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ABSTRACT

Gas hydrates have significant applications in the areas of natural gas storage, desalination and gas sepa-
ration. Knowledge of the thermodynamic conditions associated with hydrate formation is critical to their
synthesis. Presently, we use machine learning (ML) to train and evaluate the performance of three al-
gorithms on an experimental database (>1800 data points) to predict hydrate dissociation temperatures
as a function of the constituent hydrate precursors and inhibitors. Importantly, and in contrast to most
previous studies, we use thermodynamic variables such as the activity-based contribution due to elec-
trolytes, partial pressure of individual gases, and specific gravity of the overall mixture as input features
in the prediction algorithms. Using such features results in more physics-aware ML algorithms, which
can capture the individual contributions of gases and electrolytes in a more fundamental manner. Three
ML algorithms, Random Forest (RF), Extra Trees (ET), and Extreme Gradient Boosting (XGBoost) are em-
ployed and demonstrate excellent accuracy in their predictions of hydrate equilibrium conditions. The
overall coefficient of determination (R?) percentage is greater than 97% for all the ML models. XGBoost
outperforms RF and ET with the highest overall coefficient of determination (R?) and the lowest overall

Average Absolute relative deviation (AARD) of 99.56% and 0.086% respectively.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

World energy consumption is forecast to increase by nearly 50%
between 2018 and 2050 [1]. While the world continues its tran-
sition towards renewables, natural gas (methane) remains an at-
tractive bridge fuel due to its relatively low carbon emissions upon
combustion [2] when compared to other fossil fuels. Global natural
gas consumption is projected to increase by more than 40% from
2018 to 2050 [1].

One of the biggest and largely untapped reservoirs of natu-
ral gas is in the form of hydrates, which are extensive in marine
and permafrost environments. Gas hydrates are crystalline struc-
tures consisting of a cage of hydrogen-bonded water molecules,
which trap a hydrocarbon molecule [3]. Gas hydrates form at high-
pressure, low-temperature conditions. Hydrates represent a very
attractive way of storing and transporting natural gas; 1 m3 of
solid hydrate can store up to 164 m3 of methane (CH,). It is es-
timated that just 15% of existing natural gas hydrate reserves can
meet global energy demands for the next 200 years [4]. While
commercial exploitation of hydrates will undoubtedly increase car-
bon emissions, hydrates are also being explored for carbon cap-

* Corresponding author.
E-mail address: vb@austin.utexas.edu (V. Bahadur).

https://doi.org/10.1016/j.fluid.2020.112894
0378-3812/© 2020 Elsevier B.V. All rights reserved.

ture and sequestration (CCS), wherein atmospheric CO, is captured
via synthesis of CO, hydrates [5-7]. Additional applications for hy-
drates are flow assurance, seawater desalination and gas separation
[8,9].

Laboratory synthesis of gas hydrates is constrained by two fac-
tors: kinetics and thermodynamics. Kinetic constraints result in
slow growth/conversion rates and very long induction/formation
times. Thermodynamic constraints are about the thermodynami-
cally stable pressure-temperature region required for hydrate for-
mation. Hydrates-related applications are often governed by the
combined interplay between both these factors. As an illustration,
natural gas pipeline operators aim to prevent hydrate formation
to avoid plugging. The addition of inhibiting chemicals such as
electrolytes or alcohols shifts the thermodynamically stable region
of hydrate formation to higher pressures and lower temperatures,
which reduces the probability of hydrate formation. This study fo-
cusses on the thermodynamics aspect of hydrate formation. We
predict the thermodynamically stable region of hydrate formation
using machine learning techniques, which are grounded in funda-
mental thermodynamics, and which rely on an extensive experi-
mental dataset.

Various methods proposed to predict hydrate dissociation tem-
peratures (HDT) can be grouped into four categories. The first
two are K-value method (uses vapour-solid equilibrium constants
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and K-value charts) [10] and gas gravity chart method (uses
specific gravity of natural gases) [11] to predict hydrate for-
mation/dissociation conditions. These approaches involve simple
graphical techniques to estimate HDT and show significant devi-
ations from experiments, especially for specific gravities between
0.9 and 1 [12]. Mixtures having the same specific gravity but dif-
ferent percentage compositions of constituent gases exhibit differ-
ent equilibrium behaviour. This cannot be captured by the specific
gravity method; errors of up to 50% have been reported [13]. The
third method involves using empirical correlations containing pa-
rameters fitted to experimental data; these have been used mostly
to predict hydrate forming conditions for sweet natural gases [14-
18]. The fourth method involves statistical thermodynamics-based
modeling approaches. The first such model developed in 1959,
known as Van der Waals and Platteeuw (vdW-P) model was based
on modification of classical adsorption statistical mechanics using
Lennard-Jones potential function, to calculate dissociation pressure
for pure gas hydrates [19]. Parrish and Prausnitz [20] extended this
methodology for single and multicomponent gas hydrates by us-
ing this model along with the Kihara potential function to describe
gas-water interactions. Several studies have used the vdW-P model
coupled with various equations of state to calculate equilibrium
conditions for gas hydrates in the presence of electrolytes and al-
cohols [21-29]. Such thermodynamic models used to characterize
hydrate formation process require a very detailed knowledge of the
underlying complex phenomena leading to hydrate formation. It
is noted that there are significant challenges associated with such
thermodynamic models that try to capture the physics underlying
hydrate formation using macroscopic constructs, whereas hydrate
formation events occur at a molecular level [30].

With the advent of computing technology, a fifth method, based
on machine learning approaches, is rapidly gaining traction. Ma-
chine learning (ML) is increasingly being used to predict the be-
haviour of complex non-linear systems in fields ranging from fi-
nance, medicine, geology, sensors etc. [31-33]. ML algorithms,
which are a subset of artificial intelligence, can predict perfor-
mance and discern patterns characterizing a system by learning
from data. They can also be used to model complex systems and
automate analytical model building. Multiple machine learning al-
gorithms such as neural networks, decision trees, and support
vector machines have been recently studied to predict dissocia-
tion/formation conditions of hydrates. Such ML models are com-
putationally fast and easier to implement when compared to con-
ventional thermodynamic models.

