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ABSTRACT

Estimation of a probability density function (pdf) from its samples, while satisfying certain shape constraints,
is an important problem that lacks coverage in the literature. This article introduces a novel geometric,
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deformable template constrained density estimator (dtcode) for estimating pdfs constrained to have a

given number of modes. Our approach explores the space of thus-constrained pdfs using the set of shape-
preserving transformations: an arbitrary template from the given shape class is transformed via a shape-
preserving transformation to obtain the final optimal estimate. The search for this optimal transformation,
under the maximume-likelihood criterion, is performed by mapping transformations to the tangent space of
a Hilbert sphere, where they are effectively linearized, and can be expressed using an orthogonal basis. This
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frameworkis first applied to (univariate) unconditional densities and then extended to conditional densities.
We provide asymptotic convergence rates for dtcode, and an application of the framework to the speed

distributions for different traffic flows on Californian highways.

1. Introduction

The estimation of a probability density function (pdf) from its
samples is a fundamental problem in statistics, with a multitude
of applications in different fields. A subproblem, involving esti-
mation of a pdf given some prior knowledge about the shape
of this pdf, is also an important problem. In practice, the prior
knowledge stems from a scientific understanding of the underly-
ing process. It is therefore important that the estimate be consis-
tent with the prior shape knowledge for it to be interpretable and
practically useful as an analytical tool. While a great deal of past
research has gone into shape-constrained density estimation,
these articles have dealt with very specific shape constraints,
including log-concavity, monotonicity, and unimodality; there
is little to no literature on optimization-based estimation of pdfs
with multimodal shape constraints.

The earliest estimate for a unimodal density was given by
Grenander (1956), who showed that a particular, natural class
of estimators for unimodal densities is not consistent, and pre-
sented a modification that is consistent. Over the last several
decades, a large number of articles have been written analyz-
ing the properties of the Grenander estimator (e.g., Rao 1969;
Izenman 1991) and its modifications (Birge 1997). An estima-
tor using a maximum likelihood approach was developed by
Wegman (1970). The earlier articles assumed knowledge of the
position and value of the mode, and applied monotonic esti-
mators over subintervals on either side of it; later articles (e.g.,
Meyer 2001; Bickel and Fan 1996) include an additional mode-
estimation step. Bayesian methods have also been developed
(Brunner and Lo 1989). Turnbull and Ghosh (2014), in addi-
tion to describing an estimator that uses Bernstein polynomials
with the weights chosen to satisfy the unimodality constraint,

also provided a useful summary of recent results on unimodal
density estimation.

The obvious extension to multimodality constraints is of
great practical importance because multimodal densities occur
abundantly in nature; in particular, many biological processes
are expected to show a known multimodal structure. For exam-
ple, the DNA methylation profile in humans shows a bimodal
structure corresponding to hypomethylated and hypermethy-
lated regions: see Harris et al. (2010) and references therein;
while the rate of nucleotide substitutions in DNA sequence (in
non-CG-nucleotides) shows a trimodal density corresponding
to accelerated, conserved, and neutral substitution rates: see
Pollard et al. (2010) and references therein. In industrial and
electrical engineering, household electricity consumption pat-
terns and traffic patterns have been known to follow multimodal
distributions.

1.1. Challenges and Current Literature

The important challenges in shape-constrained estimation are
to characterize the set of all density functions satisfying the
desired shape constraints, and to solve the maximum likelihood
estimation problem on that space. Shape-constrained estima-
tion problems would seem to encourage a geometric approach,
but the use of geometry in density estimation has in fact been
sparse in the literature: to the best of our knowledge, there is
no current method that can impose a multimodality constraint
on an estimated density and provide optimality in some way.
However, multimodality constraints have been studied in the
case of function estimation: for example, see the very recent
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article by Wheeler, Dunson, and Herring (2017) and references
therein. Here we summarize the literature that is most relevant
to the problem of density estimation under shape constraints.

Hall and Huang (2002) introduced a tilting approach to
convert an unconstrained density to an estimate within a uni-
modal shape class. However, the resultant density estimate often
directly contradicts the available data by having zero likelihood
even at the data points themselves, and is thus not appropriate
as an exploratory tool. Another article (Cheng, Gasser, and
Hall 1999) proposes to start with a template unimodal density
and provide a sequence of transformations that when applied
to the template both keep the result unimodal, and “improve”
the estimate in some sense. However, the method is ad hoc,
and asymptotic convergence of the estimates, although seen
empirically, is not guaranteed. Very recently, Wolters and Braun
(2018) introduced a technique that solves the limitations of the
approach in Hall and Huang (2002). Specifically, they provide
an algorithm to find a constrained estimate that is the nearest to
an unconstrained kernel density estimate (under the integrated
squared error loss function), and that can handle up to bimodal
constraints. However, this method provides an estimate that
satisfies the shape constraint only on a prespecified grid in the
support, so that the estimate need not lie in the correct shape
class, in principle. Since their construction of the constrained
estimate involves smoothing out the spurious peaks of the initial
unconstrained estimate, the resultant shape contains spurious
flat spots, which once again limits the interpretability of the
estimate. Finally, this estimate is not designed to be optimal
under any specific criterion. This issue is also present in kernel
density estimators, where one can always choose a bandwidth to
ensure a given number of modes, but the resulting density is not
optimal in any sense for a finite sample size.

Recently, Dasgupta, Pati, and Srivastava (2021) introduced
a geometric approach for exploring the space of all probability
densities to perform unconstrained density estimation. In this
approach, one starts with an efficient initial estimate, perhaps
from a parametric family, and then transforms it into the desired
optimal density using elements of a diffeomorphism group. The
problem therefore shifts to finding the optimal transformation
under the chosen criterion. However, no shape constraints are
imposed on the estimated density.

1.2. Proposed Formulation and Its Novelty

In the current article, we take a principled and geometri-
cally intuitive maximum-likelihood approach to the problem
of modality-constrained density estimation. The primary con-
tribution of this article is to construct a framework that can
handle any general modality constraint, and can provide smooth
interpretable maximum likelihood estimates within a specified
shape class.

For this purpose, we develop a novel modification of the geo-
metric approach used by Dasgupta, Pati, and Srivastava (2021).
The method starts with a template density from the desired
shape class, and then deforms it into the optimal estimate from
that shape class. We shall call this estimator deformable template
constrained density estimator or dtcode. The advantages of
dtcode over existing methods are as follows.

