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Abstract—On-chip edge intelligence has necessitated the ex-
ploration of algorithmic techniques to reduce the compute re-
quirements of current machine learning frameworks. This work
aims to bridge the recent algorithmic progress in training Binary
Neural Networks and Spiking Neural Networks - both of which
are driven by the same motivation and yet synergies between
the two have not been fully explored. We show that training
Spiking Neural Networks in the extreme quantization regime
results in near full precision accuracies on large-scale datasets
like CIFAR-100 and ImageNet. An important implication of this
work is that Binary Spiking Neural Networks can be enabled by
“In-Memory” hardware accelerators catered for Binary Neural
Networks without suffering any accuracy degradation due to
binarization. We utilize standard training techniques for non-
spiking networks to generate our spiking networks by conversion
process and also perform an extensive empirical analysis and
explore simple design-time and run-time optimization techniques
for reducing inference latency of spiking networks (both for
binary and full-precision models) by an order of magnitude over
prior work. Our implementation source code and trained models
are available at (Link).

Index Terms—Spiking Neural Networks, Binary Neural Net-
works, In-Memory Computing

I. INTRODUCTION

The explosive growth of edge devices such as mobile
phones, wearables, smart sensors and robotic devices in the
current Internet of Things (IoT) era has driven the research
for the quest of machine learning platforms that are not
only accurate but are also optimal from storage and compute
requirements. On-device edge intelligence has become increas-
ingly crucial with the advent of a plethora of applications
that require real-time information processing with limited
connectivity to cloud servers. Further, privacy concerns for
data sharing with remote servers have also fueled the need
for on-chip intelligence in resourced constrained, battery-life
limited edge devices.

To address these challenges, a wide variety of works in
the deep learning community have explored mechanisms for
model compression like pruning [1], [2], efficient network
architectures [3], reduced precision/quantized networks [4],
among others. In this work, we primarily focus on “Binary
Neural Networks” (BNNs) - an extreme form of quantized
networks where the neuron activations and synaptic weights
are represented by binary values [5], [6]. Recent experiments
on large-scale datasets like ImageNet [7] have demonstrated

acceptable accuracies of BNNs, thereby leading to their current
popularity. For instance, Ref. [6] has shown that 58 x reduction
in computation time and 32x reduction in model size can be
achieved for a BNN over a corresponding full-precision model.
The drastic reductions in computation time simply result from
the fact that costly Multiply-Accumulate operations required
in a standard deep network can be simplified to simple
XNOR and Pop-Count Operations. While current commercial
hardware [8] already supports fixed point precision (as low
as 4 bits), algorithmic progress on BNNs have contributed to
the recent wave of specialized “In-Memory” BNN hardware
accelerators using CMOS [9], [10] and post-CMOS tech-
nologies [11] that are highly optimized for single-bit state
representations.

As a completely parallel research thrust, neuromorphic com-
puting researchers have long advocated for the exploration of
“brain-like” computational models that abstract neuron func-
tionality as a binary output “spike” train over time. The binary
nature of neuron output can be exploited to design event-driven
hardware that is able to demonstrate significantly low power
consumption by exploiting event-driven computation and data
communication [12]. IBM TrueNorth [13] and Intel Loihi [14]
are examples of recently developed neuromorphic chips. While
the power advantages of neuromorphic computing have been
apparent, it has been difficult to scale up the operation of such
“Spiking Neural Networks” (SNNs) to large-scale machine
learning tasks. However, recent work has demonstrated com-
petitive accuracies of SNNs in large-scale image recognition
datasets like ImageNet by training a non-spiking deep network
and subsequently converting it to a spiking version for event-
driven inference [15], [16].

There has not been any exploration or empirical study at
exploring whether SNNs can be trained with binary weights
for large-scale machine learning tasks. Note that this is not
a trivial task since training standard SNNs itself from non-
spiking networks has been a challenge due to the several
constraints imposed on the base non-spiking network [15]. If
we assume that, in principle, such a network can be trained
then the underlying enabling hardware for both BNNs and
SNNs become equivalent ! (due to the binary nature of

l“near-equivalent” since neuron states are discretized as —1,+1 in BNN

while SNN neuron outputs are discretized as 0, 1



neuron/synapse state representation) except for the fact that
the SNN needs to be operated over a number of time-steps.
This work is aimed at exploring this connection between BNN
and SNN.

