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Abstract: The radiative energy loss of fast partons traveling through the quark-gluon

plasma (QGP) is commonly studied within perturbative QCD (pQCD). Nonperturbative

(NP) effects, which are expected to become important near the critical temperature, have

been much less investigated. Here, we utilize a recently developed T -matrix approach to

incorporate NP effects for gluon emission off heavy quarks propagating through the QGP.

We set up four cases that contain, starting from a Born diagram calculation with color-

Coulomb interaction, an increasing level of NP components, by subsequently including

(remnants of) confining interactions, resummation in the heavy-light scattering amplitude,

and off-shell spectral functions for both heavy and light partons. For each case we compute

the power spectra of the emitted gluons, heavy-quark transport coefficients (drag and

transverse-momentum broadening, q̂), and the path-length dependent energy loss within

a “QGP brick” at fixed temperature. Investigating the differences in these quantities

between the four cases illustrates how NP mechanisms affect gluon radiation processes.

While the baseline perturbative processes experience a strong suppression of soft radiation

due to thermal masses of the emitted gluons, confining interactions, ladder resummations

and broad spectral functions (re-)generate a large enhancement toward low momenta and

low temperatures. For example, for a 10 GeV charm quark at 200 MeV temperature, they

enhance the transport coefficients by up to a factor of 10, while the results smoothly

converge to perturbative results at sufficiently hard scales.
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1 Introduction

In ultra-relativistic heavy-ion collisions (URHICs) heavy quarks are mostly produced in

primordial hard collisions of the incoming nucleons, on a short timescale, τprod ∼ 1/2mQ,

governed by the heavy-quark (HQ) mass, mQ; therefore, they probe the entire evolution

of the fireball formed in these reactions (a sizeable secondary production of HQ pairs

may occur at the Future Circular Collider (FCC) [1]) . The large mass of heavy quarks

also enables theoretical simplifications in the description of their transport through the

medium [2], allowing for rather direct connections between their microscopic interactions

and pertinent observables in experiment. Heavy-flavor (HF) hadrons are therefore excellent

probes of the properties of the QGP and its hadronization in URHICs [2–6].

One generally distinguishes two processes that control the dynamics of heavy quarks

in the QGP — collisional and radiative ones. The former are mainly responsible for ther-

malization of heavy quarks at low momenta, pQ '
√

3MQT , while the latter become in-

creasingly relevant at higher HQ momenta [7–9]. Radiative processes, i.e., medium-induced

gluon emission, in the relativistic limit have been widely studied over the past two decades.

Various formalisms, such as AMY [10], ASW [11], BDMPS-Z [12, 13], DGLV [14, 15],

higher-twist [16, 17], and SCET [18, 19], have been developed for the phenomenology of

light-flavor jet quenching in URHICs. Among them, some have been extended to mas-

sive quarks [11, 20–24] and implemented into numerical simulations for their transport

in URHICs [8, 25–30], see also refs. [31] and [32, 33] for recent comparisons between dif-

ferent energy loss formalisms for light-flavor jets and heavy quarks, respectively. Gluon

emission within these approaches is generally described using perturbative-QCD (pQCD)

– 1 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
8

methods. Within different expansion schemes, these approaches concentrate on the regions

of the phase space where nonperturbative (NP) effects are expected to be small or can be

absorbed into a transport parameter that encodes the medium properties, most notably

the jet transport coefficient, q̂ . So far, few studies of NP effects in radiative processes

have been carried out at a microscopic level (see, e.g., ref. [27]), especially in the relatively

low-momentum and -temperature and temperature regimes where standard expansion and

factorization schemes are no longer reliable. The objective of the present work is to utilize

a NP T -matrix approach to provide insights into mechanisms of radiative energy loss of

heavy quarks which are not easily assessed in pQCD approaches.

The phenomenology of HF observables in URHICs, especially the measured elliptic

flow, requires heavy quarks to have an interaction strength with the medium that goes

well beyond pQCD [4, 32, 34], especially at low momentum and temperature. As rigorous

QCD calculations are challenging in this regime, one has to resort to model approaches.

An essential step in improving their reliability is to root the model parameters in fits to

lattice-QCD (lQCD) data as much as possible. In our previous work we have developed a

quantum many-body approach with a QCD-inspired model Hamiltonian [35–37] that turns

out to be an effective tool in describing a wide variety of QGP properties with a relatively

small number of parameters, including its equation of state (EoS), HQ free energies, and

correlation functions, while predicting spectral properties and transport coefficients (e.g.,

shear viscosity and HQ diffusion coefficient). Key features of this approach are the inclusion

of remnants of the confining force in the QGP, ladder resummed amplitudes leading to the

dynamical generation of bound states as the pseudo-critical temperature, Tpc, is approached

from above, and a full off-shell treatment of propagators and scattering amplitudes which

is, in fact, mandated by the large widths that develop for low-momentum partons. In this

work, we will deploy this approach to calculate the radiative energy loss of heavy quarks.

The off-shell transport theory underlying this framework is based on the Kadanoff-Baym

equation following the same logic as used in our previous study of the HQ collisional energy

loss [37]. To illustrate how NP physics affects gluon radiation, we set up a systematic

comparison between four different scenarios. Case (1) is the perturbative baseline in our

approach that only includes screened Coulomb interactions at the Born level. We add

confining interactions in case (2) and the resummation of t-channel diagrams in case (3).

In case (4), we further include the off-shell effects for parton and HQ propagators, i.e., their

broad spectral functions, representing the full results in our current framework. We analyze

the differences between these four setups for several quantities, such as emission power

spectra, transport coefficients, and fractional energy loss within a QGP brick medium.