First, while estimation is based on deformation or trans-
formation of an initial template as in Cheng, Gasser, and Hall
(1999), we apply only a single transformation rather than a
possibly nonconvergent sequence. Coupled with a small number
of other parameters, this transformation constitutes a parame-
terization of the whole of the shape class of interest.

Second, we use a broader notion of shape than previous
work: in its simplest form, we constrain the pdf to possess a
fixed, but arbitrary, number of modes; we also consider more
general cases in the supplementary materials. The shape con-
straint is fully captured in the initial template itself. As a result,
the subsequent estimation of the transformation is independent
of the constraint, providing much greater stability in practical
performance with respect to higher modality constraints than
methods such as Wolters and Braun (2018).

Third, we use (penalized) maximum likelihood estimation,
which guarantees optimality in principle, and allows the deriva-
tion of asymptotic rates of convergence to the true density.

The main difference between the current approach and Das-
gupta, Pati, and Srivastava (2021) is in the choice of transfor-
mations used. Dasgupta, Pati, and Srivastava (2021) wish to
parameterize the set of all positive densities. As a result they
choose a set of transformations that act transitively, that is,
any positive density may be transformed into any other. The
necessary transformations take the standard form for a change
of variable: a density is transformed by a warping of its domain:
p + (p o y)y, where p is positive probability density and
the warping function y is a diffeomorphism of the domain,
that is, a one-to-one, differentiable map whose inverse is also

differentiable. Here, y is the derivative of y, that is, y(t) =
dy_it) for all ¢ in the domain of the diffeomorphism.

Clearly, these transformations are not suitable for our case
because transitivity is not compatible with preserving the shape
of a density, merely its normalization. We therefore propose a
different set of transformations, which preserve both normal-
ization and shape: they take the form p — (poy)/ [(p o y)dt.
The denominator renormalizes the density after the transforma-
tion in the numerator; together they preserve the shape of p, in
a sense that we will now explain.

1.3. Overview of the Approach

A precise formulation of the problem is as follows: given inde-
pendent samples X = {x;},i = 1,...,n, from a pdf py, with
a known number M > 0 of well-defined modes, estimate this
density ensuring the presence of M modes in the solution. To
do this, we construct a parameterization of the set of continuous
densities with M modes, Py, as follows.

o Let the set of densities satisfying the shape constraint be
denoted Pyy = {p : [0,1] — Ry : p(0) = p(l) =
0, p has M interior modes}.

o Let the critical points of a pdf p € Py with M modes be
located at {b, : a € {0,...,2M}}, with by = 0 and by = 1.

o We define the height ratio vector A of p as the set of ratios
of the height of the (a + 1)th interior critical point to the
height of the first (from the left) mode: A = (A4, ..., Aapm—2),
where X, = p(bg4+1)/p(b1). Please look at the top left panel



of Figure 2 for an illustration. The height ratio vector for the
density po illustrated here is simply A = (hy/h1, h3/hy).

o Let the subset of Py with height ratio vector A be denoted
Pu,r. Note that the space Py is the union L}\JPM,;L of the

individual spaces Py, with different values of A.

We then parameterize an arbitrary member of Py by:

1. a height ratio vector A € Ay, where Ay is the set of all such
vectors;

2. a diffeomorphism y € I', where I' = {y : [0,1] — [0,1] :
y > 0,7(0) =0,y (1) = 1} is the group of diffeomorphisms
of [0, 1]. Notably, the set I is a group, that is, it is closed under
composition, has an identity element y;4(t) = t, and each

element y has an inverse y ~L.

The pdf represented by a pair A and y is then py, = (ps,¥) €
P, where p, € Piy is an a priori fixed template function
in Py, and (-, y) denotes the transformation of densities by
elements of I' mentioned earlier, which has the crucial property
that it preserves A.

Using this parameterization, we can construct the log-
likelihood function

LOyIX) =) logps,y (xi), 1)

and we can use maximum likelihood to estimate A and y.

We can generalize the method to a larger set of shape classes
by defining a shape as a sequence of piecewise monotonically
increasing, decreasing, and flat intervals that together consti-
tute the entire density function. For example, an “N-shaped”
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density function is given by the sequence: increasing-decreasing-
increasing. For any such sequence, we can construct a template
density in the appropriate shape class, and proceed with estima-
tion as before. The assumption po(0) = po(1) = 0 can also be
relaxed, by considering the height ratios of the two boundaries
as two extra parameters Ao and Azpr41. We discuss these ideas
in more detail in Section 5 of the supplementary materials and
present some simulated examples.

2. Geometric Representation of Densities

In this section, we show that the above construction does indeed
provide a parameterization of Py, by first showing that I is large
enough to allow us to reach any element of Py, starting from
a template p,, € P, and then showing how to construct such
a template for each height ratio vector A € Ap.

Theorem 1. The set of transformations of the set Py, by the
mapping Py X I' — Py, given by (p,y) = % is
a group action. Furthermore, this action is transitive and free.
That is, for any p,p € Py, there exists a unique y € T' such

that p = (D, y).

The proof of the theorem is in the supplementary materials.
The theorem shows that given a template py € P, we can
uniquely represent any other pdf p with the same height-ratio
vector (i.e., also in Pys,,) as a transformation of the template,
that is, as p = (ps, ). What is more, any pdf in Py, can serve
as a template; it can thus be chosen for convenience’ sake.
Figure 1 illustrates the height-ratio-vector-preserving effect
of the transformations by applying several elements of T" to a
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Figure 1. Top left: Initial density. Top right: Different warping functions. Bottom left: Shapes resulting from warping the initial density without renormalization. Bottom

right: Resultant warped densities after renormalization.
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Figure 2. Top left: The original density. Top right: Initial template. Bottom left: The ) transforming the template to original shape. Bottom right: Reconstructed density.

pdfin two stages. First, the numerator of the full transformation
is shown (bottom-left); this stage preserves the heights of all
extrema. Second, the pdf is renormalized by dividing by the
denominator (bottom-right); this stage changes the heights, but
still preserves the height-ratio vector.

How then do we construct a distinguished template element
D5 € P, First we construct an unnormalized function g
with M modes and height ratio vector A:

1. Set g, (0) = gx(1) = 0.

2. Divide the interval [0, 1] into 2M equal intervals correspond-
ing to the M modes and M — 1 interior antimodes, setting
aj = j/2M,j € [1,...,(2M — 1)], the location of the jth
critical point.