While a plethora of custom BNN hardware accelerators have
been developed recently, it is well known that BNNs suffer
from significant accuracy degradation in complex datasets in
contrast to full-precision networks. Recent work has demon-
strated that while weight binarization can be compensated by
training the network with the weight discretization in-loop,
neuron activation binarization is a serious concern [4]. Interest-
ingly, it has been shown that although SNNs represent neuron
outputs by binary values [17], the information integration
over time can be approximated as a Rectified Linear transfer
function (which is the most popular neuron transfer function
used currently in full-precision deep networks). Drawing in-
spiration from this fact, we explore whether SNNs can be
trained with binary weights as a means to bridge the accuracy
gap of BNNs. This opens up the possibility of using BNN
hardware accelerators for resource constrained edge devices
without compromising on the recognition accuracy. This work
also serves as an important application domain for SNN
neuromorphic algorithms that can be viewed as augmenting
the computational power of current non-spiking binary deep
networks.

II. RELATED WORK & MAIN CONTRIBUTIONS

The obvious comparison point of this paper would be
recent efforts at training quantized networks with bit-precision
greater than single bit. There have been a multitude of
approaches [18]-[23] with recent efforts aimed at designing
networks with hybrid precision where the bit-precision of
each layer of the network can vary [24]-[27]. However, in
order to support variable bit-precision for each layer, the
underlying hardware would need to be designed accordingly
to handle mixed-precision (which usually is characterized by
much higher area, latency and power consumption than BNN
hardware accelerators. Further, peripheral circuit complexities
like sense amplifier input offset, parasitics limit their scal-
ability [28]). This work explores a complementary research
domain where the core underlying hardware can be simply
customized for a BNN. This enables us to leverage the recent
hardware developments of “In-Memory” BNN accelerators
and provides motivation for the exploration of t7me (SNN
computing framework) rather than space (Mixed Precision
Neural Networks) as the information encoding medium to
compensate for accuracy loss exhibited by BNNs. Distributing
the computations over time also implies that the instantaneous
power consumption of the network would be much lower
than mixed-precision networks and approach that of a BNN
in the worst-case (savings observed due to SNN event-driven
behavior discussed in the next section) which is the critical
parameter governing power-grid design and packaging cost for
low-cost edge devices.

There has been also recent efforts by the neuromorphic
hardware community at training SNNs for unsupervised learn-

ing with binary weights enabled by stochasticity of several
emerging post-CMOS technologies [29]-[31]. Earlier works
on analog CMOS VLSI implementations of bistable synapses
have been also explored [32]. However, such works have
been typically limited to shallow networks for simple digit
recognition frameworks and do not bear relevance to our
current effort at training supervised deep BNNs/SNNs.

We utilize standard training techniques for non-spiking
networks and utilize the trained models for conversion to a
spiking network. We perform an extensive empirical analysis
and substantiate several optimization techniques that can re-
duce the inference latency of spiking networks by an order of
magnitude without compromising on the network accuracy. A
key facet of our proposal is the run-time flexibility. Depending
on the application level accuracy requirement, the network can
be simply run for multiple time-steps while leveraging the core
BNN-catered “In-Memory” hardware accelerator.

III. B-SNN PROPOSAL

We first review preliminaries of BNNs and SNNs from
literature and subsequently describe our proposed B-SNN
(SNN with binary weights).

A. Binary Networks

Our BNN implementation follows the XNOR-Net proposal
in Ref. [6]. While the feedforward dot-product is performed
using binary values, BNNs maintain proxy full-precision
weights for gradient calculation. To formalize, the dot-product
computation between the full-precision weights and inputs is
simplified in a BNN as follows:

I« W = (sign([) * sign(W))a (1)

where, « is a non-binary scaling factor determined by the L1-
norm of the full-precision proxies [6]. Straight-Through Esti-
mator (STE) with gradient-clipping to (—1,+1) range is used
during the training process [6]. Note that the above formulation
reduces both weights and neuron activations to —1, +1 values.
Although a non-binary scaling factor is introduced per layer,
yet the number of non-binary operations due to the scaling
factor is significantly low.

