magnitude so that a smaller

|Si4| may correspond to a signal coordinate. The Aux-Scr procedure which discards observations based

on the magnitude of the auxiliary sequence may miss important signal coordinates while relying on S4.

ASUS, however, does not discard any observations and continues to exploit the available information in

the noisy auxiliary sequences.

21



0.3

0.4

0.5

0.6

0.7

50 100 150 200
m

ris
k

ASUS.1
ASUS.2

ASUS.3
ASUS.4

EBT
EJS

OR
SS

0.25

0.30

0.35

0.40

50 100 150 200
m

ris
k

ASUS.1
ASUS.2

ASUS.3
ASUS.4

Aux−Scr.1
Aux−Scr.2

Aux−Scr.3
Aux−Scr.4

OR
SS

Figure 4: One-sample estimation with side information for scenario S2: Estimated risks of different
estimators. Left: ASUS versus EBT and EJS. Right: ASUS verus Aux-Scr.

In table 1, we report risk estimates and estimates of T for ASUS whenm = 200. The estimates of the

hyper-parameters of Aux-Scr are provided in table 2 of the supplementary material and we only report its

risk estimates here in table 1. We can see that ASUS.1 and ASUS.2 choose similar thresholding hyper-

parameters (t1, t2) as those of the oracle estimator. Moreover, ASUS.4 demonstrates a lower estimation

risk than Aux-Scr.4 using the same auxiliary sequence S4.

4.2.2 Two-sample estimation with side information

We consider the problem of estimating the difference of two Gaussian mean vectors. An auxiliary se-

quence can be constructed from data by following Example 3 in Section 2.2. We first simulate

ξ1i ∼ (1− p1)δ0 + p1 Unif(3, 7), ξ2i ∼ (1− p2)δ0 + p2 δ{4},

where δ{4} is the dirac delta at 4 and then generate µi,1 = ξ1i + η1i and µi,2 = ξ2i + η2i with

η1i, η2i
i.i.d∼ N(0, 0.01). The parameter of interest is θ = µ1 − µ2 and the associated latent side in-

formation vector is ξ = ξ1 − ξ2. The observations based on the simulated mean vectors are generated

as Ui ∼ N(µi,1, σ
2
i,1), Vi ∼ N(µi,2, σ

2
i,2). Finally, the primary and auxiliary statistics are obtained as

Yi = Ui − Vi, Si = |Ui + κiVi|. We fix p1 = n−0.6, p2 = n−0.3, κi = σi,1/σi,2 and consider two

scenarios where σi,1 = σi,2 = 1 under scenario S1 and (σ2
1,i, σ

2
2,i)

i.i.d∼ Unif(0.1, 1) under scenario S2.

The estimates of risks are obtained by averaging over N = 1000 replications. We vary n from 500 to
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Table 1: One-sample estimation with side information: risk estimates and estimates of T for ASUS at
m = 200. Here n

?

k = |Iτ?k | and nk = |Îτk | for k = 1, 2.

One-sample estimation with side information

Scenario S1 Scenario S2

OR

τ? 2 1.003
t?1, t?2 4.114, 0.138 4.073, 0.133
n?1, n?2 4750, 250 4008, 992
risk 0.095 0.224

ASUS.1

τ 1.342 0.979
t1, t2 4.114, 0.107 4.073, 0.156
n1, n2 4748, 252 4008, 992
risk 0.097 0.243

ASUS.2

τ 11.229 5.82
t1, t2 4.115, 0.106 4.073, 0.137
n1, n2 4748, 252 4008, 992
risk 0.095 0.228

ASUS.3

τ 1.777 1.778
t1, t2 4.089, 0.662 3.422, 0.441
n1, n2 4271, 729 3606, 1394
risk 0.146 0.357

ASUS.4

τ 7.785 8.524
t1, t2 1.360, 3.653 0.745, 3.864
n1, n2 1775, 3225 2249, 2751
risk 0.165 0.356

Aux-Scr.1 risk 0.097 0.243
Aux-Scr.2 risk 0.095 0.232
Aux-Scr.3 risk 0.147 0.360
Aux-Scr.4 risk 0.186 0.414

SureShrink risk 0.191 0.429
EBT risk 0.253 0.692
EJS risk 0.408 0.652

5000 to investigate the impact of the strength of side information. The simulation results are reported in

Table 2 and figure 5.