The paper is organized as follows. In section 2 we lay out our formalism for calculat-

ing the HQ radiative energy loss within the T -matrix formalism (section 2.1), discuss its

relation to pQCD diagrams (section 2.2), and define four different model setups with an

increasing content of NP components (section 2.3). In section 3, we compare the numerical

results for typical energy loss quantities from these four cases. A summary and outlook is

given in section 4.

– 2 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
8

2 Gluon radiation in the T -matrix formalism

In this section, we first develop the formalism for computing the radiative energy loss in the

context of the in-medium T -matrix (section 2.1), discuss the relation of the NP calculation

to the diagrams in pQCD including the issue of gauge invariance (section 2.2), and then

introduce four different model cases of increasing levels of NP effects to illustrate how these

influence radiative processes of charm quarks (section 2.3).

2.1 Many-body formalism of heavy-quark radiative energy loss

The derivation of the formalism for evaluating radiative processes is similar to that in our

previous work [37]. We first recall the calculation for collisional processes and then derive

the equations for radiative processes.

We start with a Kadanoff-Baym equation for the heavy quark (Q) in terms of its

Green’s function, GQ and selfenergy, ΣQ,

∂

∂t
[

∫
dωG<Q(ω,p, t)] =

∫
dω[iΣ<

Q(ω,p, t)G>Q(ω,p, t)− iΣ>
Q(ω,p, t))G<Q(ω,p, t)] , (2.1)

where the >,< superscripts denote the fixed-ordered quantities in real-time many-

body field theory (sometimes referred to as Wightman functions). They are related to

G>/<(t1, t2, x1, x2) in coordinate space through a Wigner transform over relative and total

space-time, δt = t1 − t2, δx = x1 − x2 and t = (t1 + t2)/2, x = (x1 + x2)/2, respectively,

where the explicit x dependence drops out due to our assumption of translational invari-

ance. By putting the incoming heavy quark on-shell [37], eq. (2.1) can be reduced to a

semi-classical Boltzmann equation for its phase space distribution (PSD) function, fQ

∂

∂t
fQ(p, t) =

∫
d3k

(2π)3
[w(p+k,k)fQ(p+k, t)− w(p,k)fQ(p, t)] , (2.2)

where the transition rate w(p,k) encodes the quantum many-body information of the

system, which can be used to obtain transport coefficients [3]. The first and second terms

on the right hand side of eq. (2.2) correspond to the first and second terms of eq. (2.1)

respectively, as discussed in ref. [37].

For the collisional 2→2 scattering processes, Σ>
Q in eq. (2.1) can be schematically

expressed via a HQ scattering amplitude off thermal partons, MQi→Qi, as

Σ>
Q(p) =

∫
d4p̃′d4q̃d4q̃′(2π)4δ(4)|MQi↔Qi|2G>Q(p′)G<i (q)G>i (q′) , (2.3)

where p (p′) and q (q′) are the 4-momenta of the incoming (outgoing) heavy quark and

thermal parton, i, respectively. We use the notation d4p̃ = d4p/(2π)32ε(p) for the 4-

momentum phase space elements (with on-shell energy εQ(p)) and δ(4) for the 4-momentum

conserving Dirac delta function. The Green’s functions can be represented by the spectral

functions (ρ) with Bose/Fermi factors, ni,Q, as

G>Q(ω, p) = −i(2π)ρQ(ω, p)(1− nQ(ω)) ,

G<i (ω, p) = ∓i(2π)ρi(ω, p)ni(ω) ,

G>i (ω, p) = −i(2π)ρi(ω, p)(1± ni(ω)) , (2.4)
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The transition rate, w(p,k), derived from Σ>
Q can then be expressed as

w(p,k) =

∫
d4q̃d4q̃′dω′(2π)4δ(4)|MQi↔Qi|2ρQ [1− nQ] ρiniρi [1∓ ni] , (2.5)

where ω′ is the energy of the outgoing heavy quark. The off-shell spectral functions of

both thermal partons and heavy quarks (x = Q, i), which encode the non-trivial quantum

many-body physics of the system, can be expressed as

ρx(k) = −Im

(
1

ω − εx(p)− Σx(ω, p)

)
, (2.6)

ImΣx(p) = −
∑
j

∫
d4p̃′d4q̃d4q̃′(2π)4δ4|Mxj↔xj |2ρj(q)ρj(q′)ρx(p′)

× [nj(1− nj)(1− nx) + (1− nj)nxnj ]

≡
∑
j

∫
d4q̃ ImMxj→xj ρj(q)(nj ± njx) , (2.7)

where the Mxj→xj are “elastic” heavy-light or light-light scattering amplitudes. The sum-

mation is over all internal degrees of freedom with spin (s), color (c) and flavor (f) degen-

eracy factors and averaging procedure. The last line of eq. (2.7) follows from the optical

theorem, which we utilize to calculate the elastic selfenergy as detailed in ref. [36]. The

real part of the selfenergy is obtained from a dispersion relation.

The key step to extend the above formalism from collisional to radiative processes is

to replace the collisional amplitude M2→2 in eq. (2.3) with a radiative amplitude M1→2

and remove one incoming Green’s function, G<i . This leads to

Σ>
Q(p) =

∫
d4p̃′d4k̃(2π)4δ4|MQ→Qg|2G>QG

>
g , (2.8)

w(p,k) =

∫
d4p̃′dν(2π)4δ(4)|MQ→Qg|2ρQ [1− nQ] ρg [1 + ng] , (2.9)

where k = (ν,k) is he outgoing gluon 4-momentum. The amplitude for the Q→ Qg process

is calculated using the pQCD diagrams for gluon emission,

|MQ→Qg|2 ≈
∑
c,s

g2|ū(p′)γµu(p)εµ(k)|2 =

= 4dQCF g
2

{(
εQ(p)εQ(p′)−m2

Q

)
− (p · k)(p′ · k)

k2

}
. (2.10)

We choose the standard Dirac spinor (u) and the polarization tensor (εµ) in Coulomb

gauge where the sum of the polarization tensors is
∑

s εµεν = δij−kikj/k2. The amplitude

is evaluated using on shell energies where the in-medium HQ mass is determined by the

many-body formalism [37], while, for reasons of gauge invariance, we restrict the gluon

polarization tensor to its transverse components, i.e., AT = (δij − kikj/k2)Aj is invariant

under the gauge transformation with parameter α as A′T = (δij−kikj/k2)(Aj +αkj) = AT .

