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Abstract—On-chip edge intelligence has necessitated the ex-
ploration of algorithmic techniques to reduce the compute re-
quirements of current machine learning frameworks. This work
aims to bridge the recent algorithmic progress in training Binary
Neural Networks and Spiking Neural Networks - both of which
are driven by the same motivation and yet synergies between
the two have not been fully explored. We show that training
Spiking Neural Networks in the extreme quantization regime
results in near full precision accuracies on large-scale datasets
like CIFAR-100 and ImageNet. An important implication of this
work is that Binary Spiking Neural Networks can be enabled by
“In-Memory” hardware accelerators catered for Binary Neural
Networks without suffering any accuracy degradation due to
binarization. We utilize standard training techniques for non-
spiking networks to generate our spiking networks by conversion
process and also perform an extensive empirical analysis and
explore simple design-time and run-time optimization techniques
for reducing inference latency of spiking networks (both for
binary and full-precision models) by an order of magnitude over
prior work. Our implementation source code and trained models
are available at (Link).

Index Terms—Spiking Neural Networks, Binary Neural Net-
works, In-Memory Computing

I. INTRODUCTION

The explosive growth of edge devices such as mobile

phones, wearables, smart sensors and robotic devices in the

current Internet of Things (IoT) era has driven the research

for the quest of machine learning platforms that are not

only accurate but are also optimal from storage and compute

requirements. On-device edge intelligence has become increas-

ingly crucial with the advent of a plethora of applications

that require real-time information processing with limited

connectivity to cloud servers. Further, privacy concerns for

data sharing with remote servers have also fueled the need

for on-chip intelligence in resourced constrained, battery-life

limited edge devices.

To address these challenges, a wide variety of works in

the deep learning community have explored mechanisms for

model compression like pruning [1], [2], efficient network

architectures [3], reduced precision/quantized networks [4],

among others. In this work, we primarily focus on “Binary

Neural Networks” (BNNs) - an extreme form of quantized

networks where the neuron activations and synaptic weights

are represented by binary values [5], [6]. Recent experiments

on large-scale datasets like ImageNet [7] have demonstrated

acceptable accuracies of BNNs, thereby leading to their current

popularity. For instance, Ref. [6] has shown that 58× reduction

in computation time and 32× reduction in model size can be

achieved for a BNN over a corresponding full-precision model.

The drastic reductions in computation time simply result from

the fact that costly Multiply-Accumulate operations required

in a standard deep network can be simplified to simple

XNOR and Pop-Count Operations. While current commercial

hardware [8] already supports fixed point precision (as low

as 4 bits), algorithmic progress on BNNs have contributed to

the recent wave of specialized “In-Memory” BNN hardware

accelerators using CMOS [9], [10] and post-CMOS tech-

nologies [11] that are highly optimized for single-bit state

representations.

As a completely parallel research thrust, neuromorphic com-

puting researchers have long advocated for the exploration of

“brain-like” computational models that abstract neuron func-

tionality as a binary output “spike” train over time. The binary

nature of neuron output can be exploited to design event-driven

hardware that is able to demonstrate significantly low power

consumption by exploiting event-driven computation and data

communication [12]. IBM TrueNorth [13] and Intel Loihi [14]

are examples of recently developed neuromorphic chips. While

the power advantages of neuromorphic computing have been

apparent, it has been difficult to scale up the operation of such

“Spiking Neural Networks” (SNNs) to large-scale machine

learning tasks. However, recent work has demonstrated com-

petitive accuracies of SNNs in large-scale image recognition

datasets like ImageNet by training a non-spiking deep network

and subsequently converting it to a spiking version for event-

driven inference [15], [16].

There has not been any exploration or empirical study at

exploring whether SNNs can be trained with binary weights

for large-scale machine learning tasks. Note that this is not

a trivial task since training standard SNNs itself from non-

spiking networks has been a challenge due to the several

constraints imposed on the base non-spiking network [15]. If

we assume that, in principle, such a network can be trained

then the underlying enabling hardware for both BNNs and

SNNs become equivalent 1 (due to the binary nature of

1“near-equivalent” since neuron states are discretized as −1,+1 in BNN
while SNN neuron outputs are discretized as 0, 1
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neuron/synapse state representation) except for the fact that

the SNN needs to be operated over a number of time-steps.

This work is aimed at exploring this connection between BNN

and SNN.

While a plethora of custom BNN hardware accelerators have

been developed recently, it is well known that BNNs suffer

from significant accuracy degradation in complex datasets in

contrast to full-precision networks. Recent work has demon-

strated that while weight binarization can be compensated by

training the network with the weight discretization in-loop,

neuron activation binarization is a serious concern [4]. Interest-

ingly, it has been shown that although SNNs represent neuron

outputs by binary values [17], the information integration

over time can be approximated as a Rectified Linear transfer

function (which is the most popular neuron transfer function

used currently in full-precision deep networks). Drawing in-

spiration from this fact, we explore whether SNNs can be

trained with binary weights as a means to bridge the accuracy

gap of BNNs. This opens up the possibility of using BNN

hardware accelerators for resource constrained edge devices

without compromising on the recognition accuracy. This work

also serves as an important application domain for SNN

neuromorphic algorithms that can be viewed as augmenting

the computational power of current non-spiking binary deep

networks.