. Setgi(a1) = 1,and g (aj) = Aj— forje[2,...,2M — 1)].

4. The values of g, for all other points are obtained by linear

interpolation.

w

We can now define p, = ¢./(f g1) € Pum,.

We have thus constructed a representation space Ay x I',
a set of coordinates for Py, where A; = {1}, and for M > 1,
AM = {)\ (S] RgMﬁz) : )\.1 < 1,)\1 < )\.2,)\.2j+l < )\Zj’)‘2j+1 <
Mjr2sj = 1,2,...,M — 2}, the conditions arising because the
odd indices A1, 23,. .., Aam—3 correspond to antimodes, while
the rest correspond to modes.

Figure 2 shows a simple example to illustrate this represen-
tation. The top left panel is a density that has M = 2 modes
with critical points located at b; and heights h;. The top right
panel shows the initial template function with M = 2 modes and

critical points located at a; and heights A; = h;/h;. The bottom
left panel shows the warping function constructed according to
the description in the proof of Theorem 1, while the last panel
shows that using this warping function, we recover the original
density.

So far, we have assumed that the densities are defined on
[0, 1]. When the bounds of the density function are not known,
they are estimated from the data X using the formula A =
min(X) — sd(X)/+/n and B = max(X) + sd(X)/+/n, where
A and B are the lower and upper bounds, respectively, sd(X) is
the standard deviation of the observations, and # is the number
of observations; these estimates are taken from Turnbull and
Ghosh (2014). The data are then scaled to the unit interval,
zi = (x; — A)/(B — A), before proceeding with the rest of the
estimation.

The framework readily extends to the situation where the
true density has a general connected support D by generalizing
fromCtol’™ = {y : D - D,y > 0,y is boundary
preserving}. For example, if the support of the true density is
the entire real line then we can set D = R U {£00}. However,
from a practical standpoint, it is often beneficial to assume that
the true density has compact rather than infinite support. Our
experiments corroborate the findings in Wahba (1981), that it
is preferable for the true density to have compact support and
then to scale the data to the unit interval for density estimation.
Thus, for the rest of the article, we always assume that D =
[0,1], and that the true density has its support on the unit
interval.



3. Parameter Estimation

Having established a parameterization of the set of shape-
constrained densities of interest, the next step is derive a pro-
cedure for estimating these parameters from data and specify
the pdf estimator dt code. We will use a maximum-likelihood
framework, for which we must first specify the log-likelihood
function and then solve the optimization problem for A and y.
The optimization over I" presents particular difficulties regard-
less of the likelihood function, and so we first describe how we
deal with these.

3.1. Finite-Dimensional Representation of Warping
Functions

In solving an optimization problem on I, we face two chal-
lenges. First, I is a nonlinear manifold, that is, it is not a vector
space; and second, it is infinite-dimensional. We handle the
nonlinearity by forming a map from I to a vector space. (This
vector space happens to be the space tangent to the unit Hilbert
sphere S as explained below.) We tackle infinite dimensional-
ity by restricting to a finite-dimensional subspace of this vector
space. Together, these two steps are equivalent to finding an
increasing family of finite-dimensional subsets I/ C T that can
be flattened into vector spaces. This then allows us to represent
any element y € T using a finite orthogonal basis. Once we
have a finite-dimensional representation of y, we can optimize
over this representation using standard techniques.

To flatten I" locally, we define a function g,, : [0,1] — R,
gy (1) = /7 (1), termed the square-root slope function (SRSF) of
y € I'. (For a discussion on SRSFs of general functions, please
refer to Chapter 4 of Srivastava and Klassen (2016)). Note that
we can reconstruct y from g, using y(t) = fot qf, (s) ds. In
particular, since [|q, ||* = fol gy (H)%dt = fol yHdt = y(1) —
y(0) = 1, we see that g, € Se,, where the unit Hilbert sphere
Sec is defined by Soo C L2 = {g:[0,1] = R: [ g*(t) dt = 1}.
We can also see that for any g € S, there is a y, that generates
q given by y,(t) = [ g*(s) ds.

The unit sphere S, has known geometry Lang (2012), but is
still not a vector space. However, it can easily be easily flattened
into a vector space (locally) due to its constant curvature. A nat-
ural choice for this flattening is a bijective mapping, described
next, to the vector space tangent to S at the point 1, a constant
function with value 1. Note that 1 is the SRSF corresponding
to y = ya(t) = t, that is, the identity, making it a natural
choice for the tangent space.) The tangent space of S at 1 is
an infinite-dimensional vector space given by: T1(Se) = {v €
L2([0,1L,R) : [} v(t)dt = (v,1) = 0}.

The bijective mapping between S, and T1(Sco) is the so-
called inverse exponential map:

exp; (@) : Soo—> T1(Seo) »

v=exp; (@) = m(q — 1cos(9)), 2)

where § = cos™!((1, g)) is the arc-length from g to 1.
We impose a natural Hilbert structure on T7(Ss) using
the standard inner product: (vi,v2) = fol vi(Dva(t)dt. Tt is
easy to check that, since cos_1(<1,q>) < 7, the norm ||v|]| =
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,/fol v(t)2dt = 6 <  for any v = exp] ' (q). Thus, the range
of the inverse exponential map is not the entire T} (Sy), but a
subset V= {v € T1(Sxo) : ||v|| < 7}.

To map points back from the tangent space to the Hilbert
sphere, we reverse this process. This time we use the exponential
map:
sin([|v[])

vl

Finally, we can select any orthogonal basis B = {b;,j =
1,2,...} of the Hilbert space T1 (S~ ) and express its elements v
by their corresponding coefficients: v(t) = Zj'il cjbj(t), where

exp;(v) : V= Seo,  exp;(v) = cos(||v|)1+ (3)

¢; = (v,bj). The elements of such a basis are just functions in
L2([0,1],R) that are orthogonal to 1, that is, (bj, 1) = 0 for all
j. One example is the Fourier basis excluding 1, but other bases,
such as the cosine basis, splines, and Legendre polynomials, can
also be used. Efromovich (2010) discussed different choices of
basis functions and advocates the use of trigonometric bases for
functions with compact support.

