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ABSTRACT

The recent characterization of transiting close-in planets has revealed an intriguing population of
sub-Neptunes with highly tilted and even polar orbits relative to their host star’s equator. Any
viable theory for the origin of these close-in, polar planets must explain (1) the observed stellar
obliquities, (2) the substantial eccentricities, and (3) the existence of Jovian companions with large
mutual inclinations. In this work, we propose a theoretical model that satisfies these requirements
without invoking tidal dissipation or large primordial inclinations. Instead, tilting is facilitated by
the protoplanetary disk dispersal during the late stage of planet formation, initiating a process of
resonance sweeping and parametric instability. This mechanism consists of two steps. First, a nodal
secular resonance excites the inclination to large values; then, once the inclination reaches a critical
value, a linear eccentric instability is triggered, which detunes the resonance and ends inclination
growth. The critical inclination is pushed to high values by general relativistic precession, making

polar orbits an inherently post-Newtonian outcome. Our model predicts that polar, close-in sub-
Neptunes coexist with cold Jupiters in low stellar obliquity orbits.

1. INTRODUCTION

Although a large fraction of the multi-planet systems
discovered by the Kepler spacecraft exhibit a great degree
of coplanarity (Winn & Fabrycky 2015), some systems
possess significant mutual inclinations (Mills & Fabrycky
2017; Zhu et al. 2018; Xuan & Wyatt 2020), pointing
to unruly dynamical histories. Similarly, a large stel-
lar obliquity —the tilt between the planet’s orbital plane
and the stellar equator— can also indicate a period of dy-
namical upheaval. Ensembles of obliquity measurements
can be used to probe the origin and dynamics of tilted
systems (e.g. Fabrycky & Winn 2009; Morton & Winn
2014; Munoz & Perets 2018), providing a powerful tool
to study planet formation.

Owing to observational selection, most measurements
of stellar obliquity have been made for hot Jupiter sys-
tems. Naturally, most theoretical efforts have focused on
explaining the obliquities of these systems. Lower mass
planets, however, are far more common than hot Jupiters
(Winn & Fabrycky 2015), and are less likely to realign the
star via tidal interactions. Consequently, smaller-mass
planets offer a more representative and a more pristine
probe into the typical planet formation process. For-
tunately, modern instruments and novel analysis tech-
niques are beginning to provide obliquity measurements
for planets in the sub-Neptune category. In Figure 1, we
display a subset of systems with obliquity measurements,
highlighting 13 systems hosting sub-Neptunes, 5 of which
are dramatically tilted into polar orbits.

Among the peculiarities of polar Neptunes, we high-
light their propensity to have Jovian outer companions
(Yee et al. 2018), their non-negligible eccentricities (Cor-
reia et al. 2020), and their occurrence in compact multi-
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planet systems (Dalal et al. 2019). These properties limit
the applicability of theoretical models developed to ex-
plain obliquities in hot Jupiters systems. For example,
tilting the entire protoplanetary disk (e.g., Batygin 2012)
fails to explain why the inner planets in HAT-P-11 and
m Mensae have substantial mutual inclinations relative
to their outer giant planet companions (Xuan & Wyatt
2020; Damasso et al. 2020; De Rosa et al. 2020), nor
does it account for the significant eccentricities of close-
in sub-Neptunes (e.g., HAT-P-11b has e ~ 0.2). The
widely invoked mechanism of high-eccentricity migration
that naturally leads to large obliquities of planets lack-
ing nearby neighbors, is halted by the presence of other
close-in planets (Mustill et al. 2015), thus failing to ex-
plain polar compact multi-planet systems like HD-3167
(Dalal et al. 2019). Moreover, the high-eccentricity mi-
gration hypothesis does not address the origin of the large
initial inclinations required for the mechanism to operate
(e.g., 2 70° as proposed in GJ-436, Bourrier et al. 2018).

In this work, we propose a model that can explain ec-
centric, polar orbits of close-in planets that requires only
the presence of an outer Jovian companion and a slowly
decaying outer protoplanetary disk. As the disk decays,
high stellar obliquities are generated via a two-step pro-
cess: (1) a nonlinear secular resonance that excites or-
bital inclination and (2) saturation of inclination via a
linear eccentric instability. This process produces highly
inclined planets, often with eccentric orbits, and does not
require extreme primordial inclinations of the planets or

the disk.

2. TWO-PLANET SYSTEMS WITH DISPERSING DISKS

Close-in planets (a;, < 0.1 au) are often accompanied
by cold Jovians (aout ~ 1—5 au) (Bryan et al. 2019; Zhu
& Wu 2018; Fernandes et al. 2019). A subset of these
systems with inner sub-Neptunes have high obliquities
(see Figure 1). Though a range of formation models are
still in play for close-in planets in general, the substantial
gaseous envelopes of these planets indicate that they co-
existed with a protoplanetary disk at some point in their
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Fia. 1.

Measured stellar obliquity for close-in planets (a < 0.1 au) as a function of the host star’s effective temperature. The gray circles

show the sample of hot Jupiters (M, > 0.3M; and P < 10 days) with reliable obliquity measurements (1-o errors < 20°). The larger red
circles show the sample of planets with either sizes or masses comparable to or smaller than that of Neptune, specifically R, < 6Rg and/or
M, < 30Mg. The data is taken from the TEPCat Catalog as of August 2020 (Southworth 2011, http://www.astro.keele.ac.uk/jkt/tepcat)
with most values corresponding to projected stellar obliquities, though a small fraction are non-projected values. When both are available,

we use the latter.

evolution (Lee & Chiang 2016). We describe below our
motivation for a simplified physical model of a two planet
system with an outer, slowly dispersing, protoplanetary
disk. We also derive an analytic model for the secular
evolution of such a system.