The first study (in 1998) on this topic employed neural net-
works to predict hydrate dissociation conditions [34]. Four mod-
els employing different input features such as gas specific grav-
ity and composition of hydrocarbons and inhibitors were studied
using Artificial Neural Networks (ANN) [34]. Since then, multiple
neural network based-studies employing specific gravity of the gas
and either the pressure or temperature as the input variable have
been used to predict hydrate forming conditions [35,36]. It is noted
that the use of specific gravity as a variable results in loss of in-
formation on the gas composition. Gas composition has therefore
been used as the input feature in a majority of ML-based pre-
dictions [37-45]. Recently, Hamidreza and Mohammad employed
Extremely randomized trees and Least square support vector ma-
chines (LSSVM) on a database of more than 1840 experimental
data points and achieved good predictions with an R? accuracy
greater than 96% [40]. LSSVM and Gradient Boosted Regression
trees have been employed in other studies to predict hydrate dis-
sociation conditions with good accuracy [39,41,42].

Next, we highlight key limitations in existing studies that use
ML techniques to predict hydrate dissociation/formation. Firstly, we
note that a majority of prior studies employing ML to predict hy-
drate dissociation/formation conditions use total pressure and per-
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centage composition of individual gases and additives as features
to train the models. Exceptions include a few studies which have
used either specific gravity [46] or electrical conductivity [47] of
the aqueous solution as features. While models using percentage
composition of gases and total pressure as features report good
prediction capability, this approach makes it challenging to quan-
tify the contribution of individual gases (in a mixture) towards hy-
drate formation. As an illustration, the same total pressure can be
achieved for a 30% CO,: 70% CH4 mixture and a 70% CO,: 30% CH,4
mixture (composition in molar volumes). In such cases, the total
pressure feature in itself is of limited use in identifying the rela-
tive contribution of gases. The model would then primarily rely on
the percentage composition of individual gases to predict the HDT.
Secondly, in most existing studies, the contribution of inhibitors
such as salts is captured via their individual weight percentage or
molality term. From a chemistry standpoint, the inhibition action
of salts depends on more fundamental factors such as the ionic
strength of the solution, salt-water interactions etc. which cannot
be captured via a simple weight percentage term. Thirdly, since ML
models are data driven, the capability to predict HDT is highly con-
tingent on the availability of experimental data for a particular salt
or a combination of salts. As an illustration, the inhibiting influ-
ence of NaCl has been more widely studied than that of KCI, CaCl,
or MgCl,. This makes the database highly skewed towards predic-
tion of NaCl-based inhibition.

This study includes multiple advancements in the use of ML al-
gorithms for predictions of hydrate formation/dissociation condi-
tions. Firstly, we individualize the contribution of every gas by cal-
culating partial pressures and use them as features in ML mod-
els. While this may not necessarily lead to an improvement in
model accuracy when compared to using molar composition and
total pressure as features, it enables the algorithm to map hydrate
dissociation temperatures to the fundamental parameters directly
affecting the physics of the problem. This enables the algorithm
to be paired up with models such as SHAP [48,49] that can track
the relative contribution of every gas and salt towards hydrate dis-
sociation temperature. This can provide valuable insights for de-
signing processes in applications involving gas hydrates. Secondly,
we calculate the contribution of the activity of water due to the
presence of various electrolytes and use that as a feature in the
ML model. The inhibiting influence of electrolytes on hydrate dis-
sociation temperatures in thermodynamic models is captured via
the activity of water which is defined as the ratio of the vapour
pressure of a water sample and the vapour pressure of pure wa-
ter at the same temperature [50,51]. Using activity as a feature
allows us to capture the influence of both molality and the ionic
strength while taking into consideration various intermolecular in-
teractions. Another advantage of this approach stems from the fact
that the weight percentages of different salts are fused into a sin-
gle activity term. Lack or discontinuity in experimental data for any
particular salt would be compensated by the activity term of an-
other salt, thereby making the databank more efficient and contin-
uous. Furthermore, activity being a more fundamental parameter,
it could then be ascribed to reflect the presence of any salt or a
combination of salts depending on the weight percentage leading
to the same activity. In essence, this allows meaningful predictions
of HDT from the use of a salt or a combination of salts. Thirdly, we
use specific gravity as a feature to capture the influence of average
molecular weight on the HDT. Overall, we develop ML models us-
ing fundamental thermodynamic parameters of the constituent gases
or chemicals in the system. We use a low number of features, to
be able to backtrack individual contributions of gases or salts; this
would not be possible from the previously used approaches involv-
ing total pressures and weight percentages.

Presently, we evaluate the prediction performance of three dif-
ferent ensemble-based ML methods: Random Forest (RF) [52], Ex-
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Fig. 1. An illustrative decision tree associated with hydrate dissociation tempera-
ture predictions. For any data point, these would be determined by the partial pres-
sure of the individual gas components, specific gravity (SG) and the activity contri-
bution due to the electrolyte, based on the splitting rules defined by a decision tree.

tremely randomized trees (ET) [53], and Extreme Gradient Boosting
(XGBoost) [54]. We compare their relative performance to predict
HDT using activity, partial pressure and specific gravity as input
features. While prior studies have used gradient boosting (GB) al-
gorithms, this is the first reported use of Extreme Gradient Boost-
ing [54] (which is a computationally efficient variant of gradient
boosting algorithm) for hydrates-related predictions. It is noted
that due to its efficiency and ease of use, XGBoost (since its in-
ception in 2015) has been widely used in Kaggle competitions and
a variety of ML and data mining challenges.

2. Description of machine learning models used in this study

Ensemble-based techniques combine several base models to
produce one optimal prediction model by decreasing variance and
bias via bagging (bootstrap aggregating) and boosting. Amongst en-
semble models, decision tree-based methods have become widely
popular owing to their ease of implementation, versatility, and in-
tuitive interpretation.