This setup neglects other gauge invariant contributions, in particular vertex corrections
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which are, however, rather involved and beyond the scope of the present investigation.

Further discussion of this point can be found in section 2.2. Note that the in-medium gluon

spectral functions figuring in eq. (2.6) include a thermal mass as dictated by reproducing

the QGP EoS.

Inserting the amplitude of eq. (2.10) into eq. (2.9), we have

w(p,k) ≡ dNg

dtd3k

=
1

2εQ(p)

∫
dν

(2π)32εg(k)

dω′d3p′

(2π)32εQ(p′)
δ(εQ(p)− ω′ − ν)δ(3)(p− p′ − k)

(2π)4

dQ

× 4dQCF g
2

{(
εQ(p)εQ(p′)−m2

Q

)
− (p · k)(p′ · k)

k2

}
× ρQ(ω′, p′)ρi(ν, k)[1− nQ(ω′)][1 + ng(ν

′)] . (2.11)

In leading order for the bare Q → Qg splitting process, a restriction to on-shell energies,

ω′ = εQ(p′) and ν = εg(k) in the spectral functions leads to a vanishing rate w(p,k), since

the δ-functions for energy and momentum conservation cannot be simultaneously satisfied.

However, at the leading dressed order (skeleton order), w(p,k) is finite since the spectral

functions for outgoing heavy quark and gluons allow for off-shell energies, opening up

phase space that simultaneously satisfies energy and momentum conservation. As shown

in eqs. (2.6) and (2.7), the information on elastic scatterings between the outgoing partons

(Q, g) and the medium, and the mean free path of the outgoing partons, are encoded in

the off-shell properties of the spectral functions.

Following ref. [3], the transition rate w(p,k) can be used to evaluate the drag coefficient

(as used in a Langevin simulation below),

A(p) =

∫
d3kw(p,k)

p · k
p2

=

∫
d3kw(p,k)

kL
p
, (2.12)

where kL ≡ (k · p/p) is the longitudinal momentum transfer. For high-energy (or large

k) radiative processes, kL ≈ k is a good approximation. Thus, it is useful to define the

power function k w(p,k) so that the drag coefficient can be approximately expressed as

A(p) ≈
∫
d3kk w(p,k)/p. If we further assume an azimuthal symmetry of the emission, we

can define the power function per kT and kL phase space as

W (p, kL, kT ) ≡ k dNg

dtdkTdkL
= (2πkT )

√
k2T + k2Lw(p, kT , kL) . (2.13)

The factor 2πkT originates from integrating over the azimuth angle. This power function

characterizes how the radiated energy is distributed over the phase space. We can integrate

over kT to obain

x
dNg

dtdx
≈ (k/p)

dNg

dtd(kL/p)
=

∫
dkT (2πkT )

√
k2T + k2Lw(p, kT , kL), (2.14)

where x = (kL + εg(k))/(p + εQ(p))) (x ≈ kL/p at high momentum) is the longitudinal

momentum fraction of the emitted gluon taken from the parent heavy quark. The variable

x is often referred to as a light-front coordinate and commonly used in existing literature

for radiative energy loss.
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+ + + +

Figure 1. The first row displays the square of the Born diagrams that can be generated from the

cuts of the diagrams shown in the lower two rows.

2.2 Relation to pQCD diagrams

To obtain a better understanding of how the NP framework employed here relates to

pQCD calculations, we carry out a comparison of relevant diagrams in this section. This

will also allow us to address the issue of gauge invariance for the NP case, which is a rather

challenging one in the presence of resummed interactions.

We start with the tree-level pQCD diagrams [23, 38] shown in figure 1. The diagrams

displayed in the first row represent the (naive) order-g2 contributions to the amplitude for

two incoming quarks going into two quarks and a gluon. The sum of these amplitudes is

transverse (kµMµ = 0) and thus gauge invariant in the usual sense. If we contract the exter-

nal legs between terms in the left and right parentheses, we obtain the selfenergy diagrams

in the second and third rows, which relate to the diagrams in the first row by cutting rules

(optical theorem). As discussed in the previous section, the key quantities to evaluate the

radiative processes are the selfenergies, which explicitly figure in eq. (2.1) or in the spectral

functions as shown in eq. (2.6). The NP selfenergies can be calculated through a series

of coupled Dyson-Schwinger equations (DSEs); our approach falls into this category. The

structure of the equations is controlled by the skeleton diagram expansion where an exam-

ple is shown in figure 2. In this example, by inserting the dressed vertex (first row) and

the dressed gluon (second row) into the equation in third row, we can generate the pQCD

selfenergy diagrams shown in second and third rows in figure 1. With a specific choice of

the skeleton expansion, the diagrams generated by DSEs can encompass any finite-order

perturbative diagrams. In other words, using the DSEs perturbatively is an alternative

and equivalent diagram expansion method for the perturbative diagram expansion. With

a specific truncation scheme, the DSEs form a closed system of equations that allow NP

– 6 –
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Figure 2. The coupled set of DSEs with skeleton diagrams that can generate the pQCD diagrams

in figure 1. The dots on the lines indicate dressed propagators.

solutions. These solutions can be obtained through selfconsistent iterations. They resum

the diagrams with specific patterns (such as ladder diagrams, rainbow diagrams and ring

diagrams) to infinite order, which goes beyond any fixed-order perturbative expansion and

thus can provide meaningful results at large coupling strength. However, these truncation

schemes usually compromise explicit gauge invariance since they select a particular subset

of diagrams to resum. There is no general solution to this problem yet in the strongly inter-

acting regime, although progress has been made in resolving this issue in vacuum [39–41].

