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1 Introduction

Previously [1-3] we analyzed the extension of worldsheet first-quantization of 3D string
theory (S-theory), and its manifestly T-dual formulation (T-theory), to M-theory and F-
theory on branes. Our approach [3] is unrelated to any other treatment of branes in that
the brane coordinates X (o) carry only indices that are simultaneously worldvolume and
spacetime indices. They are also selfdual differential forms (similar to [4-6]). This results
in section conditions involving not only spacetime (as for T-gravity [7-9] in the O(D,D)
case and the analogous “F-gravity” or “exceptional geometry” for E, [10-12]) but also
the worldvolume. If extended to the full 10D type II string, this would allow for the first
time an analysis of massive modes under the full STU-duality.

In this paper we describe the F-theory corresponding to type II strings in 4D from
its formulation as a fundamental brane. This new theory is the complexification of the
fundamental 5-brane theory [3] corresponding to the 3D type II string after reformulating
the latter in bispinor notation. In addition to the target space sectioning constraint and
Gauf’s law relating target and worldvolume coordinates, the Hamiltonian analysis reveals
a constraint implying a new type of sectioning quadratic in derivatives on the worldvol-
ume. Solving these conditions reduces the F-theory to M-, T- and S-theories, as required.
Alternatively, we recover the original 5-brane theory by a double dimensional reduction
(corresponding to wrapping the brane on a 6-torus and then compactifying). By design,
the theory’s current algebra gives rise to C- and D-brackets that are covariant under the
exceptional symmetry Ejs) = Spin(5,5). After coupling to a general background, we
verify explicitly that they reduce to the exceptional geometry brackets of F-gravity when
truncated to massless modes.



The remainder of this note is organized as follows: in section 2 we review the 5-brane
theory corresponding to the 3D type II string in a formulation amenable to generalization
to 4D. This is carried out in section 3 by complexifying the coordinates in the Lagrangian
formulation. The three types of constraints relating target space and worldvolume coor-
dinates to themselves and each other are derived. They and the currents form a closed
subalgebra that is studied in section 4. In section 5 the constraints are solved, reducing F
— M, T, and S. The double dimensional reduction recovering the 5-brane theory is also
given. Our results are summarized in section 6.

2 3D revisited

Since the isotropy group Sp(4; C) of the F-theory for the 4D superstring is the complexi-
fication of that for 3D, it will prove suggestive to review the 3D case here. However, the
spacetime coordinates of the 4D case are in the spinor representation of the isometry group
O(5,5), which begs the use of spinor notation. The result resembles the so-called “Kéahler-
Dirac formalism” [13—16] in that the gauge fields, gauge parameters, etc., are represented
by bispinors (polyforms).

Let us recall that the F-theory for the 3D string has a six-dimensional 5-brane world-
volume with signature 3+3 supporting a chiral 2-form (i.e. with self-dual 3-form field
strength) [3]. This is analogous to the fundamental string with (1+1)-dimensional world-
sheet supporting a chiral scalar. The 3D string results from this description only after the
dynamically-generated section conditions are imposed. (This is analogous to the reduction
of the T-dual string to the usual string [8, 9].) We will now re-derive these constraints in
a language that is easily generalized to the 4D string, postponing the sectioning to the 3D
string to section 5.

The Lagrangian for the selfdual 3-form on a 5-brane has manifest O(3,3) invariance [3].
In Spin(3,3) = SL(4;R) form, the 2-form gauge field is a real, traceless 4 x 4 matrix
(Spin(3, 3) 2-form) with 1-form gauge transformation

6Za" = 00y NPT — 077 Ny
1
= 200, NPT — i(sgawvé with AT = -\ (2.1)

(Pairs of anti-symmetric spinor indices can be raised and lowered with %6“575 and %eam(g.)
The field strength has (anti-)selfdual parts which become symmetric bispinors

FV = 0,25 and FO =gilagp) (2.2)
satisfying the Bianchi identity
OVFST) — 95, P =0, (2.3)

This makes clear the infinite, repeating reducibility of FF — Z — A\ — ... studied in detail
in reference [12]. So far, the structure is actually GL(4; R) covariant but invariance of the
Lagrangian

L= —étr FHFRE) (2.4)



reduces this to SL(4; R). (The use of € changes the GL(1) weight with implications for the
associated (super)gravity; cf. [2].)

