
Holistic and In-Context Design Flow for
2.5D Chiplet-Package Interaction Co-Optimization

MD Arafat Kabir1, Weishiun Hung2, Tsung-Yi Ho2, and Yarui Peng1
1CSCE Department, 2CS Department

1University of Arkansas, 2National Tsing Hua University

Abstract—In recent days, 2.5D package designs have gained popularity
with an increasing number of heterogeneous chiplets integrated into
advanced system-in-packages. RDL wires become longer and denser,
presenting a growing impact on system performance, reliability, and
integrity. At present, there exists no standard CAD flow that can
design, analyze, and optimize a complete heterogeneous 2.5D system.
The traditional die-by-die design approach processes each component
independently during extraction and optimization and cannot be applied
to heterogeneous systems without fundamental changes in standard CAD
tools. Not only the chiplet-package extraction is inaccurate between the
die-package interface ignoring all RDL capacitive and inductive impacts,
but traditional CAD tools are also unable to perform cross-boundary
design optimization.

We present a complete chiplet-package co-optimization flow for both
homogeneous and heterogeneous 2.5D designs. It encompasses 2.5D-
aware partitioning, chiplet-package co-planning, holistic and in-context
extraction, package inductance consideration, and iterative optimization,
along with design analysis and verification of the entire 2.5D system.
In our previous work [1] targeting heterogeneous systems, we achieved
an extraction error ranging between -2.10% and 24.0%. The in-context
design flow proposed in this work achieves less than 1% extraction error
on ground and coupling capacitance. This extraction result can be used
to perform timing analysis with 99.8% accuracy and to generate timing
context with 99.4% accuracy for iterative optimization.

Keywords—2.5D Design, Chiplet-Package Co-Optimization, Holistic,
Heterogeneous, In-Context.

I. INTRODUCTION

The demand for increased functionality and performance in modern
chips is ever-growing. In recent days, 2.5D integration is providing
many design solutions within a compact package. Apart from reduced
package size, 2.5D packages have lower power, higher bandwidth,
higher yield, and better thermal dissipation. It reduces the turn-
around time through plug-and-play design techniques [2]. 2.5D
integration has applications in IP-protection and hardware security.
Heterogeneous integration also becomes one of the most attractive
technologies, where chiplets from different technologies can be used
in the same system.
Traditionally, 2.5D systems are designed in a die-by-die approach,

where each chiplet is designed and optimized individually for the best
performance. Then, these chiplets are integrated through redistribu-
tion layers (RDL) in a 2.5D package. Though this approach enables
IP-reuse [3] and reduces the turn-around time, it cannot guarantee
the best performance out of the system. A large performance margin
needs to be left-out for the package overhead to ensure that the
system can run reliably at the rated speed. As the extraction and
optimizations of each component are performed independently, the
interaction between chiplets and the package is completely ignored.
Though possible, it is often not practical to perform cross-boundary
optimizations between the package and chiplets. In high-density

This material is based upon work supported by the National Science
Foundation under Grant No. 1755981. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Sign-off verifications

Post-processing: Package cap and res adjustment

Parasitics stitching and Analysis
Chiplet timing-contexts 

for next iteration

Design Information

In-house Tool

Commercial Tool
Gate Level Design

Partitioning, top-level planing, RDL estimation

Design Assembly

In-Context Extraction

InC netlist from tech-2

...

...

Chiplet Plan

P&R in tech-1

Chiplet Physical 

Design

Chiplet Plan

P&R in tech-2

Chiplet Physical

Design

Design Assembly

In-Context Extraction

InC netlist from tech-1

P&R in tech-1

Package Design

P&R in tech-2

Package Design

Package Plan

Fig. 1. Proposed in-context co-optimization flow for heterogeneous 2.5D
systems

packages like InFO [4], the coupling between chiplets and the
package is prominent and needs to be considered carefully in the
extraction and optimization steps. Moreover, to achieve the best
system performance, the entire system must be considered holistically
with cross-boundary optimization flow.