We see that ASUS uses the side information in S and exhibits the best performance across both

scenarios. In scenario S2, the variances of Yi are smaller, which leads to an improved risk performance

of ASUS over scenario S1. Similar to the previous simulation study, the risk of ASUS would not exceed

the risk of the SureShrink estimator across both the scenarios. Different magnitudes of the thresholding

hyper-parameters (t1, t2) in table 2 further corroborates the importance of the auxiliary statistics Si in

constructing groups with disparate sparsity levels and thereby improving the overall estimation accuracy.

This is particularly true in the case of scenario S2 where EBT and SureShrink are competitive but ASUS

is far more efficient because it has constructed two groups where one group holds majority of the signals

and ASUS uses the smaller threshold t2 to retain the signals. The other group holds majority of the

noise wherein ASUS uses the larger threshold t1 to shrink them to zero. Moreover, we notice that ASUS

provides a better risk performance than Aux-Scr across both the scenarios. Using the side information in

S, Aux-Scr discards observations that have |Si| ≤ τ thereby eliminating some potentially information
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Figure 5: Two-sample estimation with side information: Average risks of different estimators. Left:
Scenario S1 and Right: Scenario S2.

Table 2: Two-sample estimation with side information: risk estimates and estimates of T for ASUS at
n = 5000. Here n

?

k = |Iτ?k | and nk = |Îτk | for k = 1, 2.

Two-sample estimation with side information

Scenario S1 Scenario S2

OR

τ? 1.947 1.363
t?1, t?2 4.106, 0.137 4.106, 0.424
n?1, n?2 4584, 416 4583, 417
risk 0.185 0.132

ASUS

τ 3.167 2.504
t1, t2 1.223, 0.253 3.058, 0.323
n1, n2 4570, 430 4195, 805
risk 0.610 0.239

Aux-Scr

τ 14.385 2.768
t1, t2 0.955, 0.002 5.708, 0.498
n1, n2 4991, 9 3681, 1319
risk 0.688 0.258

SureShrink risk 0.688 0.318
EBT risk 0.761 0.311
EJS risk 0.891 0.600

rich signal coordinates and thus returns a higher risk than ASUS.

4.3 Analysis of RNA sequence data

We compare the performance of ASUS against the SureShrink (SS) estimator for analysis of the RNA

sequence data described in the introduction. The goal is to estimate the true expression levels θ of the
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n genes that are infected with VZV strain. Through previous studies conducted in the lab, expression

levels corresponding to other four experimental conditions, including uninfected cells (C1, 3 replicates),

a fibrosarcoma cell line (C2, 3 replicates) and cells treated with interferons gamma (C3, 2 replicates),

alpha (C4, 3 replicates), were also collected. Let Xi be the mean expression level of gene i across the

four experimental conditions. Set Si = |Xi| with K = 2. Let θ̂Si (t) denote the SureShrink estimator

of θi based on Yi, the mean expression level of gene i under the VZV condition. The standard deviation

σi for the mean expression level pertaining to gene i across the 3 replicates of the VZV strain is derived

from the study conducted in Sen et al. (2018).

On the right panel of Figure 6, the dotted line represents the minimum of the SURE risk of θ̂S(t),

which is minimized at t = 0.61. The solid line represents the minimum of the SURE risk of a class of

two-group estimators over a grid of τ values. ASUS chooses τ that minimizes the SURE risk (the red dot

in figure 6). The resulting risk is 1.99% at T̂ = (1.25, 1.16, 0), a significant reduction compared to the

risk estimate of 3.69% for θ̂S(t). In order to evaluate the results in a predictive framework, we next use

only two replicates of the VZV strain for calibrating the hyper-parameters and calculate the prediction

errors based on the hold out third replicate. The risk reduction by ASUS over SureShrink is about 30%.