Reducing to the Hamiltonian formulation requires us to break SL(4;R) — Sp(4; R).
Then

Oup = Oap + Copdy and 9P — 9°F — P9, (2.5)

where now C*9,5 = 0. Here C,p is the Sp(4; R) invariant with its inverse defined by
C*7Cgy = d3. (Our conventions are those of [2].) Upon lowering an index, the 2-form

1
Zop = 5(Xaﬂ +Yas) : Xapg=Xpa, Yap=Ysa, CY,5=0 (2.6)

decomposes into a symmetric part X (2-form) and an antisymmetric, C-traceless part YV
(vector). The field strengths reduce to

+) 1 1 -) _ 1 1
Fog' = Xap + 50,aXp)" + 50haY¥p" and Fop' =Xag — 50haXp)” + 50Yp"
(2.7)

To make contact with reference [3], we now switch back to SO(2,3) vector notation. As
mentioned, C-traceless anti-symmetric bispinors become vectors, symmetric tensors be-
come 2-forms (or, equivalently, 3-forms) and the Lagrangian (2.4) becomes

1, ¢ 1
with all contractions performed using the SO(2,3) metric. The momentum conjugate to Y
is identically 0 whereas that conjugate to X is
08

Pmn = —— = an =+ G[mYn] (2.9)
5an

The action in Hamiltonian form is expressed in manifestly SO(3,2)-covariant notation as
S=- / %Pmn)'(m” dPodr + / Hdr
H= / Lllean” + %(a[pxmn]ﬁ + Y™ P, | d°0. (2.10)
The field Y remains only as a Lagrange multiplier for the Gaufl law constraint
Uy, := 0" Py = 0. (2.11)

With the Gaufl law constraint taken into account, we can gauge away the Lagrange mul-
tiplier Y — 0.
The stress-energy tensor in SL(4; R) notation is

(+) ) p)
Toihs = EE)FSS. (2.12)



Lagrangian — Hamiltonian — Current Algebra
Symmetry | Spin(3,3) = SL(4;R) — Spin(3,2) = Sp(4;R) < SL(5;R)
Virasoro ‘T&?A{ 5 Tonn, 8™, T 8m
Gaufl U, U,

Table 1. Symmetry breaking and enhancement in the 5-brane system (rank 4). The Lagrangian
description of the dynamics preserves a larger symmetry than the Hamiltonian description. On
the other hand, the Virasoro+Gaufl algebra contains a kinematic subalgebra generated by 8 and U
preserving a higher-rank exceptional symmetry.

(This form implies the symmetries Top6 = Ty508 = —Tga~s and the identity T,z = 0.)
It decomposes into Sp(4; R) = Spin(3, 2) representations T, 8™, and T (20 =14®5d1)
of which only

1 1
8" = gemnmr D>mn Dpg  with current Dy, = Etr('ymnFH)) (2.13)

is manifestly SL(5; R)-covariant [3]. (Recall that F(*) was defined as a symmetric bi-spinor
in (2.7), so it is equivalent to a 2-form in SO(2,3) that we define by the second equation.)
Together, § and U form a closed subalgebra of the Virasoro algebra + Gaufl law constraint
with the larger-rank Eyy) = SL(5;R) symmetry. This is summarized in table 1.

3 Worldvolume action

We now give a covariant 4D theory by an appropriate complexification of the 3D case in
spinor notation. The F-theory for the 4D string with global symmetry Es) = Spin(5, 5)
is 16-dimensional with coordinates X* in the spinor representation. Since X* reduces
in Sp(4;C) to a (4,4), the 3D Z,° of GL(4;R) must generalize (complexify) to Z,” of
GL(4; C), now lacking both trace and reality conditions.

Using GL(4;C), 0 and Z are both 4 x 4 complex matrices

Oaf » 8./§ = (0ap)*, Za*, 2, = (Zad>* (3.1)

where the @’s are anti-symmetric (6 and 6), and Z (16¢) is the complexification of X
(which is Hermitian Xt = X). Then the gauge transformation generalizing (2.1) is

70 = DapAH)BG _ 502%*)5 with A®1 = _\& (3.2)

anti-Hermitian gauge parameters (16 and 16’): Z has the interpretation of a complex
gauge 2-form with a complex 1-form gauge parameter. From this, we form the Hermitian
matrices
F =0z+07 < F =0.2.0+03,2.°
ao Ba o]

FO =07+07 & FORd—gigdygiize (33)



These are invariant under the gauge transformation (3.2) provided
_ b o _ 5 .5aBy _
V= 8(8a58 802/36 ) =0. (3.4)