Given a basis B = {bj,j = 1,2,...}, one can define an
infinite-dimensional space of coefficients C = {c¢ = (¢1,¢2,...) :
Zj'il ¢jbj(t) € V}. One can then truncate the basis expansion
to approximate elements of V using finitely many coefficients.
Suppose one uses ] basis elements to approximate the tangent
space elements. Then, the approximating space of coeflicients
will be denoted by C/ = {c € R/| Z]]'=1 ¢jbj(t) € V}. Note that
C’ is a proper subset of R/ since it contains only elements sat-
isfying || Z]]‘=1 ¢ibj(t)|| < 7. Using these two steps, we specify
a finite-dimensional, and therefore approximate, representation
of the transformation space I". We define a composite map H :
C) - T,as

J
(b}
{cj}eC]—J> v=chbj€V RN q €S — y(t)
j=1

t
= / q(s)zds. (4)
0

For any ¢ € C/, let y, denote the diffeomorphism H(c). For any
fixed J, the set H(C') forms a J-dimensional subset of I", denoted
by I'/ henceforth, and we pose the estimation problem on this
subset. As ] goes to infinity, this subset I'/ converges to the full
group I'.

3.2. Joint Estimation of . and y

We use a joint maximum likelihood method to estimate the
height ratios A along with the coeflicients corresponding to
the estimate of y. The maximum likelihood estimate of the
underlying density, given the initial template function py, is
. P (7 (1)

Pty = 2,

Jo R @)at

where y = H(¢), and

telo,1], (5)

& = argmax
ceCl reAy

n 1
(Z[log (f’x (Ve(x1)) / /0 P (ve(1) dt)D . (6)

i=1
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Since this optimization is over a finite-dimensional Euclidean
space, any numerical optimization package can be applied here.
The objective function (6) is not convex, and so we use the Mat-
lab function fmincon for optimization. However, fmincon
can produce local solutions, and the GlobalSearch toolbox
often yields better results, albeit at higher computational cost.
The GlobalSearch toolbox is a multistarting algorithm that
generates different trial points as initial values of the algorithm,
and uses the trial point that converges to alocal solution with the
least objective function value. The algorithm and the method of
generating these trial starting points are described in Ugray et al.
(2007). Depending on the computational resource available, one
can regulate the number of trial points generated, or can simply
use the zero vector as a natural starting point.

The choice of ], the number of basis elements, is important.
Too large J can result in overfitting and also put computational
burden on the optimization algorithm which might get stuck in
local, suboptimal solutions. We use a penalized version of the
likelihood in (6), the standard Akaike’s information criterion
(AIC), to choose the optimal number of basis elements.

4. Simulation Study

For the numerical implementation of dtcode, we use the
Fourier basis for the tangent space representation. We start
with two basis elements, and increase the number up to a
predecided limit; we then choose the result with the best
AIC value. We chose AIC as the penalty on the number of
basis elements because experiments suggested that BIC over-
penalizes the number of parameters, causing the estimate
to miss the sharper features of the true density. The code

for dtcode is available online at https://github.com/Sutanoy/
Shapeconstrained_DensityEstimation.

For illustration, we use sample sizes of 100, 500, and 1000.
To evaluate the average performance, we generate 100 samples
(of sample size 100, 500, and 1000, respectively) and evaluate
the mean error and the standard deviation of the errors. For
the error function, we considered the vector L2, !, and L.>®
norms of the difference between the true density and the density
estimate evaluated on 100 equidistant points across the support.

The average computational time for dtcode varies from
around 20 sec for a sample of size 100, to 250 sec for a sample of
size 1000, while optimizing over ten different possible parameter
dimensions using 1000 trial points in the GlobalSearch
algorithm, on an Intel(R) Core(TM) i7-3610QM CPU processor
laptop.

4.1. Study 1

We start with two examples with one mode:

o Example 1: a symmetric unimodal pdf given by py =
0.8 N'(0,4) + 0.2 N'(0,0.5).

« Example 2: a unimodal pdf with contamination, given by
Po = 0.95 N(0,0.5) + 0.05 N (3, 1).

In Figure 3, we use the L2 loss function values calculated for
100 samples of size 100 to compare the results obtained with
dtcode (leftmost column) to those obtained using the umd
package developed by Turnbull and Ghosh (2014) (center col-
umn) and the scdensity package introduced in Wolters and
Braun (2018) (rightmost column). The upper and lower rows
show examples 1 and 2. In each plot, the true density is shown
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Figure 3. Performance of dtcode (left) versus umd (center), and scdensity (right) for examples 1 (top row) and 2 (bottom row) of Study 1, using the L2 loss function
values calculated for 100 samples of size 100. The true density is shown as a solid line; the estimated density with best performance as a dashed line; with median

performance as a dotted line; and with worst performance as a dashed-dotted line.
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Figure 4. A comparison of the variability of the estimates across different samples for Example 1 from Study 1 at sample size 100. The middle dashed line indicates the
average estimate across samples, while the upper and lower dashed lines represent the 95th and 5th quantiles, respectively, of the estimate at the location. The solid line

is the true density.
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Figure 5. The left panel shows the bimodal example from Study 2, with the true density (solid) and dt code estimate(dotted). The right panel shows the scdensity

estimate along with local modes. The observations are shown on the x-axis.

as a solid line; the estimated density: with best performance as a
dashed line; with median performance as a dotted line; and with
worst performance as a dashed-dotted line.

In both examples, dt code clearly outperforms umd in cap-
turing the sharper features and in stability of performance. On
the other hand, the performance of dtcode is very similar to
the performance of scdensity for both the examples. For the
kurtotic unimodal example 1, scdensity has a slightly better
performance, whereas for the contaminated unimodal density
estimate 2, dtcode is superior. Table 1 in the supplementary
materials gives a quantitative analysis.

For the kurtotic unimodal example 1, we also study the
pointwise MSE, as shown in Figure 4. The figure shows that
across all samples, dt code and the package scdensity have
a similar overall performance in capturing the location and the
height of the mode.

Example 2 is a special case where there are outliers in the
data that create the possibility of a small peak near the right
boundary. These outliers also affect the boundary estimates, and
reflect a spurious mode in the true density. In this example,
we see that dtcode is very robust to the choice of boundary
estimates, replacing the spurious mode with a wide shoulder, as
shown in the bottom left panel of Figure 3. For this example,
the quantitative performance of dt code is also superior to the
other techniques for all sample sizes, as shown in Table 1 of the
supplementary materials.

4.2. Study 2

Next, we study a bimodal density: an asymmetric bimodal den-
sity given by po = 1/3N(—1,1) + 2/3/N(1,0.3).