In the present article we focus on NP features at large interaction strength. We com-

promise on exact gauge invariance by carrying out the t-channel ladder resummation but

restrict ourselves to projecting out the gauge invariant part by applying the transverse

projector, Mµ
T = PµνT Mν ,1 i.e., we only keep the bare radiation vertex with emission of

the gauge invariant transverse mode, while in principle also a gauge invariant longitudi-

nal mode is available in medium [42, 43]. Thereby we also neglect the vertex corrections

which would be required in connection with an in-medium emission vertex. More rigorous

methods are beyond the scope of this work.

To highlight model-independent information obtained from our apporach, we conduct

calculations for four setups with different inputs representing different NP effects and com-

pare their differences. Since they are all calculated in one model, potential gauge artifacts

are expected to be similar in the different setups so that the differences between them give

insights into model-independent features.

2.3 Four cases of NP effects

Within the formalism laid out above the NP effects that we study in this work are essentially

encoded in the spectral functions (selfenergies) of eq. (2.7) which figure in the emission

rate, eq. (2.11). These effects are mainly from 3 sources: confining interactions, ladder

1P ijT = δij − kikj/k2, P 0µ
T = Pµ0T = 0 [42].

– 7 –
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Cases (1) VC Born (2) VCS Born (3) T-matrix Onshell (4) T-matrix Offshell

Interaction Coulomb Coulomb+String Coulomb+String Coulomb+String

Resummation 2nd-order 2nd-order All order All order

Medium quasi-particle quasi-particle quasi-particle off-shell spectra

Table 1. Four cases are labeled by numbers or abbreviations in the first row where their differences

in interaction, resummation scheme, and medium content are listed in the second, third, and fourth

rows respectively.

X X X X

Figure 3. Self-energy diagrams for the four different cases discussed in table 1. Helical lines denote

VC , helical lines with double dashed lines denote VCS , thin solid lines with arrows denote on-shell

quasi-particle partons (q, g, HQ), thick solid lines with arrows denote off-shell dressed partons.

resummations, and off-shell interactions, each of them playing a critical role in our many-

body approach to heavy quarks in the QGP [36]. In the following we will define 3 scenarios,

in addition to the full results, which allow us to exhibit their effects on gluon radiation

from a heavy quark traveling through the QGP.

The four cases are summarized in table 1, illustrated in figure 3 and defined in detail

in the following.

Case-1, “VC Born”, contains none of the three NP effects mentioned above, and as such

represents the perturbative baseline in our approach. It only includes color-Coulomb inter-

actions with coupling constant and Debye mass taken from the strongly coupled solution

(SCS) in ref. [37]. It does not contain a t-channel ladder resummation, and we only keep

the second-order Born diagrams as shown in figure 3, which are the leading-order diagrams

that generate an imaginary part of the selfenergy and consequently a finite width of the

spectral functions of the outgoing heavy quark and gluon in eq. (2.11) as required for a

finite radiation rate. These diagrams are related to the squared Born scattering amplitude

using the cutting rule. The thermal-medium partons are taken as zero-width quasiparticles

with their masses fitted to the QGP EoS as discussed in our previous work [37]. This

case is most closely related to the treatment in typical pQCD calculations, although some

differences persist, most notably the large thermal masses of the emitted gluon.

Case-2, “VCS Born” adds a NP effect to case-1, namely the confining interaction (po-

tential) again with parameters taken from the SCS of ref. [37], illustrated in the second

panel of figure 3 by the extra bars in the gluon exchange lines. This is still done in leading-

order Born approximation and with the same medium as in case-1.

Case-3, “T-matrix Onshell”, additionally includes the t-channel ladder resummation

in the heavy-light and light-light T -matrices (used to compute the outgoing HQ and gluon

– 8 –
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selfenergies) compared to case-2, which is illustrated in the third panel of figure 3. The

other components are the same as in case (2).

Finally, case-4, “T-matrix Offshell”, uses finite width off-shell spectral functions for

the thermal-medium partons. As shown in the last panel of figure 3, we now dress all

internal lines in a selfconsistent calculation of selfenergies and T -matrices. In addition to

the medium partons in the upper part of the diagram, the incoming and internal HQ lines

are also dressed. The off-shell spectral functions are taken from the full solution of the SCS

as discussed in ref. [36]. Case-4 is the most complete and consistent many-body theory

calculation for the rate within our current approach, containing all three NP effects as

highlighted at the beginning of this section.

Let us briefly reiterate on the role of the thermal-medium partons in the HQ trans-

port calculation. For cases-1, -2 and -3, we use a zero-width quasiparticle medium. For

case-4, the broad spectral functions that represent the off-shell medium are the predic-

tions of the SCS in ref. [37]. Both scenarios describe the EoS of the QGP, implying that

the effective density of “scattering centers” is quite similar, in order to focus on the gen-

uine effects of the NP ingredients. Also note that the resummations carried out in the

present work refer to t-channel ladder diagrams for a single (dynamic) scattering center.

Higher orders due to multiple scattering centers and multiple gluon emission are implic-

itly included in the Langevin simulation, which is, of course, incoherent and thus neglects

the Landau-Pomeranchuk-Migdal (LPM) effect [44–46]. While the latter is essential for

radiation off light-flavor partons, it is mass suppressed for heavy quarks due to reduced

formation times. A rigorous implementation of coherence effects in transport approaches

remains challenging, see, e.g., ref. [25] for an approximate treatment in the HQ context.