Integrating several chiplets into the same package will inevitably
sacrifice individual chiplet’s performance, say maximum operating
frequency, often because the RDL wires will dominate the critical
timing path. Sophisticated design flow and algorithms are desired to
cope with the placement and routing of the system. Therefore, it is
indispensable to co-optimize chiplets and their package to ensure the
highest performance. Several important factors, including wirelength
minimization and timing budget reduction, need to be considered to
achieve the best system-level performance.

In this paper, we present our chiplet-package co-optimization
flow for heterogeneous 2.5D systems. Our flow incorporates the
features essential to perform accurate design, extraction, analysis,
and optimization of the entire 2.5D system. In a holistic flow, a 2.5D
system is analyzed as a complete system, chiplets and the package
together. Fig. 1 illustrates our proposed flow for heterogeneous 2.5D
systems. We employ an accurate in-context extraction strategy and
perform adjustments using our in-house tools to create a holistic
view of the system parasitics. We use these in-context parasitics to
perform cross-boundary analysis and generate post-physical design
timing contexts of all chiplets. Using these timing contexts, we
perform iterative cross-boundary optimizations to ensure the best
system-level performance. An in-context extraction strategy was
first presented in [1] that can handle heterogeneous 2.5D systems.
However, the extraction result was not accurate enough to ensure
reliable analysis and timing context accuracy. In this work, our
new in-context extraction method can achieve holistic-like accuracy
and generate highly reliable analysis results and timing contexts for



iterative optimizations. We claim the following new contributions:
(1) A revised extraction strategy to perform in-context extraction
of heterogeneous 2.5D systems; (2) A new post-processing method
to improve the accuracy of extraction and analysis results; (3) A
comparative study to validate the effectiveness of our methodology.
In addition, we discuss the potential approaches to consider the

impact of package inductance on system performance and iterative
optimization of the package design. To our best knowledge, there ex-
ists no other tool flow that implements an in-context co-optimization
flow for heterogeneous 2.5D systems with holistic-like accuracy and
effectiveness in extraction, analysis, and optimizations.

II. CHIPLET-PACKAGE CO-DESIGN FLOW

Our in-context flow for heterogeneous 2.5D systems is demon-
strated in Fig. 1. Though the figure illustrates the flow for two
heterogeneous technologies, the same methodology can be applied
to a 2.5D system involving more than two technologies.

A. Top-Level Planning

In the planning step, a holistic plan of the system is prepared.
The gate-level netlist is partitioned into chiplets based on the system
requirements. The initial package floorplan, inter-chiplet routing, and
package wireload estimation is performed in this step. We use our
in-house tools to prepare this top-level plan. Using this plan, we
prepare a hierarchical design, where the package is treated as the
top-level design with chiplets as sub-designs. After this hierarchical
sub-design formation, chiplets and the package can be implemented
independently in parallel.

B. Physical Design

The physical design of chiplets is carried-out as if they were
individual 2D chips, with some additional constraints due to the top-
level plan. Shown in Fig. 1, each chiplet has its own separate plan
and can be implemented in different technologies and configurations,
which is highlighted using the parallel arrows in the figure. The
package design is implemented once for each of the heterogeneous
technologies. A unified technology stack is generated combining the
routing stack of the chiplet technology and package RDLs. The
package design is implemented as per the top-level plan. The chiplet
routing is generated using our in-house tool employing a greedy
strategy.

C. In-Context Extraction and Post-Processing

After the physical design of chiplets, Design Rule Checking
(DRC) is performed on them. Then, they are assembled with the
package design for extraction. We perform in-context extraction per
technology to capture the cross-boundary interactions among chiplets
and the package. As presented in Fig. 1, chiplets from the same
technology are assembled with the package for extraction, while
chiplets from other technologies are treated as blackbox macros. After
this step, we have one parasitics netlist per technology.
The in-context extraction results cannot be directly used to create

a holistic view of the parasitics. This is because the entire package
is included in each of all the netlists. The parasitic netlists need to
be adjusted for double-counting package wires. In our experimental
study, we extract the top-level package parasitics treating all chiplets
as blackbox macros. Our study reveals that for two technologies
combined layer-wise, the overestimation of ground and coupling
capacitances on the package nets are exactly equal to the top-level
package parasitics. Based on this finding, we develop our in-house
tool that can adjust the in-context parasitic netlist based on the top-
level package parasitics.