We compare the estimation performance of dtcode with
scdensity. Table 2 in the supplementary materials presents
a quantitative comparison of different loss functions and the
likelihood for this example at different sample sizes. For all
sample sizes, the performance of the two approaches is very
similar with respect to the loss functions. However, there are
some clear advantages to our approach. First, note that the
bimodality constraints in Wolters and Braun (2018) are satisfied
only on a prespecified finite grid. As a result, the final estimate
has spurious modes violating the shape constraint, and thus
technically does not belong in the correct shape class; the ability
to violate the constraints probably explains the slightly better
IL? errors for its estimates. Second, the estimate itself does
not enjoy any statistical optimality. The estimate starts with an
unconstrained estimate and obtains the nearest estimate in the
correct shape class. For that purpose, it replaces spurious peaks
with flat intervals even though the data might suggest otherwise.

Figure 5 illustrates an example of the performance of
dtcode in comparison with scdensity.

The left panel shows the dtcode result, while the right
panel shows that for scdensity. The 100 observations are
also shown along the horizontal axis. The quantitative perfor-
mance of scdensity and dtcode (shown in Tables 1 and 2
of the supplementary materials) are very similar at all sample
sizes. Further investigation reveals that small differences can
mostly be attributed to the choice of starting point and the
actual optimization algorithm used in our approach, rather than
the approach itself. For example, we notice that scdensity
performs better if we use an external optimization function to
obtain the mode locations rather than the approach proposed
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Figure 6. Boxplots of the L2 norms of the errors of the density estimates found using dt code, scdensity, and umd, for randomly sampled true densities and different
sample sizes. The top row shows the results for Example 1; the bottom row those for Example 2.

in the original article and then used in the scdensity pack-
age. Also, dtcode shows improvement if we choose a more
informed starting template shape, such as a kernel density with
hand-tuned bandwidth so that the number of modes is correct.

With respect to the shape of the resultant density esti-
mate, however, the scdensity estimate does not conform
to the available data because the constraint is only satisfied
on a prespecified grid. The right panel of Figure 5 shows the
scdensity estimate along with the local maxima indicated
by asterisks. The left modal region is replaced by several small
bumps, making it difficult to distinguish a true mode from the
constraint violations. We also note that the spurious flat shape
in the left tail is probably due to the inbuilt optimization code
provided. In comparison, dt code correctly captures the data-
sparse region in between the two modal regions and has exactly
two modes.

Finally, we emphasize that the shape constraints appear
directly in the estimation procedure of Wolters and Braun
(2018). This makes the constrained estimation and the nested
search for critical points increasingly complex as the modality
is increased and makes the approach ill-equipped to handle
higher modality constraints. In contrast to scdensity, the
constraint information in dtcode is captured in the initial
template function itself, and the subsequent estimation of the
transformation is free of the modality information, meaning
that the approach scales much better to more general modality
constraints.

4.3. Study 3

As an extension of the previous experiments, we now study per-
formance across a range of unimodal and bimodal examples. We

do this by averaging performance over random samples from a
set of random densities in the appropriate shape family. The true
densities themselves are generated randomly as follows:

o Example 1: a unimodal example with random mixing
proportions and standard deviations, given by py =
aN(0,01) + (1 — 0)N(0,07), with o ~ U(0,1), o7 ~
max(0.1, N'(0.4,0.1)), and 6, ~ max(0.1, N'(3,0.2)).

o Example 2: a bimodal example with random mixing pro-
portions, means, and standard deviations, given by py =
aN(M1701) + (1 - Ol)N(/,Lz,O'z), with o ~ U(,1), o1 ~
max (0.1, V'(0.75,0.2)), u1 ~ N (—1,0.2), uy ~ N(0.1,0.2),
and o2 ~ max(0.1, N/(0.5,0.2)).

Figure 6 shows boxplots of the > norms of the estimation
errors for example 1 (top row) and example 2 (bottom row),
for three sample sizes. We notice that the dtcode estimate
is comparable to the scdensity estimate at all sample sizes
under this measure. Again, as above, our approach is better in
terms of the desired shape constraint.

4.4. Study 4

Next, we study pdfs with three and four modes, respectively:

o Example 1: an asymmetric trimodal density with one
mode well separated from the other two, given by py =
1/3N(~1,0.25) + 1/3N(0,0.25) + 1/3N(2,0.3).

o Example 2: a four-modal density, given by po
0.25N(—4,0.5) + 0.25M(=2,0.5) + 0.4MN(2,1) +
0.1N(5,0.25).
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In Figure 7, we use the L? norm of the errors calculated for
100 samples of size 100 to study the results obtained with
dtcode on examples 1 (left column) and 2 (right column).
The top row shows plots of the true density as a solid line;
the estimated density: with best performance as a dashed line;
with median performance as a dotted line; and with worst
performance as a dashed-dotted line. The bottom row shows
boxplots of the L2 norms of the errors for different samples sizes.
The results show that the performance improves with increasing
sample size, in both size and spread of error. Note that we do
not compare the dtcode results to those of other methods
because there is no other method that can handle M = 3 or
higher.

5. Application to Electricity Consumption Data

Quantification and detection of patterns in electricity consump-
tion curves across households, locations, and seasons, is crucial
for planning and forecasting, as discussed in Cordova et al.
(2018) and Kwac, Flora, and Rajagopal (2014), among others.
Deployment of advanced monitoring systems, including smart
meters and synchrophasors, in power distribution networks
has created a new paradigm for observing and managing the
electric grid, leading to an abundance of consumption data with
different levels of granularity. The City of Tallahassee, the capital
of Florida, has a Meter Data Management System (MDMS)
that stores electricity consumption (kWh) readings from every
customer in the city for billing purposes and further analysis.
We look at the daily electricity consumption profiles of a ran-
domly chosen de-identified single household in Tallahassee. The
dataset was obtained with a Non-Disclosure Agreement with the
City of Tallahassee.

The daily consumption patterns show high variability,
depending on day of the week, season, and other extraneous
factors, even for this single household. We look at the electricity
consumption values at different times in a particular day, for
four different days, to estimate the daily distribution of elec-
tricity consumption. However, one can split the daily consump-
tion profiles into two interpretable clusters: consumption values
when the household members are at home versus consumption
values when the households are not at home. This suggests
that a two-mode constrained density estimation would lend
interpretability to the density estimates, which can otherwise be
Very noisy.

