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a b s t r a c t 

Gas hydrates have significant applications in the areas of natural gas storage, desalination and gas sepa- 

ration. Knowledge of the thermodynamic conditions associated with hydrate formation is critical to their 

synthesis. Presently, we use machine learning (ML) to train and evaluate the performance of three al- 

gorithms on an experimental database ( > 1800 data points) to predict hydrate dissociation temperatures 

as a function of the constituent hydrate precursors and inhibitors. Importantly, and in contrast to most 

previous studies, we use thermodynamic variables such as the activity-based contribution due to elec- 

trolytes, partial pressure of individual gases, and specific gravity of the overall mixture as input features 

in the prediction algorithms. Using such features results in more physics-aware ML algorithms, which 

can capture the individual contributions of gases and electrolytes in a more fundamental manner. Three 

ML algorithms, Random Forest (RF), Extra Trees (ET), and Extreme Gradient Boosting (XGBoost) are em- 

ployed and demonstrate excellent accuracy in their predictions of hydrate equilibrium conditions. The 

overall coefficient of determination (R 2 ) percentage is greater than 97% for all the ML models. XGBoost 

outperforms RF and ET with the highest overall coefficient of determination (R 2 ) and the lowest overall 

Average Absolute relative deviation (AARD) of 99.56% and 0.086% respectively. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

World energy consumption is forecast to increase by nearly 50% 

etween 2018 and 2050 [1] . While the world continues its tran- 

ition towards renewables, natural gas (methane) remains an at- 

ractive bridge fuel due to its relatively low carbon emissions upon 

ombustion [2] when compared to other fossil fuels. Global natural 

as consumption is projected to increase by more than 40% from 

018 to 2050 [1] . 

One of the biggest and largely untapped reservoirs of natu- 

al gas is in the form of hydrates, which are extensive in marine 

nd permafrost environments. Gas hydrates are crystalline struc- 

ures consisting of a cage of hydrogen-bonded water molecules, 

hich trap a hydrocarbon molecule [3] . Gas hydrates form at high- 

ressure, low-temperature conditions. Hydrates represent a very 

ttractive way of storing and transporting natural gas; 1 m 

3 of 

olid hydrate can store up to 164 m 

3 of methane (CH 4 ). It is es-

imated that just 15% of existing natural gas hydrate reserves can 

eet global energy demands for the next 200 years [4] . While 

ommercial exploitation of hydrates will undoubtedly increase car- 

on emissions, hydrates are also being explored for carbon cap- 
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ure and sequestration (CCS), wherein atmospheric CO 2 is captured 

ia synthesis of CO 2 hydrates [5–7] . Additional applications for hy- 

rates are flow assurance, seawater desalination and gas separation 

 8 , 9 ]. 

Laboratory synthesis of gas hydrates is constrained by two fac- 

ors: kinetics and thermodynamics. Kinetic constraints result in 

low growth/conversion rates and very long induction/formation 

imes. Thermodynamic constraints are about the thermodynami- 

ally stable pressure-temperature region required for hydrate for- 

ation. Hydrates-related applications are often governed by the 

ombined interplay between both these factors. As an illustration, 

atural gas pipeline operators aim to prevent hydrate formation 

o avoid plugging. The addition of inhibiting chemicals such as 

lectrolytes or alcohols shifts the thermodynamically stable region 

f hydrate formation to higher pressures and lower temperatures, 

hich reduces the probability of hydrate formation. This study fo- 

usses on the thermodynamics aspect of hydrate formation. We 

redict the thermodynamically stable region of hydrate formation 

sing machine learning techniques, which are grounded in funda- 

ental thermodynamics, and which rely on an extensive experi- 

ental dataset. 

Various methods proposed to predict hydrate dissociation tem- 

eratures (HDT) can be grouped into four categories. The first 

wo are K-value method (uses vapour-solid equilibrium constants 

https://doi.org/10.1016/j.fluid.2020.112894
http://www.ScienceDirect.com
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nd K-value charts) [10] and gas gravity chart method (uses 

pecific gravity of natural gases) [11] to predict hydrate for- 

ation/dissociation conditions. These approaches involve simple 

raphical techniques to estimate HDT and show significant devi- 

tions from experiments, especially for specific gravities between 

.9 and 1 [12] . Mixtures having the same specific gravity but dif- 

erent percentage compositions of constituent gases exhibit differ- 

nt equilibrium behaviour. This cannot be captured by the specific 

ravity method; errors of up to 50% have been reported [13] . The 

hird method involves using empirical correlations containing pa- 

ameters fitted to experimental data; these have been used mostly 

o predict hydrate forming conditions for sweet natural gases [14–

8] . The fourth method involves statistical thermodynamics-based 

odeling approaches. The first such model developed in 1959, 

nown as Van der Waals and Platteeuw (vdW-P) model was based 

n modification of classical adsorption statistical mechanics using 

ennard-Jones potential function, to calculate dissociation pressure 

or pure gas hydrates [19] . Parrish and Prausnitz [20] extended this 

ethodology for single and multicomponent gas hydrates by us- 

ng this model along with the Kihara potential function to describe 

as-water interactions. Several studies have used the vdW-P model 

oupled with various equations of state to calculate equilibrium 

onditions for gas hydrates in the presence of electrolytes and al- 

ohols [21–29] . Such thermodynamic models used to characterize 

ydrate formation process require a very detailed knowledge of the 

nderlying complex phenomena leading to hydrate formation. It 

s noted that there are significant challenges associated with such 

hermodynamic models that try to capture the physics underlying 

ydrate formation using macroscopic constructs, whereas hydrate 

ormation events occur at a molecular level [30] . 

With the advent of computing technology, a fifth method, based 

n machine learning approaches, is rapidly gaining traction. Ma- 

hine learning (ML) is increasingly being used to predict the be- 

aviour of complex non-linear systems in fields ranging from fi- 

ance, medicine, geology, sensors etc. [31–33] . ML algorithms, 

hich are a subset of artificial intelligence, can predict perfor- 

ance and discern patterns characterizing a system by learning 

rom data. They can also be used to model complex systems and 

utomate analytical model building. Multiple machine learning al- 

orithms such as neural networks, decision trees, and support 

ector machines have been recently studied to predict dissocia- 

ion/formation conditions of hydrates. Such ML models are com- 

utationally fast and easier to implement when compared to con- 

entional thermodynamic models. 