B. Spiking Networks

SNN training can be mainly divided into three categories:
ANNZ2-SNN conversion, backpropagation through time from
scratch and unsupervised training through Spike-Timing De-
pendent Plasticity [34]. Since ANN-SNN conversion relies
on standard backpropagation training techniques, it has been
possible to scale SNN training using such conversion methods
to large-scale problems [15]. ANN-SNN conversion is driven
by the observation that an Integrate-Fire spiking neuron is
functionally equivalent to a Rectified Linear ANN neural
transfer function. The functionality of an Integrate-Fire (IF)
spiking neuron can be described by the temporal dynamics of

2ANN refers to standard non-spiking networks, Analog Neural Networks
[33], where the neuron state representations are analog or full-precision in
nature, instead of binary spikes.
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Fig. 1. An example to illustrate the mapping of ReLU to IF-Spiking Neuron.

a state variable, vy,epm, that accumulates incoming spikes and
fires an output spike whenever the membrane potential crosses
a threshold, vyp,.

Umem (t + 1) = Umem (t) + Z wLXL(t) (2)
i

Considering E[X(¢)] to be the input firing rate (total spike
count over a given number of time-steps), the output spiking
rate of the neuron is given by E[Y(¢)] = w (considering
the neuron being driven by a single input X(¢) and a positive
synaptic weight w). In case the synaptic weight is negative, the
neuron firing rate would be zero since the neuron membrane
potential would be unable to cross the threshold. This is in
direct correspondence to the Rectified Linear functionality and
is described by an example in Fig. 1. An ANN trained with
ReLU neurons can therefore be transformed to an SNN with
IF spiking neurons with minimal accuracy loss. The sparsity
of binary neuron spiking behavior can be exploited for event-
driven inference resulting in significant power savings [15].

C. Connecting Binary and Spiking Networks

Our B-SNN is trained by using BNN training techniques
described earlier. However, we utilize analog ReL.U neurons
instead of binary neurons. Conceptually, the network structure
is analogous to Binary-Weight Networks (BWNs) introduced
in Ref. [6]. However, we also include additional constraints
like bias-less neural units and no batch-normalization layers
in the network structure [15]. This is due to the fact that
including bias and batch-normalization can potentially result
in huge accuracy loss during the conversion process [16].
Much of the success of training BNNs can be attributed to
Batch-Normalization. Hence, it is not trivial to train such
highly-constrained ANNs with binary weights and without
Batch-Normalization aiding the training process. Additional
constraints like the choice of pooling mechanism, spiking
neuron reset mechanism are discussed in details in the next
section. This work is aimed at performing an extensive empir-
ical analysis to substantiate the feasibility of achieving high-
accuracy and low-latency B-SNNs.

Note that the threshold of each network layer is an ad-
ditional hyper-parameter introduced in the SNN model and
serves as an important trade-off factor between SNN latency
and accuracy. Due to the neuron reset mechanism, the SNN

neurons are characterized by a discontinuity at the reset time-
instants. If the threshold is too low, the membrane potential
accumulations would be always higher than the threshold
causing the neuron to continuously fire. On the other hand,
too high thresholds result in increased latency for neurons
to fire. In this work, we normalize the neuron thresholds
to the maximum ANN activation (recorded by passing the
training set once after the ANN has been trained) [16]. Other
thresholding schemes can be also applied [15] to minimize the
conversion accuracy loss further.

Considering that the SNN is operated for N time-steps, the
network converges to a Binary-Weight Network as N — oo.
However, for a finite number of timesteps, we can consider the
network to be a discretized ANN, where the weights are binary
but the neuron activations are represented by B = logo N num-
ber of bits. However, since the neuron states are represented
by 0 and 1 values, B-SNNs are event-driven, thereby resulting
in power consumption only when triggered, i.e. on receiving a
spike from the previous layer. Hence, while the representative
bit-precision can be ~ 7 bits for networks simulated over
100 timesteps, the network’s computational power does not
scale-up corresponding to a multi-bit neuron model. This
is explained in Fig. 2(a)-(e). The left-panel depicts a bit-
cell for an “In-Memory” Resistive Random Access Memory
(RRAM) based BNN hardware accelerator [35]. The RRAM
can be programmed to either a high resistive state (HRS)
or a low resistive state (LRS). The RRAM states and input
conditions for +1, —1 are tabulated in Fig. 2 and shows the
correspondence to the binary dot-product computation. Note
that two rows per input are used due to the differential nature
+1, —1 of the neuron inputs. Hence, irrespective of the value
of the input, one of the rows of the array will be active
resulting in power consumption. Fig. 2(b) depicts the same
array for the B-SNN scenario. Since, in a B-SNN, the neuron
outputs are 0 and 1, we can use just one row per bit-cell,
thereby reducing the array area by 50%. Note that a dummy
column will be required for referencing purposes of sense
amplifiers interfaced with the array [35]. Additionally, the
neuron circuits interfaced with the array need to accumulate
the dot-product evaluation over time. Such an accumulation
process can be accomplished using digital accumulators [36]
or non-volatile memory technologies [37], [38]. Note that
energy expended due to this accumulation process is minimal
in contrast to the overall crossbar power consumption [39].
However, the input to the next layer will be a binary spike,
thereby enabling us to utilize the “In-Memory” computing
block as the core hardware primitive. It is worth noting here
that the power-consumption involved in accessing the rows of
the array occurs only on a spike event, thereby resulting in
event-driven operation.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Implementation