Figure 8 shows the density estimates and the corresponding
histograms of electricity consumption for four different days at
the randomly chosen household. As expected, in most cases, an
unconstrained estimate is too bumpy and uninterpretable. The
shape constraint, however, results in much smoother and more
interpretable estimates, the two peaks captured by our proposed
method aligning well with the major peaks in the histograms.

6. Extension to Conditional Density Estimation

The proposed framework for modality-constrained density esti-
mation extends naturally to modality-constrained conditional
density estimation. Consider the following setup. Let X be a
fixed one-dimensional random variable with a positive density
on a fixed interval. Let Y ~ fx, where fx is an unknown
conditional density that changes smoothly with X.
Conditioned on X, Y is assumed to have a univariate, con-
tinuous distribution with support on the interval [A, B], with
M modes in the interior of [A, B], and fx(A) = fx(B) = 0.
We observe the pairs {(Y;,X;)},i = 1,...,n, and are interested
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Figure 8. Estimated densities of electricity consumption using the warped approach (dotted) and a kernel (ucv) approach (solid), and the associated histograms of

consumption data for four different days.

in recovering the conditional density fx at a particular location
of X, henceforth referred to as xo. The estimation is again
initialized with an M-modal template function p,. However,
since fx varies smoothly with X, we assign more importance to
observations closer to the location x( than to observations fur-
ther away, and hence we perform weighted maximum likelihood
estimation to find the necessary parameters:

&) = argmax
ceCl reAy

n 1
X (Z [log (ﬁx (ve(x)) / /0 P (ve(D) dt)}on,i>’

i=1
(7)

where Wy, ; is the localized weight associated with the ith obser-
vation, calculated according to

N (I1Xi = xoll5/h(x0); 0, 1)
YL NUIX — xoll,/h(x0); 0, 1)

Here N(-,0,1) is the standard normal pdf and h(xg) is the
parameter that controls the relative weights associated with the
observations. However, weights defined in this way result in
higher bias because information is being borrowed from all
observations. To mitigate this, as discussed in an example in
Bashtannyk and Hyndman (2001), we allow only a specified
fraction of the observations X; to have a positive weight. Note
that using too small a fraction will result in unstable estimates
and poor practical performance because the effective sample
size will be too small. Hence, we advocate using the 50% of
the observations nearest to the target location for borrowing
information, and then calculating the weights for this smaller
sample as before.

The parameter h(xp) is akin to the bandwidth parameter
associated with traditional kernel methods for density estima-
tion, for the predictors X. A very large value of h(xg) distributes
approximately equal weight over all observations, whereas a
very small value considers only the observations in a small
neighborhood around xp. The value of h(xp) can be chosen

on,i = (8)

via any standard cross-validation-based bandwidth selection
method. In our experiments, we use an adaptive bandwidth
selection method to save computation time when the predictors
are independent of each other. It consists of a two-step proce-
dure:

1. Compute a standard kernel density estimate K of the pre-
dictor space using a fixed bandwidth chosen according to
any standard criterion. (We simply use the ksdensity
estimate in MATLAB, which chooses the bandwidth optimal
for normal densities.) Let & be the fixed bandwidth used.

2. Then, set the bandwidth parameter h(xp) at location xy to be

h(xo) = h/\/K(xo).

The intuition behind this choice is that & controls the overall
smoothing of the predictor space based on the sample points,

while 4/ K(xo) stretches or shrinks the bandwidth at the partic-
ular location. In a sparse region, increased borrowing of infor-
mation from other data points is desirable to reduce the variance
of the estimate, whereas in dense regions, reduced borrowing of
information from faraway points reduces the bias of the density
estimates. A location from a sparse region is expected to have
a low density estimate, and a location from a dense region is
expected to have a high density estimate. Hence, varying the
bandwidth parameter inversely with the density estimate helps
adapt to the sparsity around the point of interest. The choice of
the adaptive bandwidth parameter is motivated by the variable
bandwidth kernel density estimators discussed in Terrell and
Scott (1992), Van Kerm (2003), and Abramson (1982), among
others. We provide a simulation study in the supplementary
materials.

7. Application to Traffic Flow Data

As an application of modality-constrained conditional density
estimation, we use the traffic flow data for Californian high-
ways from the package hdrcde in R. The scatterplot shown
in Figure 9 shows the distinctly bimodal nature of the speed
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Figure 9. Left: Scatterplot of traffic flow data for Californian highways from the hdrcde package in R. Center: Traffic speed density at traffic flow 1400 as estimated by
dtcode (solid line) and the NP package (dotted line). Right: A magnified view of the left part of the center plot.

distribution for traffic flows between 1000 and 1620 vehicles
per lane per hour, corresponding to uncongested and congested
traffic. This range of traffic flows was studied by Einbeck and
Tutz (2006). They noted that beyond a traffic flow of 1620, the
regression curves corresponding to uncongested and congested
traffic are no longer distinguishable. So, we consider the speed
flow in the above range (772 observations), and estimate the
density of the speed conditional on a flow of 1400. We use a
bimodality constraint on the shape, and our prescribed 50% of
the 772 observations. For the tangent space representation, we
use up to 6 basis elements.

The middle panel of Figure 9 (solid line) shows the condi-
tional density estimate for flow = 1400 using dt code. The left
mode is at 35.56 mph and the right mode is at 59.01 mph. Ein-
beck and Tutz (2006) obtain a very similar conditional density
estimate. The left mode in their case is at 32.65 mph and the
right mode is at 59.18 mph. On the other hand, if we find a
traditional conditional density estimate using the NP package,
we find several spurious bumps; this estimate is shown in the
middle panel of Figure 9 (dotted line), with a magnified view
shown in the right panel. The superfluous bumps are present
in the NP estimate constructed using 772 observations (not
presented), as well as the estimate constructed using only 50%
of the observations as in our approach. This results in over-
interpreting the tail and consequently a lack of interpretability
for the modes themselves. Thus, constraining the number of
modes clearly helps with the interpretability of the resulting
density.

8. Discussion

Shape-constrained density estimation is a rich problem area
that has a broad range of real-world applications, yet has
been explored rigorously only in limited cases. Here we have
introduced a novel framework, using geometric tools, that
enables shape-constrained density estimation using a differ-
ent notion of shape than studied previously. In our approach,
named dtcode, a template from the appropriate shape class is
deformed using shape-preserving diffeomorphisms of the data
domain, the optimal deformation being defined by maximum
likelihood. The problem is thereby reframed as one of optimiz-
ing over the diffeomorphism group.

