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1 Introduction

Janus configurations are solutions of supergravity theories which are dual to interface CFTs.
The original solution [1] was obtained by considering a deformation of AdSs xS° in type IIB
supergravity where the dilaton has a nontrivial profile with respect to the slicing coordinate
of an AdSy slicing of AdS5. Subsequently, many more Janus solutions have been found in
many different settings. One may distinguish two kinds of solutions: first, there are top-
down constructions of Janus solutions in ten-dimensional type IIB or eleven-dimensional
M-theory which preserve half of the supersymmetry. Such solutions are generically con-
structed by considering a warped product of AdS and sphere factors over a two-dimensional
Riemann surface with boundary (see e.g. [2-5]). Second, there are solutions of gauged
supergravities in lower dimensions with various amounts of broken and unbroken super-
symmetries (see e.g. [6-14]). Solutions of the second kind are useful since holographic
calculations of quantities such as the entanglement entropy, sources and expectation values
of operators, and correlation functions in the Janus background are easier to perform in the
lower-dimensional supergravity. In many cases, such solutions can be constructed as consis-
tent truncations, which can be lifted to solutions of ten- or eleven-dimensional supergravity.

In the present paper, we consider a particular example of the second approach. We
construct Janus solutions in three-dimensional A/ = 8 gauged supergravity. Such theories
are naturally related to AdSs x.S3 x M, compactifications of type IIB, where M, is either



Ty or K3. We consider one of the simplest nontrivial settings where we find solutions which
preserve eight of the sixteen supersymmetries of the AdS3 vacuum, where only two scalars
in the coset have a nontrivial profile. One interesting feature of these solutions is that one
scalar is dual to a marginal operator with dimension A = 2 where the source terms have
different values on the two sides of the interface. This behavior is the main feature of the
original Janus solution [1, 15]. On the other hand, the second scalar is dual to a relevant
operator with dimension A = 1 with a vanishing source term and a position-dependent
expectation value. This behavior is a feature of the Janus solution in M-theory [5].

The structure of the paper is as follows: in section 2 we review N/ = 8 gauged super-
gravity in three dimensions, and in section 3 we construct the half-BPS Janus solutions and
investigate some of their properties using the AdS/CFT dictionary, including the calcula-
tion of the holographic entanglement entropy. We discuss some generalizations and direc-
tions for future research in section 4. Some technical details are relegated to appendix A.

2 d =3, N = 8 gauged supergravity

In the following, we will use the notation and conventions of [16]. The scalar fields of d = 3,
N = 8 gauged supergravity are parameterized by a G/H = SO(8,n)/(SO(8) x SO(n))
coset, which has 8n independent scalar degrees of freedom. This theory can be obtained by a
truncation of six-dimensional ' = (2,0) supergravity on AdS3 x.S? coupled to ny > 1 ten-
sor multiplets, where n = n—3. The cases n = 5 and 21 correspond to compactifications
of ten-dimensional type IIB on 7% and K3, respectively. See [17] for a discussion of consis-
tent truncations of six-dimensional N' = (1,1) and N = (2, 0) using exceptional field theory.
For future reference, we use the following index conventions:

e I,J,...=1,2,....8 for SO(8).
e 7,8,...=9,10,...,n+ 8 for SO(n).
o I,J,...=1,2,...,n+8 for SO(8,n).

o M,N,... for generators of SO(8,n).

Let the generators of G be {tM} = {tI/} = {X!7 X7 YI"}, where Y!” are the non-
compact generators. Explicitly, the generators of the vector representation are given by

(tIJ)KE — nIKé-iT _ nJK(Sé (2'1)

where 771_ J = diag(++++++++—"--+) is the SO(8, n)-invariant tensor. These generators
satisfy the following commutation relations,

17 (K] — Q(Uf[ktilf _ nf[f?ti]f) (2.2)

The scalars fields can be parametrized by a G-valued matrix L(z) in the vector repre-
sentation, which transforms under H and the gauge group Gy C G by

L(z) — go(x)L(x)hfl(x) (2.3)



for go € Gp and h € H. The Lagrangian is invariant under such transformations. We can
pick a SO(8) x SO(n) gauge to put the coset representative into symmetric gauge,