2.1. Random Forest and Extra Trees

A typical decision tree stratifies or segments a predictor space
into several simple regions based on a set of splitting rules to op-
timize a specific objective function. The value of a prediction for a
particular observation would be the mean or mode of the trained
observations in the region/branch where it belongs (usually de-
noted as the terminal node or leaves of the tree) based on the
splitting rules defining that particular observation. Since the set of
splitting rules used to divide the predictor space can be displayed
graphically as a tree (Fig. 1), such methods are referred to as deci-
sion tree-based methods.

Random forest utilizes two powerful ML techniques-bagging
[55] and random feature selection [56] to provide a robust decision
tree-based ensemble model. The ideology underlying random for-
est is as follows: fitting a single decision tree on a data set would
cause the model to overfit the underlying trend, leading to high
variance, wherein the model yields excellent predictions on the
trained data set but performs poorly on unseen data. Bagging or
bootstrap aggregating is therefore conducted on a data set to re-
duce variance and produce a model that can provide generalized
predictions on any data set. In bagging, N different trees are fit-
ted over N bootstrapped samples of data, and the results are aver-
aged over all trees to obtain the final output. Random forest adds
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an extra layer of improvement over bagged regression trees by de-
correlating individual trees in the forest. This is carried out by con-
sidering only a random subset of features every time a split deci-
sion is executed in an internal node. Extremely randomized trees
are similar to random forest based methods, albeit with two key
differences, i) the entire dataset is used to grow a tree instead of
bootstrap sampling, ii) the internal cut point used to make a deci-
sion split is selected at random instead of searching for the most
optimal split.

2.2. XGBoost (eXtreme Gradient Boosting)

Boosting is a form of additive modeling which is based on
building a sequence of multiple weak learning models and com-
bining them into a single composite strong model. The underly-
ing ideology here is that the resultant collective model becomes a
stronger predictor as more weak learning models are sequentially
added to it. While the weak learning models can be built inde-
pendently as in the case of random forest or extra trees, boosting
relies on building these weak learners in a stage-wise fashion with
each learner chosen to improve the overall model performance by
optimizing a specific objective function.

In this study, we implement XGBoost algorithm [54] (operating
under the framework of Gradient boosting), which uses the first
and second derivative of the loss function to converge to global
optimality quicker, while also improving the efficiency of the op-
timal solution of the model. The objective function minimized by
XGBoost is as follows [54]:

0bj(0) = Y 1(7.y:) + Y (fi) (1)
i k

Qo) = y'T + 2wl @

where, [ is a differentiable convex loss function that measures the
difference between the prediction J; and target y;, and f is the kt
tree. The second term 2 helps to prevent overfitting by penalizing
the complexity of the model in terms of the number of leaves in
the tree T and vector of scores on leaves w. Here )’ is a regularized
parameter and y’ is the learning rate, whose values lies between
0 and 1.

Since a tree ensemble model includes functions as parameters,
it cannot be optimized using traditional optimization methods in
Euclidean space and is therefore trained in an additive manner. The
objective function to be minimized is then given by:

k

LO =S 10 9070) + fitx] + 20f) (3)

i=1

where 37? is the prediction of the i instance at the t iteration,
and k is the total number of predictions. Therefore, the loss func-
tion is represented as the sum of the loss functions for the predic-
tion till the t-1t" iteration and a tree structure that, when added at
the ¢ iteration, most improves the model as per Eq. (3). Accord-
ingly, the objective function can be optimized by using the second-
order Taylor's approximation of the loss function (instead of first-
order in general gradient boosting) which is given by [54]:

k
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where, g; = Bﬁf,wl(y,-,yft‘”) and h; = 82)7_([,1)1(y,~,37i“‘1)) represent

the first and second derivatives of each sample. The sum of loss
values determines the loss function in Eq. (4) for each data sam-
ple corresponding to every leaf node. Assuming that the loss func-
tion is the mean square error function for regression problems and
removing the constants, the objective function can be written for
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Table 1

Summary of the experimental database employed in the present study.
Variable Units Min Max Average
P MPa 0.13 72.26 6.92
T K 247.52 303.48 278.35
CO, mol% 0 100 20.1
CHy mol% 0 100 51.59
C,Hs mol% 0 100 9.39
C3Hg mol% 0 100 12.67
n-C4Hyo mol% 0 100 1.29
i-C4Hqo mol% 0 88.8 1.26
N, mol% 0 100 3.69
NacCl wt% 0 24.11 2.48
KCl wt% 0 20 0.69
CaCl, wt% 0 25.75 1.14
MgCl, wt% 0 15 0.41

regression tree-based problems as [54]:
! 1
t) ~ / 2
L(>_Z Zg,‘ Wj+j Zh,‘-l-}» wic | +yT (5)
j=1 iel; iel;

where, I; represents all the data samples in the leaf node. During
the process of building a tree, a particular node split will only be
carried out if there is an improvement in the performance of the
model as evaluated by this objective function.

3. Development of machine learning models
3.1. Experimental database

The predictive utility of any data-driven ML model is highly
dependent on the experimental dataset employed for training the
model. In order to predict the HDT of gas hydrates from pure gases
and mixture of gases in the presence of electrolytes, an exten-
sive dataset comprising of more than 1800 phase equilibrium data
points was collected from published literature. Table 1 summarizes
the key details of the gathered experimental dataset. The dataset
includes P-T data for varied combinations of seven gases and four
salts.

The data used in the present study was obtained from the fol-
lowing sources: Dholobhai et al. [57], Englezos and Ngan [58], Dho-
labhai and Bishnoi [59], Mei et al. [60], Kang et al. [61], Tatsuo
[62], Jager and Sloan [63], Kharrat and Dalmazzone [64], Atik et al.
[65], Mohammadi et al. [66], Haghighi et al. [67], De Roo et al. [68],
Maekawa et al. [69], Dholabhai et al. [70], Nakane et al. [71], Tohidi
et al. [72], Holder and Grigoriou [73], Paranjpe et al. [74], Adisas-
mito et al. [75], Adisasmito and Sloan [76], Nixdorf and Oellrich
[77], Ng and Robinson [78], Holder and Hand [79], Ghavipour et al.
[38], Jhaveri and Robinson [80], Wu et al. [81], Deaton and Frost
[82], Verma [83], Unruh and Katz [84], Ohgaki et al. [85], Fan and
Guo [86], Seo et al. [87] and Ng et al. [88].