The framework is the first in the literature that can per-
form modality-constrained density estimation for any number

of modes. However, from a practical perspective, the perfor-
mance suffers somewhat when the constrained shape becomes
too complex or if the number of modes becomes high (>4).
This limitation is due to the current choice of numerical tech-
niques used in optimization over the diffeomorphism group,
and because of the choice of basis set used in estimation.

Since this article primarily focuses on the fundamental
framework for dt code, it only lightly touches upon or leaves
out some associated problems. Examples include the choice
of the number of basis elements for the tangent space repre-
sentation, the choice of the basis itself, estimation of domain
boundaries, and the choice of penalty for penalized estimation.
These are all interesting problems in their own right, but space
limitations force our focus to only the main ideas. Nevertheless,
we can make some observations.

o This article uses AIC as the penalty to select the number of
basis elements because, in comparison, BIC tends to choose
an insufficient number of parameters. However, other model
selection techniques can also be investigated.

o Experiments using a Meyer wavelet basis for the tangent
space representation yielded results similar to those reported
in the article, although the Meyer wavelets seemed to require
more observations than the Fourier basis to obtain satisfac-
tory results. Clearly, one can choose different bases and con-
duct a comparative study of performance. Since the support
of the warping functions is compact, we recommend using
trigonometric (Fourier and cosine) basis for representation.
Please refer to Efromovich (2010) and the references therein
for a more detailed discussion on this topic. When the sample
size is small, Fourier basis can result in spurious bumps
near the boundaries, which is why wavelets may be a good
alternative.

o Our article follows Turnbull and Ghosh (2014) in estimating
the boundaries, but other choices can be explored as well.

o For conditional density estimation, the weights can be
defined using any kernel: the Gaussian kernel (and the I.2-
loss function) was only used as an illustration.

An advantage of the proposed framework is that it is easy to
extend to conditional density estimation via a weighted maxi-
mum likelihood objective function. One potential future direc-
tion is to apply this framework to situations where a large num-
ber of covariates are present. Currently, the bandwidth parame-
ter is chosen adaptively based on a kernel density estimate at the
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location of the (scalar) covariate. The framework can be directly
extended to a scenario with d covariates using a d-dimensional
kernel density estimate at the location of the predictors. Such an
estimate would generically suffer from the curse of dimension-
ality, but seems valid for applications where only a few of the
covariates are relevant. In particular, Wasserman and Lafferty
(2006) have developed a technique to shortlist relevant variables
and to find corresponding bandwidth parameters. Using these
bandwidth parameters, one can redefine the weights and then
perform weighted likelihood maximization as before to produce
a conditional density estimate.

In conclusion, we have developed a framework for incorpo-
rating general modality constraints into a density estimation
procedure, while showing very competitive performance on
shape constraints already studied in literature. In applications
where the data shows modality constraints, the proposed frame-
work will provide accurate and interpretable density estimates
that fully respect the constraints in play.

Supplementary Materials

Supplementary materials by section In Section 1 of the supplementary
materials, we present a proof of Theorem 1. In Section 2, we discuss
the asymptotic properties of our estimator, and present a theorem
which provides an upper bound on the convergence rate. We prove
this theorem in Section 3. In Section 4, we include tables illustrating
the average practical performance for our approach (dtcode), umd, and
scdensity, for the examples considered in the simulation study in the
main article. In Section 4.1, we discuss the effect of the number of basis
elements on the final estimate. In Section 5, we include some examples
of general shape-constrained density estimation beyond M-modality,
like monotonicity, an upper bound on the number of modes, and so
on. In Section 6, we include a simulation study for conditional density
estimation. In Section 7, we discuss an application of shape-constrained
density estimation to DNA methylation profiles.
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1 Proof of Theorem 1

Theorem 1. The set of transformations of the set Py x by the mapping Py X I' — Payy, given

by (p,vy) = T ;f;’) - 1s a group action. Furthermore, this action is transitive and free. That is, for

any p, q € Py, there exists a unique vy € T such that p = (q, 7).

Proof. We will call the new function p = (p,~y) the warped density. To prove the theorem, we
first have to establish that the warped density p is indeed in the set Py, . Note that warping by
I' and the subsequent global scaling do not change the number of modes of p since 7 is strictly
positive (by definition). The modes simply get moved to their new locations {b; = ~*(b;)}.
Secondly, the height ratio vector of p remains the same as that of p. This is due to the fact that
13(13@) o p(y(v~1(b:))) = p(b;) and A= ﬁ(giﬂ)/ﬁ(i)l) = p(biy1)/p(b1) = .

Next, we prove the compatibility property that for every 71,72 € I" and p , we have (p,~; o

v2) = ((p,71),72). This property holds because

pom

Tlpoy1) ds © 12 P
0 ey B 5= Pmomn).
f(%wz)dt T(om o)

Finally, we prove that the action is transitive and free: given p, p € Py », there exists a unique
7o € I' such that p = (p, o). Let h, be the height of the first mode of p and let /; be the height of
the first mode of . Then, define two nonnegative functions according to g = p/h, and g = p/h;.
Note that the height of both their first modes is 1 and the height vector for the interior critical
points is still A. Also, let the critical points of p and p (and hence g and g, respectively) be located
at b; and b; respectively, for i = 0,--- ,2M. Since the modes are well defined, the function g is
piecewise strictly monotonic and continuous in the intervals [b;, b; 1], fort = 0,1,--- ,2M — 1.

Hence, within each interval [g(b;), g(b;11)], there exists a unique (and continuous) inverse of



g, termed g;'. Then, vo(z) = g; "' (g(z)),z € [by, byy1] is such that (g o v9) = § and hence

(p,70) = D

2 Asymptotic Convergence Results

In this section, we derive the asymptotic rate of convergence to the true underlying density py of
the (maximum likelihood) density estimate p described by equation 5 in Section 3.2 of the main
paper. To do this, we use the theory of sieve maximum likelihood estimation as in Wong and
Shen [1995]. Let P denote the set of //-modal continuous densities on [0, 1] strictly positive in

(0, 1) and zero at the boundaries (we drop the previously-used subscript M for simplicity).

e Assumption 1: py : [0,1] — R, is continuous, strictly positive on (0,1), and po(0) =

e Assumption 2: py has M modes which lie in (0, 1).
e Assumption 3: p, either belongs to Holder or Sobolev space of order [5.