(a) Assembled System for Extraction (c) Mem-Chiplet(b) Core-Chiplet

Fig. 2. Chiplets and assembled package layouts of the homogeneous 2.5D
system

Our tool reads an in-context chiplet parasitics, the top-level pack-
age parasitics, and a user-defined factor to perform adjustments on
each net and computes the in-context parasitics using (1) and (2).
These equations reduce the ground and coupling capacitances of the
package nets in the in-context parasitics by a user-defined fraction
(userFact) of the top-level package capacitance. As with incremental
parasitic annotation, some resistive nodes are annotated twice, the
resistance values of the package wires are also doubled in each in-
context netlist. As a result, in the annotated parasitics, the parallel
equivalent resistance remains unchanged. Though these adjustments
are performed per-node based on the total capacitance per-layer, this
method generates highly accurate parasitics per-net. This claim is
validated through the experimental study in Section III.

layerFactx =
CapRDLx−userFact×TCapRDLx

CapRDLx
(1)

newNodeCap= nodeCap× layerFactx (2)

Here,
Parameter Definition
CapRDLx Total ground (coupling) capacitance on package layer

number (pair) x of the net in the in-context parasitics
TCapRDLx Total ground (coupling) capacitance on package layer

number (pair) x of the net in the top-level package
parasitics

userFact User specified factor (0< userFact ≤ 1)
layerFactx Calculated adjustment factor for all ground (cou-

pling) nodes of the net on layer number (pair) x
newNodeCap The value of the capacitance node in the adjusted

in-context parasitics netlist

D. Iterative Optimization

These adjusted in-context parasitics are incrementally annotated in
the timing analysis tool to create a holistic view of the complete
system parasitics. After analysis, timing contexts for all chiplets
are exported from the analysis tool. These contexts have a detailed
view of the entire system and can be used for cross-boundary
optimizations with a tighter timing budget to improve the system
performance. We use these contexts to re-implement the chiplets. This
iterative approach is highlighted using the dotted line on the right-
half of Fig. 1. Several iterations of chiplet physical design, assembly,
extraction can be performed to optimize the system performance.

III. EXPERIMENTAL STUDY

A. Design Settings

In our experimental setup, we use an ARM Cortex-M0-based
microcontroller system with two chiplets and 16KB memory, as
presented in our previous work [1]. The Core-Chiplet contains all the



TABLE I
COUPLING AND GROUND CAPACITANCES (IN FF) BETWEEN ROUTING

LAYERS IN HOLISTIC EXTRACTION

M1-M5 M6 M7 RDL1 RDL2 RDL3
M1-M5 5990 473.1 39.19 57.84 10.19 6.732
M6 473.1 582.2 89.56 124.4 12.27 9.677
M7 39.19 89.56 51.21 17.84 1.789 2.574

RDL1 57.84 124.4 17.84 301.1 1012 38.43
RDL2 10.19 12.27 1.789 1012 296.7 1078
RDL3 6.732 9.677 2.574 38.43 1078 512.2

Ground Capacitance
Metal Layer M1-M5 M6 M7 RDL1 RDL2 RDL3
Capacitance 21605 2161 284 1032 219 513

logic cells and 8KB memory, while the Mem-Chiplet contains the rest
8KB memory. We use a modified version of the Nangate 45nm PDK
to implement the chiplets and the package, with the same settings as
in Table 1 of [1]. The lower seven metal layers are used with original
settings to implement the chiplets. The top three layers are modified
to mimic the attributes of high-density 2.5D package RDLs. We use
standard cells from the Nangate 45nm cell library. Memory macros
are compiled using OpenRAM [5] memory compiler.