.……… SureShrink

ASUS

𝜏

Risk 

(%)

Genes

VZV

(3)

C1

(3)

C2

(3)

C3

(2)

C4

(3)

LowHigh

Figure 6: Left: Heat map showing the following from top to bottom: average expression levels of VZV,
C1, C2, C3 and C4 across their respective replicates (in parenthesis). Right: SURE estimate of the risk
of θ̂Si (t) at t = 0.61 versus an unbiased estimate of the risk of ASUS for different values of τ .

In this example, a reduction in risk is possible because ASUS has efficiently exploited the sparsity

information about θ encoded by S. This can be seen, for example, from (i) the stark contrast between

the magnitudes of thresholding hyper-parameters t1, t2 for the two groups in table 3 and (ii) the heat
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(a)

(b)

Figure 7: (a) Histogram of gene expressions for VZV. Group 1 is Îτ2 and Group 0 is Îτ1 . (b) A network
of 20 new genes highlighted in black with their interaction partners.

maps in figure 6 where the genes expressions under the four experimental conditions follow the expres-

sion pattern of VZV. Moreover, the risk of Aux-Scr for this example was seen to be no better than the

SureShrink estimator and thus has been excluded from the results reported in table 3. Figure 7a presents

the distribution of gene expression for genes that belong to groups Îτ1 and Îτ2 . ASUS exploits the side

information in S to partition the estimation units into two groups with very different sparsity levels and

therefore returns a much smaller risk.

Table 3: Summary of SureShrink and ASUS methods (RNA-Seq data). nk = |Îτk | for k = 1, 2.

RNA Seq

n 53,216

SureShrink t 0.61
SURE estimate 3.69

ASUS

τ 1.25
t1 1.16
t2 0
n1 39,535
n2 13,681

SURE estimate 1.99

The ASUS estimator θ̂SI(T̂ ) results in the discovery of 114 new genes than those discovered by us-

ing θ̂SI(t). Figure 7b shows the network of protein-protein interactions of 20 such genes. The interaction

network is generated using NetworkAnalyst (Xia et al., 2015) that maps the chosen genes to a compre-

hensive high-quality protein-protein interaction (PPI) database based on InnateDB. A search algorithm is

then performed to identify first-order neighbors (genes that directly interact with a given gene) for each of
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these mapped genes. The resulting nodes and their interaction partners are returned to build the network.

In case of the RNA-Seq data, the interaction network of the 20 new genes indicates that ASUS may help

reveal important biological synergies between genes that have a high estimated expression level for VZV

and other genes in the human genome.

5 Discussion

In high-dimensional estimation and testing problems, the sparsity structure can be encoded in various

ways; we have considered three basic settings where the structural information on sparsity may be ex-

tracted from (i) prior or domain-specific knowledge, (ii) covariate sequence based on the same data,

or (iii) summary statistics based on secondary data sources. This article develops a general integrative

framework for sparse estimation that is capable of handling all three scenarios. We use higher-order min-

imax optimality tools to establish the adaptivity and robustness of ASUS. Numerical studies using both

simulated and real data corroborate the improvement of ASUS over existing methods.

We conclude the article with a discussion of several open issues. Firstly, in large-scale compound

estimation problems, various data structures such as sparsity, heteroscedasticity, dependency and hier-

archy are often available alongside the primary summary statistics. ASUS can only handle the sparsity

structure; and it is desirable to develop a unified framework that can effectively incorporate other types

of structures into inference. New theoretical frameworks will be needed to characterize the usefulness

of various types of side information and to establish precise conditions under which the new integrative

method is asymptotically optimal. Secondly, in situations where there are multiple auxiliary sequences, it

is unclear how to modify the ASUS framework to construct groups using an auxiliary matrix. The com-

putation involved in the search for the optimal group-wise thresholds, which requires the evaluation of the

SURE function for every possible combination of group-wise thresholds, quickly becomes prohibitively

expensive as the number of columns increases. Finally, the higher dimension would affect the stability

of an integrative procedure adversely. A promising idea for handling multiple auxiliary sequences is to

construct a new auxiliary sequence that represents the “optimal use” of all available side information.

However, the search for this optimal direction of projection is quite challenging. It would be of great

interest to explore these directions in future research.
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