3 Numerical analysis

In this section, we present and analyze the numerical results for the four cases defined above.

We first study various microscopic quantities and then discuss how they manifest themselves

in transport coefficients. We start by presenting the pertinent spectral functions for heavy

quarks and gluons in section 3.1, followed by the corresponding power spectra in section 3.2.

The resulting drag coefficients and fractional energy loss are calculated in section 3.3. In

section 3.4 we discuss our results in comparison to a pQCD calculation from the literature.

3.1 Spectral properties of radiated partons

The spectral functions of the outgoing heavy quark and gluon are the key quantities for

calculating the rate of radiation for the Q→ Qg process given by eq. (2.11). These spectral

functions are shown in figure 4 for our 4 different cases, each one for three HQ and gluon

momenta, p=2, 10, 40 GeV and two temperatures , T=0.194, 0.4 GeV, as a function of en-

ergy around their on-shell values. We recall that for cases 1-3, these spectral functions differ

from those in the internal lines in figure 3 where they are zero-width quasiparticles. For all

cases, a markedly different feature from the standard pQCD approach are the rather large

thermal-parton masses dictated by the constraints from the QGP EoS and microscopically

related to the Polyakov loop encoding the nontrivial information of the confinement [36]

– 9 –
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generated selfconsistently from the confining potential. Similar features from including ef-

fects of the Polyakov loop have recently been found from a different perspective, within the

Polyakov-quark-meson model [47]. With a gluon mass of around 1 GeV at low temperature,

soft radiation is heavily suppressed. With increasing 3-momentum at a fixed temperature

(from top to bottom row in figure 4), the spectral functions in the “VC- Born” case (left

panels) show an increasing width while the opposite trend is found for the other 3 cases

which is caused by the presence of the confining interaction whose strength rapidly de-

creases with increasing momentum (transfer), especially at low temperature. At the same

time, at high momentum (bottom row), there is little difference among the different cases,

with well defined quasiparticles characteristic for pQCD calculations. These features are

a direct reflection of our previous findings that the QGP medium at moderate tempera-

tures is strongly coupled at large wavelengths while recovering a more weakly interacting

quasiparticle structure with increasing resolution [36]. For the temperature dependence

at a fixed 3-momentum, the “VC Born” case shows a clear increase in width from low to

high temperatures, which is a consequence of the increasing thermal-parton density which

overwhelms the moderate loss in interaction strength caused by a stronger Debye screen-

ing. This remains true for the other three cases at high momenta, while at low momentum

this trend is much less pronounced, even slightly inverted for the “T-matrix Offshell” case.

At the lowest temperature and momentum (T = 0.194 GeV, p =2 GeV), all 3 cases (2-4)

involving the confining interaction show appreciable distortions from a simple Lorentzian

shape caused by a collective mode that can even generate an additional peak that becomes

visible due to the much increased interaction strength and the broad original quasi-particle

peak which is pushed to somewhat larger energies due to the level repulsion [35, 36] (in the

“VC Born” case one only finds a slight distortion from the Lorentzian shape). In particu-

lar, the gluon spectral functions exhibit substantial strength, even collective modes, in the

spacelike region, i.e., for ω < p (and for both temperatures), which is the most relevant one

for the emission process off an incoming on-shell heavy quark. The spacelike strength tends

to increase with the inclusion of more NP effects. At high temperature and low momen-

tum (T = 0.400 GeV, p =2 GeV), the inclusion of the string interaction alone, at the Born

level, strongly enhances the strength in the space-like region, compare the dash-dotted

blue lines in the 2nd and 1st panel of the upper row in figure 4. Although the addition of

resummation (case-3) and off-shell (case-4) effects further distorts the spectral functions

(cf. 3rd and 4th panel), they do not lead to significant differences for the phase space in

the spacelike region. For higher momentum, p=10 GeV, at both temperatures, the change

of the spectral properties by adding the NP effects is less pronounced. Still, the largest

modification is generated by the inclusion of the string interaction at low temperatures,

while the further differences in cases 3 and 4 are not significant. At high temperature and

p=10 GeV, even the inclusion of the string interaction is no longer significant.

3.2 Power spectra

Inserting the spectral functions discussed in the previous section into the rate, eq. (2.11),

we can evaluate the power spectra of radiation defined in eqs. (2.13) and (2.14). The

former essentially corresponds the radiation spectrum, while the latter, with the transverse
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Figure 4. Spectral functions of charm quarks (solid lines) and gluons (dash-dotted lines) for cases

1 through 4 from left to right, with different temperatures and momenta.

momentum transfer integrated, is more readily interpreted as the radiative energy loss

of the heavy quark. At the end of this section we compute the transverse-momentum

broadening coefficient, q̂, for the “VC Born” and “VCS Born” cases and illustrate how they

relate back to their differences in the power spectra.

In figure 5 we display contour plots of the power spectra in the kT -kL plane, where each

of the 4 interaction cases is represented by each of the four columns, and each row represents

a pair of temperature and HQ 3-momentum, for p=10 GeV with T=0.194, 0.4 GeV in the

upper 2 rows, and p=40 GeV with T=0.194, 0.4 GeV in the lower 2 rows. The power

spectra are projected onto the kL values (i.e., integrated over kT ) and shown in figure 6,

where the 4 combinations of p and T are combined into a single plot for each of our 4 cases.

The generic features of the power spectra are a suppression of very soft radiation, i.e., for

small kL, due to the large effective gluon mass, and a suppression of the collinear radiation,

i.e., for small angles, kT /kL, which is the well known deadcone effect [48]. As expected, the

radiation power increases with both temperature and momentum, roughly by one order

of magnitude when going from T=0.194 to 0.4 GeV, and between a factor of 5 (for case-1

at T=0.194 GeV) and 10% (for cases 2-4 at T=0.4 GeV) when going from p=10 GeV to

40 GeV (note that the contour plots have been scaled to their respective maxima in each

panel, as quoted in the figure legend). The kT distributions of the power spectra tend to

narrow down with increasing p.