The first study (in 1998) on this topic employed neural net- 

orks to predict hydrate dissociation conditions [34] . Four mod- 

ls employing different input features such as gas specific grav- 

ty and composition of hydrocarbons and inhibitors were studied 

sing Artificial Neural Networks (ANN) [34] . Since then, multiple 

eural network based-studies employing specific gravity of the gas 

nd either the pressure or temperature as the input variable have 

een used to predict hydrate forming conditions [ 35 , 36 ]. It is noted

hat the use of specific gravity as a variable results in loss of in-

ormation on the gas composition. Gas composition has therefore 

een used as the input feature in a majority of ML-based pre- 

ictions [37–45] . Recently, Hamidreza and Mohammad employed 

xtremely randomized trees and Least square support vector ma- 

hines (LSSVM) on a database of more than 1840 experimental 

ata points and achieved good predictions with an R 2 accuracy 

reater than 96% [40] . LSSVM and Gradient Boosted Regression 

rees have been employed in other studies to predict hydrate dis- 

ociation conditions with good accuracy [ 39 , 41 , 42 ]. 

Next, we highlight key limitations in existing studies that use 

L techniques to predict hydrate dissociation/formation. Firstly, we 

ote that a majority of prior studies employing ML to predict hy- 

rate dissociation/formation conditions use total pressure and per- 
2 
entage composition of individual gases and additives as features 

o train the models. Exceptions include a few studies which have 

sed either specific gravity [46] or electrical conductivity [47] of 

he aqueous solution as features. While models using percentage 

omposition of gases and total pressure as features report good 

rediction capability, this approach makes it challenging to quan- 

ify the contribution of individual gases (in a mixture) towards hy- 

rate formation. As an illustration, the same total pressure can be 

chieved for a 30% CO 2 : 70% CH 4 mixture and a 70% CO 2 : 30% CH 4 

ixture (composition in molar volumes). In such cases, the total 

ressure feature in itself is of limited use in identifying the rela- 

ive contribution of gases. The model would then primarily rely on 

he percentage composition of individual gases to predict the HDT. 

econdly, in most existing studies, the contribution of inhibitors 

uch as salts is captured via their individual weight percentage or 

olality term. From a chemistry standpoint, the inhibition action 

f salts depends on more fundamental factors such as the ionic 

trength of the solution, salt-water interactions etc. which cannot 

e captured via a simple weight percentage term. Thirdly, since ML 

odels are data driven, the capability to predict HDT is highly con- 

ingent on the availability of experimental data for a particular salt 

r a combination of salts. As an illustration, the inhibiting influ- 

nce of NaCl has been more widely studied than that of KCl, CaCl 2 
r MgCl 2 . This makes the database highly skewed towards predic- 

ion of NaCl-based inhibition. 

This study includes multiple advancements in the use of ML al- 

orithms for predictions of hydrate formation/dissociation condi- 

ions. Firstly, we individualize the contribution of every gas by cal- 

ulating partial pressures and use them as features in ML mod- 

ls. While this may not necessarily lead to an improvement in 

odel accuracy when compared to using molar composition and 

otal pressure as features, it enables the algorithm to map hydrate 

issociation temperatures to the fundamental parameters directly 

ffecting the physics of the problem. This enables the algorithm 

o be paired up with models such as SHAP [ 4 8 , 4 9 ] that can track

he relative contribution of every gas and salt towards hydrate dis- 

ociation temperature. This can provide valuable insights for de- 

igning processes in applications involving gas hydrates. Secondly, 

e calculate the contribution of the activity of water due to the 

resence of various electrolytes and use that as a feature in the 

L model. The inhibiting influence of electrolytes on hydrate dis- 

ociation temperatures in thermodynamic models is captured via 

he activity of water which is defined as the ratio of the vapour 

ressure of a water sample and the vapour pressure of pure wa- 

er at the same temperature [ 50 , 51 ]. Using activity as a feature

llows us to capture the influence of both molality and the ionic 

trength while taking into consideration various intermolecular in- 

eractions. Another advantage of this approach stems from the fact 

hat the weight percentages of different salts are fused into a sin- 

le activity term. Lack or discontinuity in experimental data for any 

articular salt would be compensated by the activity term of an- 

ther salt, thereby making the databank more efficient and contin- 

ous. Furthermore, activity being a more fundamental parameter, 

t could then be ascribed to reflect the presence of any salt or a 

ombination of salts depending on the weight percentage leading 

o the same activity. In essence, this allows meaningful predictions 

f HDT from the use of a salt or a combination of salts. Thirdly, we

se specific gravity as a feature to capture the influence of average 

olecular weight on the HDT. Overall, we develop ML models us- 

ng fundamental thermodynamic parameters of the constituent gases 

r chemicals in the system . We use a low number of features, to 

e able to backtrack individual contributions of gases or salts; this 

ould not be possible from the previously used approaches involv- 

ng total pressures and weight percentages. 

Presently, we evaluate the prediction performance of three dif- 

erent ensemble-based ML methods: Random Forest (RF) [52] , Ex- 
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Fig. 1. An illustrative decision tree associated with hydrate dissociation tempera- 

ture predictions. For any data point, these would be determined by the partial pres- 

sure of the individual gas components, specific gravity (SG) and the activity contri- 

bution due to the electrolyte, based on the splitting rules defined by a decision tree. 

t

(

H

f

g

i

b

t

c

a

2

p

b

s

p

t

2

i

t

p

o

n

s

s

g  

s

[

t

e

c

v

t

b

d

p

t

a

a

c

s

s

a

d

b

s

o

2

b

b

i

s

a

p

r

e

o

u

a

o

t

X

o

�

w

d

t

t

t  

p

0

i

E

o

L

w

a

t

t

t

i

o

o

L

w

t

v

p

t

r

remely randomized trees (ET) [53] , and Extreme Gradient Boosting 

XGBoost) [54] . We compare their relative performance to predict 

DT using activity, partial pressure and specific gravity as input 

eatures. While prior studies have used gradient boosting (GB) al- 

orithms, this is the first reported use of Extreme Gradient Boost- 

ng [54] (which is a computationally efficient variant of gradient 

oosting algorithm) for hydrates-related predictions. It is noted 

hat due to its efficiency and ease of use, XGBoost (since its in- 

eption in 2015) has been widely used in Kaggle competitions and 

 variety of ML and data mining challenges. 

. Description of machine learning models used in this study 

Ensemble-based techniques combine several base models to 

roduce one optimal prediction model by decreasing variance and 

ias via bagging (bootstrap aggregating) and boosting. Amongst en- 

emble models, decision tree-based methods have become widely 

opular owing to their ease of implementation, versatility, and in- 

uitive interpretation. 

.1. Random Forest and Extra Trees 

A typical decision tree stratifies or segments a predictor space 

nto several simple regions based on a set of splitting rules to op- 

imize a specific objective function. The value of a prediction for a 

articular observation would be the mean or mode of the trained 

bservations in the region/branch where it belongs (usually de- 

oted as the terminal node or leaves of the tree) based on the 

plitting rules defining that particular observation. Since the set of 

plitting rules used to divide the predictor space can be displayed 

raphically as a tree ( Fig. 1 ), such methods are referred to as deci-

ion tree-based methods. 

