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ABSTRACT

Orbital resonances play an important role in the dynamics of planetary systems. Classical the-
oretical analyses found in textbooks report that libration widths of first order mean motion
resonances diverge for nearly circular orbits. Here we examine the nature of this divergence
with a non-perturbative analysis of a few first order resonances interior to a Jupiter-mass
planet. We show that a first order resonance has two branches, the pericentric and the apoc-
entric resonance zone. As the eccentricity approaches zero, the centers of these zones diverge
away from the nominal resonance location but their widths shrink. We also report a novel find-
ing of "bridges" between adjacent first order resonances: at low eccentricities, the apocentric
libration zone of a first order resonance smoothly connects with the pericentric libration zone
of the neighboring first order resonance. These bridges may facilitate resonant migration
across large radial distances in planetary systems, entirely in the low eccentricity regime.
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1 INTRODUCTION

When the orbital periods of two planets orbiting a central host star
are close to the ratio of small integers, their mutual gravitational
effects are enhanced and the orbital dynamics becomes quite com-
plicated. This is the case even for the simplest model of the planar
circular restricted three body problem (PCRTBP) in which one of
the two planets is massless and is restricted to move in the orbital
plane of the massive planet which itself moves in a fixed circu-
lar orbit. Although highly simplified, this model has many applica-
tions in planetary dynamics, such as the effects of a planet on minor
planets (Jupiter on the asteroid belt, Neptune on the Kuiper belt),
planetary moons on planetary ring particles, and the perturbations
of exo-planets on debris disks. This simple model also provides the
foundation for analyzing planet-planet interactions in the general
case of multi-planet systems. With many decades of studies, we
now understand that a mean motion resonance zone has non-zero
measure in phase space, it contains stable and unstable equilibrium
points (corresponding to periodic orbit solutions) and a domain of
regular quasi-periodic orbits librating about the stable equilibrium
(the resonance libration zone) bounded by a separatrix that passes
through the unstable equilibrium point; in some cases, the separa-
trix dissolves into a chaotic layer in phase space. Thus, a mean mo-
tion resonance is a source of both stability and instability. A central
question is: what is the extent of the resonance zone which supports
stable librations of resonant orbits? The answer is not easily won,
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in part because what at first sight appears to be a one-parameter
problem (i.e., the period ratio) is actually a problem of at least two
degrees of freedom, and in part because neighboring resonances in-
teract with each other. Consequently, an accurate answer has been
surprisingly elusive.

In the regime of very low orbital eccentricities, we have been
puzzled about the ambiguities of the resonance widths of first order
mean motion resonances (MMRs) reported in many publications.
To illustrate, we cite a current textbook on planetary dynamics
(Murray & Dermott 1999) which gives an analytical estimate based
on perturbation theory that the resonance zone widths of Jupiter’s
first order MMRs in the asteroid belt diverge to infinity for circu-
lar orbits (see their Eq. 8.76 and their Fig. 8.7). Winter & Murray
(1997) used a non-perturbative numerical approach (with Poincaré
sections) to measure resonance widths, and they reported some dis-
crepancies with the analytical perturbation theory estimates. On the
same topic, the textbook by Morbidelli (2002) describes that the
stable resonance center of Jupiter’s 2/1 MMR diverges only on side
of the nominal resonance location as e approaches zero, and that
a resonance separatrix vanishes for e < 0.2 making the resonance
width undefined for smaller eccentricities (see his Fig. 9.11.) There
are many other published studies exploring this topic with various
levels of approximation and in various contexts; for recent exam-
ples we refer the reader to Mardling (2013), Deck et al. (2013),
Hadden & Lithwick (2018), Namouni & Morais (2018), and refer-
ences therein.

In the work presented here we revisit the question of the
sizes of the first order resonance zones as e — 0. We adopt a
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non-perturbative approach based on computing Poincaré sections
of the PCRTBP, as in Winter & Murray (1997). Our implemen-
tation of this method is different than that of Winter & Murray
(1997) who followed the lead of Hénon (1966) on the choice of
the Poincaré sections by recording the test particle’s state vector at
every successive conjunction with Jupiter. Many subsequent works
on the PCRTBP have adopted the same condition for the surface-
of-section. However this is not a unique choice. In our implemen-
tation, we record the test particle’s state vector at every successive
perihelion passage. This choice is physically motivated so as to
trace the behavior (libratory or not) of the test particle’s perihelion
longitude relative to Jupiter’s position. This small but important
change yields a more direct visualization and physical interpreta-
tion of the resonance libration zones in the Poincaré sections. Wang
& Malhotra (2017) used this choice of the Poincaré sections to mea-
sure the widths of the 3/2 and 2/1 interior MMRs for a range of
perturber masses and test particle eccentricities, 0.05 < e < 0.99,
but did not examine the regime of very low eccentricities. Here we
investigate the very low eccentricity regime of Jupiter’s interior 2/1,
3/2 and 4/3 MMREs. This yields a few new insights and more clarity
on first order MMR widths at low eccentricities.