We evaluate our proposal on two popular, publicly available
datasets, namely the CIFAR-100 [40] and large-scale Ima-
geNet [7] dataset. CIFAR-100 dataset contains 100 classes
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with 60,000 32 x 32 colored images where 50,000 images
were used for training and 10,000 images were used for
testing. The more challenging ImageNet 2012 dataset contains
1000 classes of images of various objects. The dataset contains
1.28 million training images and 50,000 validation images.
Randomly cropped 224 x 224 pixel regions were used for
the ImageNet dataset. All empirical analysis and optimizations
were performed on the CIFAR-100 dataset and the resultant
conclusions and settings were used for the final ImageNet
simulation. All experiments are run in PyTorch framework
using two GPUs. For both datasets, the image pixels were
normalized to have zero mean and unit variance. Other stan-
dard pre-processing techniques used in this work can be found
at (Link). It is worth mentioning here that while evaluations
in this paper are based on static datasets, SNNs are inherently
suited for spatio-temporal datasets generated from event-driven
sensors [41], [42] and such sensor-algorithm co-design is
currently an active research area [43].

Our network architecture follows a standard VGG-16 model.
We purposefully chose the VGG architecture since many of
the inefficiencies and accuracy degradation effects of BNNs
are not reflected in shallower models like AlexNet or already-
compact models like ResNet. However, we observed that VGG
XNOR-Nets could not be trained successfully with 3 fully
connected layers at the end. Hence, to reduce the training
complexity, we considered a modified VGG-15 structure with
one less linear layer. Note that only top-1 accuracies are
reported in the paper.

As mentioned earlier, we used ANN-SNN conversion tech-
nique to generate our B-SNN. While ANN-SNN conversion
is currently the most scalable technique to train SNNs, it

suffers from high inference latency. However, recent work
has shown SNNGs trained directly through backpropagation are
characterized by much lower latency than networks obtained
through ANN-SNN conversion, albeit for simpler datasets and
shallower networks [44]. Due to the fact that such training
schemes are computationally much more exhaustive, a follow-
up work has explored a hybrid training approach comprising
ANN-SNN conversion followed by backpropagation-through-
time fine-tuning to scale the latency reduction effect to deeper
networks [45]. However, as we show in this work, the full
design space of ANN-SNN conversion has not been fully ex-
plored. Prior work on ANN-SNN conversion [15] has mainly
considered conversion techniques optimizing accuracy, thereby
incurring high latency. In this work, we show that there exists
extremely simple control knobs (both at design time and at
run time) that can be also used to reduce inference latency
drastically in ANN-SNN conversion methods without compro-
mising on the accuracy or involving computationally expensive
training/fine-tuning approaches. Since our SNN training op-
timizations are equally valid for full-precision networks, we
report accuracies for full-precision models along with their
binary counterparts in order to compare against prior art.