Random forest utilizes two powerful ML techniques-bagging 

55] and random feature selection [56] to provide a robust decision 

ree-based ensemble model. The ideology underlying random for- 

st is as follows: fitting a single decision tree on a data set would 

ause the model to overfit the underlying trend, leading to high 

ariance, wherein the model yields excellent predictions on the 

rained data set but performs poorly on unseen data. Bagging or 

ootstrap aggregating is therefore conducted on a data set to re- 

uce variance and produce a model that can provide generalized 

redictions on any data set. In bagging, N different trees are fit- 

ed over N bootstrapped samples of data, and the results are aver- 

ged over all trees to obtain the final output. Random forest adds 
3 
n extra layer of improvement over bagged regression trees by de- 

orrelating individual trees in the forest. This is carried out by con- 

idering only a random subset of features every time a split deci- 

ion is executed in an internal node. Extremely randomized trees 

re similar to random forest based methods, albeit with two key 

ifferences, i) the entire dataset is used to grow a tree instead of 

ootstrap sampling, ii) the internal cut point used to make a deci- 

ion split is selected at random instead of searching for the most 

ptimal split. 

.2. XGBoost (eXtreme Gradient Boosting) 

Boosting is a form of additive modeling which is based on 

uilding a sequence of multiple weak learning models and com- 

ining them into a single composite strong model. The underly- 

ng ideology here is that the resultant collective model becomes a 

tronger predictor as more weak learning models are sequentially 

dded to it. While the weak learning models can be built inde- 

endently as in the case of random forest or extra trees, boosting 

elies on building these weak learners in a stage-wise fashion with 

ach learner chosen to improve the overall model performance by 

ptimizing a specific objective function. 

In this study, we implement XGBoost algorithm [54] (operating 

nder the framework of Gradient boosting), which uses the first 

nd second derivative of the loss function to converge to global 

ptimality quicker, while also improving the efficiency of the op- 

imal solution of the model. The objective function minimized by 

GBoost is as follows [54] : 

b j ( θ ) = 

∑ 

i 

l 
(
ˆ y i , y i 

)
+ 

∑ 

k 

�( f k ) (1) 

( f k ) = γ ′ T + 

1 

2 
λ′ ‖ 

w ‖ 

2 (2) 

here, l is a differentiable convex loss function that measures the 

ifference between the prediction ˆ y i and target y i , and f k is the k 
th 

ree. The second term � helps to prevent overfitting by penalizing 

he complexity of the model in terms of the number of leaves in 

he tree T and vector of scores on leaves w . Here λ′ is a regularized
arameter and γ ′ is the learning rate, whose values lies between 

 and 1. 

Since a tree ensemble model includes functions as parameters, 

t cannot be optimized using traditional optimization methods in 

uclidean space and is therefore trained in an additive manner. The 

bjective function to be minimized is then given by: 

 

( t ) = 

k ∑ 

i =1 

[
l 
(
y i , ̂  y (t−1) 

i 

)
+ f t ( x i ) 

]
+ �( f t ) (3) 

here ˆ y t 
i 
is the prediction of the i th instance at the t th iteration, 

nd k is the total number of predictions. Therefore, the loss func- 

ion is represented as the sum of the loss functions for the predic- 

ion till the t-1 th iteration and a tree structure that, when added at 

he t th iteration, most improves the model as per Eq. (3) . Accord- 

ngly, the objective function can be optimized by using the second- 

rder Taylor’s approximation of the loss function (instead of first- 

rder in general gradient boosting) which is given by [54] : 

 

( t ) � 

k ∑ 

i =1 

[ 
l 
(
y i , ̂  y (t−1) 

i 

)
+ g i f t ( x i ) + 

1 

2 
h i f t 

2 
( x i ) 

] 
+ �( f t ) (4) 

here, g i = ∂ 
ˆ y 
(t−1) 
i 

l ( y i , ̂  y (t−1) 
i 

) and h i = ∂ 2 
ˆ y 
(t−1) 
i 

l ( y i , ̂  y (t−1) 
i 

) represent 

he first and second derivatives of each sample. The sum of loss 

alues determines the loss function in Eq. (4) for each data sam- 

le corresponding to every leaf node. Assuming that the loss func- 

ion is the mean square error function for regression problems and 

emoving the constants, the objective function can be written for 
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Table 1 

Summary of the experimental database employed in the present study. 

Variable Units Min Max Average 

P MPa 0.13 72.26 6.92 

T K 247.52 303.48 278.35 

CO 2 mol% 0 100 20.1 

CH 4 mol% 0 100 51.59 

C 2 H 6 mol% 0 100 9.39 

C 3 H 8 mol% 0 100 12.67 

n-C 4 H 10 mol% 0 100 1.29 

i-C 4 H 10 mol% 0 88.8 1.26 

N 2 mol% 0 100 3.69 

NaCl wt% 0 24.11 2.48 

KCl wt% 0 20 0.69 

CaCl 2 wt% 0 25.75 1.14 

MgCl 2 wt% 0 15 0.41 
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egression tree-based problems as [54] : 

 

( t ) � 

T ∑ 

j=1 

[ ( ∑ 

i ∈ I j 
g i 

) 

w j + 

1 

2 

( ∑ 

i ∈ I j 
h i + λ′ 

) 

w j 
2 

] 

+ γ T (5) 

here, I j represents all the data samples in the leaf node. During 

he process of building a tree, a particular node split will only be 

arried out if there is an improvement in the performance of the 

odel as evaluated by this objective function. 

. Development of machine learning models 

.1. Experimental database 

The predictive utility of any data-driven ML model is highly 

ependent on the experimental dataset employed for training the 

odel. In order to predict the HDT of gas hydrates from pure gases 

nd mixture of gases in the presence of electrolytes, an exten- 

ive dataset comprising of more than 1800 phase equilibrium data 

oints was collected from published literature. Table 1 summarizes 

he key details of the gathered experimental dataset. The dataset 

ncludes P-T data for varied combinations of seven gases and four 

alts. 

The data used in the present study was obtained from the fol- 

owing sources: Dholobhai et al. [57] , Englezos and Ngan [58] , Dho- 

abhai and Bishnoi [59] , Mei et al. [60] , Kang et al. [61] , Tatsuo

62] , Jager and Sloan [63] , Kharrat and Dalmazzone [64] , Atik et al.