2 METHODOLOGY

We follow the method described in Wang & Malhotra (2017) to
compute the Poincaré sections, and from these we measure the res-
onance widths; we briefly describe this method here. We adopt the
circular planar restricted three body model of the Sun, Jupiter and
test particle (the latter representing an asteroid). In this approxi-
mation, all the bodies move in a common plane, Jupiter revolves
around the Sun in a circular orbit, and the test particle revolves in
an (osculating) elliptical heliocentric orbit. The masses of Sun and
Jupiter are denoted by m and my, respectively. The fractional mass
ratio of Jupiter is very small, u = my/(m; + mp) = 9.53 X 1074,
We adopt the natural units for this model: the unit of length is the
constant orbital separation of m and my, the unit of time is their
orbital period divided by 2x, and the unit of mass is m + mo; with
these units the constant of gravitation is unity, and the orbital an-
gular velocity of m; and m, about their common center of mass
is also unity. Then, in a rotating reference frame, of constant unit
angular velocity and origin at the barycenter of the two primaries,
both m; and my remain at fixed positions, (—x,0) and (1 — u,0),
respectively, and we denote with (x,y) the position of the test par-
ticle. The distances between the test particle and the two primaries
can be written as

1/2 2]1/2
M

and the equations of motion of the test particle can be written as,
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where "-" and "--" represent the first and second derivative with

respect to time. These equations admit a conserved quantity, the
Jacobi constant, Cy, given by,
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which can also be expressed approximately in terms of the Keple-
rian orbital elements, a and e, the semi-major axis and eccentricity,

s

Figure 1. A schematic diagram to illustrate the definition of ¢, the angular
separation of Jupiter from the test particle when the latter is at pericenter.

respectively, of the particle’s heliocentric osculating orbit,
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The test particle moves in a four dimensional phase space
(x,y,%,¥). To conveniently and meaningfully visualize in a two
dimensional plane the behavior of particles of different initial con-
ditions but having the same Jacobi constant, we use the Poincaré
surface-of-section technique, as follows. Starting from specified
initial conditions, the equations of motion, Eq. 2, are numeri-
cally integrated with the adaptive step size 7th order Runge-Kutta
method (Fehlberg 1968) to obtain the continuous track of the
test particle for several thousand Jupiter orbital periods. The rel-
ative and absolute error tolerances are controlled to be lower than
10712, To obtain the Poincaré sections, we record the state vec-
tor, (x,y,%,y), of the particle at every perihelion passage. We then
transform these state vectors into osculating heliocentric orbital el-
ements, semi-major axis a, eccentricity e, and the angle ¢ which
measures the angular separation of Jupiter from the test particle
when the particle is at perihelion; the definition of y is illustrated
in Figure 1.

For future reference, we introduce the usual "critical resonant
angle" defined by

¢=p+DA -pl-w, )

where 1,1’ are the mean longitudes of the particle and of Jupiter,
respectively, and @ is the particle’s longitude of perihelion. For
every point on the Poincaré section, the particle is located at its
perihelion (that is, A = @), therefore ¢ = (p + 1)(1” — @). Conse-
quently, we have the following relationship between ¢ and y:

¢=@+Dy. (6)

The Poincaré sections can be plotted in several different
variables; for our purposes, the most useful are plots of (¥,a),
(ecosiy,esiny) and (x,y). Examples of these near Jupiter’s 2/1
interior MMR are shown in Figure 2. Consider the middle row in
this figure, for a Jacobi constant value C; = 3.1624. Here in the
left panel, we observe a prominent chain of two islands, each cen-
tered at a ~ 0.629 (slightly lower than the nominal exact resonant
value, ages = (1/2)2/3 =~ 0.630) with ¢ = 0 and y = 180°. We
also observe a less-prominent chain of two small islands, each cen-
tered at a = 0.638 (higher than the nominal exact resonant value),