The most signficant of the NP effects is the inclusion of the string interaction, when

going from case-1 to case-2, and it is more pronounced for lower temperatures, as borne
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Figure 5. Contour plots of the normalized radiation spectrum, W (kT , kL; p)/Wmax in the plane

of longitudinal (kL) and transverse momentum (kT ) of the emitted gluon for fixed HQ momentum

and temperature. Each column corresponds to one of the four cases of NP effects, while the upper

(lower) two rows are for p=10(40) GeV, and for different temperatures (T=0.194(0.4) GeV for rows

1 and 3 (2 and 4)). The maximum values, Wmax, of each the power spectra are labeled as “max”

in units of GeV/fm in the plots.
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Figure 6. The kT -integrated power spectra, (k/p)dN
dtd(kL/p) ≈

xdN
dtdx , as a function of longitudinal-

momentum fraction (kL) of the emitted gluon for the four different cases in each figure, at low

(high) temperature in the left (right) two panels, each for two different HQ momenta.
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Figure 7. The transverse-momentum broadening coefficient, q̂, of a gluon (left panel) and a charm

quark (middle panel), calculated with a fixed coupling constant for different temperatures and HQ

momenta in cases 1 (dashed lines) and 2 (solid lines). The right panel shows the ratios of the

solid over dashed curves from the left and middle panel (solid curves for gluons and dashed curves

for charm quarks). In all panels the red, orange, green and blue curves represent temperatures

T=0.194, 0.258, 0.32 and 0.4 GeV, respectively.

out from the maximum values in the power spectra which increase between a factor of

∼30 for (p,T )=(10,0.194) GeV and factor of ∼1.6 for (p,T )=(40,0.4) GeV. However, at low

temperature, the additional NP effects in cases 3 and 4 (resummation and off-shell effects)

are still rather significant, especially for rather soft gluons (x.0.2), see the first and second

panel in figure 6, while they have a small impact at high T , cf. third and fourth panel

in figure 6. These features directly reflect the discussion of the spectral properties of the

outgoing gluon and heavy quark in the previous section.

The high-energy transport parameter q̂ represents the average transverse-momentum

transfer per mean-free-path of the heavy quark. It has been related to the elastic part

of the commonly calculated coefficients in a Fokker-Planck equation [3], specifically the

transverse-momentum diffusion coefficient, Bel
0 , as q̂ = 4Bel

0 ≈ 4TεQ(p)Ael(p) [49]; the

second approximate equality involving the elastic friction coefficient, Ael, follows from the

Einstein relation (which is routinely enforced in practical applications). In pQCD based

approaches [31], q̂ is usually factorized and used as a fit parameter encoding the NP prop-

erties of the QGP. Here we can check whether this factorization also holds at a more

differential level, e.g., for the power spectra. Toward this end, we first compute the q̂ for

the “VC Born” and “VCS Born” scenarios from Bel
0 with our Born amplitudes, to illustrate

how the string interaction affects this widely used jet transport coefficient. The results are

shown in figure 7. We here use a fixed coupling constant which implies that q̂ increases

logarithmically at high momentum, which is similar to the behavior found in ref. [50] but

different from results evaluated with a running coupling which typically come out approx-

imately momentum independent. As expected from our preceding discussion of spectral

functions and power spectra, the results for “VCS Born” and ”VC Born” converge toward

each other at high momentum, but the former is significantly enhanced for momenta below

about 10 GeV. This scale can thus be identified as the transition regime from perturbative
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Figure 8. Dimensionless-scaled HQ transport coefficient, q̂/T 3 , in the “VCS Born” scenario as a

function of temperature for different HQ momenta.
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Figure 9. Comparison of the kT -integrated power spectra, (k/p)dN
dtd(kL/p) ≈

xdN
dtdx , as a function of

longitudinal-momentum fraction (kL) of the emitted gluon for the “VC Born” case (dotted lines), the

“VCS Born” case (dashed lines), and the “VC Born” case augmented with the q̂ scaled enhancement

factor from the two cases as defined in eq. (3.1) (solid lines), at low (high) temperature in the left

(right) two panels, each for two different HQ momenta.

to nonperturbative. A NP enhancement factor, defined in terms of the ratio of the q̂’s

from the 2 scenarios, is shown in the right panel of figure 7; while the absolute value of

the gluon q̂ is larger than the one for charm quarks by about a factor of 2, the relative NP

enhancement factor is actually larger for heavy quarks than for gluons. The temperature

dependence of the HQ q̂, scaled by T 3, is displayed in figure 8 for the “VCS Born” case; it

reiterates the importance of the string interaction at relatively low momenta, significantly

enhancing the coupling strength toward small temperatures.

We can the test the “factorization hypothesis” referred to above by multiplying the NP

enhancement factor into the power spectra of “VC Born” and compare it to the power spec-

tra of “VCS Born”. More concretely, we define the ”rescaled VC Born” power spectrum as[
(k/p)dNg

dtd(kL/p)

]
scaled

=
(k/p)dNg

dtd(kL/p)

q̂CSg (kL)

q̂Cg (kL)

q̂CSQ (p− kL)

q̂CQ(p− kL)
, (3.1)
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Figure 10. Dimensionless-scaled HQ transport coefficient, q̂/T 3 , in the “T -matrix Offshell”

scenario as a function of temperature for different HQ momenta.

which accounts for the NP enhancement in both the emitted gluon and the outgoing

heavy quark at their respective momenta. The results, plotted in figure 9, show that

this prescription indeed gives an approximate mapping from “VC Born” to “VCS Born”,

although deviations of up to ±30% or so persist, especially at low temperature.