3.2. Calculations of activity and partial pressures

In the present study, the contribution of electrolytes towards
the activity of water is calculated using the Pitzer-Debye Huckel
equation [89] and N-NRTL-NRF model [90] to capture the long and
short range interactions, respectively. Accordingly, the contribution
due to electrolytes can be evaluated via an activity term as:

Nel Nel
In QAyel = Z vim; In aw,el,‘/ Z vim; (6)
i i

where v is the stoichiometric number of ions in the it electrolyte
and m; is the molality of the i" electrolyte in the mixed electrolyte
solution.

Aweli = XwYw (7)
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where the activity coefficient of water y, is calculated using a
combination of short range (SR) and long range (LR) interaction
terms:

Inyy =InySk+ InyR (8)

The short range contribution can be calculated using N-NRTL-
NRF model as [90]:

SR 2 2 )‘el,wrel,wz
In Y =Xel )"el,wrel.w + T - )‘el.w - )"w,el (9)
w,e

1 Ny
Mg = ;Zvjmj (10)

i N

J

1000/M,,

_ 11
Xw = 1000/ My, + vy (an
X =1—xu (12)
U =Ug+ U (13)

XW.Bw.el
Myee=—7—"7"—— 14
el xWIBW,el + Xel ( )
X I,Bel w
| p—— L 15
elw xellgel,w + Xw ( )
IBW,eI = exp (_a)‘w.el) (16)
,Bel,w = €xp (_a)"el,w) (17)

In the above equations, x, & M, denote the mole fraction
and molecular weight of water, and m,; is the molality of the it"
electrolyte in the single electrolyte solution. A represents the op-
timized binary parameters for salt-water interactions (values for
which have been taken from [91]), ' denotes non-random factors
and B is the Boltzmann factor. Note that interactions between dis-
solved gas and electrolytes has not been considered while evaluat-
ing a,, ;. For the LR contribution, the Pitzer Debye Huckel equation
for the ionic species can be expressed as [89]:

1000\ 2 [ |zaz |12 — 21372
Iy = a, (=) (25 1
Y=\ [+ pll2 (18)
1
1= i(xaza2 +Xczc) (19)

where [ is the molar fraction ionic strength. The non-randomness
factor «, Debye—Hiickel constant Ay, and closest approach p are
equal to 0.125, 0.390947 and 14.90 respectively [90,92].

It is noted that we do not presently consider the influence of
alcohol/s or other organic solvents on hydrate formation. We no-
ticed that the activity calculated for alcohol/s using the commonly
employed Margules equation [93] does not lead to the same ex-
tent of suppression in hydrate formation conditions when com-
pared to electrolyte solutions with the same activity (calculated
using Pitzer-Debye Huckel equation and N-NRTL-NRF model). This
suggests that although the use of activity as a feature is an im-
provement over previous approaches, the models used to evaluate
activity are also crucial to accurate prediction of hydrate forming
conditions. To ensure consistency and obtain meaningful predic-
tions from the present study, we considered only electrolytes in
the analysis. It is noted that partial pressures of individual gases
were estimated using mole fractions and total pressure assuming
ideal gas behaviour.

Overall, the use of activity, specific gravity, and partial pressures
as features instead of weight percentages and mole fractions makes
the present approach more firmly grounded in fundamental chem-
ical thermodynamics, and increases the generality and applicability
of the predictive models.
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Table 2
Accuracy of predictions obtained by ML algorithms employed in the present study.

Random Forest Extra Trees XGBoost

Train Test Total Train Test Total Train Test  Total

R%% 97.84 9435 97.53 9845 94.08 98.01 99.85 98.06 99.56
AARD% 0.210 0363 0.233 0.184 0.383 0.214 0.064 0.212 0.086

3.2. Procedure for conducting ML analysis

The dataset was divided into training and test data using
train_test_split function from Scikit-learn library [94] which ran-
domly assigns 85% of the dataset for training the model and the
remaining 15% for evaluating the accuracy and performance of the
trained model. The performance of a ML model depends signifi-
cantly on its hyperparameters, which define the model’s complex-
ity and thereby its capacity to learn from any data. In tree-based
models, typical hyperparameters include number of trees to grow
in the forest, maximum depth of each tree, number of samples to
be considered for each split, minimum number of data points to
be allowed in a leaf node etc. For XGBoost algorithm, additional
hyperparameters come into play, such as the learning rate, min-
imum loss reduction required to make a split, subsample ratio of
the training instances etc. It is noted that tuning the hyperparame-
ters using the training dataset without resorting to cross-validation
can lead to overfitting where the model performs really well on
the training data set but rather poorly on the test data set.

Presently, we resort to exhaustive grid search cross-validation
(CV) with a two-step approach to carry out optimization. In the
first step, a hyperparameter grid consisting of a wide range of pa-
rameter values was created, and combinations were sampled at
random to narrow down a range of values, by evaluating their
results using 5-fold cross-validation. Following this, an extensive
grid search was conducted on the concentrated parameter space
by evaluating all possible combinations in the hyperparameter grid
to arrive at the combination yielding the best results. It is noted
that the hyperparameters were evaluated to avoid overfitting the
data set so as to provide the best fit for a broad spectrum of data
points. To carry out grid search cross validation and implement the
ML algorithms in Python, an open-source ML library Scikit-learn
was used [94].