Cy=
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with ¢ =~ 90° and y =~ 270°. (The two separate chains of is-
lands are discussed further in the next section.) In the middle and
right panels of Figure 2, the same trajectories are projected in the
(ecosy,esiny) plane and in the (x,y) plane. The general proper-
ties of the behavior of test particles in the resonance are as follows.
The test particle with initial conditions at the center of each chain of
islands traces a periodic orbit in the four dimensional phase space
which intersects the Poincaré section sequentially (and repeatedly)
at each of the points at the island centers. The closed paths sur-
rounding the centers of the islands are those test particles that trace
quasi-periodic orbits librating about the exact periodic orbits, and
the particle eccentricity and semi-major axis execute corresponding
quasi-periodic variations. Most clearly visible in the middle panel is
that each chain of islands is bounded by a separatrix beyond which
Y circulates rather than librates.

The 3/2 and 4/3 resonances exhibit qualitatively similar char-
acteristics in their Poincaré sections, with the difference that the 3/2
MMR has two chains of three islands each while the 4/3 MMR has
two chains of four islands each. The sizes of the stable libration
islands are different for different values of the Jacobi constant. We
measure the upper and lower boundaries in semi-major axis of each
of the stable resonance islands in the (¥,a) Poincaré sections. As
a function of particle eccentricity, we identify these measured res-
onance widths with the value of the eccentricity at the center of the
corresponding islands in the (e cos i, e sin i) plane.

We generated many Poincaré sections for a range of values of
the Jacobi constant to numerically compute the resonance widths
over a almost the entire range of particle eccentricities, 0 < e < 1
(emphasizing the small end of the range), in the neighborhood of
the 2/1, 3/2 and 4/3 interior resonances of Jupiter. Then, with all the
Poincaré sections in hand, we map the resonance zone boundaries
in the (a,e) plane. We describe the results in more detail in the
following sections.

3 RESULTS
3.1 Two branches of the resonance at small eccentricity

The phase space structure near the 2/1 resonance is illustrated with
three sets of Poincaré sections in Figure 2. Each row of panels dis-
plays the Poincaré section for a specific value of the Jacobi constant
(increasing from the bottom to the top). Focussing first on the mid-
dle row of panels in Figure 2, we observe two different pairs of
stable islands, a pair that is prominent and large, and a second pair
that is less prominent and small. We call attention to a few impor-
tant properties of these structures.

e The centers of the pair of large islands, at (y,a) = (0,0.629)
and (¢,a) = (180°,0.629), describe a geometry of the periodic or-
bit in which the particle reaches perihelion alternately at conjunc-
tion (¢ = 0) and at opposition ( = 180°) with Jupiter; the con-
junctions with Jupiter occur at alternate perihelion passages (i.e., at
¥ = 0). This can also be discerned in the (x,y) plane shown in the
panel on the right in which the large libration islands centered on
the x-axis visualize these librations of the particle’s perihelion in
the rotating frame. (Figure 8.1 in Murray & Dermott (1999) illus-
trates this geometry.) In terms of the critical resonant angle (Eq. 6),
the corresponding libration zone is centered about ¢ = 0. We will
call this the pericentric libration zone.

e In the (¥,a) plane (left panel), we observe that the boundary
of the large pair of stable islands is a separatrix that passes through
a pair of unstable points at ¢y = 90° and ¢ = 270° near a value
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of a = 0.635. In the (ex,ey) plane (middle panel), we see that
this separatrix also passes through a third unstable point, at e =
0, delineating the libration domain of the second pair of (smaller)
stable islands at ¢ = 90° and y = 270°.

e The centers of the pair of small islands, at (Y¥,a) =
(£90°,0.639), as well as the nearby unstable pair of points,
(¥,a) = (£90°,0.635), describe a geometry in which the particle’s
conjunctions with Jupiter occur when the particle is near aphelion.
(Figure 8.2 in Murray & Dermott (1999) illustrates this geometry;
note however that those authors present this geometry as an unsta-
ble configuration, whereas we can see in the Poincaré sections that
this configuration describes both stable and unstable periodic or-
bits, each of slightly different values of the particle’s eccentricity
and semi-major axis.) In the (x,y) section (right panel), we see that
in this configuration, the particle’s perihelion longitude librates al-
ternately at —90° and +90° from Jupiter’s longitude; this means
that conjunctions with Jupiter occur near the particle’s aphelion
longitude. In terms of the critical resonant angle (Eq. 6), the sta-
ble periodic orbit at the center of the small islands has ¢ = 180,
and the corresponding libration zone can be called the apocentric
libration zone.