For completeness, we display in figure 10 our full result for the temperature dependence

of q̂, i.e., in the ”T -matrix Offshell” scenario, as obtained from the elastic friction coefficient,

Ael(p), by use of the Einstein relation based on figure 11 of ref. [37] (which involves a

partial-wave expansions up to l=8 to achieve a decent convergence at high momentum).

Its magnitude is further enhanced by close to a factor of 2 at low momenta compared

to the “VCS Born” scenario, while a significant temperature dependence mostly arises for

momenta below 10 GeV and temperatures below ∼300 MeV.

3.3 Drag coefficient and energy loss

The drag (or friction) coefficient, A(p), is essentially an integral of the power spectrum

over kT and kL, divided by the HQ momentum, p. It quantifies the fractional energy

loss per unit time. Since for high-energy quarks the velocity is near the speed of light, it

can be regarded as the fractional energy loss per unit path length. In the following, we

discuss how the different cases affect the radiative drag coefficient, and implement them

into a Langevin simulation for a charm quark in the background of QGP of finite size and

fixed temperature, sometimes referred to as a “QGP brick”. Several different energy loss

approaches for charm and bottom quarks have been compared in this setup in ref. [32].

In the first row of figure 11, we show the drag coefficient as a function of HQ momentum

for the four different cases in each panel for different temperatures. At large momentum

(p=40 GeV), the drag coefficients essentially saturate at high p and show a close-to-linear

increase with temperature over the considered range, T=0.194-0.4 GeV, in all four cases;

the latter is still true at lower momentum, p=10 GeV, except for the “VC Born” case

which is closer to a quadratic temperature dependence. The drag coefficient is strongly

– 15 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
8

0.194 GeV 0.258 GeV 0.320 GeV 0.400 GeV

0 5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

A
(p
)

VC Born

(1)

0 5 10 15 20 25 30 35 40

VCS Born

(2)

0 5 10 15 20 25 30 35 40

Tmatrix Onshell

(3)

0 5 10 15 20 25 30 35 40

Tmatrix Offshell

(4)

. .

5 10 15 20 25 30 35 40
0

5

10

15

20

p (GeV)

R
a
it
io
o
f
A
a
(p
)/
A
b
(p
)

20 25 30 35 40
1.0

1.5

2.0

2.5

3.0

3.5

p (GeV)

A(2)

A(1)

5 10 15 20 25 30 35 40
0

1

2

3

4

p (GeV)

A(3)

A(2)

5 10 15 20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

p (GeV)

A(4)

A(3)

5 10 15 20 25 30 35 40
0

50

100

150

p (GeV)

5 10 15 20 25 30 35 40
1

2

3

4

5

6
A(4)

A(1)

Figure 11. The first row shows the drag coefficients for the four cases of NP effects, as a function

of momentum for 4 different temperatures each. In the second row the first three panels show

the ratios A(i+1)/Ai between the subsequent drag coefficients of the four cases, with the last panel

showing the total effect, A4/A1.
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suppressed at small momentum, as a consequence of the large thermal-gluon mass. To

better quantify the enhancement with the subsequent inclusion of NP effects we plot in the

second row of figure 11 the ratio between adjacent cases. The ratio A(2)/A(1) in the first

panel, “VCS Born” relative to “VC Born”, shows the largest relative enhancement, most

pronounced at lot T and low p, as seen before, reiterating the importance of the string

interaction, even at the Born level. The ratio A(3)/A(2) in the second panel exhibits a more

moderate, but still substantial enhancement due to the resummation of t-channel ladder

diagrams in the heavy-light T -matrix. The ratio A(4)/A(3) in the third panel indicates

that the additional off-shell treatment of the spectral function of the medium partons has

a still smaller impact; at high momentum, even the temperature hierarchy of this effect

is not definite. The combined impact of the NP effects on our pQCD baseline scenario,

quantified by the ratio A(4)/A(1) shown in the lower right panel of figure 11, enhances the

radiative contribution to the drag coefficient by up to a factor of ∼150 at small momenta,

below 3 GeV, and at temperatures close to Tpc. This is, however, somewhat academic,

since its absolute magnitude is very small compared to the elastic contribution in the same

framework [37], e.g., Ael(p = 3 GeV, T = 0.194 GeV) = 0.1/ fm compared to 0.003/fm for

the radiative drag (after the NP enhancement). On the other hand, already at p=5 GeV

and T=0.4GeV, where both contributions are near 0.08/fm, the NP enhancement of a

factor of ∼4 is certainly relevant.

Finally, we implement the radiative transport coefficients into a Langevin simulation

given by incremental time steps for the HQ position and momentum,

dx =
p

εc(p)
dt, dp = −Γ(p) pdt+

√
2dtD(p)ρ , (3.2)

where ρ is a random number determined from a Gaussian distribution function, P (ρ) =

(2π)−3/2e−ρ/2, and the transport coefficients are

Γ(p) = A(p), D(p) = B0(p) = B1(p) =

∫ ∞
p

dq qΓ(q)e−
εQ(q)−εQ(p)

T ≈ Γ(p)εQ(p)T . (3.3)

We use the pre-point Ito setup in which the relaxation rate is equal to the drag coefficient,

and the momentum diffusion coefficients are defined via the Einstein relation and obtained

by solving the differential equation Γ(p) = 1/εQ(D(p)/T − dD(p)/dεQ) with the boundary

condition D(∞) > 0. In figure 12, we show the results of 3D Langevin simulations for a

charm quark inside a static QGP brick with a 10 fm path length. We have verified that

the fluctuation term in eq. (3.2) is not important for the average energy loss and therefore

the Langevin equation can be replaced by a 1-D differential equation, dp = −γ(p)εQ(p)dx.