2.1. Initial conditions

The innermost regions of protoplanetary disks are com-
plex environments whose properties are likely set by the
interplay between high energy stellar radiation and mag-
netic fields (Dullemond & Monnier 2010; Ercolano & Pas-
cucci 2017). The large and diverse population of “tran-
sition” disks (those with inner regions depleted of gas,
dust, or both) indicate that planetary systems interior to
1 AU might coexist with a more massive, external disk
(e.g. Espaillat et al. 2014; Andrews et al. 2018). The
existence of transition disks with inner holes of <5 AU
motivate our simplified model in which the (dynamically
relevant) protoplanetary disk lies near but exterior to the
orbit of any Jovian planet located at 2 1 au.

We consider systems composed of two planets with
masses Mi, and My, evolving secularly in the presence
of an outer gas disk. The disk is assumed to follow a
Mestel profile (M (< r) o« r), with a total mass Maisk (%),
and inner and outer radii given by R;, and Ry, respec-
tively. In addition to the mutual perturbations between
the planets, the outer planet is coupled to the gravita-
tional potential of the disk, while the inner planet is cou-
pled to the quadrupolar field induced by stellar rotation
and undergoes apsidal precession from post-Newtonian
effects. The planet orbital elements are ain, €in, fin, Win
and ), for the inner planet, and similarly for the outer
planet.

We evolve the system throughout the gas dispersal
phase, which is short enough for tidal dissipation with
the star to be ignored. The system is assumed to have
formed in near-alignment (i.e., with small obliquities and
relative inclinations). Thus, any high inclinations are

generated self-consistently, which is an important dis-
tinctive feature of this model.

2.2. Resonantly excited inclinations

Inclinations can be resonantly excited if the nodal pre-
cession rates of the inner and outer planets encounter a
commensurability (e.g. Ward et al. 1976). In the pres-
ence of an external disk, the nodal precession rate of the
outer planet is proportional to Mgisk and typically fast
(|Qut| > |Qn|). As the disk disperses, |Qoys| decreases,
inevitably reaching (|Qout| = |€4n|) in a process termed
“secular resonance passage” or “scanning secular reso-
nances” (Heppenheimer 1980; Ward 1981).

The Hamiltonian of the secular system (Equation Al)
can be reduced to a simplified model for e;,, = 0 (Equa-
tion B12). The simplified model mimics the ‘second
fundamental model of resonance’ (Henrard & Lemaitre
1983), which is a one-degree-of-freedom Hamiltonian
with a pair of canonically conjugate variables, and a con-
served quantity (Equation B6) proportional to

A= Minailn/2(l —cos Iin) + Mouta(ln/lf(l —cos Lout) - (1)
The model has one free parameter A, which defines a

“distance to resonance” (Appendix B)

2
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Iout,O
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where £4isk measures the relative precession rates of the
outer planet (driven by the disk) and the inner planet (~

|Q0ut|/|Qm]), and 7, the relative strength of the stellar
quadrupole and the two-planet interactions. These are
defined as follows,

aglt (1 — €2,0)%%  Ma(t)

Caisc(t) = —2 ; 3
= PR Ry M
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and (e.g. Tremaine et al. 2009)

2.3
Ne= 2Jo M, R*aout (1 — 2 )3/2. (4)

5 out
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In Equation (4), J is the star’s second zonal harmonic,
which can be related to the stellar rotation period P, by
(Sterne 1939)

kg 471'2 Ri
3 PG (5)

where ks is the tidal Love number, which is ~ 0.2 for the
fully convective, pre-main sequence (PMS) stars that we
consider here (e.g., Claret 2012).

Resonance crossing occurs when A = 0, i.e. when
€aisk = 1 (Eq. 2). In this simplified model, resonant
capture is guaranteed if the following conditions are met
(Henrard & Lemaitre 1983): (1) A > 0 when A = 0,
which requires a decaying disk with initially enough mass
such that &gisc > 1; (2) the starting inner planet in-
clination I, ¢ is sufficiently low, so fing < Iincap X
[Tout /(1 +n,)]"/? (Equation B14); and (3) the resonance
is crossed with a sufficiently small My;sx to preserve adi-
abatic invariance (Equation B17).

The constraint that the resonance is crossed “adiabat-
ically” can be written as

2 X~

dlo Mi
Tadia < ‘%dtdSk = 7—disk(t) (6)
where
2P, M, a3, _
Tadia L= €22 s (L)Y (7)

3
3 Mour ag,

is the adiabatic time, P, is the inner planet’s orbital
period, and Tg;sk is the disk dispersal time, which can
itself be a function of time. The degree of adiabaticity
can be quantified in the “adiabatic parameter” z.q =
Tdisk/Tadia- As we show in Section 3, the three conditions
for resonance capture are met for a wide range of realistic
initial conditions.