65] , Mohammadi et al. [66] , Haghighi et al. [67] , De Roo et al. [68] ,

aekawa et al. [69] , Dholabhai et al. [70] , Nakane et al. [71] , Tohidi

t al. [72] , Holder and Grigoriou [73] , Paranjpe et al. [74] , Adisas-

ito et al. [75] , Adisasmito and Sloan [76] , Nixdorf and Oellrich 

77] , Ng and Robinson [78] , Holder and Hand [79] , Ghavipour et al.

38] , Jhaveri and Robinson [80] , Wu et al. [81] , Deaton and Frost

82] , Verma [83] , Unruh and Katz [84] , Ohgaki et al. [85] , Fan and

uo [86] , Seo et al. [87] and Ng et al. [88] . 

.2. Calculations of activity and partial pressures 

In the present study, the contribution of electrolytes towards 

he activity of water is calculated using the Pitzer-Debye Huckel 

quation [89] and N-NRTL-NRF model [90] to capture the long and 

hort range interactions, respectively. Accordingly, the contribution 

ue to electrolytes can be evaluated via an activity term as: 

n a w,el = 

N el ∑ 

i 

υi m i ln a w,el i / 

N el ∑ 

i 

υi m i (6) 

here υ is the stoichiometric number of ions in the i th electrolyte 

nd m i is the molality of the i th electrolyte in the mixed electrolyte 

olution. 

 w,eli = x w γw (7) 
4 
here the activity coefficient of water γw is calculated using a 

ombination of short range (SR) and long range (LR) interaction 

erms: 

n γw = ln γ SR + ln γ LR (8) 

The short range contribution can be calculated using N-NRTL- 

RF model as [90] : 

n γ SR = x el 
2 

(
λel,w �el,w 

2 + 

λel,w �el,w 
2 

βw,el 

− λel,w − λw,el 

)
(9) 

 eli = 

1 

υi 

N el ∑ 

j 

υ j m j (10) 

 w = 

10 0 0 / M w 

10 0 0 / M w + υm eli 

(11) 

 el = 1 − x w (12) 

= υa + υc (13) 

w,el = 

x w βw,el 

x w βw,el + x el 
(14) 

el,w = 

x el βel,w 

x el βel,w + x w 
(15) 

w,el = exp 
(
−αλw,el 

)
(16) 

el,w = exp 
(
−αλel,w 

)
(17) 

In the above equations, x w & M w denote the mole fraction 

nd molecular weight of water, and m eli is the molality of the i th 

lectrolyte in the single electrolyte solution. λ represents the op- 

imized binary parameters for salt-water interactions (values for 

hich have been taken from [91] ), � denotes non-random factors 

nd β is the Boltzmann factor. Note that interactions between dis- 

olved gas and electrolytes has not been considered while evaluat- 

ng a w,eli . For the LR contribution, the Pitzer Debye Huckel equation 

or the ionic species can be expressed as [89] : 

n γ LR = 

x el 
x w 

A φ

(
10 0 0 

M w 

)1 / 2 
( | z a z c | I 1 / 2 − 2 I 3 / 2 

I + ρI 1 / 2 

)
(18) 

 = 

1 

2 

(
x a z a 

2 + x c z c 
2 
)

(19) 

here I is the molar fraction ionic strength. The non-randomness 

actor α, Debye −Hückel constant A φ , and closest approach ρ are 

qual to 0.125, 0.390947 and 14.90 respectively [ 90 , 92 ]. 

It is noted that we do not presently consider the influence of 

lcohol/s or other organic solvents on hydrate formation. We no- 

iced that the activity calculated for alcohol/s using the commonly 

mployed Margules equation [93] does not lead to the same ex- 

ent of suppression in hydrate formation conditions when com- 

ared to electrolyte solutions with the same activity (calculated 

sing Pitzer-Debye Huckel equation and N-NRTL-NRF model). This 

uggests that although the use of activity as a feature is an im- 

rovement over previous approaches, the models used to evaluate 

ctivity are also crucial to accurate prediction of hydrate forming 

onditions. To ensure consistency and obtain meaningful predic- 

ions from the present study, we considered only electrolytes in 

he analysis. It is noted that partial pressures of individual gases 

ere estimated using mole fractions and total pressure assuming 

deal gas behaviour. 

Overall, the use of activity, specific gravity, and partial pressures 

s features instead of weight percentages and mole fractions makes 

he present approach more firmly grounded in fundamental chem- 

cal thermodynamics, and increases the generality and applicability 

f the predictive models. 
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Table 2 

Accuracy of predictions obtained by ML algorithms employed in the present study. 

Random Forest Extra Trees XGBoost 

Train Test Total Train Test Total Train Test Total 

R 2 % 97.84 94.35 97.53 98.45 94.08 98.01 99.85 98.06 99.56 

AARD% 0.210 0.363 0.233 0.184 0.383 0.214 0.064 0.212 0.086 
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Fig. 2. Comparison of experimental hydrate dissociation temperatures versus pre- 

dictions obtained from three ML models, (a) Random Forest, (b) Extra Trees, and (c) 

XGBoost. 
.2. Procedure for conducting ML analysis 

The dataset was divided into training and test data using 

rain_test_split function from Scikit-learn library [94] which ran- 

omly assigns 85% of the dataset for training the model and the 

emaining 15% for evaluating the accuracy and performance of the 

rained model. The performance of a ML model depends signifi- 

antly on its hyperparameters, which define the model’s complex- 

ty and thereby its capacity to learn from any data. In tree-based 

odels, typical hyperparameters include number of trees to grow 

n the forest, maximum depth of each tree, number of samples to 

e considered for each split, minimum number of data points to 

e allowed in a leaf node etc. For XGBoost algorithm, additional 

yperparameters come into play, such as the learning rate, min- 

mum loss reduction required to make a split, subsample ratio of 

he training instances etc. It is noted that tuning the hyperparame- 

ers using the training dataset without resorting to cross-validation 

an lead to overfitting where the model performs really well on 

he training data set but rather poorly on the test data set. 

Presently, we resort to exhaustive grid search cross-validation 

CV) with a two-step approach to carry out optimization. In the 

rst step, a hyperparameter grid consisting of a wide range of pa- 

ameter values was created, and combinations were sampled at 

andom to narrow down a range of values, by evaluating their 

esults using 5-fold cross-validation. Following this, an extensive 

rid search was conducted on the concentrated parameter space 

y evaluating all possible combinations in the hyperparameter grid 

o arrive at the combination yielding the best results. It is noted 

hat the hyperparameters were evaluated to avoid overfitting the 

ata set so as to provide the best fit for a broad spectrum of data

oints. To carry out grid search cross validation and implement the 

L algorithms in Python, an open-source ML library Scikit-learn 

as used [94] . 