e The small pair of islands has a range in ¢ of only about +30°
from each island’s center, whereas the large pair of islands has a
range in ¥ of +£90°. In terms of the critical resonant angle, the max-
imum libration amplitudes are 60° and 180° for the apocentric and
pericentric librations, respectively.

o For the pericentric libration zone, it is interesting to note that
the island centered at ¢ = 0 has a range of semi-major axis slightly
different than the one centered at ¢ = 180; this is due to the differ-
ences in the osculating elements at alternating perihelion passages
of the test particle, one of which occurs at closer distance to Jupiter.

Next, comparing the middle row of panels with the bottom
and top rows in Figure 2, we observe qualitative and quantitative
changes in the resonance structures for slightly different values of
the Jacobi constant. In the bottom row, the pair of resonant islands
at ¢ = 0,180° are larger than in the middle row, and centered at
larger values of e; the pair of islands at ¢ = 90°,270° are smaller
than in the middle row, and centered at smaller values of e. In con-
trast with the middle panel, the separatrix bounding the large pair
of islands in the bottom row does not pass through ¢ = 0, instead
there is a second separatrix that passes though e = 0 and it bounds
the small pair of islands. In the top row, only the large pair of is-
lands is visible, the small pair having nearly vanished at this value
of the Jacobi constant.

We recorded the locations of the stable resonance centers as
well as the minimum and maximum values of the osculating semi-
major axis a for all the libration zone islands (as visible in the (¥, a)
and the (e cos i, e sin i) planes).

In Figure 3 we plot the resonance width of the 2/1 MMR in the
(a,e) plane. The plot shows the numerically determined resonance
centers (and the corresponding resonance boundaries in semi-major
axis) for one of each of the pair of islands representing the peri-
centric resonance zone and the apocentric resonance zone. For the
pericentric zone, we plot the boundaries of the libration island cen-
tered about ¢y = 180°. (The boundaries for the other libration is-
land, centered at ¢ = 0, differ only very slightly from those of the
island centered about i = 180°.) For the apocentric zone, we plot
the boundaries centered at ¢y ~ 90°. (The boundaries for the other
island centered at y = 270° are nearly indistinguishable from those
of the island centered about ¥ = 90°.) We observe that as the ec-
centricity approaches zero the pericentric resonance zone (shown
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Figure 2. Poincaré sections near Jupiter’s 2/1 interior resonance for three values of the Jacobi constant, decreasing from top to bottom, as indicated by the legend
at the top of each panel. The left column of panels displays the Poincaré sections in the (¢, a) plane, the middle column in the (ex, ey) = (e cosy, e siny)
plane. In the right panel we plot the Poincaré sections in configuration space, (x, y), in the rotating frame; the locations of the Sun and Jupiter are fixed in this

plane at (x, y) = (—u, 0) and (x, y) = (1 — u, 0), respectively.

with the red curves) shrinks and diverges towards the left of the
figure (i.e., towards smaller values of semi-major axis) while the
apocentric resonance zone (shown with the magenta curves) di-
verges towards the right of the figure (i.e., towards larger values of
semi-major axis). The width of the pericentric zone shrinks rapidly
as the eccentricity decreases. The width of the apocentric branch
also decreases rapidly as the eccentricity decreases, but it is non-
monotonic with eccentricity: it achieves a maximum width at an
eccentricity of about 0.038 and it vanishes at an eccentricity ex-
ceeding ~ 0.063. At the very small eccentricities, the resonant li-
brations far from the nominal resonant location are maintained by
fast apsidal precession, with precession timescales of just a few
times the orbital period.

In the pericentric libration zone (leftward of the nominal reso-
nance location) the value of the particle’s eccentricity at the center
of the resonance increases rapidly as the semi-major axis of the
resonance center approaches the nominal resonant value, dres =

(1/2)%/3 = 0.630. We can recognize that this behavior is related
to the concept of "forced eccentricity" which diverges due to the
small divisor in classical analytical perturbation theory for first or-
der MMRs (e.g. Brouwer & Clemence 1961; Murray & Dermott
1999). In the context of planetary ring dynamics (e.g., a ring par-
ticle perturbed by a moon), this pericentric branch of the MMR is
called a Lindblad resonance, a terminology apparently originating
in galactic dynamics (Murray & Dermott 1999).