During resonant capture, the system follows a slowly
evolving fixed point in phase space, which corresponds
to Qi — Qout = 7™ and

L EOP [ Lwo 7°
cos Iin(t) =1 — 5 [2(1 n 77*)} (8)

(1+\/17A3)% +A(1+x/1—A3)_%, A<1
2v/A cos (% tan~t VA3 — 1), A>1
(9)

(Petrovich et al. 2013). For A > 1, 2* ~ v/3A. There-
fore, after the resonance has been crossed, and gisx — 0,
it is easy to check that cos I, — 0, i.e. the inner orbit in-
exorably approaches a polar configuration if allowed by
the conservation of angular momentum deficit (Equa-
tion [1]; Iout,0 2 3.7° for our fiducial parameters) and if
the orbit remains circular. The latter constraint repre-
sents the aforementioned second phase of our mechanism,
which we describe below.

2.3. Exponential eccentricity growth and resonance
detuning

In the simplified treatment of resonant capture, we
have assumed e;, = 0 and arbitrary eq,; at quadrupo-
lar order”.

A simplified linear stability analysis of the inner or-
bit (Appendix C) shows that initially circular orbits are
unstable to eccentricity growth when

4+ 4n, + ner < sin? L. < 4+ 4n. + ner (10)
10 + 57, " 54

where

8GM, a?

out

—out X (1 —¢?
1
2 ay Moy

out

)2 (11)

NGR =

measures the relative strength of GR corrections with
respect to the two-planet interaction. For fiducial pa-
rameters, ngr ~ 20, which inhibits eccentricity growth
(Fabrycky & Tremaine 2007; Liu et al. 2015).

Because I;,, approaches the unstable region (Equa-
tion 10) from below, the relevant threshold is

I =sin™! A+ dn. + e v (12)
crit 10 + 57]*

which is a generalization of the well-known von Zeipel-
Lidov-Kozai critical angle I;, ~ 39.2°, recovered when
Nx = ner = 0.

An important consequence from Equation (12) is that
all inclinations are stable if

nGr > 6+ 1. (13)

in which case the resonant mechanism would pump incli-
nations all the way to 90° while the orbit remains circular
(Equation 8). In Liu et al. (2015), the authors also con-
sider the effect of oblateness, but only for zero-obliquity,
in which case J> can only amount to a stabilizing effect.
Indeed, from equation 50 of that paper, one can derive
that the unconditional stability requirement in such a
case is ngr > 6 — %77*. Both conditions reduce to Equa-
tion (36) of Fabrycky & Tremaine (2007) when 7, = 0.

The limit of n, > 1 and ngr = 0 is also interest-
ing. In this case, I ~ 63.4°, known as the “critical
inclination” in geo-satellite dynamics, which marks the
boundary between prograde to retrograde apsidal pre-
cession. Around 63.4°, there is a narrow unstable region
of width AT = 2/n,. Therefore, in this limit, resonance
detuning takes place at [, ~ 63°, saturating the final in-
clination to this value. Conversely, for I to be greater
than 63.4°, one must require

6471 >ner >4 (eccentric, inclined orbits) (14)

Consequently, values of ngr greater than 4 are instru-
mental in overcoming this early-onset saturation of incli-
nation, and in tilting orbits toward nearly polar configu-
ration. In this sense, the creation of polar-orbit planets
is inherently a post-Newtonian effect.

4 We have checked numerically that octupole-level corrections
play a minor dynamical role due to strong relativistic and Jo pre-
cession, at least for eout < 0.6 in our fiducial set-up.
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Fic. 2.— Inclination and eccentricity evolution of a Neptune-mass planet orbiting a Solar-mass star with an initially nearly circular
(ein = 0.01) and coplanar orbit (I;, = 1° relative to the host star’s equator). We place a 4 M gas giant at 2 au in a circular orbit with
inclination Iyt = 5°, and a coplanar disk (relative to star’s equator) with edges at Ri, = 3 au and Rout = 30 au whose mass decays

as Mgk = 50M;/[1 4 t/(1Myr)]3/2. The star has a radius of 1.3Ra, a Love number ks = 0.2, and spin period of P, = 7 days. In the
left panels we set a;, = 0.05, satisfying the stability condition ngr > 6 + 14, thus leading to resonance capture into a polar orbit and
no eccentricity instability. The red dashed line shows the analytical model from Equation (8) that perfectly reproduces the numerical
integrations. In the middle panels we set a;, = 0.06, predicting an instability at I.;4 = 81.3° from Equation (12), leading to exponential
eccentricity growth up to ey, ~ 0.9 and detuning of the resonance. The eccentricity-inclination oscillations are shown as a zoom-in inset
in the orange boxes. In the right panels, we set a;;, = 0.07 resulting in Iz ~ 71° and eccentricity growth up to ~ 0.5. The subsequent
tidal evolution is ignored in this example as we focus mainly on the inclination excitation.

3. PREDICTED OBLIQUITIES
3.1. Behavior of the fiducial system

To test the predictions of the analytical model, we
numerically integrate the full secular equations of mo-
tion (A7-A9) for a range of parameters and initial condi-
tions. The parameter space may appear hopelessly multi-
dimensional, but most of the physics is contained in the
values of ngr and 7, which determine if and when incli-
nation growth is saturated via resonance detuning.