. Results and discussions 

.1. Validity of the model 

After estimating optimum hyperparameters, ML algorithms 

ere trained using thermodynamic variables (partial pressure, spe- 

ific gravity and activity) as features. Subsequently, their prediction 

erformance was evaluated on the test data set. In order to eval- 

ate the reliability and accuracy of the developed ensemble mod- 

ls, two key statistical metrics were used, namely coefficient of de- 

ermination percent (R 2 %) and average absolute relative deviation 

ercent (AARD%), as defined below: 

 

2 % = 100 

⎛ 

⎜ ⎝ 

1 −

n ∑ 

i =1 

(
T pred − T exp 

)2 
n ∑ 

i =1 

(
T pred − a v erage ( T exp ) 

)2 
⎞ 

⎟ ⎠ 

(20) 

ARD % = 100 

n ∑ 

i =1 

∣∣∣∣T pred − T exp 

T exp 

∣∣∣∣/n (21) 

Table 2 summarizes the performance metrics for Random for- 

st, Extra Trees, and XGBoost models with the previously described 

xperimental dataset of more than 1800 data points. It is evident 
5 
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Fig. 3. Distribution of the absolute relative error in predicting hydrate dissociation temperature (logarithmic y-axis) for (a) training and (b) test data sets obtained using 

XGBoost, Random Forest and Extra Trees algorithms. 
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hat the XGBoost algorithm outperforms Random Forest and Ex- 

ra Trees algorithms with R 2 accuracies of 99.85% (training data), 

8.06% (test data) and 99.56% (overall). Random Forest and Extra 

rees models exhibited almost similar prediction accuracies. The 

GBoost algorithm results in a noticeably improved prediction ac- 

uracy for the test data (an improvement of about 4%) when com- 

ared to the other two algorithms. These results are in line with 

revious observations wherein boosting methods have exhibited 

mprovements in predictions when compared to traditional mod- 

ls [95] . Importantly, all three ML models provide excellent predic- 

ion accuracies while using fundamental thermodynamic variables 

f the constituent gases and salts (activity, partial pressures, and 

pecific gravity). This shows that setting up ML models in terms of 

undamental thermodynamic parameters, as opposed to specifying 

ompositions does not compromise the accuracy of the predictions. 

Fig. 2 compares the predicted HDT for training and test data 

ets (combined) versus experimental data, the dashed line being 

he identity line, y = x . The distance of a point from the iden-

ity line is a measure of the prediction accuracy of the particu- 

ar model. A distribution of points closely clustered to the iden- 

ity line is a visual indicator of good predictions. It is clearly seen 
6 
rom Fig. 2 c that XGBoost results in better predictions, as evi- 

ent by a majority of data points very closely clustered around 

he identity line. The relative error is highest for two data points 

aving the highest deviation from the identity line. These corre- 

pond to T exp of 247.52 K [for P methane = 2.56 MPa (97.07 mol%) 

nd P propane = 0.077 MPa (2.93 mol%)] and T exp of 296.07 K [for 

 carbon dioxide = 1.91 MPa (8.09 mol%), P methane = 21.07 MPa (89.4 

ol%) and P ethane = 0.587 MPa (2.49 mol%)]. Deviations for these 

oints can be very clearly noticed in the plots for Random For- 

st ( Fig. 2 a) and Extra Trees ( Fig. 2 b) methods. The deviation for

he point T exp = 247.52 K belonging to training data set can be 

ttributed to a lack of experimental data around lower tempera- 

ure ranges, which results in poorer predictions compared to other 

oints. The deviation for the point T exp = 296.07 K belonging to 

est data set at very high partial pressures of CH 4 can be ex- 

lained either by a lack of experimental data points at higher pres- 

ures or possible local overfitting due to random allocation of test 

rain data. It is noted that XGBoost results in better predictions at 

hese two most deviant points as well. The relative deviation re- 

ulting from the use of XGBoost (1.12% and −2.23%, respectively) 

s much lower than the relative deviations resulting from the pre- 
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Fig. 4. Pressure-Temperature data associated with formation of methane hydrates in the presence of (a) NaCl and (b) CaCl 2 (varying weight percentages). Solid symbols 

represent the predictions from XGBoost model, while non-solid symbols represent experimental data [ 64 , 68 ]. 
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iction of the Random Forest (5.98% and −4.40%, respectively) and 

xtra Trees (5.17% and −4.79%, respectively) methods. This high- 

ights the robustness and superior predictive capabilities of the XG- 

oost model. It is noted that two data points corresponding to HDT 

f 242.09 K and 252.8 K, which belong to the lower end of the 

emperature spectrum, yielded absolute relative errors greater than 

0% and have been considered as outliers in the present study. 

Further insights on the relative performance of the models is 

btained by analysing the distribution of the absolute relative er- 

or between the experimental and predicted HDTs for training and 

est data sets, as shown in Fig. 3 and the distribution of relative 

rror, as shown in the inset of Fig. 2 . The concentration of a large

umber of data points in low absolute relative error regions for 

raining as well as test data sets is indicative of the superior pre- 

iction performance of the XGBoost algorithm. A majority of the 

ata points exhibited relative errors less than 0.5% for all the three 

ethods. XGBoost has the highest overall number of data points 

1802) with absolute relative errors lower than 0.5%, which implies 
7 
hat it can predict about 98.3% of the entire (training + test) data 

et with greater than 99.5% relative accuracy. This is followed by 

andom Forest (1608 data points) and Extra Trees methods (1656 

ata points) corresponding to 87.67% and 90.29% of the data points 

ith absolute relative errors less than 0.5%. As can be inferred 

rom the R 2 plot ( Fig. 2 ), the highest relative errors for the two

emperatures (247.52 and 296.07 K belonging to the training and 

est data set respectively) correspond to the two points towards 

he right end of the histogram. 

Next, we specifically illustrate the utility of the XGBoost model 

n predicting the inhibition influence of salts on hydrate forma- 

ion. Figs. 4 a-b show the experimentally obtained [ 64 , 68 ] pressure-

emperature curves (non-solid symbols) associated with the for- 

ation of methane hydrates in the presence of NaCl and CaCl 2 
espectively. It is seen that the addition of salts pushes the hy- 

rate formation region to the left (higher pressures and/or lower 

emperatures needed for hydrate formation). Experimentally pro- 

ided weight concentrations were used to estimate the activity 
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Table 3 

Comparison between predictions (3 ML models) and experimental data [47] for hydrate formation under varying salt concentrations. 