Our ANNs were trained with constraints of no bias and
batch-normalization layers in accordance with previous work
[15]. A dropout layer was inserted after every ReLU layer
(except those followed by a pooling layer) to aid the reg-
ularization process in absence of batch-normalization. Our
XNOR and B-SNN networks do not binarize the first and
last layers as in previous BNN implementations. We apply
the pixel intensities directly as input to the spiking networks
instead of an artificial Poisson spike train [16]. Once the
ANN is trained, it is converted to an iso-architecture SNN by
replacing the ReLLUs with IF spiking neuron nodes. The SNN
weights are normalized by using a randomly sampled subset of
images from the training set and recording the maximum ANN
activities. Note that normalization based on SNN activities can
be used to further reduce the ANN-SNN accuracy gap [15].
The SNN implementation is done using a modified version of
the mini-batch processing enabled SNN simulation framework
[46] in BindsNET [47], a PyTorch based package.

B. Training B-SNNs

In order to train the B-SNN, we first trained a constrained-
BWN, as mentioned previously. ADAM optimizer is used with
an initial learning rate of 5e — 4 and a batch size of 128.
Lower learning rates for training binary nets have proven to
be also effective in a recent study [48]. The learning rate is
subsequently halved every 30 epochs for a duration of 200
epochs. The weight decay starts from 5e—4 and is then set to 0
after 30 epochs similar to XNOR-Net training implementations
[6]. As shown in Fig. 3, we find that the final validation
accuracy improvement for the constrained-BWN is minimal
over an iso-architecture XNOR-Net. This is primarily due
to the constrained nature of models suitable for ANN-SNN
conversion coupled with weight binarization.
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Fig. 3. Validation results on CIFAR-100 dataset. Note that full-precision
model training is plotted from 0 — 200 epochs. The constrained-BWN model
is trained subsequently from the 200-th epoch. The BWN model trained from
scratch and XNOR-Net convergence plots are also shown for comparison.

However, previous work has indicated that careful weight
initialization is crucial for training networks without batch-
normalization [15]. Drawing inspiration from that observation,
we performed a hybrid training approach, where a constrained
full-precision model was first trained and then subsequently bi-
narized with respect to the weights. The resultant constrained-
BWNs exhibited accuracies close to original full-precision
accuracies, as shown in Fig. 3. A similar hybrid training
approach was also recently observed to speed up the training
process for normal BNNs [49]. Note that the full precision
networks are trained for 200 epochs with a batch size of 256,
an initial learning rate of 5e — 2, weight decay of le — 4 and
SGD optimizer with a momentum of 0.9. The learning rate
was divided by 10 at 81 and 122 epochs. The trained full-
precision models are also used for substantiating the benefits
of the SNN optimization control knobs discussed next.

C. Design-Time SNN Optimizations

1) Architectural Options: An important design option in
the SNN/BNN architecture is the type and location of pooling
mechanism. Normal deep networks usually have pooling layers
after the neural node layer to compress the feature map.
Among the two options typically used - Max Pooling and
Average Pooling - architectures with Max Pooling are usually
characterized by higher accuracy. However, because of the
binary nature of neuron outputs in BNN/SNN, Max Pooling
after the neuron layer should result in accuracy degradation.
To circumvent this issue, BNN literature has explored using
Max Pooling before the neuron layer [6] while SNN literature
has considered Average Pooling after the neuron layer [15]. A
comprehensive analysis in this regard is missing.

In this work, we trained network architectures with four pos-
sible options - Average/Max-Pooling before/after the ReLU/IF
neuron layer (Fig. 4). All four constrained-BWN architectures
perform similarly on CIFAR-100, as full-precision ANNs, and
converge to accuracy of 64.9%,65.8%,67.7% and 67.6% for
Average-Pooling before and after ReLU, Max-Pooling before
and after ReLU respectively. As expected, the Max-Pooling ar-
chitectures perform slightly better. However, converted SNNs
with Max-Pooling would result in accuracy degradation during

the conversion process since the max-pooling operation is not
distributed linearly over time. In contrast, the linear Avg-
Pooling operation would not involve such issues during the
conversion process. This tradeoff was evaluated in this design
space analysis. We would like to mention here that two
architectural modifications were performed while converting
the constrained-BWN to B-SNN. First, as shown in Fig. 4(b),
an additional IF layer was added after the Average-Pooling
layer to ensure that the input to the next Convolutional layer
is binary (to utilize the underlying binary hardware primitive).
Also, for the Max-Pooling before ReLU option (Fig. 4(c)), we
inserted an additional IF neuron layer after the Convolutional
layer. We observed that absence of this additional layer re-
sulted in extremely low SNN accuracy (33%). We hypothesize
this to occur due to Max-Pooling the Convolutional outputs
directly over time at every time-step.