L =exp(onY') (2.4)

for scalar fields ¢7,. The VM 4 tensors are defined by
1 1
L_ltML _ VM_At'A _ ivM[JXIJ + ierers + VMITle (25)

The gauging of the supergravity is accomplished by introducing Chern-Simons gauge
fields Bﬁ/l and choosing an embedding tensor O,y (which has to satisfy various identi-
ties [18]) that determines which isometries are gauged, the coupling to the Chern-Simons
fields, and additional terms in the supersymmetry transformations and action depending
on the gauge couplings. In the following, we will make one of the simplest choices and
gauge a Go = SO(4) subset of SO(8). Explicitly, we further divide the I, J indices into

o i,7,...=1,2,3,4 for Go = SO(4).
e 2,7,...=05,6,7,8 for the remaining ungauged SO(4) C SO(8).
The embedding tensor we will employ in the following has the non-zero entries
OrI KL = Eijikt (2.6)

As this is totally antisymmetric, the trace is § = 0. As discussed in [16], this choice of
embedding tensor produces a supersymmetric AdSs ground state with

SU(2/1,1)1, x SU(2|1, 1)z (2.7)

super-algebra of isometries. From the embedding tensor, the Gp-covariant currents can be
obtained,

_ 1 1
L8, + g0 BV )L = igfﬂx” +5 QX"+ Py (2.8)
It is convenient to define the T-tensor,

Tas = O VMW V5 (2.9)

as well as the tensors Aj 23 which will appear in the potential and the supersymmetry

transformations.
AP = *%FQ{BKLTMKL
A = _%FQQKT]‘”KT
AP = %5TSF,I4‘§3KLT1J|KL + %F,{{%Tlﬂm (2.10)

A, B and A, B are SO(8)-spinor indices and our conventions for the SO(8) Gamma matrices
are presented in appendix A.1.



We take the spacetime signature n? = diag(4——) to be mostly negative. The bosonic
Lagrangian is

e 'L = —iR + %Pﬁ”P“” +W - ieflawpg@MNBf (aVBfY - %g@;cgf’lwcp BfB]j)
W= ig2 (A{‘BAf‘B - ;Ag‘/‘m;‘/‘r) (2.11)
The SUSY transformations are
5XAT = %ifiA’y”EAPir + gA?ATEA
St = <8ueA + %wﬁbmef‘ + %Qﬁ]Fﬁ‘%ﬁB ) +ig Ay Pe? (212)

2.1 The n = 1 case

In this section we will consider the n = 1 theory, i.e. the scalar fields lie in a SO(8, 1)/ SO(8)
coset. The reason for this is that the resulting expressions for the supersymmetry trans-
formations and BPS conditions are compact and everything can be worked out in detail.
Furthermore, we believe that this case illustrates the important features of more general
solutions.

As the index r = 9 takes only one value in this case, the scalar fields in the coset
representative (2.4) are denoted by ¢; = ¢i9 for i = 1,2,...,8. We define the following
quantities for notational convenience,

D> = grdr = ¢ + ¢ + &5 + 65 + 8% + g + 67 + o3
O = ¢idi = &7 + 05 + 03 + 03
O* = diy = G2 + P + D2 + P2 (2.13)

The components of the VM 4 tensor are, with no summation over repeated indices and
1, J, K, L being unique indices,

cosh® — 1 cosh® — 1
VIJIJ =1+ (o7 + ¢2J)72 VIJIK =P Pk ——5—
o )
cosh® — 1
Ve, =0 Vi = cosh @ - gF
cosh® — 1 sinh ®
Vi = —b19 g3 Vi =V, =6y >
VIJKQ == VKQIJ =0 (214)
The u-components of the Qﬁ‘] and P;{ tensors are
cosh® — 1
QL = (d16s — d19))—g7— + 9OMmv BV
sinh @ sinh® — &
Pl =) O ¢I@IT + QGMNB{LV[V% (2.15)



where the prime ' = 9/0u denotes the derivative with respect to u. The terms involving
the gauge field have different forms depending on whether I, .J are in i or 7.