Gas composition (mol%) Salt composition (wt%) Experiments Prediction Relative error (%) 

CO 2 CH 4 NaCl KCl CaCl 2 P (MPa) T (K) RF ET XGBoost RF ET XGBoost 

15.3 84.7 0 0 0 3.41 277.56 277.77 277.51 277.54 0.076 −0.017 −0.007 

16.7 83.3 0 0 0 5.14 281.50 280.83 280.72 281.49 −0.239 −0.279 −0.004 

16.4 83.6 0 0 0 2.36 274.10 276.02 274.52 274.03 0.701 0.152 −0.025 

17.9 82.1 0 0 0 7.53 284.84 284.63 283.93 284.72 −0.072 −0.321 −0.042 

17.7 82.3 5.02 0 0 6.98 281.99 281.35 281.31 282.06 −0.227 −0.240 0.025 

17.2 82.8 5.02 0 0 5.08 279.23 278.60 278.63 279.08 −0.226 −0.215 −0.055 

16.1 83.9 5.02 0 0 3.26 274.98 273.01 274.15 273.50 −0.715 −0.302 −0.540 

15.2 84.8 5.02 0 0 2.3 271.59 271.94 272.41 271.13 0.127 0.303 −0.171 

17.4 82.6 9.99 0 0 6.56 278.98 277.91 278.55 279.05 −0.384 −0.153 0.023 

16.1 83.9 9.99 0 0 3.1 272.07 271.19 272.07 271.95 −0.323 −0.001 −0.044 

19.4 80.6 9.99 0 0 4.66 276.14 275.13 275.35 276.17 −0.366 −0.285 0.009 

19.3 80.7 9.99 0 0 2.03 268.46 268.83 269.45 268.44 0.139 0.370 −0.007 

18.9 81.1 15 0 0 7.31 277.17 275.54 275.71 277.24 −0.587 −0.527 0.025 

19.4 80.6 15 0 0 2.88 269.12 268.84 269.34 268.90 −0.103 0.082 −0.082 

18.2 81.8 15 0 0 7.37 276.79 276.06 276.55 276.92 −0.266 −0.086 0.046 

19.8 80.2 15 0 0 4.4 273.14 272.18 272.76 273.23 −0.353 −0.138 0.034 

17.3 82.7 15 0 0 1.86 264.78 266.22 266.27 264.71 0.544 0.564 −0.027 

19.3 80.7 20 0 0 5.42 270.37 271.99 272.55 269.64 0.598 0.804 −0.271 

19.1 80.9 20 0 0 2.12 261.95 264.03 263.21 262.16 0.796 0.481 0.079 

19.8 80.2 20 0 0 3.86 267.48 267.72 267.51 267.32 0.089 0.010 −0.062 

19.9 80.1 20.01 0 0 9.15 274.31 274.56 274.42 274.29 0.090 0.038 −0.007 

19.7 80.3 0 5 0 2.04 271.38 272.14 271.68 271.49 0.278 0.112 0.042 

19.8 80.2 0 5 0 4.46 278.83 278.04 278.32 278.60 −0.282 −0.185 −0.082 

19.8 80.2 0 5 0 2.96 274.97 274.13 274.51 274.64 −0.306 −0.166 −0.122 

19.8 80.2 0 5 0 6.43 281.98 281.39 281.46 281.97 −0.211 −0.183 −0.004 

19.6 80.4 0 10 0 3.94 275.90 274.33 274.93 275.65 −0.569 −0.352 −0.091 

19.7 80.3 0 10 0 1.83 269.16 269.48 269.86 269.25 0.118 0.259 0.034 

19.8 80.2 0 10 0 2.59 272.16 271.29 271.98 272.17 −0.319 −0.065 0.005 

19.8 80.2 0 10 0 5.66 278.96 277.52 278.56 278.92 −0.518 −0.142 −0.016 

18.4 81.6 0 15 0 1.89 266.96 267.27 268.28 266.81 0.117 0.496 −0.055 

19 81 0 15 0 2.62 270.07 269.34 270.23 270.17 −0.269 0.060 0.038 

19.5 80.5 0 15 0 3.45 272.69 271.22 271.99 272.89 −0.539 −0.258 0.073 

19.7 80.3 0 15 0 5.63 277.07 274.82 276.16 277.04 −0.812 −0.329 −0.012 

18.7 81.3 0 0 9.91 1.96 268.59 269.95 270.02 268.77 0.506 0.532 0.068 

19.7 80.3 0 0 9.91 4.32 276.04 275.95 275.89 275.84 −0.031 −0.054 −0.074 

19.4 80.6 0 0 9.91 2.8 272.00 271.98 271.99 271.93 −0.008 −0.004 −0.027 

19.7 80.3 0 0 9.91 6.08 279.13 279.36 278.91 279.67 0.082 −0.081 0.195 

19 81 0 0 15 4.61 273.11 273.50 273.38 273.25 0.142 0.100 0.050 

19.7 80.3 0 0 15 3 269.13 269.40 270.39 269.18 0.101 0.467 0.019 

19.6 80.4 0 0 15 1.88 266.65 267.79 268.45 266.44 0.428 0.674 −0.080 

19.7 80.3 0 0 15 7.09 276.88 276.77 278.17 277.88 −0.039 0.466 0.362 

19.8 80.2 0 0 20 2.89 263.78 266.05 267.26 264.06 0.859 1.317 0.106 

19.9 80.1 0 0 20 7.24 271.34 272.92 272.27 271.57 0.583 0.343 0.084 

19.8 80.2 0 0 20 4.3 267.60 269.38 269.69 267.55 0.665 0.783 −0.019 

19.9 80.1 0 0 20 9.46 273.69 274.96 274.12 273.80 0.464 0.157 0.041 

19.4 80.6 5.01 0 10 5.04 273.67 273.88 274.08 273.66 0.075 0.151 −0.004 

19.8 80.2 5.01 0 10 3.12 269.35 268.81 269.82 269.41 −0.199 0.175 0.023 

19.7 80.3 5.01 0 10 2.06 265.54 267.34 269.10 266.40 0.677 1.341 0.324 

19.9 80.1 5.01 0 10 7.14 276.71 275.35 276.75 276.30 −0.491 0.013 −0.147 

19.8 80.2 0 10 5 1.65 265.07 266.17 266.91 265.14 0.413 0.693 0.028 

19.9 80.1 0 10 5 4.6 274.76 273.73 274.22 274.66 −0.375 −0.197 −0.037 

19.8 80.2 0 10 5 2.46 269.35 268.51 269.68 269.01 −0.314 0.123 −0.125 

19.9 80.1 0 10 5 10.61 281.57 279.49 281.12 281.64 −0.738 −0.159 0.025 

19.2 80.8 5 10 0 2.59 269.28 269.04 269.62 269.35 −0.088 0.128 0.025 

19.8 80.2 5 10 0 10.41 281.27 278.34 279.26 281.21 −1.043 −0.716 −0.022 

19.7 80.3 5 10 0 4.99 275.21 274.46 274.93 275.40 −0.273 −0.103 0.068 

20.3 79.7 5 10 0 1.66 265.09 266.69 267.05 265.85 0.602 0.740 0.288 