The variation of SNN accuracy with time-steps is plotted
in Fig. 5 for full-precision and B-SNN models respectively.
While the baseline ANN Max-Pooling architectures provide
better accuracies, they undergo higher accuracy degradation
during the conversion process. For the Average-Pooling mod-
els, the option with pooling after the neuron layer have higher
latency due to additional spiking neuron layers. We find that
the Average-Pooling before ReLU/IF neuron layer offers the
best tradeoff between inference latency and final accuracy.
We therefore chose this design option for the next set of
experiments. Note that Fig. 3 shows the convergence graph for
this architecture. Similar variation was also observed for the
other options. For this architecture option, the full-precision
(binary) SNN accuracy is 63.2% (63.7%) in contrast to full-
precision (binary) ANN accuracies of 64.9% (64.8%).
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2) Neural Node Options: Another underexplored SNN ar-
chitecture option is the choice of the spiking neuron node.
While prior literature has mainly considered IF neurons where
the membrane potential is reset upon spiking, Ref. [16]
considers the membrane potential subtracted by the threshold
voltage at a firing event. We will refer to the two neuron
types as Reset-IF (RIF) and Subtractive-IF (SIF) respectively.
SIF neurons assist in reducing the accuracy degradation of
converted SNNs by removing the discontinuity occurring in
the neuron function at a firing event [16]. However, this is
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achieved at the cost of higher spiking activity. We would like
to stress here that while SNNs reduce the power consumption
due to time-domain redistribution of computation, optimizing
the SNN energy consumption is a tradeoff between the power
benefits and latency overhead - which is a function of such
architectural options considered herein.

For our analysis, we consider the following proxy metrics
for the energy consumption of the ANN and SNN. Assuming
that the major energy consumption would occur in the “In-
Memory” crossbar arrays discussed previously, the energy
consumption of the ANN will be proportional to the sum
of the number of operations in the convolutional and linear
layers (due to corresponding activations of the rows of the
crossbar array). However, in case of SNNs, the operation is
conditional in the case of a spiking event. The calculation
for ANN operations in convolutional and linear layers are
performed using Eqgs. 3-4.

Convolution Layer #OPS = nIPxkH xkW xnOPxoH xoW

3)
Linear Layer #OPS = iS % 0S “4)

where, nl P is the number of input planes, kKH and kW are
the kernel height and width, nOP is the number of output
planes, oH and oW are the output height and width, and ¢S
and oS are the input and output sizes for linear layers.

In order to measure the efficiency of the SNN with respect
to ANN in terms of energy consumption, we use the following
Normalized Operations count henceforth.

S2FVIFR; * Layer #OPS,
> Layer #OPS

where, IFR stands for IF Spiking Rate (total number of spikes
over the inference time window averaged over number of
neurons), and Layer #OPS include the operation counts in
convolution and linear layers. L represents the total number of
layers in the network. Note that, lower the value of normalized
operations, higher is the energy efficiency of converted SNN,
with 1 reflecting iso-energy case. Note that we do not consider
the operation count for the first and last layers since they are
not binarized.

Considering a baseline accuracy of 62%, Figs. 6(a) and
6(c) shows that the SNN structure with SIF has a much

Normalized #OPS =

(&)

smaller delay than the RIF structure. This is intuitive since
the spiking rate is much higher in SIF due to subtractive
reset. We also observed that the RIF topology was more error-
prone during conversion due to the discontinuity occurring
on reset to zero. For instance, the full-precision RIF SNN
model was unable to reach 62% during 400 timesteps. The
total number of normalized operations for SIF and RIF are
4.40 and 4.38 respectively for the B-SNN implementation,
and 2.35 and 6.40 (did not reach 62% accuracy) respectively
for the full-precision SNN. The layerwise spiking activity is
plotted in Figs. 6(b) and Fig. 6(d) (the numbers in figure inset
represent the timesteps required to reach 62% accuracy). Since
the number of computations does not greatly increase for the
SIF model with significantly less delay and better accuracy,
we choose the SIF model for the remaining analysis.
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Fig. 6. Analysis for neural node options - SIF versus RIF.