1 cosh® —1 - - cosh® —1
OBV =cijie [2355 (1 + (2 + qﬁ)@) + (@Bffqﬁe T ¢jBik¢e> q;z}
1 cosh® —1
OBV = §5ijk€¢i¢jBludT
On BV =0
1 sinh ®
@MNBMVQ = gz]k€¢]Bk£ P
OrnBMVY =0 (2.16)
The T-tensor has non-zero components
cosh® — 1
Tijike = €ijke <¢2q>2 + 1)
cosh® — 1
Tijiez = 5ijk€¢€¢iT
sinh ®
Tijiko = €ijkede T (2.17)
Taking €1234 = 1, we can use the T-tensor to compute
1 cosh® — 1 , cosh® — 1
ASB _ —51‘11423,4 l<¢2q>2 + 1>5CB + (T 100 (T qul)]
i 1 smh )
AAA — _5111234( A(bz)
AYB = —APBS 6 (2.18)
Note that A8 = ABA and
1 $? sinh? ®
ANCABC = 45,43( 52 1)
i pi 1. ¢*sinh?®
APAATA = oy — (2.19)
so the scalar potential (2.11) becomes
2/ 42 12
g° [ ¢°sinh* @
W=="—5—+2 2.20

3 Half-BPS Janus solutions

In this section, we construct Janus solutions which preserve eight of the sixteen supersym-
metries of the AdS3 vacuum. Our strategy is to use an AdSs slicing of AdSs and make the
scalar fields as well as the metric functions only dependent on the slicing coordinate. One
complication is given by the presence of the gauge fields; due to the Chern-Simons action,
the only consistent Janus solution will have vanishing field strength. We show that the
gauge fields can be consistently set to zero for our solutions.



3.1 Janus ansatz
We take the Janus ansatz for the metric, scalar fields and Chern-Simons gauge fields,
2 2
42 — 2B (dt —dz ) _ 2D(u) 3,2
52
¢r = br(u)
BM = BM(u)du (3.1)

The AdS3 vacuum solution given by ¢; = 0 and e = e” = Lsecu has a curvature radius
related to the coupling constant by L™! = ¢g. The spin connection 1-forms are

dt B’ B-D B’ B-D
Wil = — W= g W2=-2%  q. (3.2)

z z z

so the gravitino supersymmetry variation &bﬁ‘ =0is

1
0 =0+ —Zvo (71 — B’eB_sz + 2igeBA1)s

2
0=d.c+— (-Bref=P geB
=0, Y1 e Yo + 2ige” Ay e
2z
1
0= due + 1@5‘71“”5 +igePypAre (3.3)

where we have suppressed the SO(8)-spinor indices. As shown in appendix A.2; the inte-
grability conditions are

0= (1 — (2geBA))% + (B'eB_D)2)5
0 = 2igeP (A’l _ i[Al, Q{/r“]>e + (—(i(B’eB_D) + (QQeBAl)QeD_B) e (34)

The first integrability condition gives a first-order equation which must be true for all €,
using the replacement for A% in (2.19),

¢? sinh? ® -
0=1-—g??B (qﬂ +1 |+ (BeBD)? (3.5)

The derivative of this simplifies the second integrability condition to

1 igeP d [ $?sinh® ®
0= (AgL — 1[141, Q{LJFU])a + 15 du( o2 YoE (3.6)

The BPS equation 5XA =0is

(—ZeDI‘IR{’yQ + 9A2> et=0 (3.7)
2 Ad

When gA3 # 0, this equation can be rearranged into the form of a projector

0= (iMapy2 + 5AB)€A (3.8)



where M 4p is given by

e D )

Mup=5——_ 2
AB g ¢2?sinh ®

(D APu) T4 T R (3.9)
For consistency of the projector, we must have
MapMpo = dac (3.10)

As M? =1, every generalized eigenvector of rank > 2 is automatically an eigenvector, so
M is diagonalizable and has eight eigenvectors with eigenvalues £1. M is traceless as it
is a sum of products of 2 or 4 Gamma matrices, so it has an equal number of +1 and —1
eigenvectors. The operator iMpvys in the projector (3.8) squares to one and is traceless,
and projects onto an eight-dimensional space of unbroken supersymmetry generators. If
this is the only projection imposed on the solution, it will be half-BPS and hence preserve
eight of the sixteen supersymmetries of the vacuum.
The condition M? = 1 gives an equation first-order in derivatives of scalars.