B. Homogeneous Holistic and In-Context Designs

For comparative study, we implement the homogeneous system
using both holistic flow and our proposed in-context flow. The
whole idea of the holistic flow is to treat a 2.5D system as a
single design for analysis and optimization purposes. Such methods
enable a globally-optimized system instead of a separated system
containing components optimized within their individual domains but
performing poorly once combined together. The details of our holistic
flow can be found in our previous work [1].
In the first iteration of the chiplet physical design, the chiplets

are implemented using top-level constraints and estimated package
wireload. Fig. 2(b)–(c) shows these chiplets finished designs. In the
holistic design, we assemble both chiplets with the package, as shown
in Fig. 2(a), and perform holistic extraction. We use this holistic
extraction method to perform iterative optimization of the chiplets.
From here on, we refer to this design as “Homogen-Holi” design. In
the in-context design, only one chiplet is assembled at a time, and
in-context extraction is performed on the assembled design. These
in-context parasitics are adjusted using the methodology discussed
in Section II. These in-context parasitics are used in the iterative
optimization of the system. From here on, we refer to this design as
“Homogen-InC” design.

C. Analysis and Results

Until the first extraction, both Homogen-Holi and Homogen-InC
designs are basically the same design. So, their extraction results can
be compared to verify the accuracy of the in-context extraction flow.
Table I shows the holistic extraction result performed on Homogen-
Holi design after the first implementation of the chiplets. As observed
from the table, there exists a significant coupling between the routing
layers at the chiplet-package boundary. The detailed interactions
between chiplets and the package are captured in the extraction result.
For example, though M7 is the top-most chiplet routing layer, the
coupling between RDL1 and M6 is greater than that with M7. This
is because, in the chiplet designs, there are significantly fewer wires
on M7 compared to that on M6.
Table II presents the comparison between the holistic extraction

and our proposed in-context extraction methodology results in this
work and our previous work [1]. The extraction error in [1] varies

TABLE II
COMPARISON OF HOLISTIC (HOLI) VS. IN-CONTEXT (IN-C) GROUND
(GCAP) AND COUPLING (CCAP) CAPACITANCE EXTRACTION (IN FF)

Metal Layer M1-M5 M6 M7 R1 R2 R3
In-C GCAP 21605 2162 284 1034 220 513
Holi GCAP 21605 2161 284 1032 219 513

In-C GCAP Err (this work) 0.00% 0.00% 0.01% 0.24% 0.6% 0.00%
In-C GCAP Err in [1] 0.00% -0.01% 0.09% 6.03% 24.0% 9.46%

In-C CCAP 8988 1292 203 1553 2412 1648
Holi CCAP 8989 1291 202 1553 2412 1648

In-C CCAP Err (this work) 0.00% 0.04% 0.64% 0.03% -0.01% 0.00%
In-C CCAP Err in [1] 0.01% 0.17% -2.10% 1.20% 2.81% 2.56%

TABLE III
PER-NET ACCURACY COMPARISON OF INTER-CHIPLET PACKAGE WIRES

Parameter Max. Error Min. Error Avg. Error
Path delay 3.30% 0.00% 0.61%
Design constraint 1.80% 0.30% 0.62%
Load Capacitance 1.70% 0.00% 0.29%

between -2.10% to 24.0%. This much error cannot ensure reliable
analysis results. In this work, the extraction error in both ground
and coupling capacitance is less than 1%, which is a significant
improvement over our previous work. In the parasitics adjustment
tool, we use 0.4 with the Core-chiplet context and 0.6 with the Mem-
chiplet context for the value of userFact in (1) for this design. The
initial setting was to use 0.5 for both contexts. But, as the chiplets
are of different sizes, the overestimation due to the package is not
equal on both chiplets. This methodology can be explored further to
calculate this factor from design information.