In Figure 2, we show three examples of an initially
coplanar Neptune-mass planet that undergoes inclination
growth, with ngr ~ 25.4 and 7, ~ 18.9 (left panels),
ner =~ 12.2 and 7, ~ 7.5 (middle panels), ngr ~ 6.6
and 7, ~ 3.5 (right panels). In the first case, condition
(13) is satisfied, and the orbit reaches a final inclination
of 90° (black line, top) while remaining nearly circular
(ein < .02) (black line, bottom). In the second case,
only the condition (14) is satisfied, and the inclination
grows to I.i ~ 81.3° (black line, top), as predicted by
Equation (12). As I is reached, eccentricity grows
exponentially until quasi-regular eccentricity-inclination
oscillations are established (see the zoom-in inset in mid-
dle panels). The third case is similar to the second but
with lower I3 and lower-amplitude eccentricity oscilla-
tions. We overlay in red the theoretical (adiabatic) in-
clination growth given by Equation (8). In all examples,
the agreement is excellent.

3.2. Numerical experiments: assessing the adiabaticity

In Figure 3 we show the values of the inner planets
inclination and eccentricity long after the resonance is

crossed from a suite of numerical experiments where we
vary the disk dispersal timescale given in units of the adi-
abaticity parameter T,q = Tdisk/Tadia- Fach panel from
left to right corresponds to a different semi-major axis
ain and the other parameters are the same as in Figure 2.
We observe that whenever a system evolves adiabatically,
i.e., when z,q4 > 1, there is resonant capture (inclination
grows toward I.;), in accordance with the theory. On
the other hand, for non-adiabatic resonance passage, the
planet still receives a kick in inclination, Iyon—aq (€-g.,
Quillen 2006). The magnitude of this excitation is em-
pirically well described by

° Tout,0 20 1/3 2/3
Thon—aq =2 22° | ——  — 15
oned { 40 (1 77*)] Fad (15)

(red lines in Figure 3). In most cases, Inon—ad < Ierit,
which means that the eccentricity instability is not trig-
gered, and the orbits remain circular.

All the systems captured into resonance have post-
capture inclinations that are consistent with either the
predicted polar state for stable systems (panel a with
ain = 0.05 au), or with I for the unstable systems
(panels b, ¢, and d). The post-capture eccentricities of
the unstable systems (panels f, g, h) oscillate in time.
Conversely, systems that are not captured into resonance
(with adiabaticity parameter z,q < 1) exhibit moderate
inclination growth with (I, ~ 10 — 40°) and no eccen-
tricity excitation.

3.3. Population predictions
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Fic. 3.— Post-resonance inclinations and eccentricities as a function of the disk depletion timescales expressed as a function of the
adiabaticity parameter T,q = Tdisk/Tadia for Neptune-like planets at 0.05 au (panels a and €), 0.06 au (b and f), 0.07 au (c and g),
and 0.06 au (d and h). The other parameters are the same as in figure 2, except that the disk is assumed to decay exponentially so
Tdisk = dlog Mgisk /dt is constant in time. The error bars indicate the minimum and maximum values centered at the mean calculated over
a window of time in [97qisk, 107gisk]. All panels show the transition from a non-adiabatic resonance crossing at z,q9 < 1 to an adiabatic one

above z,q9 > 1. The former leaves the eccentricities unperturbed and excites only moderate inclinations increasing with z,q as z_/}

2/3

(see

fitted lines). In turn, the adiabatic cases reach final inclinations in agreement with our predicted values, where for stable (GR-dominated)
systems reach inclinations of 90° (panel a), while the unstable cases reach values close to Icit (Eq. [12], shown in horizontal blue lines).
In the unstable cases, the final eccentricities reach order unity, undergoing large-amplitude e;, — I;, oscillations.

Having established the final orbital states long after
the disk dispersal, we can make predictions for the fi-
nal stellar obliquities as a function of disk properties (¢
and Myisk,0), stellar properties (Py, R, ), planetary archi-
tecture (ain, Mout, @out) and the initial inclination of the
outer planet Iyt -

Our procedure to obtain the final inclination Ig,,) is
as follows.

1. We determine if &gik(t = 0) > 1 (Eq. [3]) and
the resonance is crossed . If the resonance is not
crossed, then Ig,, = 0.

. We assess the adiabaticity of the resonance cross-
ing. If x,q > 1 (adiabatic), then Ifna = L. If
Zaa < 1 (non-adiabatic), then Ifina = Inon—ad from
Equation (15)

In Figure 4, we show the final inclination Ig,, as a
function of a;, and the stellar properties that determine
the Jo potential ko R2/P2. The resonance is only encoun-
tered outside the blue region where the stellar quadrupole
is weak enough. Here, we identify two distinct regions in
parameter space:

1. a region dominated by relativistic precession with
nar > 4 that leads to nearly polar orbits at ai, <
0.08 au (yellow to orange countours), including a
region that is stable to eccentricity perturbations
at ngr > 6 + 1y;

2. a region where the precession is dominated by the

outer planet with a;, 2 0.1 au and n,,ngr < 1
reaching inclinations of ~ 40° —50° (Lo < 51.7°).

4. APPLICATION TO OBSERVED SYSTEMS

For any known close-in Neptune in a tilted orbit, we
can use the above procedure to predict the orbital prop-
erties of an outer companion. As a proof of concept, we
focus on the HAT-P-11 system, where the nearly polar
inner planet has a known outer companion HAT-P-11c
(Yee et al. 2018). Given the semi-major axis of HAT-P-
11b (0.052 au) and reasonable assumptions for the disk
dispersal time, and for the PMS stellar radius and rota-
tional period, the resulting obliquity becomes a function
of only Moyt and bout = aout(l — egut)l/z, the unseen
companion’s mass, and its semi-minor axis, respectively.