The existence of two branches of the first order resonances is
consistent with "the second fundamental model of resonance" de-
veloped by Henrard & Lemaitre (1983) for isolated mean motion
resonances at low eccentricities. A related perturbative analysis
of the averaged planar elliptic restricted three body model by
Henrard et al. (1986) showed that the effect of the perturber’s
eccentricity produces additional fine structure with the possi-
bility of librations about the perturber’s own pericenter. Nu-
merical analyses of Jupiter’s interior 2/1 and 3/2 MMRs in the

MNRAS 000, 1-10 (2020)



First Order Resonance Widths 5

0.1

0.08

0.06

0.04

0.02

Figure 3. The libration center and width of Jupiter’s 2/1 interior resonance for eccentricities in the range 0-0.1. The red curves (towards the left) indicate the
pericentric libration zone centered at ¢ = 180° (equivalently, critical resonant angle ¢ centered at 0), and the magenta curves (towards the right) indicate the
apocentric libration zone centered at ¢y = 90° (equivalently, critical resonant angle ¢ centered at 180°). The points indicate the stable periodic orbit at the
center of the corresponding resonant island, and the horizontal bars indicate the maximum range of librations of a.

planar elliptic restricted three body model confirmed the exis-
tence of such complexity and chaotic dynamics caused by the
perturber’s eccentricity (Murray 1986). In three-dimensional
N-body numerical simulations, including the effects of Saturn
and other planets, even more sources of chaotic dynamics have
been identified within these resonances, such as secondary res-
onances between MMR librations and secular modes (Mor-
bidelli 1996; Ferraz-Mello 1999; Lecar et al. 2001). However,
the associated chaotic diffusion timescales are very long, many
orders of magnitude longer than the resonance libration peri-
ods, indicating that the underlying phase space structure based
on the simplest PCRTB model remains relevant to understand-
ing the dynamics.

3.2 Bridges between neighboring first order MMRs

We computed the resonance widths of the 3/2 and the 4/3 inte-
rior MMRs of Jupiter in a similar way as described above for
the 2/1 MMR. These MMRs also have two branches of the res-
onance zone — the pericentric zone and apocentric zone — in the
(a,e) plane, analogous to those of the 2/1 MMR. In the Poincaré
sections, the 3/2 MMR exhibits a chain of three libration islands
centered at approximately ¢ = 0,120,240 for the pericentric
branch, and another chain of three islands centered approximately
at ¥ = 60°,180°,300° for the apocentric branch. The 4/3 MMR
exhibits a chain of four libration islands centered approximately at
¥ = 0,90°,180°,270° for the pericentric branch, and at approx-
imately ¢ = 45°,135°,225°,315° for the apocentric branch. In
Figure 4 we show the boundaries in the (a,e) plane of one rep-
resentative libration island for each case. For the 2/1 MMR, the
representative pericentric island is centered at ¢ = 180 and the rep-
resentative apocentric island is centered at s = 90°. For the 3/2, the
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pericentric island shown is centered near ¢ = 120° and the apoc-
entric island is centered near ¢ = 60°. For the 4/3, the pericentric
island shown is centered near ¢y = 90°; the apocentric branch of
the 4/3 is not shown because it has mostly dissolved into a chaotic
zone for this choice of perturber mass.

In examining Figure 4, we observe a surprising feature: the
apocentric branch of the 2/1 MMR smoothly transitions into the
pericentric branch of the 3/2 MMR at very small eccentricities, and
the apocentric branch of the 3/2 interior MMR smoothly transi-
tions into the pericentric branch of the 4/3 interior MMR. In the
(a,e) plane these transitions present as low eccentricity "bridges"
between neighboring first order MMRs.