2 e~ PP 2 2 i i — g
M= | g ) (P CPiPL+ PPy = 208 (TP (')
+2(PJ ;) (TP, + T'PL) (T gy, ) (3.11)

For this to be proportional to the identity, we need all I'"I'* and I''IV terms to vanish.
Vanishing of the latter requires us to impose the condition

Pudj = Pidi (3.12)

As the ratio P! /¢; is the same for all 4, this implies
i P2 Pu o 2pi j
DPubi = gl = st = Pt 6i) Pl =0 (3.13)
i i 7 1 j
This means that imposing eq. (3.12) also ensures that the "I terms vanish. Note that

o i pi 1\ 2
LA PN (Z) & (3.14)

so the M2 = 1 condition becomes

2 eiD(I) 2 2 . . _ -
M — PZPZ PZPZ = 1 315
(gd)%mh@)qs( iP -+ PLPL) (3.15)

We now give the argument why the Chern-Simons gauge fields can be set to zero. Since
we demand that the Bl/f‘ only has a component along the u direction and only depends
on u, the field strength vanishes, consistent with the equation of motion coming from the
variation of the Chern-Simons term in the action (2.11) with respect to the gauge field.



However, there is another term which contains the gauge field, namely the kinetic term of
the scalars via (2.15). For the gauge field to be consistently set to zero, we have to impose

oL
— =0 3.16
D 210
For the Janus ansatz, we find
oL . sinh ®
6Bk BM—g = cgcigkeP"0; o (3.17)

which indeed vanishes due to eq. (3.12) imposed by the half-BPS condition.
For a half-BPS solution, the second integrability condition (3.6) should be identical to
the projector (3.8). Indeed, we have the simplification

_1¢?sinh’® @ AT

s (3.18)

4~ 1[4, QT =

so the Gamma matrix structures of the two equations match. Equating the remaining

scalar magnitude gives us an equation for the metric factor e?,
d . ¢sinh®
-B'=—1 3.19
o ( )
We can now solve for the metric. Let us define
inh ®
a(u) = ¢ sin (3.20)
)
and set the integration constant for B to be
o5 - ¢l (3.21)
go
Plugging this into the first integrability condition (3.5) and picking the gauge e = g, we
have a first-order equation for «,
0=0a?—-C?%a?+1—-0a?/a?) (3.22)
The solution depends on the value of C' € [0, 1] and up to translations in w is
o = et ifC=1
a= el sech u ifo<C<1 (3.23)
V1-C?
We will take the case 0 < C < 1. This implies that the metric is
dt? — dz?
ds* = g2 [(1 — C?) cosh? u<22> - duQ] (3.24)
z

The choice C' = 0 corresponds to the AdS3 vacuum.



3.2 @4, ¢5 truncation

We have yet to fully solve the half-BPS conditions (3.12) and (3.15). For simplicity, let us
consider the case where only ¢4, ¢5 are non-zero and the other scalars are identically zero,
which trivially satisfies eq. (3.12). It turns out that the important features of the Janus
solution are captured by this truncation.

We introduce the following abbreviations

O =¢i+¢5  o=lpl =g (3.25)
Let us define _
Bu) = g5 sinh @ Sg (3.26)

so that

o? + % = sinh® @

1 — cosh ®
4 7 /
Pu=a'+ad sinh ®

1 — cosh®
=4 o 3.27
F+h sinh ® ( )

Plugging these into eq. (3.15) simplifies to
! ! 2\2

05/2 +/Bl2 o (O[Oé—'—ﬁﬂ) _ a2 (328)

1+a2+32

This can be rearranged into a first-order equation in f = 5/v1+ o2,

2
fr= +/§2 Ji+ (3.29)

where a sign ambiguity from taking a square-root has been absorbed into C, which is now
extended to C' € (—1,1). Using the explicit solution (3.23) for «, by noting that

d C'sech? u a?/C
— tanh™!(C tanh v) = = 3.30
du (Ctanhu) 1 —C?tanh?u 1+ a? (3:30)
the general solution is
sinh p + C cosh ptanh u
f(u) = >
V1 —C?tanh”u
1
1) = ————(sinh p + C cosh p tanh u 3.31
Blu) = =5 (sinhp p ) (3.31)

for some constant p € R. For later convenience, we also redefine C' = tanh g for ¢ € R.
In summary, we have solved for the scalars ¢4, ¢5 implicitly through the functions «, 3,

inh ®
W’Sql)n = |sinh ¢| sechu
inh ®
%SIT? = sinh p cosh ¢ 4 cosh psinh ¢q tanh u (3.32)



Figure 1. Plot of ¢4 and ¢5 for (p,q) = (0, 1).

for real constants p,q. Note that the reflection ¢4 — —¢4 also gives a valid solution.
We have explicitly checked that the Einstein equation and scalar equations of motion are
satisfied.