Without the LPM effect [46], the energy loss for small path lengths is near linear. For large

path lengths, the negative curvature is caused by the fact that the radiative drag coefficient

decreases with decreasing HQ momentum. At low temperature and low momentum, our

many-body approach generally predicts a much smaller radiation and energy loss than

pQCD-based approaches (cf. figure 27 in ref. [32]). The main reason is the large gluon

mass creating a large energy threshold for the emission. However, the thermal masses are

a key feature of our many-body approach, essentially constrained by the QGP equation of
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Figure 13. The quantity (k/p)dN
d(kL/p) ≈

xdN
dx as a function of kL/p. The initial HQ energy is 20 GeV

for a static medium of temperature T=225 MeV and length L=5 fm. The pQCD result is taken

from ref. [51].

state, as elaborated in section 3.1. In other words, the emitted gluon can only propagate

in the energy momentum modes supported by the ambient medium. This is quite different

from approaches where the emitted gluon in the QGP is assumed to be massless. The NP

effects recover a good portion of the suppression in the power spectra, as we will discuss

in more detail in the following section.

3.4 Comparison to a pQCD calculation

We finally carry out a more quantitative comparison of our results to a pQCD calculation

from the literature [51]. Toward this end we focus on the quantity xdN/dx commonly

displayed in pQCD approaches, which characterizes the energy loss spectrum. We ob-

tain this by integrating the power spectrum, xdN/dx =
∫
dt xdN/(dtdx), over time as

obtained from our Langevin simulation in section 3.3 which accounts for the time de-

pendence of the charm-quark momentum, p(t). In general, xdN/dx is approximately

equal to xdN/(dtdx) multiplied by the length of the medium. We choose a QGP brick

of length L=5 fm and temperature T=0.225 GeV, and initial in charm-quark momentum

of 20 GeV. For a most direct comparison of our calculations to the pQCD approach, we

evaluate our “VC Born” scenario with the same parameters as in ref. [51], i.e., coupling

constant αs = 0.3, Coulomb Debye mass md = g
√

1 +Nf/6 with Nf = 2.5, thermal

light-quark and gluon masses of mq = md/
√

6 and mg = md/
√

2, respectively, and charm-

quark mass mc = 1.2 GeV. At T=0.225 GeV, this amounts to md=0.51 GeV, mq=0.21 GeV,

mg=0.36 GeV and mc=1.2 GeV. The result of this retuned case agrees with the pQCD re-

sult taken from ref. [51] within ∼25%, except for x values close to 1 where our results go to

zero faster, see figure 13. This comparison gives us further confidence that contributions

from gauge-invariant pieces that are missing in our approach are not large, and that the

comparisons of the different NP effects (which are much larger) are meaningful. In partic-

ular, if we include in the retuned set-up the string interaction (in Born approximation), we

find a rather significant enhancement over the Coulomb-only scenario, as before. On the

other hand, if we use our baseline parameters for the “VC Born” case (αs = 0.27, Nf=3,
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md=0.42 GeV, mq=0.43 GeV, mg=1.15 GeV and mc=1.76 GeV), the resulting energy loss

spectrum is much reduced, cf. figure 13. While the interaction strength is quite similar to

the retuned scenario, the much larger quasiparticle masses fixed by fitting to the lQCD EoS

reduce the color charge density and with it the rate of radiation. In addition, the larger

gluon and charm-quark masses (the latter as constrained by the HQ free energy) suppress

the phase space for radiation. If we include the NP effects, i.e., the string interactions

and resummations, the energy loss spectrum substantially increases over the “VC Born”

result but is still significantly below the pQCD calculation.2 The large interaction strength

cannot compensate the loss caused by the large NP masses, which are largely generated by

the (remnants of the) confining force in our approach.

4 Conclusion

We have analyzed the radiative energy loss of heavy quarks within a thermodynamic T -

matrix approach, on the same footing with earlier studies of collisional energy loss. The

most relevant aspects of this calculation are its nonperturbative components, specifically

remnants of the confining force above Tpc, t-channel ladder resummations and off-shell spec-

tral functions. These have been previously constrained by various sets of lattice-QCD data,

most notably the QGP equation of state and heavy-quark free energy. To scrutinize their

relevance, we have set up four scenarios with a subsequently increasing degree of NP effects.

We have found that all three NP effects referred to above substantially affect the power

spectra and radiative transport coefficients at soft energy scales, i.e., at low HQ and/or

gluon momenta and low temperatures. Ranking them by their importance, the inclusion

of string interactions (even in Born approximation) generates the largest enhancement,

followed by t-channel resummations in the two-body T -matrix, while the off-shell medium

induces comparatively small modifications. Furthermore, we explicitly showed that the NP

effects become gradually suppressed with increasing resolution scale; e.g., at T=0.4 GeV

the NP enhancement in the radiative drag coefficient amounts to less than 40(20)% for

charm quarks of momenta of ∼20(40) GeV. This supports the convergence of pQCD-based

approaches at high parton energies. While our calculations are carried out in a fixed gauge,

we have checked that, when using color-Coulomb Born interactions and matching the input

parameters to state-of-the-art pQCD calculations, our results for energy loss spectra for a

high-energy charm quark agree with the latter within ∼25% or so. However, when using

the thermal parton masses as dictated by the constraints from lattice-QCD, our baseline

“pQCD” calculation results in a strongly suppressed radiation spectrum, mostly due to the

large energy cost (mass) of the thermal modes available to the radiated gluons in the am-

bient QGP medium. The combined enhancement effect of the NP interactions cannot fully

recover this suppression. It will thus be important to further srutinize the robustness of this

result, and investigate its impact on in the phenomenology of HF observables in URHICs.

2As indicated in section 3.2, the drag coefficient from the “T-matrix Onshell” case is rather close to the

“T-matrix Offshell” case, while the latter is computationally much more intensive.
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