4. Results and discussions
4.1. Validity of the model

After estimating optimum hyperparameters, ML algorithms
were trained using thermodynamic variables (partial pressure, spe-
cific gravity and activity) as features. Subsequently, their prediction
performance was evaluated on the test data set. In order to eval-
uate the reliability and accuracy of the developed ensemble mod-
els, two key statistical metrics were used, namely coefficient of de-
termination percent (R?%) and average absolute relative deviation
percent (AARD%), as defined below:

n
y (Tpred - Texp)2
R*% =100 1- —= - (20)
(Torea — auerage(Texp))
i=1
" | Toreq — T
AARD% =100 M /mn (1)
iz exp

Table 2 summarizes the performance metrics for Random for-
est, Extra Trees, and XGBoost models with the previously described
experimental dataset of more than 1800 data points. It is evident
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Fig. 2. Comparison of experimental hydrate dissociation temperatures versus pre-
dictions obtained from three ML models, (a) Random Forest, (b) Extra Trees, and (c)
XGBoost.
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Fig. 3. Distribution of the absolute relative error in predicting hydrate dissociation temperature (logarithmic y-axis) for (a) training and (b) test data sets obtained using

XGBoost, Random Forest and Extra Trees algorithms.

that the XGBoost algorithm outperforms Random Forest and Ex-
tra Trees algorithms with R2 accuracies of 99.85% (training data),
98.06% (test data) and 99.56% (overall). Random Forest and Extra
Trees models exhibited almost similar prediction accuracies. The
XGBoost algorithm results in a noticeably improved prediction ac-
curacy for the test data (an improvement of about 4%) when com-
pared to the other two algorithms. These results are in line with
previous observations wherein boosting methods have exhibited
improvements in predictions when compared to traditional mod-
els [95]. Importantly, all three ML models provide excellent predic-
tion accuracies while using fundamental thermodynamic variables
of the constituent gases and salts (activity, partial pressures, and
specific gravity). This shows that setting up ML models in terms of
fundamental thermodynamic parameters, as opposed to specifying
compositions does not compromise the accuracy of the predictions.

Fig. 2 compares the predicted HDT for training and test data
sets (combined) versus experimental data, the dashed line being
the identity line, y = x. The distance of a point from the iden-
tity line is a measure of the prediction accuracy of the particu-
lar model. A distribution of points closely clustered to the iden-
tity line is a visual indicator of good predictions. It is clearly seen

from Fig. 2c that XGBoost results in better predictions, as evi-
dent by a majority of data points very closely clustered around
the identity line. The relative error is highest for two data points
having the highest deviation from the identity line. These corre-
spond to Texp of 247.52 K [for Pyethane = 2.56 MPa (97.07 mol%)
and Ppropane = 0.077 MPa (2.93 mol%)] and Texp of 296.07 K [for
Pcarbon dioxide = 1-91 MPa (8.09 mol%), Pethane = 21.07 MPa (89.4
mol%) and Pegpane = 0.587 MPa (2.49 mol%)]. Deviations for these
points can be very clearly noticed in the plots for Random For-
est (Fig. 2a) and Extra Trees (Fig. 2b) methods. The deviation for
the point Texp = 247.52 K belonging to training data set can be
attributed to a lack of experimental data around lower tempera-
ture ranges, which results in poorer predictions compared to other
points. The deviation for the point Texp = 296.07 K belonging to
test data set at very high partial pressures of CH; can be ex-
plained either by a lack of experimental data points at higher pres-
sures or possible local overfitting due to random allocation of test
train data. It is noted that XGBoost results in better predictions at
these two most deviant points as well. The relative deviation re-
sulting from the use of XGBoost (1.12% and —2.23%, respectively)
is much lower than the relative deviations resulting from the pre-
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Fig. 4. Pressure-Temperature data associated with formation of methane hydrates in the presence of (a) NaCl and (b) CaCl, (varying weight percentages). Solid symbols
represent the predictions from XGBoost model, while non-solid symbols represent experimental data [64,68].

diction of the Random Forest (5.98% and —4.40%, respectively) and
Extra Trees (5.17% and —4.79%, respectively) methods. This high-
lights the robustness and superior predictive capabilities of the XG-
Boost model. It is noted that two data points corresponding to HDT
of 242.09 K and 252.8 K, which belong to the lower end of the
temperature spectrum, yielded absolute relative errors greater than
10% and have been considered as outliers in the present study.
Further insights on the relative performance of the models is
obtained by analysing the distribution of the absolute relative er-
ror between the experimental and predicted HDTs for training and
test data sets, as shown in Fig. 3 and the distribution of relative
error, as shown in the inset of Fig. 2. The concentration of a large
number of data points in low absolute relative error regions for
training as well as test data sets is indicative of the superior pre-
diction performance of the XGBoost algorithm. A majority of the
data points exhibited relative errors less than 0.5% for all the three
methods. XGBoost has the highest overall number of data points
(1802) with absolute relative errors lower than 0.5%, which implies

that it can predict about 98.3% of the entire (training + test) data
set with greater than 99.5% relative accuracy. This is followed by
Random Forest (1608 data points) and Extra Trees methods (1656
data points) corresponding to 87.67% and 90.29% of the data points
with absolute relative errors less than 0.5%. As can be inferred
from the R2 plot (Fig. 2), the highest relative errors for the two
temperatures (247.52 and 296.07 K belonging to the training and
test data set respectively) correspond to the two points towards
the right end of the histogram.