D. Run-Time SNN Optimizations

1) Threshold Balancing Factor: Prior work has usually
considered the maximum activation of the ANN/SNN neu-
ron as the neuron firing threshold for a particular layer, as
explained in Section I'V-C. Fig. 7(a) plots the histogram of the
maximum ANN activations of a particular layer. The distribu-
tion is characterized by a long tail (Fig. 7(b)) which results
in an unnecessarily high SNN threshold, since most of the
actual SNN activations would be much lower at inference time.
This observation was consistently observed for other layers.
Hence, while prior work has shown ANN-SNN conversion
to be characterized by extremely high latency, it is due to
the fact that the model is optimized for high accuracy, which
translates to high latency. In this work, we analyze the effect of
varying the threshold balancing factor by choosing a particular
percentile from the activation histogram.
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Fig. 7. Maximum ANN activations for a particular layer.

Fig. 8(a) and Fig. 8(c) depicts the variation of accuracy
versus timesteps for different percentiles chosen from the
activation histogram during threshold balancing. It is obvious
that the network’s latency reduces as the normalization per-
centile decreases due to a less conservative threshold choice.
However, the accuracy degradation due to threshold relaxation
seems to be minimal. Furthermore, no significant change in
the number of computations are observed despite changing
percentiles for both the full-precision and binary SNN models,
as shown in Figs. 8(b) and 8(d). The number of timesteps
required to reach 62% accuracy are also noted in the figure.
We chose 99.7 percentile (a subset of 3500 training set images
were used for measuring the statistics) for our remaining
analysis since degradation in accuracy was observed for lower
values in case of the binary model.

In order to explore additional opportunities for reduction in
number of computations for the SNN models, we observed
that the number of computations increases exponentially after
a certain limit ~ 60% accuracy. This has been plotted in Fig.
9 (combination of data shown in Figs. 8(c), 8(d)). Hence,
computation costs for the B-SNN can be significantly reduced
with small relaxation of the accuracy requirement. This is a
major flexibility in our proposal unlike prior mixed-precision
network proposals to circumvent the accuracy degradation
issue of XNOR-Nets. The core hardware framework and oper-
ation remains almost similar to the XNOR-Net implementation
with the flexibility to increase accuracy to full-precision limits
as desired.

2) Early Inference: Another conclusion obtained from the
exponential increase in number of computations with accu-
racy beyond ~ 60% (Fig. 9) is that a few difficult images
require longer evidence integration for the SNN. However,
it is unnecessary to run the SNN for an extended period of
time for easy image instances that could have been classified
earlier. Driven by this observation, we explored an “Early
Exit” inference method for SNNs wherein we consider the
SNN inference to be completed when the maximum membrane
potential of the neurons in the final layer is above a given
threshold®. This results in a dynamic SNN inference process
where easier instances resulting in faster evidence integration

31t is worth noting here the final neuron layer does not have any intrinsic
membrane potential threshold, i.e. the membrane potential accumulates over
time. Normal inference involves determination of the neuron with maximum
membrane potential.
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can be classified earlier, thereby reducing the average inference
latency and, in turn, the number of unnecessary computations.

Figs. 10(a)-10(b) depicts the variation of final SNN accu-
racy with the confidence threshold value for the maximum
membrane potential of the final B-SNN layer. This optimiza-
tion is equally applicable for the full-precision model. We
considered that in the worst case the SNN runs for 105
timesteps (time required to reach baseline accuracy of 62%
- obtained from Fig. 8(c)). Indeed, we observed a reduction
in computation from 4.30 to 3.55 with early inference without
any compromise in accuracy (62%) for the binary model. The
histogram of the required inference timesteps is shown in Fig.
11. The average value of inference timesteps is 62.4, which is
significantly lower than 105 for the case without early exit. As
a comparison point, we can achieve the XNOR-Net accuracy
(47.16%) with threshold value 0.90 as shown in Fig. 10(b),
and the corresponding number of normalized computations is
1.49 as compared to that of 1.0 of XNOR. Note that the 50%
increment in computations for the XNOR-Net accuracy is a
result of the fact that our model was optimized for a baseline



TABLE I
RESULTS FOR CIFAR-100 DATASET

Network Model Accuracy Normalized
#OPS

Full Precision ANN 64.9% 32

XNOR Net 47.16% 1

B-SNN 62.07% 3.55

accuracy of 62%. Hence, relaxing constraints explained in the
previous subsections can potentially be used for the B-SNN
to achieve XNOR-Net level accuracy at iso-computations. The
results for CIFAR-100 dataset are summarized in Table I.
The B-SNN VGG model achieves near full-precision accuracy
while only requiring 3.55X more operations integrated over
the entire inference time window.
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Fig. 10. Analysis for Early Inference.
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Fig. 11. Evaluation with Early Inference. Note that the there are 803 images
predicted at the 105-th timestep which is not included in the graph.