The ¢4 scalar goes to zero at u = +o00 as it is a massive scalar degree of freedom, and
has a sech-like profile near the defect. The ¢5 scalar interpolates between two boundary
values at u = +00, and has a tanh-like profile. The constant p is related to the boundary
values of the ¢5 scalar, as we can note that

¢5(to0) =p=Egq (3.33)

The constant ¢ is then related to the jump value of the ¢5 scalar. The defect location u = 0
can also be freely translated to any point along the axis. Below is a plot of the solution for
the choice (p,q) = (0,1).

3.3 Holography

In our AdS-sliced coordinates, the boundary is given by the two AdSs components at
u = =00, which are joined together at the z = 0 interface. Using C' = tanhgq, the
metric (3.24) becomes

22

2 _ 3,2
ds® = g2 [Sech2 qcosh®u <dtdz> - du21 (3.34)

Note that this is not AdS3 unless ¢ = 0, which corresponds to the vacuum solution with
all scalars vanishing. The spacetime is, however, asymptotically AdSs;. In the limit of
u — 00, the sech? ¢ can be eliminated from the leading e*?* term in the metric (3.34) by
a coordinate shift. We will present the asymptotic mapping to a Fefferman-Graham (FG)
coordinate system below. In the following, we will set the AdS length scale to unity for
notational simplicity, i.e. g = 1.

According to the AdS/CFT correspondence, the mass m? of a supergravity scalar field
in d = 3 is related to the scaling dimension A of the dual CFT operator by

m? = A(A - 2) (3.35)

~10 -



This relation comes from the linearized equations of motion for the scalar field near the
asymptotic AdS3 boundary. Expanding the supergravity action (2.11) to quadratic order
around the AdS3 vacuum shows that the ¢4 field has mass m? = —1, so the dual operator is
relevant with A = 1 and saturates the Breitenlohner-Freedman (BF) bound [19]. Note that
we choose the standard quantization [20], which is the correct one for a supersymmetric
solution. The ¢5 field is massless, so the dual CFT operator is marginal with scaling
dimension A = 2.

In FG coordinates,' the general expansion for a scalar field near the asymptotic AdS3

boundary at p = 0 is

da=1 ~Yoplnp+dop+---
Gagt ~ Gop A+ dopt + o (3.36)

Since ¢a—y saturates the BF bound, holographic renormalization and the holographic
dictionary are subtle due to the presence of the logarithm [21]. As we show below for
the solution (3.32), there is no logarithmic term present and ¢ can be identified with the
expectation value of the dual operator [21, 22]. For the massless field ¢pa—o, we can identify
$o with the source and ¢, with the expectation value of the dual operator.

It is difficult to find a global map which puts the metric (3.34) in FG form. Here, we
limit our discussion to the coordinate region away from the defect, where we take u — +oo
and keep z finite [23, 24]. This limit probes the region away from the interface on the bound-
ary. The coordinate change suitable for the u — oo limit can be expressed as a power series,

P2 4
z=x+ % + O(p )
2
et = coshq<;” 2+ (’)(,03)) (3.37)
The metric becomes
1 p? tanh? ¢
2 _ 2 2 2 3

In the u — —oo limit, the asymptotic form of the metric is the same and the coordinate
change is (3.37) with the replacements e* — e and = — —x.
Using this coordinate change, the expansions of the scalar fields near the boundary is

p+q P 3
= |tanh¢|———— - — + O
- 1 p+q 9 sinhptanhzj) p? 4
= — tanh —— - =+0 3.39
¢ =P +4) 2sinh(p+q)(sinh(p+c7) At T ehg 2 o) (339)

'The AdSs metric in Poincaré coordinates is

o —dp?+dt? —da?
= p

and is related to the AdS-sliced metric by the coordinate change

z=/x? + p? sinhu=z/p.