Table III shows the per-net accuracy of timing analysis and context
using the adjusted in-context parasitics. The error is calculated w.r.t
the holistic analysis result. As observed from the table, this extraction
result can achieve 99.4% accuracy in both timing analysis and timing
context generation for iterative optimizations. Table IV shows the
power and performance of different iterations of Homogen-Holi and
Homogen-InC designs. As observed, the two designs match closely in
all iterations. These results validate our in-context flow is accurate and
effective in designing high-performance heterogeneous 2.5D systems
with very high reliability.

IV. HETEROGENEOUS DESIGN CASE-STUDY

A. Heterogeneous Design Setup

In this section, we present a design case-study of a heteroge-
neous system using 45nm technology. This is the same two-chiplet
microcontroller system. However, in this design, the Mem-Chiplet
is implemented using six metal layers and standard cells from the
gscl45 cell library, which is bundled with the FreePDK45. Core-
Chiplet is implemented the same as before. Though fundamentally,
both chiplets are using the same device node, from the tool flow
perspective, it is still a heterogeneous system. Since there are two
chiplet routing stacks involved in this implementation, two unified
technology stacks are generated for package design and assembly:
one with seven chiplet routing layers and three RDLs (7M3R), and
the other with six chiplet routing layers and three RDLs (6M3R).
The routing layer parameters are the same as in Table 1 of [1].

B. In-Context Heterogeneous Design Results

After top-level planning, the first implementation of the chiplets is
performed using timing contexts generated through timing analysis
on the gate-level netlist. The estimated package wireload is appended
with this timing context. The top-level package design is implemented



(b) Assembled Mem-Context (6M3R)(a) Assembled Core-Context (7M3R)

Fig. 3. Layouts of the assembled heterogeneous system for in-context
extraction

in both 7M3R and 6M3R stacks. After DRC, chiplet physical designs
are assembled with their corresponding top-level package design,
keeping other chiplet as blackboxes. Fig. 3 shows the assembled
design contexts of both chiplets. In-context extraction is performed on
each assembled design. For each stack, the extraction on the top-level
package is also performed. In the post-processing step, in-context
parasitics are adjusted using the top-level package parasitics from
the corresponding technology stack. In this design, we use the same
userFact values in (1) as in the Homogen-InC design of Section III.
These in-context parasitics are used for timing analysis and context
generation. After two such iterations with in-context extraction, no
further improvement is observed in the system performance.
Table IV compares the performance of this design with the

homogenous designs of Section III. This design is referred to as
“Heterogen-InC” in the table. The performance results of all design
iterations are very close to that of the holistic design. This is because
all these designs are using the same device node even though they are
implemented in different routing technologies. The second part of the
table compares the power figures of the final iteration of the designs.
There is some difference in the power figures in the Heterogen-
InC design because Mem-Chiplet uses different cells and numbers
of routing layers. Despite the differences, the power figures are
comparable with the homogeneous designs. These results prove our
flow can optimize heterogeneous 2.5D systems to achieve holistic-
homogeneous system-like performance if that is feasible.

V. FURTHER OPTIMIZATIONS

In our in-context flow, we tried to incorporate most critical param-
eters essential for chiplet-package co-optimization. However, some
other parameters can be considered in the co-optimization steps. One
such parameter is the package wire inductance. Traditionally, package
inductance is modeled using S-parameters. This model cannot be
directly used in the timing analysis. Moreover, standard timing
analysis tools use only resistive (R) and capacitive (C) elements of the
parasitics in the timing simulation. The tools simply ignore inductive
(L) elements, even if they are specified in the parasitic netlist. As
a result, some improvements in timing analysis and co-optimization
tools are needed to consider inductance impact.
An immediate solution to include package inductance in the ex-

isting timing analysis flow is parasitics-scaling. After RC extraction,
using an RLC package wireload model, the timing delay through
package wires can be calculated separately. Using this delay, the RC
values of the parasitic netlist can be adjusted to force the timing
analysis tool to calculate the equivalent RLC delay using the RC
parasitic netlist.
Our current RDL planner algorithm only routes wires between the

chiplets. Package I/O pins are routed with a greedy algorithm. We

TABLE IV
IN-CONTEXT HETEROGENEOUS DESIGN RESULTS WITH 7M3R

CORE-CHIPLET IN NANGATE45 AND 6M3R MEM-CHIPLET IN GSCL45.