E. ImageNet Results

The full-precision VGG-15 model is trained on ImageNet
dataset for 100 epochs with a batch size of 128, a learning rate
of le—2, a weight decay of 1le—4 and the SGD optimizer with
a momentum of 0.9. Note that the learning rate was divided
by 10 at 30, 60 and 90 epochs similar to that of CIFAR-100
training. The final top-1 accuracy of the full-precision ANN
was 69.05%.

Similarly, we binarized the network from the pre-trained
ANN using the hybrid methodology described previously and
we also observed a drastic increase in B-SNN accuracy (in
contrast to training the model from scratch) similar to Fig

3. The initial parameters used for the Adam optimizer were
learning rate of 5e — 4, weight decay of 5e —4 (and 0 after 30
epochs), and beta values (the decay rates of the exponential
moving averages) of (0.0, 0.999). Note that we observed
proper setting of the beta values to be crucial for higher
accuracy of the B-SNN training, as suggested in a recent work
[49]. We achieved 65.4% top-1 accuracy for the constrained
BWN model after 40 epochs of training (the binarization phase
after full-precision training).

0.6

Accuracy

0.0 0.0
0 20 40 60 80 0 50 100 150 200
Timesteps Timesteps

(a) Accuracy versus timesteps for
full-precision model.

(b) Accuracy versus timesteps for
binary model.

Fig. 12. Performance on the ImageNet dataset.

Optimization settings derived from the previous CIFAR-100
experiments were applied to our ImageNet analysis, namely,
the pooling architecture, neural node type and relaxing the
threshold balancing (99.9% percentile was used by recording
maximum ANN activations for a subset of 80 images from the
training set). The top-1 SNN (ANN) accuracy was 66.56%
(69.05%) for the full-precision model and 62.71% (65.4%)
for the binarized model respectively. The accuracy versus
timesteps variation for the two models are depicted in Fig.
12(a)-(b). The binary SNN model achieves near full-precision
accuracy on the ImageNet dataset as well with 5.09 Normal-
ized #OPS count. Note that the latency and #OPS count can
be further reduced by early exit. We did not include the early
exit optimization in order to achieve a fair comparison with
previous works. A summary of our results on the ImageNet
dataset and results from other competing approaches are shown
in Table II. Apart from the B-SNN proposal, our simple op-
timization procedures involving standard non-spiking network
based training is able to achieve extremely low-latency deep
SNNS.

V. CONCLUSIONS AND FUTURE WORK

While most of the current efforts at solving the accuracy
degradation issue of BNNs have been focused on mixed-
precision networks, we explore an alternative time-domain
encoding procedure by exploring synergies with SNNs. ANN-
SNN conversion provides a mathematical formulation for
expressing multi-bit precision of ANN activations as binary
values over time. Our binary SNN models achieve near full-
precision accuracies on large-scale image recognition datasets,
while utilizing similar hardware backbone of BNN-catered
“In-Memory” computing platforms. Further, we explore sev-
eral design-time and run-time optimizations and perform ex-
tensive empirical analysis to demonstrate high-accuracy and



TABLE II
RESULTS FOR IMAGENET DATASET

Network Model Accuracy Timesteps
Full Precision ANN 69.05% —

XNOR Net 49.77% —

Full Precision SNN 62.73% 250
(ANN-SNN conversion [45])

Full Precision SNN 65.19% 250
(Hybrid Training [45])

Full Precision SNN 66.56 % 64

(This Work)

B-SNN 62.71% 148

(This Work)

low-latency SNNs through ANN-SNN conversion techniques.
Future work will explore algorithms to reduce the accuracy
gap between full-precision and binary SNNs even further
along with substantiating the generalizability of the proposal
to advanced network architectures like residual connections
(that may require additional design considerations [15]).
Further, hardware benefits of the B-SNN proposal against
mixed/reduced-precision implementations will be evaluated.
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