In Figure 5, we show the expected obliquity as a func-
tion of Mgyt and boyy = aout(l—egut)l/ 2 assuming various
rotation periods representative of low-mass PMS stars
(Bouvier et al. 2014), and for rapid and slow dispersal
(top and bottom panels, respectively). From the figure,
we see that polar orbits (orange-to-yellow regions) are
produced with great likelihood if P, = 10d (right pan-
els) and to a moderate extent P, = 7d (middle panels).
The known values for HAT-P-11c are included in each
panel (red squares), with a predicted “high obliquity”
region in the rightmost panels with eccentricity excita-
tion in orange contours.

In conclusion, provided that the star rotates slowly
enough and the disk is sufficiently long-lived (typically
~ 3 Myr), our model can explain the large obliquity of



6 Petrovich et al.

resonance not encountered
(Laisk(t =0) < 1)

~ (nearly

77GR>6+77*

(polar, circular)

"7G\R\>

polar, ecc )

1 final [deg]
90

80
70
60
50

40

30

20

10

0.03 0.04 0.05 0.06

! |
0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

ai, [au]

F1G. 4.— Final stellar obliquities as a function the semi-major axis of the inner planet a;, and the rotationally-induced stellar oblateness
represented by the combination kg Ri / Pf. We fix the outer planet properties (Mout = 4Mj, aout = 2 au, and Ious = 5°) and disk evolution
as Mg = 50M 7 /(14 t/1Myr)3/2. Large obliquities are attained in the region where the resonance is crossed (£gisx(t = 0) > 1 in Eq. 3)
and the crossing is adiabatic (aq = Tqisk/Tadia > 1 in Eq. 6). Within this region, the planets acquire nearly polar orbits for ngg > 4 at
ain S 0.08 au, and eccentricity excitation occurs when ngr < 6+n4. The lower-right region is dominated by the outer planet (ngr,nx < 1)

and reaches obliquities of < 50°.

HAT-P-11b, the non-negligible eccentricity of planet b,
and the large mutual inclination with the outer planet
(54° < ipe < 126° at 1-0; Xuan & Wyatt 2020). The
nearly polar state is expected as ngr ~ 55, much larger
than the required threshold of 4 (Figure 4). Although
uncertain, the obliquity of the outer planet might not be
as low as our model predicts (Xuan & Wyatt 2020).

4.1. Other tilted systems

We can extend the analysis for HAT-P-11 to other
tilted systems based on their current orbital states, not-
ing that nearly polar planets should reside in systems
with ngr > 4, while those with moderate obliquities
(< 50°) ngr < 4 (or a non-adiabatic crossing). Using
these constraints, we both confirm the viability of our
mechanism for systems with known cold Jovians, and
predict the properties of the planets yet to be detected.
We exclude the compact multi HD-3167 and Cancri-55
shown in Figure 1, see Section 5.1:

e 7 Mensae has an obliquity of ~ 27°+58] (Kunovac

Hodzié¢ et al. 2020), M, ~ 1.1Mg, ai, = 0.068,
bouy = 2.54 AU, and M, ~ 14Mj, leading to
ner =~ 1.3, consistent with the non-polar orbit ex-
pectation (provided an adiabatic crossing). Also,
mutual inclination between b and c is 49° < 4y, . <
131° at 1-0 barely consistent with a low-obliquity
Jovian, but consistent at 2-0 (Xuan & Wyatt
2020);

e WASP-107 has a near polar orbit, while ay, =~
0.055 AU and M, =~ 0.69Mg, thus requiring
(bout/2 AU)3 2 (Mout/O.E)M]);

e (J-436 also has a nearly polar orbit, while a;, =
0.28 AU and M, =~ 0.4Mg, thus requiring a com-

panion with (boy/3 AU)? > (Moye/1.2M ).

e Kepler-408 has an obliquity of 48";“512, while a;, ~
0.037 AU and M, ~ 1.05M, compatible with ei-
ther a non-adiabatic resonance passage or a capture
with ngr <1 (i€, [bout/0.28 AU < [Moue/1My));

The detection of Jovian-mass companions with the pre-
dicted properties will provide strong support to our
model as well as the measurements of low obliquities of
cold Jupiter systems, the first of which measurements
was performed using interferometry in the 5 Pictoris sys-
tem, finding strong evidence for low obliquities Kraus
et al. (2020).

5. DISCUSSION

For the first time, we have analytically demonstrated
that a nearly co-planar system of two planets and a disk
can secularly evolve into one with high obliquities and
eccentricities (for the inner planet) and large mutual in-
clinations (with the still co-planar outer Jovian).

The novelty of this mechanism is that it can self-
consistently produce close-in planets that are highly in-
clined and eccentric (see Correia et al. 2020), without
invoking extreme initial conditions, i.e. large primordial
misalignments of stellar equators, disks, planets or some
combination therein. Instead it relies on the natural dis-
sipation of the protoplanetary disk to induce resonance
sweeping and capture.