This is our first section condition. Assuming this, F' satisfies the Bianchi identity (cf. (2.3))
g8 _ g p()ed — (3.5)
afs dﬂ

and its conjugate giving again the infinite, repeating reducibility 16 ® 16’ — 16c — ... of
F—Z7Z—X—... (cf[12]).
As with the 5-brane, the Lagrangian

1
L= —étrFH)F(—) (3.6)

reduces the symmetry GL(4;C) — SL(4;C). We now reduce this further SL(4;C) —
Sp(4;C) so 6 =5® 1 and 16c = 16 & 16 with 16 = 16. We define this reduction by

07 — 07 + %(Z' +iZ') and 0Z — 07 + %(Z' —iZ') (3.7)

where now again C*# 0ap = 0 removes the trace and similarly for the conjugate CBY = 0.
e

Here Cyp and C ¥ denote the non-vanishing components of the Sp(4; C) invariant with the
o

inverses defined by C*7Cg, = 43 and C’O.‘V.C'ﬂ-. = 5; These may be used to raise and
0t

lower spinor indices. The trace, being complex, splits into two real derivatives we denote
by Z = 8,7 and Z' = 8,Z. Decomposing

Z=X+1iY (3.8)
for Hermitian X and Y, we get the field strengths (free indices lowered)

FOO S (X +i(0-0)Y]+[Y — (0+0)X]

FO S [X+i(0-0)Y]—[Y' — (0+d)X]. (3.9)
The action reduces to
S = —% / { [X + %(a - a)Y}2 = [Y’ - %(a+ 8)Xr} do. (3.10)

The momentum conjugate to X becomes
08 . i = >
. — B B

Because of the form of the field strengths, the action does not contain a V2 term. In-
terpreting X as the dynamical field, this means that in the Hamiltonian analysis of this
system we should treat 7 as the “time” parameter conjugate to the Hamiltonian. In this
sense, Y is not dynamical and we will gauge it to 0 presently.



The V constraint (3.4) reduces to
i = 248 1
V= — (04307 — 0. .aaﬂ> — ~0:0,. 3.12
= 5 (0us0™ = 5,,0%0) - 5 (3.12)

A partial solution of this constraint is obtained by setting

(anything)’ = 0 and reducing V — % (aaﬁaaﬂ - G&ﬁ-@d[a) . (3.13)

With this the action in Hamiltonian form becomes
§—— / P . X% dodr + / Hdr (3.14)
1 . . . _ .
— B _ B\2 | . B 8 10
H = 5 / |:Padpaa + (aoéﬂX a 3d6-Xa ) + ZYaa(ﬁa PBO.Z =+ ao;épa ):| d a,

where we have normalized the volume of the gauge-fixed o direction to 1. Note that this
expression for the Hamiltonian cannot be rewritten with manifest Spin(5,5) invariance
(e.g. Pag — P, is a chiral ten-dimensional spinor). We interpret the field Y as a Lagrange
multiplier for the constraint
Up® = Z(DagP? + 5P .) (3.15)
2 ap

generating a bosonic k-symmetry; we use it to gauge Y — 0. After this is imposed, the
field strengths can be written in manifestly Spin(5,5)-covariant form

>y = F\ = Py + (ym) @™ XY and By = F\) =Py — (ym) @™ X”  (3.16)
after combining SL(4; C) indices into the 16 x 16 Pauli matrices
iy CozB m\aS 0
LT y (3.17)
0 CoP(ym)d

of Spin(5, 5).
The stress-energy tensor

g = pHpH (3.18)
apas oo ppl
satisfies ‘J'H). .= ‘T(HT .= —T(H_ L= -7t .. It decomposes into Sp(4; C) representa-
afaf afaf Baaf aff fa

tions Ty, 8™, and T (36 = 25 ¢ 10 ¢ 1) with

1 1 s

o= F PN _ Oltraces, 8™ = -pymp>, T=-CcPc M (3.19)
af af ala B8 4 4 aa  gg

Again only the 8 current can be written in manifestly Spin(5, 5)-covariant form: the subal-

gebra of currents 8, U, V is manifestly Spin(5,5) covariant even thought the Hamiltonian

description of the dynamics preserves only the Sp(4; C) subgroup. We summarize this in
table 2 (cf. table 1).