II. RELATED WORK & MAIN CONTRIBUTIONS

The obvious comparison point of this paper would be

recent efforts at training quantized networks with bit-precision

greater than single bit. There have been a multitude of

approaches [18]–[23] with recent efforts aimed at designing

networks with hybrid precision where the bit-precision of

each layer of the network can vary [24]–[27]. However, in

order to support variable bit-precision for each layer, the

underlying hardware would need to be designed accordingly

to handle mixed-precision (which usually is characterized by

much higher area, latency and power consumption than BNN

hardware accelerators. Further, peripheral circuit complexities

like sense amplifier input offset, parasitics limit their scal-

ability [28]). This work explores a complementary research

domain where the core underlying hardware can be simply

customized for a BNN. This enables us to leverage the recent

hardware developments of “In-Memory” BNN accelerators

and provides motivation for the exploration of time (SNN

computing framework) rather than space (Mixed Precision

Neural Networks) as the information encoding medium to

compensate for accuracy loss exhibited by BNNs. Distributing

the computations over time also implies that the instantaneous

power consumption of the network would be much lower

than mixed-precision networks and approach that of a BNN

in the worst-case (savings observed due to SNN event-driven

behavior discussed in the next section) which is the critical

parameter governing power-grid design and packaging cost for

low-cost edge devices.

There has been also recent efforts by the neuromorphic

hardware community at training SNNs for unsupervised learn-

ing with binary weights enabled by stochasticity of several

emerging post-CMOS technologies [29]–[31]. Earlier works

on analog CMOS VLSI implementations of bistable synapses

have been also explored [32]. However, such works have

been typically limited to shallow networks for simple digit

recognition frameworks and do not bear relevance to our

current effort at training supervised deep BNNs/SNNs.

We utilize standard training techniques for non-spiking

networks and utilize the trained models for conversion to a

spiking network. We perform an extensive empirical analysis

and substantiate several optimization techniques that can re-

duce the inference latency of spiking networks by an order of

magnitude without compromising on the network accuracy. A

key facet of our proposal is the run-time flexibility. Depending

on the application level accuracy requirement, the network can

be simply run for multiple time-steps while leveraging the core

BNN-catered “In-Memory” hardware accelerator.

III. B-SNN PROPOSAL

We first review preliminaries of BNNs and SNNs from

literature and subsequently describe our proposed B-SNN

(SNN with binary weights).

A. Binary Networks

Our BNN implementation follows the XNOR-Net proposal

in Ref. [6]. While the feedforward dot-product is performed

using binary values, BNNs maintain proxy full-precision

weights for gradient calculation. To formalize, the dot-product

computation between the full-precision weights and inputs is

simplified in a BNN as follows:

I ∗W ≈ (sign(I) ∗ sign(W ))α (1)

where, α is a non-binary scaling factor determined by the L1-

norm of the full-precision proxies [6]. Straight-Through Esti-

mator (STE) with gradient-clipping to (−1,+1) range is used

during the training process [6]. Note that the above formulation

reduces both weights and neuron activations to −1,+1 values.

Although a non-binary scaling factor is introduced per layer,

yet the number of non-binary operations due to the scaling

factor is significantly low.

B. Spiking Networks

SNN training can be mainly divided into three categories:

ANN2-SNN conversion, backpropagation through time from

scratch and unsupervised training through Spike-Timing De-

pendent Plasticity [34]. Since ANN-SNN conversion relies

on standard backpropagation training techniques, it has been

possible to scale SNN training using such conversion methods

to large-scale problems [15]. ANN-SNN conversion is driven

by the observation that an Integrate-Fire spiking neuron is

functionally equivalent to a Rectified Linear ANN neural

transfer function. The functionality of an Integrate-Fire (IF)

spiking neuron can be described by the temporal dynamics of

2ANN refers to standard non-spiking networks, Analog Neural Networks
[33], where the neuron state representations are analog or full-precision in
nature, instead of binary spikes.















TABLE II
RESULTS FOR IMAGENET DATASET

Network Model Accuracy Timesteps

Full Precision ANN 69.05% −

XNOR Net 49.77% −

Full Precision SNN
(ANN-SNN conversion [45])

62.73% 250

Full Precision SNN
(Hybrid Training [45])

65.19% 250

Full Precision SNN

(This Work)

66.56% 64

B-SNN

(This Work)

62.71% 148

low-latency SNNs through ANN-SNN conversion techniques.

Future work will explore algorithms to reduce the accuracy

gap between full-precision and binary SNNs even further

along with substantiating the generalizability of the proposal

to advanced network architectures like residual connections

(that may require additional design considerations [15]).

Further, hardware benefits of the B-SNN proposal against

mixed/reduced-precision implementations will be evaluated.
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