This discovery required substantial developments be-
yond the classic Lagrange-Laplace theory (Heppenheimer
1980; Ward 1981). We have worked out a proper non-
linear resonance, valid for arbitrary inclinations, and for
which resonant “capture” is well defined. The mathemat-
ical formalism of this treatment is closely related to that
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F1c. 5.— Final obliquity as a function of the outer planet’s mass Moyt and semi-minor axis aout(l — e?mt)l/ 2 for different rotations
periods of the hosts Ps (4, 7, and 10 days from left to right) and two disk models with ¢y, = 0.2 Myr (rapid dispersal, upper panels) and
ty = 1 Myr (slow dispersal, lower panels) with Mg;sc = 50M 5 /(1 th/tv)l/27 edges at Riy = 1.5a0ut and Rout = 10R;,. The host star has
a mass of M, = 0.8 M similar to HAT-P-11, the planet’s semi-major axis at 0.052 au and we set its radius to 1.3Rg (typical of K-dwarfs
with ages of several Myrs, Baraffe et al. 2015). The error bar indicates the measurement for HAT-P-11c¢ (Xuan & Wyatt 2020). Note that
its current radius and rotation period are R. ~ 0.68Rq Px ~ 29 days (Yee et al. 2018).

of Batygin et al. (2016), where the authors attributed res-
onance sweeping to a decline in stellar oblateness (Ward
et al. 1976), rather than disk mass®.

Finally, this mechanism makes specific predictions for
the required properties of as-yet undetected outer planets
that should be easily testable with ongoing radial velocity
surveys and astrometric measurements from Gaia.

5.1. Caveats and future work

While we have shown that many of the polar planets in
Figure 1 are easily produced by our model, we highlight
several areas that require future study.

Are the orbital configurations sustained on Gyr timescales?—
We have thus far carried out integrations of the systems
for up to ~ 10 Myrs. The most likely culprit to alter
orbits on Gyr timescales is the tidal dissipation of the
residual eccentricities, also damping the planet’s semi-
major axis. This orbit shrinkage would act to further
decouple the sub-Neptune from the outer planet due to
enhanced relativistic precession, effectively freezing the
inclinations at their large values, not altering our results.

The significant eccentricities of the outer planets in
systems like HAT-P-11 and = Men suggest that dynam-
ical scattering took place after the disk dispersal, likely
tilting their orbital planes (Chatterjee et al. 2008) and
forcing variations of the inner planet’s inclination around
the polar states (Yee et al. 2018).

5 In our set-up, a waning stellar quadrupole does not lead to
capture as the resonance is crossed from the wrong direction (A < 0
in Eq. 2). However, the set-up in Batygin et al. (2016), where the
test particle is outside of the Jovian does cross from right direction.

Can compact multi-planet systems be resonantly tilted? —
The resonant excitation of inclinations could readily op-
erate in a compact multi-planet system, but the dan-
ger lies in the eccentricity instability at high inclinations
which can lead to close encounters and destabilization
of the close-in planets. However, similar to the role of
general relativistic precession, the planet-planet interac-
tions may act to stabilize the system against the eccen-
tricity instability (Denham et al. 2019). As such, our
model could provide a sound mechanism to account for
systems such as Kepler-56 (Huber et al. 2013) and the
polar multi-planet system HD-3167 (Dalal et al. 2019).

Does the resonance affect hot Jupiter systems?— While
there is no upper mass limit for excitation, the larger
masses of hot Jupiters compared to sub-Neptunes would
demand initial inclinations for the outer planet that are
larger by a factor of ~ 3 — 10 to satisfy the conserva-
tion of angular momentum deficit (Equation 1). Specif-
ically, the inner planet can reach a polar orbit only for
Tow = (Min /Mout) 2 (ain /aout )/ * leading to Iy, = 3.7°
in our fiducial Neptune and I, = 11.7° for a hot Jupiter.
Because the mechanism no longer operates in the nearly
co-planar limit, we deem it less promising, though similar
conditions are invoked in other models for high obliquity
hot Jupiters (Matsakos & Konigl 2017).

How does the stellar type affect the resonance?— Incli-
nation excitation is most likely when the rotationally-
induced stellar quadrupole is small, and disks longer-
lived. The former condition promotes resonant capture,
while the latter promotes the adiabaticity of the resonant
encounter. These two constraints operate in tandem to
favor lower-mass stars. First, they are naturally smaller
in radius, even with their slower pre-main sequence con-
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traction (Baraffe et al. 2015). Secondly, low mass stars
harbor longer-lived disks (Luhman & Mamajek 2012).
Finally, resonance crossing occurs at later times, and thus
smaller R,, for slowly dissipating disks. This preference
appears to be borne out observationally: polar planetary
systems are hosted by M to K dwarfs (see Figure 1).

6. CONCLUSIONS

We have proposed a novel mechanism to explain the
orbital architectures of a population of sub-Neptunes
in non-circular, nearly-polar orbits (stellar obliquities of
~90°) with misaligned outer companions.

The mechanism consists of a joint process of resonance
sweeping and parametric instability, driven by disk dis-
persal. A long enough dispersal timescale guarantees res-
onant capture and subsequent inclination growth. The
inclination growth is then halted by the eccentricity in-
stability threshold, in turn leading to eccentricity growth.
The inclination threshold is pushed to large values pri-
marily by post-Newtonian corrections, making General

Relativity a fundamental factor in producing polar or-
bits.