Lagrangian — Hamiltonian — Current Algebra
Symmetry | Spin(6;C) = SL(4;C) —  Spin(5;C) = Sp(4;C) — Spin(5,5)
Virasoro ‘.T(+)_ . Tmn, O™, T sm
af af
Gaufl o U+
Laplace A% V,0s Vv

Table 2. Symmetry breaking and enhancement in the 4D system (rank 5). The Lagrangian
description of the dynamics preserves a larger symmetry than the Hamiltonian description but
again there is a kinematic subalgebra of the Virasoro+Gaufi4+Laplace algebra preserving a higher-
rank symmetry. (We name the V constraint “Laplace” since it acts as a Laplacian on functions, cf.
egs. (3.12) and (3.13).) Note that in this case the Lagrangian group Spin(6;C) is not a subgroup
of the full symmetry group Spin(5, 5).

4 Algebras and backgrounds

We now give an independent way to derive 8§ — U — V that could be useful in cases in
which we do not know the covariant action. (This method is simpler than finding U and V
by closing the 8 current algebra.) The constraint 8 (3.19) is defined in terms of >. Defining
the analogous 8 in terms of >,

8§M — 8™ = —i(d"XH")P, + O(U) (4.1)
(cf. [3]) we find the U constraint (3.15) in the form (X )*P,. Similarly,
1 < .
U= §$(D + D) and P(>—D)=0(V) (4.2)

we find V (3.13) appearing as 0™ X*0,,. Just as 8§ generates worldvolume coordinate
transformations, U generates residual gauge transformations. (Both generate what is left
of local invariances once 0; is thrown away.)

We next examine the current algebras. The covariant derivatives and symmetry cur-
rents (3.16)

[>M = PM + ('Ym);wame ) [~>u = PM - (Vm)uuame

are bosonic, despite their resemblance to supersymmetry currents. Using the Poisson
bracket

[Pu(1), X¥(2)] = —id45(1 — 2) (4.3)

for the momentum P, conjugate to X*, the brackets of the currents are

v(2)] = _2i(7m)uuam5(1 - 2). (4.4)



The pure-spinor-like constraint (3.19) [3]

5™ = LB, (4.5)

has Poisson bracket with the current given by
[8™(1), Du(2)] = i(yy™) " 0"0(1 — 2) D>y (1). (4.6)
Using
1 1 %
OP6(1 —2)A(1)B(2) = 0Po(1 — 2)AB§((1) —-(2) + §A o? B, (4.7)
we find the algebra
[8™,8"] = 2i9™8™) — 2in™"dP5(1 — 2)8, — %5 [za[msnl + (wmu)} (4.8)

similar to that of [3]. Here the 9§ terms are evaluated at 3((1) + (2)), D>y™U =
>, (y™")” UM with the bosonic k-symmetry generator

UK i= ()0 Dy, (4.9)

found previously in (3.15). The existence of U immediately implies another constraint:
(Ym) w0 U = VI, where

V = 10O, (4.10)

Thus, we recover the condition (3.4) required by gauge invariance of the Lagrangian de-
scription.

The algebra of constraints generated by 8, U, and V closes, and the new constraint
gives rise to a third section condition, this time on the worldvolume. This new constraint
implies the gauge invariance

IXH = (ym)* O™\, (4.11)
and the gauge-for-gauge transformation
Iy = (Ym) w0\, (4.12)

Clearly, the gauge invariance is infinitely reducible.
The worldvolume derivative of a function f = f(X) is given by

1
of = amXuauf = 5(7m'7n + Van)uuaanauf

(Y )P0 X D f (mod U) — i(’ym)’“’(by 50,

e P

(™), f >, (mod B), (4.13)



in agreement with (4.1). Using this, we derive the Poisson bracket of two vector fields
V; = VD>, for ; = 12. Modulo second class constraints and sectioning this gives the
C-bracket [8] (again with the 85 term evaluated at 1((1) + (2)))

- M - 14 1 m 14 g
VA1), Val2)] = 2i0"5VirmVs — i6 0405 — (om0 V | VEOVE B (414)
The truncation of this bracket to massless modes reproduces the “exceptional Courant

bracket” of reference [11, 12].