19.5 80.5 10.17 0 5.08 6.07 275.13 274.96 275.30 275.01 −0.061 0.062 −0.045 

20.1 79.9 10.17 0 5.08 2.11 266.52 267.02 267.62 266.09 0.187 0.413 −0.160 

20 80 10.17 0 5.08 3.1 269.18 269.06 269.52 269.07 −0.043 0.124 −0.042 

19.4 80.6 10.17 0 5.08 9.71 278.74 277.23 278.84 278.34 −0.542 0.037 −0.142 

48.6 51.4 10 0 10 3.53 268.08 269.15 268.52 268.36 0.398 0.165 0.105 

49.7 50.3 10 0 10 2.15 264.14 268.70 269.48 266.13 1.725 2.020 0.753 

49.4 50.6 10 0 10 5.16 270.80 271.38 271.15 271.11 0.214 0.128 0.114 

49.7 50.3 10 0 10 3.52 268.21 269.39 269.58 268.97 0.439 0.511 0.283 

46.5 53.5 10 5 0 4.59 275.48 273.58 275.22 275.41 −0.688 −0.093 −0.026 

49.5 50.5 10 5 0 2.78 271.57 270.37 271.55 271.44 −0.440 −0.008 −0.047 

49.8 50.2 10 5 0 1.82 268.04 268.07 268.55 267.69 0.012 0.190 −0.131 

50 50 10 5 0 1.38 265.76 266.84 266.51 265.97 0.406 0.283 0.079 

8 
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Table 4 

Comparison between predictions (3 ML models) and experimental data [65] for hydrate formation from binary 

and ternary gas mixtures. 

Gas composition 

(mol%) 

Experiments Prediction Relative error (%) 

P (MPa) T (K) RF ET XGBoost RF ET XGBoost 

CH 4 : 89.26 N 2 : 

10.74 

4.94 278.7 279.20 278.60 278.94 0.180 −0.035 0.086 

6.94 282.03 282.10 281.23 281.97 0.024 −0.284 −0.023 

10.40 285.64 285.85 285.03 285.78 0.072 −0.215 0.047 

14.98 288.68 288.53 288.38 288.49 −0.053 −0.103 −0.068 

20.02 290.97 291.01 290.61 290.87 0.015 −0.124 −0.035 

24.43 292.44 292.08 292.13 292.46 −0.123 −0.105 0.005 

CH 4 : 90.47 

C 2 H 6 : 9.53 

2.25 278.21 277.83 277.75 278.05 −0.138 −0.166 −0.059 

2.63 279.6 279.00 278.94 279.82 −0.213 −0.235 0.079 

4.19 283.69 283.07 282.72 283.44 −0.219 −0.342 −0.087 

7.21 288.12 287.39 287.28 288.05 −0.255 −0.290 −0.024 

9.99 290.44 290.11 290.31 290.41 −0.113 −0.046 −0.010 

14.85 292.97 292.41 292.34 292.81 −0.191 −0.214 −0.054 

19.89 294.63 294.26 294.56 294.55 −0.127 −0.024 −0.027 

23.20 295.52 294.65 294.51 295.54 −0.294 −0.343 0.008 

CH 4 : 97.07 

C 3 H 8 : 2.93 

2.64 247.52 262.33 260.32 250.28 5.985 5.171 1.115 

9.20 256.87 265.76 258.58 257.33 3.461 0.664 0.180 

14.97 259.33 265.20 260.14 258.59 2.264 0.314 −0.284 

19.81 260.59 264.96 260.59 260.07 1.675 0.000 −0.201 

24.36 261.53 268.53 261.53 261.96 2.675 0.000 0.163 

CH 4 : 94.97 N 2 : 

0.03 

3.45 276.85 278.36 277.06 277.36 0.546 0.077 0.183 

4.87 279.95 280.24 279.85 279.87 0.103 −0.035 −0.028 

7.04 283.49 283.81 283.29 283.53 0.112 −0.072 0.012 

10.94 287.41 288.25 287.18 287.49 0.293 −0.081 0.027 

16.83 290.76 290.94 290.48 290.71 0.061 −0.098 −0.018 

23.98 293.41 292.85 293.41 293.24 −0.191 0.000 −0.057 

C 2 H 6 : 85.15 

C 3 H 8 : 14.85 

0.83 276.66 276.99 276.32 276.88 0.117 −0.124 0.078 

1.09 278.92 278.70 278.90 278.91 −0.078 −0.008 −0.004 

1.51 281.49 281.36 281.43 281.51 −0.045 −0.020 0.006 

1.94 283.32 282.75 282.87 283.25 −0.203 −0.158 −0.026 

1.12 279.11 278.87 279.03 279.01 −0.086 −0.029 −0.037 

1.50 281.38 281.32 281.28 281.50 −0.020 −0.037 0.042 

CH 4 : 90.93 

C 2 H 6 : 4.89 

2.58 277.36 277.28 277.15 277.22 −0.028 −0.075 −0.050 

3.80 280.91 280.36 279.72 280.75 −0.195 −0.425 −0.057 

6.10 284.9 284.57 284.63 284.92 −0.118 −0.097 0.006 

8.36 287.45 287.14 287.22 287.34 −0.109 −0.082 −0.040 

13.81 290.93 290.59 290.62 290.90 −0.118 −0.108 −0.009 

18.82 292.82 292.77 292.56 292.78 −0.018 −0.089 −0.014 

23.83 294.23 293.72 294.23 294.19 −0.175 0.000 −0.014 

CH 4 : 84.52 

C 2 H 6 : 12.55 

C 3 H 8 : 2.93 

1.20 277.1 277.21 277.09 276.97 0.041 −0.005 −0.046 

1.98 281.56 279.89 280.75 281.67 −0.593 −0.289 0.039 

4.00 287.42 285.91 287.02 287.58 −0.525 −0.138 0.056 

6.92 291.52 290.03 291.52 291.57 −0.511 0.000 0.017 

11.21 294.32 292.74 294.32 294.09 −0.538 0.000 −0.077 

17.03 296.14 294.68 296.14 296.51 −0.492 0.000 0.125 

24.47 298.14 295.99 298.14 298.00 −0.720 0.000 −0.047 

CH 4 : 95.02 

C 2 H 6 : 3.98 

C 3 H 8 : 1 

2.16 279.1 275.34 276.36 275.67 −1.348 −0.981 −1.228 

3.99 284.3 282.22 282.91 284.01 −0.732 −0.489 −0.103 

6.96 288.56 286.96 288.23 288.50 −0.553 −0.115 −0.021 

10.94 291.6 290.08 291.54 291.54 −0.521 −0.021 −0.021 

17.36 294.04 292.34 294.04 294.15 −0.580 0.000 0.036 

24.15 295.76 293.86 295.76 295.80 −0.641 0.000 0.013 

CO 2 : 8.09 CH 4 : 