The mechanism of these transitions is illustrated in the se-
quence of Poincaré sections shown in Figure 5. In this figure,
the top row of Poincaré sections is for a Jacobi constant value
C; = 3.030. Focussing on small eccentricities near the origin in
the (ecosy,esiny) plane, we see a chain of four islands with
approximately 4-fold symmetry, with centers at e = 0.03; these
are the resonant islands of the 4/3 MMR’s pericentric resonance
branch. This four-island chain is also visible near the upper bound-
ary in the (,a) plane where we can observe that their centers are
close to but slightly displaced from the nominal resonant value,

Ares = (3/4)% = 0.825. In the second row in Figure 5, we
show Poincaré sections for a slightly larger Jacobi constant value,
Cy = 3.040. Here we observe that the four-island chain near the
origin of the (e cosy, e siny) plane has shrunk in size and its four-
fold symmetry is significantly deteriorated: the island centered at
¥ = 0 is much smaller in size than the other three (just barely
a "nub"), while the other three islands are larger, of similar size
to each other, and they are closer to a three-fold symmetry. In the
third row in Figure 5, we show Poincaré sections for a slightly even
larger Jacobi constant value, C; = 3.049. Here we observe that
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Figure 4. The libration centers and widths of Jupiter’s 2/1, 3/2 and 4/3 interior resonances at low eccentricities, 0 < e < 0.1. The nominal location of each
resonance is indicated by the short vertical lines near the bottom of the figure. Each resonance has two branches, the pericentric zone (leftward of the nominal
resonance location) and the apocentric zone (rightward of the nominal resonance location). The apocentric zone of the 2/1 resonance smoothly connects to the
pericentric zone of the 3/2, and the apocentric zone of the 3/2 smoothly connects to the pericentric zone of the 4/3 resonance.

the transformation of the four-island chain to a three-island chain
is nearly complete: the island centered at ¢y = 0 has nearly van-
ished, and the other three islands (smaller in size than previously)
are of similar size to each other, and they are visibly close to a
three-fold symmetry. This three-island chain can be recognized as
the apocentric branch of the 3/2 MMR whose centers are located at
¥ = 60°,180°,300° and at a slightly larger value of the semi-major
axis than the nominal resonant value ares = (2/ 3)% =0.763.

We see that in this transition one of the four pericentric libra-
tion islands of the 4/3 MMR, the one centered at ¢ = 0, vanishes
at some small eccentricity, while the other three pericentric libra-
tion islands centered near y = 90°,180°,270° gradually evolve
into the three apocentric libration islands of the 3/2 MMR centered
near y = 60°,180°,240°, respectively. This means that when we
represent the resonance widths in the (a,e) plane, only three of
the four pericentric libration zones of the 4/3 MMR continuously
evolve into the three apocentric libration zones of the 3/2 MMR
at low eccentricities. Also to be noted, the 4/3 MMR’s two islands
centered near = 90°,270° (which evolve into the 3/2 MMR’s
apocentric islands centered near i = 60°,240°, respectively) have
the same trace in the (a, e) plane, but the other two islands, centered
aty = 0,180° trace differently in the (a,e) plane.

Similarly, in the low eccentricity regime, only two of the three
pericentric libration islands of the 3/2 MMR (the two centered near
¥ = 120°,240°) evolve into the two apocentric libration islands of
the 2/1 MMR (those centered near v = 90°,270°, respectively).
The third pericentric island of the 3/2 MMR, the one centered at
¥ = 0, vanishes as the 3/2 pericentric zone evolves into the chain
of two islands of the apocentric branch of the 2/1 MMR.

We mention a notable difference between the 2/1 MMR ver-
sus the 3/2 and 4/3 MMRs which is obvious in the Poincaré sec-
tions: the latter have visible and significant chaotic zones at the res-

onance boundaries, whereas no chaotic zones are visible for the 2/1
MMR at low eccentricities. The chaotic zones are anticipated from
the resonance overlap criterion for conservative dynamical systems
(Chirikov 1979) applied to first-order (p + 1)/p MMRs at low ec-
centricity of the test particle (Wisdom 1980) which predicts reso-

nance overlap leading to chaos for p 2 O.Sl,u_%, ie, p 2 4 for
the value of y for Jupiter-Sun.

3.3 Resonance widths over the full range of eccentricity

The primary focus of this work has been the phase space struc-
ture and widths of first order resonances at low eccentricities. For
completeness, we undertook to measure the resonance widths of
Jupiter’s interior 2/1, 3/2 and 4/3 MMRs at higher eccentricities
as well. Figure 6 plots these widths in the (a,e) plane for the full
range, 0 < e < 1.

At higher eccentricities the center of the pericentric zone
closely follows the nominal resonance location at ares = ((p +

1)/ p)f»%. Its width however is not monotonically increasing with
eccentricity, as the pendulum model for MMRs would indicate.
Rather, the pericentric zone width achieves a maximum and then
decreases with increasing eccentricity. In the case of the 3/2 and
4/3 MMRs, the pericentric zone vanishes near eccentricity 0.8 and
0.5, respectively, and reappears again at eccentricity near 0.95 and
0.80, respectively.