Next, we specifically illustrate the utility of the XGBoost model
in predicting the inhibition influence of salts on hydrate forma-
tion. Figs. 4a-b show the experimentally obtained [64,68] pressure-
temperature curves (non-solid symbols) associated with the for-
mation of methane hydrates in the presence of NaCl and CaCl,
respectively. It is seen that the addition of salts pushes the hy-
drate formation region to the left (higher pressures and/or lower
temperatures needed for hydrate formation). Experimentally pro-
vided weight concentrations were used to estimate the activity
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Table 3

Comparison between predictions (3 ML models) and experimental data [47] for hydrate formation under varying salt concentrations.
Gas composition (mol%)  Salt composition (wt%)  Experiments Prediction Relative error (%)
CO, CHy NaCl KCl  CaCl, P (MPa) T (K) RF ET XGBoost ~ RF ET XGBoost
153 847 0 0 0 3.41 27756 27777 27751  277.54 0.076 -0.017  -0.007
16.7 833 0 0 0 5.14 281.50 280.83  280.72  281.49 -0239 -0.279 -0.004
164 836 0 0 0 2.36 27410  276.02 27452  274.03 0.701 0.152 —0.025
179  82.1 0 0 0 7.53 284.84  284.63 28393  284.72 -0.072 -0.321 -0.042
17.7 823 5.02 0 0 6.98 28199 28135 28131  282.06 -0.227 -0.240 0.025
172 828 5.02 0 0 5.08 279.23  278.60 278.63  279.08 -0.226  -0.215  -0.055
16.1 839 5.02 0 0 3.26 27498  273.01 27415 27350 -0.715 -0.302  -0.540
152 848 5.02 0 0 23 27159 27194 27241 27113 0.127 0.303 -0.171
174  82.6 9.99 0 0 6.56 27898 27791 27855  279.05 -0384 -0.153  0.023
16.1 839 9.99 0 0 3.1 272.07 27119  272.07 27195 -0.323  -0.001 —-0.044
194 806 9.99 0 0 4.66 276.14 27513 27535  276.17 -0.366 -0.285  0.009
19.3 807 9.99 0 0 2.03 26846  268.83  269.45  268.44 0.139 0.370 —-0.007
18.9 81.1 15 0 0 7.31 27717 275.54 275.71 277.24 —0.587 -0.527 0.025
194 806 15 0 0 2.88 269.12  268.84 26934  268.90 -0.103  0.082 —0.082
182 818 15 0 0 7.37 276.79  276.06  276.55  276.92 -0.266 —0.086  0.046
19.8 802 15 0 0 44 27314 27218 27276 273.23 -0.353  -0.138  0.034
173 827 15 0 0 1.86 264.78  266.22  266.27 264.71 0.544 0.564 —0.027
193 807 20 0 0 5.42 27037 27199 27255  269.64 0.598 0.804 -0.271
19.1 809 20 0 0 2.12 26195 264.03 263.21 262.16 0.796 0.481 0.079
19.8 802 20 0 0 3.86 26748  267.72  267.51  267.32 0.089 0.010 —0.062
19.9 80.1 2001 0 0 9.15 27431 27456 27442  274.29 0.090 0.038 —-0.007
19.7 803 0 5 0 2.04 27138 27214  271.68  271.49 0.278 0.112 0.042
19.8 802 0 5 0 4.46 278.83  278.04 27832  278.60 -0.282  -0.185  -0.082
19.8 802 0 5 0 2.96 27497 27413 27451 27464 -0.306 -0.166  —0.122
19.8 802 0 5 0 6.43 281.98 28139 28146  281.97 -0.211 -0.183  —0.004
19.6  80.4 0 10 0 3.94 275.90 27433 27493  275.65 -0.569 -0.352  -0.091
19.7 803 0 10 0 1.83 269.16  269.48  269.86  269.25 0.118 0.259 0.034
19.8 802 0 10 0 2.59 27216 27129 27198 27217 -0319 -0.065 0.005
19.8 802 0 10 0 5.66 27896  277.52 27856  278.92 -0.518 -0.142 -0.016
184 81.6 0 15 0 1.89 266.96  267.27 26828  266.81 0.117 0.496 —-0.055
19 81 0 15 0 2.62 270.07 269.34 27023  270.17 -0.269  0.060 0.038
19.5 805 0 15 0 3.45 27269 27122 27199  272.89 -0.539 -0.258 0.073
19.7 803 0 15 0 5.63 277.07 27482 276.16  277.04 -0.812 -0.329 -0.012
187 813 0 0 9.91 1.96 268,59  269.95 270.02  268.77 0.506 0.532 0.068
19.7 803 0 0 9.91 4.32 276.04 27595 27589 275.84 —0.031 -0.054 -0.074
194 806 0 0 9.91 2.8 27200 27198 27199 271.93 —-0.008 -0.004 -0.027
19.7 803 0 0 9.91 6.08 279.13 27936 27891  279.67 0.082 —-0.081  0.195
19 81 0 0 15 4.61 273.11 27350 27338  273.25 0.142 0.100 0.050
19.7 803 0 0 15 3 269.13 26940 27039  269.18 0.101 0.467 0.019
19.6  80.4 0 0 15 1.88 266.65 267.79 26845  266.44 0.428 0.674 —0.080
19.7 803 0 0 15 7.09 276.88  276.77 27817  277.88 -0.039 0.466 0.362
19.8 802 0 0 20 2.89 263.78  266.05 267.26  264.06 0.859 1.317 0.106
199 80.1 0 0 20 7.24 27134 27292 27227 27157 0.583 0.343 0.084
19.8 802 0 0 20 43 267.60 26938  269.69  267.55 0.665 0.783 —0.019
199 80.1 0 0 20 9.46 273.69 27496 27412  273.80 0.464 0.157 0.041
194 806 5.01 0 10 5.04 273.67 273.88 274.08  273.66 0.075 0.151 —0.004
19.8 802 5.01 0 10 3.12 269.35  268.81 269.82  269.41 -0.199  0.175 0.023
19.7 803 5.01 0 10 2.06 265.54 26734  269.10  266.40 0.677 1.341 0.324
19.9 80.1 5.01 0 10 7.14 276.71 27535  276.75  276.30 -0.491 0.013 —0.147
19.8 802 0 10 5 1.65 265.07 266.17 26691  265.14 0.413 0.693 0.028
199 80.1 0 10 5 4.6 27476 27373 27422  274.66 -0.375 -0.197 -0.037
19.8 802 0 10 5 2.46 26935  268.51  269.68  269.01 -0314  0.123 -0.125
199  80.1 0 10 5 10.61 281.57 27949 28112 281.64 -0.738  -0.159  0.025
19.2  80.8 5 10 0 2.59 269.28  269.04 269.62  269.35 —-0.088  0.128 0.025
19.8 802 5 10 0 10.41 281.27 27834 27926  281.21 -1.043 -0.716  -0.022
19.7 803 5 10 0 4.99 27521 27446 27493 27540 -0.273  -0.103  0.068
203 797 5 10 0 1.66 265.09 266.69 267.05  265.85 0.602 0.740 0.288
19.5 805 1017 0 5.08 6.07 275.13 27496 27530  275.01 -0.061  0.062 —-0.045
201 799 1017 0 5.08 2.11 266.52  267.02 267.62  266.09 0.187 0.413 —-0.160
20 80 1017 0 5.08 3.1 269.18  269.06  269.52  269.07 -0.043 0.124 —0.042
194  80.6 1017 0 5.08 9.71 27874 27723 27884 27834 -0.542  0.037 -0.142
486 514 10 0 10 3.53 268.08 269.15 268.52  268.36 0.398 0.165 0.105
49.7 503 10 0 10 2.15 264.14  268.70  269.48  266.13 1.725 2.020 0.753
494 506 10 0 10 5.16 270.80 27138  271.15 271.11 0214 0.128 0.114
49.7 503 10 0 10 3.52 26821  269.39  269.58  268.97 0.439 0.511 0.283
46.5 535 10 5 0 4.59 27548 27358 27522 27541 -0.688 -0.093 -0.026
49.5 505 10 5 0 2.78 27157 27037 27155 27144 -0.440 -0.008  -0.047
49.8 502 10 5 0 1.82 268.04 268.07 26855  267.69 0.012 0.190 -0.131
50 50 10 5 0 1.38 265.76  266.84  266.51  265.97 0.406 0.283 0.079