ds

- 11 -



T'(A)
I'(4)

(a) (b)

Z

A CFTy

CFTy A CFT; CFTy

z

Figure 2. (a) The entagling surface A is symmetric around the interface Z, (b) The entagleing
surface A is ends at the interface Z.

where ¢ = gz /|x| (see appendix A.3 for details). The defect is located on the boundary at
x = 0. We can see that the relevant operator corresponding to ¢4 has no term proportional
to pln p in the expansion. This implies that the source is zero and the dual operator has
a position-dependent expectation value. The marginal operator corresponding to ¢5 has a
source term which takes different values on the two sides of the defect, corresponding to
a Janus interface where the modulus associated with the marginal operator jumps across
the interface.

Another quantity which can be calculated holographically is the entanglement entropy
for an interval A using the Ryu-Takanayagi prescription [25],

_ Length(T'4)

Spp = oA (3.40)
e

where I'4 is the minimal curve in the bulk which ends on JA.

There are two qualitatively different choices for location of the interval in an interface
CFT, as shown in figure 2. First, the interval can be chosen symmetrically around the
defect [26, 27]. The minimal surface for such a symmetric interval is particularly simple
in the AdS-sliced coordinates (3.34), and is given by z = zp and u € (—o0,00). The
regularized length is given by

Length(T'4) = /du = Upo — U—oo (3.41)

We can use (3.37) to relate the FG cutoff p = ¢, which furnishes the UV cutoff on the CFT
side, to the cutoff w4 in the AdS-sliced metric,

Utoo = £(—loge + log(22¢) + log(cosh q)) (3.42)
Putting this together and using the expression for the central charge in terms of Gg\?;) gives
c 220 ¢
SEE = 3 log — + 3 log(cosh q) (3.43)
€

Note that the first logarithmically divergent term is the standard expression for the
entanglement entropy for a CFT without an interface present [28], since 2z is the length of

- 12 —



the interval. The constant term is universal in the presence of an interface and can be inter-
preted as the defect entropy (sometimes called g-factor [29]) associated with the interface.
Second, we can consider an interval which lies on one side of the interface and borders
the interface [30, 31]. As shown in [32], the entangling surface is located at u = 0 and the
entanglement entropy for an interval of length [ bordering the interface is given by

Skg = g sech glog ! (3.44)
€

3.4 All scalars

For completeness, we also present the general solution with all ¢; scalars turned on. Let

us define
sinh @
ai(u)z@% i=1,2,3,4
- sinh ®
Bi(u) = @% 7=5,6,7,8 (3.45)

As a consequence of eq. (3.12), the ratio ¢;/¢; is the same for all i so all the ¢; scalars are
proportional to each other. In other words, we have o; = n;a for constants n; satisfying
n;n; = 1, where « is given in eq. (3.23). Then eq. (3.15) becomes

(d'a+ BiBr)? o2

o + BB — = 3.46
K e (346)

We can note that there exists a family of solutions where all 5; functions satisfy
B = nif (3.47)

for some function 5 and constants n; satisfying nzn; = 1. When this is the case, eq. (3.46)
then further simplifies to

(Oé,()l+,3/5)2 Y
TrazepE °
which has already been solved in the previous section. We can prove that these are the

o? + %~ (3.48)

only solutions to eq. (3.46) which satisfy the equations of motion. The scalar dependence
of the Lagrangian is

92
fmg—zﬁﬁ+w

2 / / 2
g 2 s (Dot BiB) 2

== O — e — 2 3.49
R e S (3.49

If we write the ; in spherical coordinates, where we call the radius [, this becomes

2 / 1 2\2
S a2, s (@a+BB) 2

== Ko— 2 3.50
e (3.50)

where K? is the kinetic energy of the angular coordinates.? We can treat o, 3, and the
three angles as the coordinates of this Lagrangian. The equation of motion from varying

2Explicitly, let K2 = 02 + sin? 0 ¢’ + sin? 0 sin? ¢ ¢"2.

~13 -



the Lagrangian with respect to « will only involve o and § and their derivatives. Plugging-
in (3.23) for «, satisfying this equation of motion fixes the form of 5 to be what was found
previously in eq. (3.31). This means that eq. (3.46) simplifies to 32K? = 0 and the three
angles must be constant.