The apocentric libration zone also exhibits several disconti-
nuities. As mentioned above, at low eccentricities, this zone exists
only for eccentricities below a critical value, e.;;. But it reappears
at eccentricities above the planet-crossing value, e. = ag) — 1;
moreover, for the 4/3 MMR, it vanishes and reappears multiple
times at even higher eccentricities.
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Figure 5. The phase space for low eccentricity orbits in proximity to the 4/3 and the 3/2 interior resonances of Jupiter. From the top row of panels to the
bottom row of panels, the sequence of Jacobi constant values of 3.030, 3.040 and 3.049 traces the transition from the 4/3 pericentric resonance zone to the
3/2 apocentric resonance zone. The left panels show the Poincaré sections in the (a, ¢) plane; the projections of these same sections in the (e cosy, e siny)

parameter plane are shown in the middle panel.

These discontinuities at high eccentricities were explained by
Wang & Malhotra (2017) with reference to the shape of the 3/2
resonant orbit in the rotating frame; a similar explanation applies
to the case of the 4/3 MMR. (Resonance widths at high eccentric-
ities for many exterior resonances have been investigated in Lan
& Malhotra (2019), and these also show multiple discontinuities.)
The reason for these discontinuities is that at high eccentricities the
trace of the resonant orbit in the rotating frame cuts the circle of
radius 1 — p at multiple points, giving rise to new pairs of stable
and unstable equilibrium points in phase space.

Also worthy of mention are some differences amongst the
phase space structures of the 2/1, 3/2 and 4/3 MMRs. As men-
tioned previously, in the case of the 2/1 MMR, the Poincaré sec-
tions have an approximate two-fold symmetry of the two libration
islands of the pericentric branch (respectively, apocentric branch)
and are only slightly different from each other in their presenta-
tion in the (a, e) plane. However, the three pericentric (respectively,
apocentric) libration islands of the 3/2 MMR depart more notice-
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ably from three-fold symmetry. Their libration centers and bound-
aries in the (a,e) plane are also more noticeably different from
each other. Even greater deviations (from four-fold symmetry) are
found amongst the four libration islands of the pericentric branch of
the 4/3 MMR, leading to correspondingly greater differences in the
(a,e) resonance boundaries of the different libration centers. These
are plotted in Figure 7.

4 SUMMARY AND DISCUSSION

We undertook a non-perturbative computation of the resonance
widths at low eccentricities of first order MMRs, specifically
Jupiter’s interior 2/1, 3/2, and 4/3 MMRs in the planar circular
restricted three body model. Our approach is numerical and uses
Poincaré sections to measure the resonance libration zone bound-
aries in the numerically computed (a,y) section where a is the
osculating semi-major axis and y is the longitude of conjunction
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Figure 6. The libration centers and widths of Jupiter’s 2/1, 3/2 and 4/3 interior resonances for the full range of eccentricities, 0 < e < 1, for representative
pericentric and apocentric libration islands, in each case. The center of the pericentric libration island is indicated by the filled circles, that of the apocentric
libration island is indicated by the open circles. The maximum libration range of a is indicated by the horizontal bars and thick curves (pericentric zone) and
thin curves (apocentric zone).
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Figure 7. Similar to Fig. 6, but including additional libration islands for each MMR; these are over-plotted in gray.

MNRAS 000, 1-10 (2020)



relative to the longitude of perihelion. By computing Poincaré sec-
tions for a range of Jacobi constant values, we investigated the res-
onance structures for a range of eccentricities. For small eccentric-
ities, e < 0.1, we obtained the following results for the resonance
widths traced in the (a,e) plane.

(i) First order interior MMRs present two distinct libration
zones, the "pericentric" and "apocentric" librations. The center of
the pericentric libration zone occurs at a < ares Whereas that of
the apocentric libration zone occurs at a > ares, Where ares =

(p/(p + 1))% is the nominal location of the (p + 1)/p MMR. As
the eccentricity decreases, the resonance centers diverge away from
ares and their widths shrink (Fig. 3 and Fig 4).