PV. Acharya and V. Bahadur

Table 4

Fluid Phase Equilibria 530 (2021) 112894

Comparison between predictions (3 ML models) and experimental data [65] for hydrate formation from binary

and ternary gas mixtures.

Gas composition Experiments Prediction Relative error (%)
(mol%) P(MPa) T(K) RF ET XGBoost  RF ET XGBoost
CHy: 89.26 Nj: 4.94 278.7 279.20 278.60 278.94 0.180 -0.035 0.086
10.74 6.94 282.03 282.10 281.23 281.97 0.024 -0.284 -0.023
10.40 285.64 285.85 285.03 285.78 0.072 -0.215 0.047
14.98 288.68 288.53 288.38 288.49 -0.053 -0.103 —0.068
20.02 290.97 291.01 290.61 290.87 0.015 -0.124 -0.035
24.43 292.44 292.08 292.13 292.46 -0.123 —0.105 0.005
CHy4: 90.47 2.25 278.21 277.83 2717.75 278.05 -0.138 —0.166 —0.059
CyHg: 9.53 2.63 279.6 279.00 278.94 279.82 -0.213 -0.235 0.079
4.19 283.69 283.07 282.72 283.44 -0.219 —0.342 —0.087
7.21 288.12 287.39 287.28 288.05 -0.255 —0.290 -0.024
9.99 290.44 290.11 290.31 290.41 -0.113 —0.046 -0.010
14.85 292.97 292.41 292.34 292.81 -0.191 -0.214 -0.054
19.89 294.63 294.26 294.56 294.55 -0.127 —0.024 -0.027
23.20 295.52 294.65 294.51 295.54 -0.294 -0.343 0.008
CHy4: 97.07 2.64 247.52 262.33 260.32 250.28 5.985 5.171 1.115
C3Hg: 2.93 9.20 256.87  265.76 25858  257.33 3.461 0.664 0.180
14.97 259.33 265.20 260.14 258.59 2.264 0314 -0.284
19.81 260.59 264.96 260.59 260.07 1.675 0.000 -0.201
24.36 261.53 268.53 261.53 261.96 2.675 0.000 0.163
CHy4: 94.97 Ny: 3.45 276.85 278.36 277.06 277.36 0.546 0.077 0.183
0.03 4.87 279.95 280.24 279.85 279.87 0.103 -0.035 -0.028
7.04 283.49 283.81 283.29 283.53 0.112 -0.072 0.012
10.94 287.41 288.25 287.18 287.49 0.293 —0.081 0.027
16.83 290.76 290.94 290.48 290.71 0.061 —0.098 -0.018
23.98 293.41 292.85 293.41 293.24 -0.191 0.000 -0.057
C,Hg: 85.15 0.83 276.66 27699 27632  276.88 0.117 -0.124  0.078
C3Hg: 14.85 1.09 278.92 278.70 278.90 27891 -0.078 —0.008 —0.004
1.51 281.49 281.36 28143 281.51 —0.045 —0.020 0.006
1.94 283.32 282.75 282.87 283.25 —0.203 —0.158 —0.026
1.12 279.11 278.87 279.03 279.01 —0.086 -0.029 -0.037
1.50 281.38 281.32 281.28 281.50 -0.020 -0.037 0.042
CH4: 90.93 2.58 277.36 277.28 27715 277.22 —0.028 -0.075 —0.050
CyHg: 4.89 3.80 280.91 280.36 279.72 280.75 -0.195 —0.425 -0.057
6.10 2849 284.57 284.63 284.92 -0.118 -0.097 0.006
8.36 287.45 287.14 287.22 287.34 -0.109 —0.082 —0.040
13.81 290.93  290.59 290.62  290.90 -0.118  -0.108  —0.009
18.82 292.82 292.77 292.56 292.78 -0.018 —0.089 -0.014
23.83 294.23 293.72 294.23 294.19 -0.175 0.000 -0.014
CHy: 84.52 1.20 277.1 277.21 277.09 276.97 0.041 —0.005 —0.046
CyHg: 12.55 1.98 281.56 279.89 280.75 281.67 —0.593 -0.289 0.039
CsHg: 2.93 4.00 287.42 28591 287.02 287.58 -0.525 -0.138 0.056
6.92 291.52 290.03 291.52 291.57 -0.511 0.000 0.017
11.21 294.32 292.74 294.32 294.09 —0.538 0.000 -0.077
17.03 296.14 294.68 296.14 296.51 —0.492 0.000 0.125
24.47 298.14 295.99 298.14 298.00 -0.720 0.000 —0.047
CHy4: 95.02 2.16 279.1 27534 27636  275.67 -1.348 -0.981 -1.228
CyHg: 3.98 3.99 284.3 282.22 28291 284.01 -0.732 —0.489 -0.103
CsHg: 1 6.96 288.56 286.96 288.23 288.50 —0.553 -0.115 -0.021
10.94 291.6 290.08 291.54 291.54 -0.521 —0.021 —0.021
17.36 294.04 292.34 294.04 294.15 —0.580 0.000 0.036
24.15 295.76 293.86 295.76 295.80 -0.641 0.000 0.013
CO,: 8.09 CHy: 1.69 279.19 277.49 278.44 278.97 —0.608 —0.269 -0.078
89.4 C3Hg: 2.49 3.47 285.09 282.34 283.85 285.02 —0.966 -0.435 -0.023
N,: 0.02 6.91 290.16 287.30 289.48 290.21 -0.985 -0.234 0.018
10.47 292.56 289.26 292.23 292.49 -1.129 -0.113 -0.025
16.95 294.62  289.66 29456  294.69 -1.684 -0.022 0.024
23.57 296.07 283.04 281.87 289.47 —4.400 —4.796 -2.230
CO,: 5.25 CHy: 2.96 279.01 278.55 278.26 278.95 -0.164 —0.268 -0.021
89.6 C3Hg: 5.13 5.00 283.54 282.80 282.83 283.35 -0.261 —0.252 —0.068
N;: 0.02 7.74 287.08 286.91 286.98 286.99 —0.060 -0.036 -0.033
11.88 290.04 289.83 289.86 290.04 -0.073 -0.061 —0.001
17.52 292.28 292.37 290.82 293.02 0.030 -0.501 0.253
24.33 294.21 293.86 294.21 294.37 -0.120 0.000 0.055