Performance Comparison (MHz)
Design iteration Homogen-Holi Homogen-InC Heterogen-InC
With RDL wireload 288 288 287
In-Context 1st iteration 293 294 294
In-Context 2nd/final 300 300 300

Power Comparison of the Final Iteration (mW)
Power Group Homogen-Holi Homogen-InC Heterogen-InC

Wire 4.34 4.30 4.24
Cell 6.35 6.37 6.22
Total 10.69 10.67 10.46

will further design an algorithm to optimize package I/O routing with
multi-objectives. The router will choose a proper escape boundary
for each I/O pin by the relative position of its corresponding I/O
to avoid possible detours. Routing from the boundary to I/O pads
can be performed with wave propagation. Rip-up and reroute method
will follow to reduce the minimum congestion. We will also consider
integrating models such as URBER [6] or TAP 2.5D [7] to the current
design flow in future work. This method can minimize the run-time
and the wirelength during escape routing and jointly co-optimize
thermal and performance together.

VI. CONCLUSIONS

In this paper, we present our holistic and in-context design,
extraction, analysis, and optimization flow for heterogeneous 2.5D
systems. Through a comparative study between two implementations
of a homogeneous system, we show that our in-context extraction
methodology can achieve less than 1% error w.r.t holistic extraction
method, which is a significant improvement from up to 24.0% error
in our previous work [1]. This extraction method can achieve almost
100% accuracy in timing analysis and context generation. With a
45nm heterogeneous system combining two different PDKs, we show
that our flow can optimize heterogeneous 2.5D systems and achieve
holistic-like performance. Lastly, we discuss current limitations and
further improvements of the flow, which will be explored in our future
work.

REFERENCES

[1] M. A. Kabir, D. Petranovic, and Y. Peng, “Extraction and Optimization
for Heterogeneous 2.5D Chiplet-Package Co-Design,” in International
Conference on Computer-Aided Design, Nov. 2020, pp. 1–8.

[2] J. Kim, G. Murali, H. Park et al., “Architecture, Chip, and Package
Codesign Flow for Interposer-Based 2.5-D Chiplet Integration Enabling
Heterogeneous IP Reuse,” IEEE Transactions on Very Large Scale Inte-
gration Systems, vol. 28, no. 11, pp. 2424–2437, 2020.

[3] H. Park, J. Kim, V. C. K. Chekuri et al., “Design Flow for Active
Interposer-Based 2.5-D ICs and Study of RISC-V Architecture With
Secure NoC,” IEEE Transactions on Components, Packaging and Manu-
facturing Technology, vol. 10, no. 12, pp. 2047–2060, 2020.

[4] C. Wang, J. Hsieh, V. C. Y. Chang et al., “Signal Integrity of Submicron
InFO Heterogeneous Integration for High Performance Computing Ap-
plications,” in IEEE Electronic Components and Technology Conference,
May 2019, pp. 688–694.

[5] M. R. Guthaus, J. E. Stine, S. Ataei et al., “OpenRAM: An Open-
source Memory Compiler,” in International Conference on Computer-
Aided Design, Nov 2016, pp. 93:1–93:6.

[6] J. Weng, T.-Y. Ho, W. Ji et al., “URBER: Ultrafast Rule-Based Escape
Routing Method for Large-Scale Sample Delivery Biochips,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 1, pp. 157–170, 2018.

[7] Y. Ma, L. Delshadtehrani, C. Demirkiran et al., “TAP-2.5 D: A Thermally-
Aware Chiplet Placement Methodology for 2.5 D Systems,” in Design,
Automation and Test in Europe, Feb 2021, pp. 1–6.