(i) The apocentric libration zone is discontinuous: it exists only
for eccentricities below a critical value, ect. From our numerical
analysis for Jupiter’s MMRs, we find eqjy = 0.063 and 0.055 for
the 2/1 and the 3/2 MMRs, respectively. By referring to analytical
results (Henrard & Lemaitre 1983; Dermott et al. 1988), we infer
that eg¢ scales with perturber mass, u, and MMR integer, p, as

~ (u/p)3.
(iii) Neighboring first order MMRs are connected with "low ec-

centricity bridges" (Fig. 4): the apocentric libration zone of the
(p + 1)/p interior MMR smoothly transitions into the pericentric
libration zone of the (p + 2)/(p + 1) interior MMR. Only the 2/1
MMR has a pericentric libration zone apparently not connected to
any other MMR; for e approaching zero, its location diverges to
small values of a. (However, we did not investigate very low val-
ues of a and we cannot rule out bridges with closer-in resonance
structures, including the 1/1 MMR and the Lagrange points.)

(iv) In terms of the critical resonance angle, ¢, the maximum
libration amplitude of the pericentric librations is up to 180°, but
that of the apocentric librations does not exceed 60°. Only Jupiter’s
2/1 MMR reaches the maximum libration amplitudes (see Fig. 2);
the 3/2 and the 4/3 MMRs under-achieve these maximum ranges,
in part because their resonance separatrices broaden into chaotic
zones even at low eccentricities, e < 0.1 (Fig. 5).

We mention a few other notable features that emerge from our
non-perturbative analysis that are different from the analytical per-
turbative treatments and numerical averaging approaches in the lit-
erature. These features reveal the limitations of the analytical and
numerical averaging approaches.

(i) The resonance separatrix does not vanish at low eccentrici-
ties. It is very much evident in the Poincaré sections where we see
that the small eccentricity apocentric libration zone is delineated
by its own separatrix in the (e cosy, e siny) plane (Figure 2). This
feature has not been found in previous analyses which have been
based on the use of the critical resonance angle, ¢. We think that
our choice of ¢ for visualizing the Poincaré sections is important
in revealing the existence of the separatrix at low eccentricities.

(i1) At very low eccentricities, the resonance center is visibly
displaced from the nominal values of semi-major axis, dres =

(p/(p + 1))%. The chain of libration islands also deviate signif-
icantly from (p + 1)-fold symmetry. These are both owed to the
gradual evolution of the apocentric zone of the (p + 1)/p MMR
into the pericentric zone of the neighboring (p +2)/(p + 1) MMR
in the low eccentricity bridges between first order MMRs. The de-
viations from (p + 1)-fold symmetry are greater for larger values of
D.

(iii) The low eccentricity bridges between adjacent first order
MMRs are understandably not revealed in previous analyses which
treat every MMR in isolation to build a single-resonance theory,
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either with analytical perturbation theory or with numerical aver-
aging.

It is noteworthy that the apocentric libration zone and
the low eccentricity bridges dissolve into chaotic zones in close
proximity to the perturber. We found numerically that this oc-
curs for the 4/3 MMR in the Jupiter-Sun case, consistent with
the analytical criterion for first order resonance overlap (Wis-
dom 1980). We can anticipate that for smaller y, the dissolution
of the low eccentricity bridges would occur at even closer prox-
imity to the perturber. For example, for ;1 = 3 x 107 (a mass
ratio common in exo-planetary systems and amongst the regu-
lar satellite systems of the giant planets, and similar to that of
Neptune/Sun), the low eccentricity bridges could exist for many
more first order (p + 1)/p MMRs, up to p = 10.

Our non-perturbative investigation has revealed several as-
pects of the fine structure of first order MMRs at low eccentricities
not found in previous studies. Our novel finding of low eccentricity
bridges between first order resonances has implications for radial
transport in planetary systems, provided these bridges are strong
enough to persist under the additional perturbations present in real
systems. For example, under external dissipative effects (solar radi-
ation forces, solar mass loss, gas drag, tidal dissipation, etc.), adi-
abatic resonant migration along the low eccentricity bridges may
effect transport across large radial distances in planetary systems.
This has implications for our current understanding of the ra-
dial mixing and provenance of small body populations as well
as resonant capture and migration of planets and satellites, all
in the low eccentricity regime. We leave these interesting appli-
cations to a future investigation.

DATA AVAILABILITY

The data (or codes to generate the data) underlying the fig-
ures in this article are available at https://github.com/
renumalhotra/2020-first-order-mmrs.
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