This mechanism predicts that nearly polar sub-
Neptunes should coexist with cold Jupiters in low stellar
obliquity orbits and orbital periods that are long enough
so that the planet’s apsidal precession is dominated by
relativistic effects (ngr > 4).
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APPENDIX
A. EQUATIONS OF MOTION AND DEFINITIONS

It is easiest to express the potential that includes the secular coupling between the planets and the external fields
due the stellar quadrupole (oriented along §) and the disk (oriented along jaisk) in terms of the eccentricity vectors

~
0

e = eé and specific angular momentum vectors j = (1 — 62)1/ 2j. By defining the indices ’in’ and ’out’ the vectors (and
orbital elements later on) for the inner and outer planets, the potential reads (e.g., Tremaine & Yavetz 2014):

b _<I5i;,* [(é .jin;izn ;,jizn:| B ¢i21;iR B ¢in2,out [ 5(ein - Jout)? + (in - Jou)? + 262, — 1] ¢ou;disk Gtst - Jout )2
(A1)
where the amplitudes are
Pinx = ?)Jngi—i;MikRg, (A2)
Pin,GR = GGZ;fZ;W (A3)
o = S i o, (A4)
out

with bous = Gout (1 — €2,,)"/? the semi-minor axis of the outer planet. We note that writing the equations of motion in
terms of orbital elements is cumbersome, and decided to evolve the full system using vectors, while carrying out the
analytic calculations in Appendices B and C using orbital elements for limiting cases.

For the disk, we model its potential using the distant tide approximation as in Terquem & Ajmia (2010), which for

a Mestel disk with mass Mg;sk and inner and outer edges R;, and R, respectively, results in

3GMou Mdiskagu (Rou + Rin) Aou
qsout,disk: : 8R2 th . : B ]:ii‘C ) (A5)
in~ ‘ou in

where we have included a multiplicative factor B (aout/Rin) to correct the expression for the parts of the disk close to
the planet as in Petrovich et al. (2019). We set B (aout/Rin) = 2 , valid for Ri,/aout ~ 1.5, thus approximating the
amplitude of the potential to

3GMouthiskagut
isk =~ A6
¢Out,d sk 4R12n Rout ( )
We solve the motion of eiy, jin, jout using the Milankovitch set of equations (e.g., Tremaine & Yavetz 2014) as
djj 1 .
d;n = Lin (vjinq5 X Jin + inn¢ X ein) (A7>
de; 1 .
t=— (Vew® X jin + Vj, ¢ X €in) (A8)
dt Ly,
djout 1
=— V; X J A9
dt Lout .]Out¢ Jout; ( )
where Liy = Minv/GM,ai, and Loy = Moutv/GMyaoyt are the angular momenta.
B. INCLINATION RESONANCE: ANALYTIC MODEL AND CONDITIONS FOR CAPTURE
We simplify the potential assuming that e;, = 0 during the inclination resonance phase and write
QI) = _%(bin,out (jout . jin)2 - %¢in,*(§ . jin)2 - %gbout,disk(jdisk . jout)Q- (B1>

We express this potential as a two-degree-of-freedom Hamiltonian using orbital elements defined relative to § (= jdisk)

as
1

2

H

2
Gin,x cOs” Iiy —

2 2 2 1 2
+sin® I sin® Toug c08” (Qout — Qin) | — 3 Gout,disk €08° Lout.-

1 2 2 1 .
5 in,out [cos Iy c0s™ Iyt + 5 sin 214y, sin 21y €08 (Qous — in)

(B2)
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We express this Hamiltonian in Poincaré variables {—Qi,, Zin = Lin(1—cos Iin)} and {—Qout, Zout = Lout (1 —c0s Tout) }
approximating sin 21, ~ 21/2Z;, /Ly and sin 21yt =~ 21/2Zout/ Lout and retaining only the lowest-order terms in Zgyt.
Thus,

(Lin - Zin)2 QZin 2Zout Zout
~ —(@in,ou in — o712 @%in Q in,ou is . B3
H (¢ ,out + @ ,*) 2Li2n ¢ ;out Lo Lout COs [ out — ] (& Jout T Pout,di k)T Lout (B3)

We perform a canonical transformation to the new pairs {6, ©} and {¢’, ©’} using the following the generating function
F = [Qout - Qim] o — Qout@/a (B4)
such that 8 = dF/d© = Qout — Qin, Zin = —dF /dQin = © and Zyyy = —dF /dQouy = ©' — ©, and

O — Liy)? / 2@ 12 -0
— _<¢iH,OUt + ¢in,*) ( 2L2 ¢1n out COS 0 + (bm out + (bout dlbk) ( ) . (B5>
1n out out

We note that the Hamiltonian does not depend on ¢’, implying that
O = Lin(1 — cos Iin) + Lout (1 — cos Ioyt) (B6)

is a constant of motion, stating that the angular momentum deficit is conserved. By dropping inessential constants
and using that Lj, < Loy such that © < ©’, we reduce the Hamiltonian to

(d)in,out + d)in,*) (¢in,out + ¢out,disk) (¢1n out T ¢1n * / 20
"= l: Lin Lout 9= 2L2 ¢m out m

(B7)

out

Furthermore, assuming that inclinations are initially small, we can write @’ ~ Loutfgumo /2. Similarly, it is safe to
assume that ¢in ous K Pout,disk, thus further simplifying the Hamiltonian

in,out + Pin is in,out + Pin 26
H ~ {(dﬁ 0 th Pinx) ¢O£:jt k} o— W(y _ ¢in7outlout70\/;cosg_ (BS)
Following Henrard & Lemaitre (1983) we can further simplify this Hamiltonian by re-scaling the variables as
1+ - 1/3 2/3 t
N Lo Teoe| B9
< 8 > ( t’O) Tsec ( )
2/3 2/3

1+ m) S] (1 + m)
R= = 1 —cos [y B10
( Tout.0 Lin Tout0 ( ) (B10)
T:W—GZW—QOut+Qin7 (B].]_)

With Tyec = Lin/®in,out a0d 7% = @in out/Pin, t0 arrive to the ‘second fundamental model of resonance’:

K=-3AR+ R? — 2V2R cos(r), (B12)

where

At)=

2/3 .
2 |:1 + 77*:| |:1 o (rbout,dlsk(t)Tscc (B13)

Iout,O Lout(1 + 77*)

As shown by Henrard & Lemaitre (1983), capture into resonance is certain if the following conditions are satisfied:

1. dA/dr > 0 as it crosses 0. This requires that initially the precession rate of the outer planet driven by the disk
Qout > —@out,disk/ Lout dominates over the precession rate of the inner planet driven by both the outer planet
and the stellar rotationally-induced quadrupole given by €, ~ —(1 + 7)) /Tsee at Iin < 1.