We now include backgrounds by dressing the covariant derivative
Do = el Dy (4.15)

Using (4.14), we find that under worldsheet reparameterizations 9\, = [i [ VD>, 4],
the vielbein transforms according to

1
5)\8(1“ = )\Vaz/eau - eayaz/)\u + E(Wm)pg(’ym)“l/eap&,)\a (416)

in agreement with the results of [11, 12]. The commutation relations in a general back-

ground are

[>a(1), >g(2)] = 2i0™0(1 — 2)ga5m%((1) +(2)) —id(1 — 2) fop" Dy (4.17)

where
m v o o' 1 el yom
Japm = €a’ (ym)wves”  and  fag" = clag” + SCsa” (977" 9plem)- (4.18)
Here the g’s are defined by the first equation and the generalization
m 1 afm
0" = gD (4.19)
of (4.13), and the “anholonomy”-type coefficients (not anti-symmetric) are defined by
cap” = (eaep’)e,”. (4.20)
The Bianchi identity [[>(4, Dg], >y] = 0 then implies the relations

f'y(a(sgﬁ)ém - 26’79045171 — €(a9B)ym

1 £ 1 £
ée[afﬁv 98lem = gf[aﬂ fy&]@gswm- (4.21)

These relations are the direct analogs of those found for T-dual theories in [8] for the T-dual
string, which we recover by dropping the worldvolume index gogm — gas-



5 Sectioning

New section conditions are obtained by replacing string coordinates with 0-modes [17].
In addition to the new section condition from Gauf}’s law found in reference [3], there
is yet another type of section condition on the worldvolume coming from the Laplace
constraint (4.10). We collect these conditions in the following table:

1

Virasoro 8™ = Z(Dvmb) (5.1a)
. onal .
dimensiona S™ = (py"P) W= (PP (5.1b)
reduction
section m 1, . m

. 8§™:= —(py"p) Ut .= (gp)* Vi= 0"0n (5.1c)
condition ° 2 °

Since we now have 3 different types of section conditions (“strong constraints”), this
might be a good place to review the method of their solution. The basic point is that
these conditions are applied at 2 independent points in “function space”: they take the

generic form

0A=0 and (DA)(OB) =0 (5.2)

for arbitrary functions A and B and with various reductions (contractions, symmetriza-
tions, etc.) on the indices. Thus in momentum space

pp' =0 (5.3)

where p and p’ may or may not be at the same point in function space. (In fact, our
function space is disjoint, having momenta for both the worldvolume and spacetime: in
particular, for the IOL section condition one of the momenta is in the worldvolume and the
other in spacetime [3].)

So we have not only a quadratic constraint pp = 0, but also a bilinear one pp’ = 0. For
example, for T-theory we have the universal constraint p-p’ = 0, taking the inner product
with the signature of the T-symmetry group O(D,D). For the quadratic constraint the most
general solution is to pick a lightlike basis where the O(D,D) metric is block off-diagonal,
then choose a frame where p has vanishing components in one of the 2 subspaces (“section”)
corresponding to this block decomposition. The bilinear constraint is then solved by taking
p in such a frame and finding that p’ must be not only of the same form but in the same
frame (i.e., in the same subspace). Conversely, given this p’ we find that we could have
chosen another p, but still in this same subspace. Thus although the frame is arbitrary, it
is the same over all function space: all fields live on the same D-dimensional subspace of
the original 2D-dimensional space. (This reduces T-theory to S-theory.)

Another example is the ’loi constraint p"p, . = 0 considered previously for the F-
theory of the 3D string. It is only bilinear, since p™ is in the worldvolume while p/ . is
in spacetime. Because this constraint (and the whole formulation) is GL(5) covariant, we
can always choose a frame where p™ is in one particular direction, even before considering

~10 -



/ w*
O

S(X)
GL(D)/O(D —-1,1)

Figure 1. F-, M-, and T-theories associated to type II string (S-theory) on X. When the dimension
of X is D = 3 or 4, there is associated to the D-dimensional type II supergravity S(X) on X a (D +
1)-dimensional N = 1 supergravity theory M (X) and a D-dimensional, manifestly T-duality invariant
supergravity T'(X). Each of these results from a theory F(X) by solving the 8 constraint or U and V
constraints, respectively [2].

constraints. This directly kills all of p/,, carrying that index. Conversely, this general
solution for p),. implies that p™ can only point in that one direction, not only for that
function, but for any function on the worldvolume. Thus again the frame is arbitrary, but
applies to all functions of either the worldvolume or spacetime. (This reduces F-theory to
T-theory.)

We will now carry out this reduction from F to M, T, and S for the 4D type II string.
(See [3] for the corresponding analysis of the 3D type II string.) The solution is represented
schematically in the F-theory diamond of figure 1.

5.1 Subsectioning F—M

We now solve the reduction conditions (5.1b) and apply the logic above to the section
constraints (5.1c). We start with 8 conditions corresponding to the reduction F — M.