feature used in the ML models. From a chemical thermodynam-
ics perspective, increased salt concentrations result in a reduction
in activity, which will push the P-T curve to the left. Figs. 4a-b
show the predictions of the XGBoost model; an excellent match
is seen in the majority of the range of temperatures and pres-
sures studied. There is a notable deviation for data points in

lower ranges of temperatures (259.9-264 K) at 25.75 wt% CaCl,
which can be attributed to a lack of experimental data points
used for training the ML models at lower temperature ranges.
Overall, the model can effectively capture the inhibition influence
of salts containing monovalent as well as divalent cations in the
solution.
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Finally, we lay out the predicted HDTs (from Random Forest, Ex-
tra Trees and XGBoost algorithms) and the relative errors against
experimental data reported in two detailed studies. The first study
was by Dholabhai and Bishnoi [59], who studied hydrate forma-
tion in a mixture of CO, and CH,4 of varying compositions in the
presence of various salts in water at varying weight percentages as
outlined in Table 3. It is evident that while all the three ML mod-
els capture the hydrate forming conditions reasonably well (low
error), the relative error exhibited by XGBoost is less than that of
Random Forest (RF) and Extra Trees (ET) in most cases. The overall
relative error predicted using XGBoost is predominantly less than
0.1% for most of the data points in Table 3. While the relative error
of XGBoost is lesser than Random Forest and Extra Trees in a vast
majority of the dataset, there are very few exceptions (CO,/CHy
at 16.1/83.9 mol% with 5.02 wt% NaCl; CO,/CH,4 at 19.7/80.3 mol%
with 9.91 wt% CaCl,) where ET or RF exhibit slightly better per-
formance. The highest relative errors occur for a gas composition
consisting of CO,/CH,4 at 49.7/50.3 mol% with NaCl and CaCl, at 10
wt% each.

The second study against which the ML based predictions are
benchmarked is by Nixdorf and Oellrich [77] who studied hydrate
dissociation conditions for various binary and ternary gas mixtures
as outlined in Table 4. The highest relative errors are observed for
data points containing CH4/C3Hg at 97.07/2.93 mol% respectively.
One of the primary reasons underlying the poor prediction perfor-
mance is the lack of data points at lower temperatures (247-261 K)
over which these data points have been evaluated. Furthermore,
the relative error increases slightly for predictions by Random For-
est model when a third gas component is introduced.

5. Conclusions

In summary, a set of thermodynamic features such as partial
pressures, specific gravity of hydrate precursor mixtures and the
activity contribution due to salts were used in three ML-based
models to predict HDTs. Using such physics-based features in ML
frameworks enables the models to track individual contributions of
gases towards hydrate formation. Importantly, it extends the utility
of the model to predict the inhibition effect for any other salt via
calculation of an activity term. An extensive databank comprising
of more than 1800 experimental data points was employed to train
and evaluate the prediction accuracies of the ML models. While the
use of Random Forest (RF) and Extra Trees (ET) has been reported
previously, we also use extreme gradient boosting (XGBoost) to
predict hydrate equilibria and report a considerable improvement
in prediction accuracies compared to RF and ET. The overall co-
efficient of determination (R?) percentage is greater than 97% and
the overall average absolute relative deviation (AARD) is lower than
0.25% respectively for all three models. XGBoost exhibits the high-
est R? accuracy and the lowest AARD for training and test data,
which highlights its superior capabilities to predict hydrate equi-
librium conditions.

Finally, it is important to note that the performance of ML mod-
els used in the present study is determined by the experimental
dataset employed for training the algorithms. Non-uniformities or
gaps in the distribution of experimental data over a certain range
of values, or thermodynamically inconsistent data affect the qual-
ity of predictions as is the case for extreme temperature and pres-
sure in the case of hydrates. In the present work we have used
an exhaustive data bank (>1800 data points) so that an error or
discrepancy in reported experimental data would not significantly
bias the model. Future efforts should involve application of a con-
sistent screening criteria to assess the thermodynamic consistency
of the experimental data employed [89] to train such algorithms to
further improve the performance and prediction accuracies of the
developed ML models.
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