89.4 C 3 H 8 : 2.49 

N 2 : 0.02 

1.69 279.19 277.49 278.44 278.97 −0.608 −0.269 −0.078 

3.47 285.09 282.34 283.85 285.02 −0.966 −0.435 −0.023 

6.91 290.16 287.30 289.48 290.21 −0.985 −0.234 0.018 

10.47 292.56 289.26 292.23 292.49 −1.129 −0.113 −0.025 

16.95 294.62 289.66 294.56 294.69 −1.684 −0.022 0.024 

23.57 296.07 283.04 281.87 289.47 −4.400 −4.796 −2.230 

CO 2 : 5.25 CH 4 : 

89.6 C 3 H 8 : 5.13 

N 2 : 0.02 

2.96 279.01 278.55 278.26 278.95 −0.164 −0.268 −0.021 

5.00 283.54 282.80 282.83 283.35 −0.261 −0.252 −0.068 

7.74 287.08 286.91 286.98 286.99 −0.060 −0.036 −0.033 

11.88 290.04 289.83 289.86 290.04 −0.073 −0.061 −0.001 

17.52 292.28 292.37 290.82 293.02 0.030 −0.501 0.253 

24.33 294.21 293.86 294.21 294.37 −0.120 0.000 0.055 
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eature used in the ML models. From a chemical thermodynam- 

cs perspective, increased salt concentrations result in a reduction 

n activity, which will push the P-T curve to the left. Figs. 4 a-b

how the predictions of the XGBoost model; an excellent match 

s seen in the majority of the range of temperatures and pres- 

ures studied. There is a notable deviation for data points in 
9 
ower ranges of temperatures (259.9–264 K) at 25.75 wt% CaCl 2 
hich can be attributed to a lack of experimental data points 

sed for training the ML models at lower temperature ranges. 

verall, the model can effectively capture the inhibition influence 

f salts containing monovalent as well as divalent cations in the 

olution. 



P.V. Acharya and V. Bahadur Fluid Phase Equilibria 530 (2021) 112894 

t

e

w

t

p

o  

e

e

R

r

0  

o

m

a

w

f

c

w

b

d

a

d

O

m

o

t

e

5

p

a

m

f

g

o

c

o

a

u

p

p

i

e

t

0

e

w

l

e

d

g

o

i

s

a

d

b

s

o

f

d

D

c

i

C

F

c

F

A

t

p

t

R

 

 

 

[

[

[  
Finally, we lay out the predicted HDTs (from Random Forest, Ex- 

ra Trees and XGBoost algorithms) and the relative errors against 

xperimental data reported in two detailed studies. The first study 

as by Dholabhai and Bishnoi [59] , who studied hydrate forma- 

ion in a mixture of CO 2 and CH 4 of varying compositions in the 

resence of various salts in water at varying weight percentages as 

utlined in Table 3 . It is evident that while all the three ML mod-

ls capture the hydrate forming conditions reasonably well (low 

rror), the relative error exhibited by XGBoost is less than that of 

andom Forest (RF) and Extra Trees (ET) in most cases. The overall 

elative error predicted using XGBoost is predominantly less than 

.1% for most of the data points in Table 3 . While the relative error

f XGBoost is lesser than Random Forest and Extra Trees in a vast 

ajority of the dataset, there are very few exceptions (CO 2 /CH 4 

t 16.1/83.9 mol% with 5.02 wt% NaCl; CO 2 /CH 4 at 19.7/80.3 mol% 

ith 9.91 wt% CaCl 2 ) where ET or RF exhibit slightly better per- 

ormance. The highest relative errors occur for a gas composition 

onsisting of CO 2 /CH 4 at 49.7/50.3 mol% with NaCl and CaCl 2 at 10 

t% each. 

The second study against which the ML based predictions are 

enchmarked is by Nixdorf and Oellrich [77] who studied hydrate 

issociation conditions for various binary and ternary gas mixtures 

s outlined in Table 4 . The highest relative errors are observed for 

ata points containing CH 4 /C 3 H 8 at 97.07/2.93 mol% respectively. 

ne of the primary reasons underlying the poor prediction perfor- 

ance is the lack of data points at lower temperatures (247–261 K) 

ver which these data points have been evaluated. Furthermore, 

he relative error increases slightly for predictions by Random For- 

st model when a third gas component is introduced. 

. Conclusions 

In summary, a set of thermodynamic features such as partial 

ressures, specific gravity of hydrate precursor mixtures and the 

ctivity contribution due to salts were used in three ML-based 

odels to predict HDTs. Using such physics-based features in ML 

rameworks enables the models to track individual contributions of 

ases towards hydrate formation. Importantly, it extends the utility 

f the model to predict the inhibition effect for any other salt via 

alculation of an activity term. An extensive databank comprising 

f more than 1800 experimental data points was employed to train 

nd evaluate the prediction accuracies of the ML models. While the 

se of Random Forest (RF) and Extra Trees (ET) has been reported 

reviously, we also use extreme gradient boosting (XGBoost) to 

redict hydrate equilibria and report a considerable improvement 

n prediction accuracies compared to RF and ET. The overall co- 

fficient of determination (R 2 ) percentage is greater than 97% and 

he overall average absolute relative deviation (AARD) is lower than 

.25% respectively for all three models. XGBoost exhibits the high- 

st R 2 accuracy and the lowest AARD for training and test data, 

hich highlights its superior capabilities to predict hydrate equi- 

ibrium conditions. 

Finally, it is important to note that the performance of ML mod- 

ls used in the present study is determined by the experimental 

ataset employed for training the algorithms. Non-uniformities or 

aps in the distribution of experimental data over a certain range 

f values, or thermodynamically inconsistent data affect the qual- 

ty of predictions as is the case for extreme temperature and pres- 

ure in the case of hydrates. In the present work we have used 

n exhaustive data bank ( > 1800 data points) so that an error or 

iscrepancy in reported experimental data would not significantly 

ias the model. Future effort s should involve application of a con- 

istent screening criteria to assess the thermodynamic consistency 

f the experimental data employed [89] to train such algorithms to 

urther improve the performance and prediction accuracies of the 

eveloped ML models. 
10 
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