To solve the reduction and section conditions, we break Spin(5,5) — GL(5;R) =
SL(5;R) x GL(1;R). This is the same as the usual argument for O(2n) — U(n) (but
with split signature and real representations) so we suppress the details. Decomposing

P, — PT,P™ Pp, (16 =1® 5 ® 10'), and similarly for 0-modes, 8 and 8 become

8" = p+pr + %emnpqrpmnppq
m __ m o
8™ =(p"p) — {s . (5.4)
oOm P "Pmn

- 11 -



(At this point, and for the remainder of this section only, the m,n,... indices have be-
come 5’s.) First applying the section conditions bilinearly, we find the solution

leaving only p™. (Other maximal solutions correspond to a different frame for breaking to
GL(5).) We then find similarly for the reduction conditions

Pt =pPm™ =0. (5.6)

5.2 Subsectioning F—T

Solving the U and 'V constraints reduces F — T. Unlike the 3D case reviewed in section 2,
the existence of the V condition (in combination with U) now restricts the one direction of
the o derivative 9 to be lightlike:

V=0=0 = 0=0T (5.7)

(The symmetry for this theory was only SO and not GL.) The U and IOL constraints thus
reduce to

U= 0"y p=0 = ~p=0 (5.8)
U=-0"yP=0 = 4 P=0 (5.9)

So we are left with a single o (in addition to 7) and half (8) of the X's, i.e., a string with
twice (of 4) the dimensions (T-theory).

8 now reduces to the usual for T-theory; solving also these constraints therefore gives
the 4D string on the worldsheet.

5.3 Double dimensional reduction 4D — 3D

Instead of solving constraints, we can perform the double dimensional reduction
Pt =0, P" =0, On—0 (5.10)

(and similarly for their 0-modes) directly on the decomposition (5.4). Then it is easy to
see that what remains of the constraints is precisely the reduction and section conditions
of the F-theory 5-brane for the 3D string [3]. In other words, the F-theory for the 4D
type II string contains a subalgebra of constraints defined by the worldvolume 5 and the
spacetime 10’ that generates the F-theory algebra for the 3D type II string. Of course it is
true that the 3D type II string is embedded in the 4D type II string but this observation
implies that the entire rank 4 F-theory diamond (figure 1) embeds into that of rank 5.
(Reductions of only the massless part of the target space theory (“F-gravity”) but for more
general U-duality groups were studied in [18].)

- 12 —



Lagrangian L, — Hamiltonian H, —  Currents E,,,) o X
Spin(3,3) = SL(4;R) Spin(3,2) = Sp(4;R) SL(5;R) 5 10
Spin(6; C) = SL(4; C) Spin(5; C) = Sp(4; C) Spin(5,5) 10 16

w

Table 3. Symmetry groups of fundamental F-theory branes. The symmetry manifested by the
Lagrangian and Hamiltonian formulations of the fundamental branes of F-theory corresponding to
type II strings in D = 3 and 4 dimensions. The rank of the global exceptional symmetry n =D + 1
and the E,(,) representations of the worldsheet (o) and target (X) coordinates are given in the
last two columns.

6 Conclusions

In this paper we described the fundamental theory giving rise to the F-theory embedding
the four-dimensional type II string (corresponding to the split form of the rank 5 exceptional
group Es(s) = Spin(5,5)) as a complexification of that of the fundamental 5-brane of the
3D string [3]. This description requires three types of section condition: in addition to the
original section condition (8) on the target space [11, 12] and another (U) relating target
space to worldvolume [3], there is now also a third section condition (V) on the worldvolume
itself. The analysis of these constraints shows that the 3- and 4-dimensional theories are
related by double dimensional reduction (5.10).

The structure of these theories is such that the Lagrangian theory is invariant under an
a priori unknown symmetry group L,, that is broken to the subgroup H,, in the Hamiltonian
description. This subgroup is also the (split form of the) maximal compact subgroup of the
split form E,,,,). We represent this in table 3. The algebra (4.4) of the currents is manifestly
E,(n)-covariant as is the “kinetic” subalgebra of the full Virasoro+Gauf+Laplace algebra
of constraints that is generated by 8, U, and V (egs. (4.5), (4.9), and (4.10), resp. and
cf. table 2).

Clearly, it is of interest to extend this analysis to higher rank. The next classical
superstring in the series is the 6D type II string corresponding to the maximal global
symmetry FEr7y. In this case the naive dimension of the worldvolume exceeds that of the
target so we expect the new worldvolume section condition (and possibly new constraints)
to play a role in cutting this dimension down. Since these cases correspond to superstrings,
supersymmetrization of our brane systems may give insight into the fundamental theories
corresponding to these higher-dimensional F-theories.
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