2. the action (i.e., the inclination) is small far from the resonance. More precisely that Ry < 3, or replacing
Equation (B10) with Zy/Liy ~ i2n70/2, the initial inclination is

Iout,() :|1/3
1+ T .

Iin,O <3 |: (B14)

The capture probability decays with Ry > 3 (Henrard & Lemaitre 1983). In our applications Ry < 3 always.
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3. A changes slowly near the resonance crossing. In particular, when Ry < 1 we require that dA/dr’ < g with g of
order unity, implying

dA 4 ot dis 1 137 1 78
_ 2 |¢ t,d‘k||: :| |: :| <g (B15)

E N g Tsec Lout Iout,O 1+ T

We numerically found that g = 4/3 provides with a good threshold to capture into resonance up to a nearly

polar orbit® (see Figure 3 showing a mumerical test of adiabaticity). Since ¢out disk < Maisk(t), the condition
can be expressed in terms of the disk’s depletion timescale

dlog My | " S 42 Gout,disk | 1 3 1 (B16)
dt see Lout Iout,O 1+ M ’
which it can be evaluated at the resonance encounter” A = 0 yields
dlog Mg |~ 4/3
o6 - disk (1 +77*)1/3 Tsec- (B17)
dt Iout,O

Finally, we can compute the fixed points that describe the evolution of system. Using the canonical momentum-
coordinate pair (z,y) = V2R(cosr,sinr) we evaluate the fixed points of the Hamiltonian by setting 9K/dz = 0,
yielding:

23— 3Az —2=0. (B18)
For A < 0, when the disk dominates, there is only one branch with solution (Petrovich et al. 2013):

1/3 —1/3
2 (1) = (1 +/1- A(t)3) FA®) (1 + /1o A(t)3> . (B19)
Thus, the (adiabatic) evolution of the system along the fixed point is simply given by v2R = z*(t) and r = 0
(Qn — Qous = 7, anti-aligned nodes).
C. UNSTABLE REGIONS AT HIGH INCLINATIONS

For simplicity we assume an axisymmetric system with § = jout and ignore the disk that only allows to sweep over
a range of inclinations [j,. In this limit, the Hamiltonian can be written in orbital elements as

¢in,out 2 . 2 . 92 2 2 2 1 ¢in,* 2 1 ¢in,GR
H = —T (_Sein sm[in S111™ Win + (1 — ein) COS Iin + 2ein — g) — W (COS Iin — g) — W(,Cl)

which we can write in terms of the Delaunay canonical variables as

Gnow [s  HZ G2 G HY  H2\ ., Ginge (HELE L%\ dincrLin
e U e e U ) e

From Hamilton’s Equations Gi, = —OH /0wy, and wi, = OH /Gy

1/2 gin? Iy sin wjy, COS Wip (C3)

Tl
2(1—ef)?

. 2
Tsec€ = 5ein(1 - ein)
cos? Iy

27 TIGR
RECALE (5co8? Iin — 1) + =5, (C4)

TsecWin = 2(1 — 62)1/2 =5 |:(1 - eiQn)l/2 o :| sin” “in + 2(1— 61211),
with 7sec = Lin/Pin,out and Hin, = Lin(1 — efn)l/2 cos Ii, a conserved quantity as H does not depend on €;,. The

linearized equations near the fixed point e = 0 read
d (emcoswin) 10 —A+ B\ (e coswiy
dt (ein sinws, |~ Tsec \ A 0 €in Sin Wiy (C5)

with A =2+ 2n, +ngr/2 — 5/2n, sin? I;, and B = 5sin® I;,,. We can then obtain the growth rates of the eccentricity
vector by solving the eigenvalues of the square matrix as

A=+7_1\/A(B - A)

=47} [(2 + 2n, + %nGR — 377* sin? Iin) X (5 sin? I + 377* sin? Iy — 2 — 21, — %HGR)] 12 ) (Co)

6 Others numerical estimates for capturing planet into first-order
mean-motion resonances yield a slightly larger value of g ~ 2
(Friedland 2001; Quillen 2006)

7 It could also be evaluated at the time that the separatrix ap-
pears at A = 1, introducing a small correction.



12 Petrovich et al.

Thus, the fixed point e;,, = 0 is an unstable saddle point if the eigenvalues are real and different, requiring that
B > A > 0. Expressing this condition in terms of the inclinations, we get that the unstable range is given by

dtdn tner) _ oo _ (4440 F R (1)
10 + 57, " 51 ’

We note that, for ngr = 0, this expression is the same as the one found by Katz & Dong (2011) and Tremaine &
Yavetz (2014) using the vectorial formalism without relativistic precession.
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