Therefore, the general solution is

inh ®
gbs% = | sinh ¢| sech u
[ = sinh p cosh ¢ + cosh psinh ¢ tanh u
¢i = n;io, nin; =1
;sinh @
% = n;ﬁ, nyn; = 1 (351)

)

4 Discussion

In this paper, we have presented Janus solutions for d = 3, N' = 8 gauged supergravity.
We constructed the simplest solutions with the smallest number of scalars, namely the
SO(n,1)/SO(8) coset. The solutions we found have only two scalars displaying a nontrivial
profile. One scalar is dual to a marginal operator O with scaling dimension A = 2 and the
other scalar is dual to a relevant operator O1 with scaling dimension A = 1. We used the
holographic correspondence to find the dual CFT interpretation of these solutions. It is
given by a superconformal interface, with a constant source of the operator Oy which jumps
across the interface. For the operator O1, the source vanishes but there is an expectation
value which depends on the distance from the interface. It would be interesting to study
whether half-BPS Janus interfaces which display these characteristics can be constructed
in the two-dimensional N' = (4,4) SCFTs.

We considered solutions for the SO(n, 1)/ SO(8) coset, but these solutions can be triv-
ially embedded into the SO(8,n)/(SO(8) x SO(n)) cosets with n > 1. Constructing so-
lutions with more scalars with nontrivial profiles is in principle possible, but the explicit
expressions for the quantities involved in the BPS equations are becoming very complicated.
We also believe that the n = 1 case already illustrates the important features of the more
general n > 1 cosets. Another possible generalization is given by considering more general
gaugings. One important example is given by replacing the embedding tensor (2.6) with

Or1,KL = Eijke + A7 (4.1)

This is a deformation produces an AdSs vacuum which is dual to a SCFT with a large
DY(2,1;a) x D*(2,1; ) superconformal algebra. As discussed in [16], this gauging is be-
lieved to be a truncation type I supergravity compactified on AdS3 xS3 x S3 x St [33, 34].
It should be straightforward to adapt the methods for finding solutions developed in the
present paper to this case.

We calculated the holographic defect entropy for our solution. It would be interesting
to investigate whether this quantity can be related to the Calabi diastasis function follow-
ing [35, 36]. For this identification to work we would have to consider the case n = 2 for
which the scalar coset is a Kéhler manifold.

We leave these interesting questions for future work.
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A Technical details

In this appendix, we present various technical details which are used in the main part of

the paper.

A.1 SO(8) Gamma matrices

We are working with 8 x 8 Gamma matrices Fﬁl i and their transposes T’ 114 p» Which satisfy
the Clifford algebra,

I J J L _o5lJ
FAAFAB+FAAFAB_25 (sAB (Al)

Explicitly, we use the basis in [37],

=191l I, =ioy ®ioy ®ioy
FZA:1®01®Z'02 F?4A~21®03®i02

I i=01®inel I =03®ioy®1

I, =ica®1®0; I =ia®1® 03 (A.2)

The matrices F%B, F%Q and similar are defined as unit-weight antisymmetrized products
of Gamma matrices with the appropriate indices contracted. For instance,

1
1J _ 1 J J I

A.2 Integrability conditions

For BPS equations of the form

Oe = —%’Yo (1 + fu) + g(u)r2)e

0. =~ () + glu)m)e

e = (F(u) + G(u)y2)e

where f, g, F, G are matrices acting on € that commute with ,, the integrability conditions

are
tz: 0=+ f2+¢e+[f gle
tu: 0= (f+[f,Fl—{9,G}e+ (¢ + g, F| +{f,G})ne
Z,u same as for ¢, u

~15 —



A.3 Scalar asymptotics

The asymptotic expansions of the ¢4 and ¢5 scalar fields, as given in (3.32), in the limits
u — 00 are

. ptq
=2 hq|———e™
4] |sinh.q| sinh(p £ q) °
__ 2[sinhq] ( : pPEq (sinh? p + sinh? ¢) + 2sinh psinh q) eTH 4+ 0(e™)
sinh?(p # ¢) \sinh(p £ q)
¢s = (pEq) — 2 ( pEa sinh? ¢ + sinh psinh q) e+ 0(e™")  (A4)
sinh(p & ¢) \sinh(p + q) |
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