Let n be the number of available observations. Let P,, be the approximating space of P when
using J = k, basis elements for the tangent space 73 (SZ)), where k,, is some function of the
number of observations n. Let 7,, be a sequence of positive numbers converging to 0. Let Z; €

(0, 1) be the n observed data points. We call an estimator p : [0, 1] — R, an 7, sieve MLE if

—Zlogp ) > sup — Zlogp D)~

pEPR T



In the proposed method, p is defined such that £ >~ | log p(Z;) is exactly sup £ >""  log p(Z;).
pEPn
Therefore, p is a sieve MLE with 7, = 0. Let ||-||, denote " norm between functions. The

following theorem states the asymptotic convergence rate for the sieve MLE p.

Theorem 2. Let & = Mn=5/2%+V /logn for some constant M. If p, satisfies Assumptions
1, 2 and 3; and p is the sieve MLE described according to (??) in Section ??, then there exist

constants C, and Cy such that

N * * 1 *
PR = 11, 2 ) < Sexp { = Conti)*} + oxp { = nci(en)* . .

The proof hinges on establishing an equivalence between the density space P and the pa-
rameter space. That is, we show that if the estimated parameter is “close” to the parameter
corresponding to the true density, then the corresponding estimated density is also “close” to the

true density. The statement is formally stated and proved in the next section.

3 Proof of Theorem 2

3.1 Preliminaries and Auxiliary results

First we set some notation and some preliminary definitions. M is always used to represent the
number of modes. Let n be the sample size. Let g, denote the M -modal template defined earlier
as a function of A, except that we now parameterize the boundary values of g, by a positive
number w, and henceforth denote the template as ¢g§'. Here A denotes the vector (A - - - Agps_a),

corresponding to the 2M — 2 height ratios of the last 2M — 2 critical points with respect to the
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first critical point. Let k,, be the number of basis elements used for approximating the warping
function v. Let ¢ = (¢, -+, ¢k, ) be a corresponding coefficient vector. Now, define #,, =
(€1, Cny A1y -+, Aapr—2). In what follows, c is used to represent coefficient vectors. B; denotes
the ™ basis element for the tangent space representation of warping functions. =, is used to
represent the warping function corresponding to the coefficient vector c. [y, ly,--- ,C,Cy, - --
represent specific constants. My, M7, My, - - - represent generic constants that can change values
from step to step but are otherwise independent of other terms.

Let \g € R*M=2 be the height ratio vector for py, as defined in Section 2. Then from Theo-

rem 1 there exists an infinite dimensional ¢, such that py can be represented as

1
Po = (62, ©7er)/ / (62, 070t
0

Note that for each ¢ € [0,1], | >°°, ¢;Bi(t)]| = \/f (32, ¢;Bi(t))* < 2. This corresponds to

maxi <<k, |Coj| < lo and thus |co;| < lp for all 4, for some [;. Then the parameter space for P is
O ={(c,\) :ce =l e Ac (0,002} Note that w = w(n) = Q/ log n.where Q
is a constant. Let r* = Q;logn and v, = Q;/logn where Q; <  is some constant. De-
fine P, as the approximating space of densities for P. Define ©,, = {6, = (¢,\) : ¢ €
[—lo, 1], X € (ré,rﬂQM*Q} as the parameter space for the approximating space P,. Then
Pn = (95 °7)/ fol (g% © v.)dt where 0,, = (¢, \) € ©,,. We use the method of sieve maximum

likelihood estimation to obtain the estimate in the approximating space P,, of P and to derive an

upper bound of the convergence rate of the density estimate to the final density.

We call a finite set {(f, f'), j = 1,..., N} aHellinger u-bracketing of P, ifole/2 — ijl/QH2 <

uforj=1,...,N,and forany p € P,, thereis a j such that f < p < f'. Let H(u, P,) denote
the Hellinger metric entropy of P,,, defined as the logarithm of the cardinality of the u-bracketing

5



of P,, of the smallest size. To control the approximation error of P,, to P, Wong and Shen [1995]
introduced a family of discrepancies 0,,(po, Pn) = inf,ep, p(po, p), called the p-approximation
error at po. Controlling d,,(po, P,) is necessary for obtaining results on the convergence rate for
sieve MLEs. We follow Wong and Shen [1995] to introduce a family of indexes of discrepency

in order to formulate the condition on the approximation error of P,,. Let

(1/a)[z* —1],-1<a<0or0<a<1
Zo(x) =

logz, ifa=0+.

Set z = po/p and define p,(po, p) = E,Z.(X) = fpoZa(po/p). We define 0,, () = infep, pa(po, 0)-

For our purposes we set & = 1. Thus we have 0,,(1) = 1nf f po—p)°/p.
Let f; and f, be two densities in P,,. Let 01 = (c1, A1) and 0 = (c2, A2) be the corresponding
parameters. ¢y and g5 be the corresponding templates. Let M be the number of modes and ~y;

and -, be the warping functions corresponding to the coefficients. Then we have
Lemma 1. |f; — f3| < M, Zk”+2M 2 |01; — Oo4| , for some constant My > 0.

Proof. First, following the steps of Dasgupta et al. [In press] we observe that |y, (t) — 72(f)| <
i kn+2M—2 : ) . ,
My Y70 e —coi) < My Y m] |01; — O;| since the ¢;’s are simply the first few coordinates
of 6. Next, observe that |gy 0oy — g5 02| < |g¥ 0y1—g7 02|+ g7 02— g5 02| By construction, g¥
is Lipschitz continuous, and hence |g{ 0y — g7 02| < Ma|y1 — 72| < M3 > ") Fn F2M =2 |01; — O]
w w kn+2M—-2
Now, we have |[¢g¥ 0 v — g5 0 12| < lggng\)} 2)|)\11 — Ay| < MYy |01; — 0. Thus, it

follows that [g¥ o 71 — g5 0 72| < My 32172 6); — 6y]. Using the above observations, we

prove the Lemma.

LetI; = fo g¥oyidt and I, = fo g5 0vadt. Then we have 0 < r!, = min(inf; \y;, ¢9°(0), g¢'(1)) <



I, < max(1,sup; \g;) = r for k = 1,2. Now, we have

i fol = (g7 0o y) Iy — (g5 0 2) Lo | _ | (g7 0 y)Ia — (g5 0 32) s N (g5 0 A2) (1 — I2)
b LI Ll LT ‘
Hence,
kn+2M—2
(g¥ ov1) — (g5 072) | , (g5 0Na) (g5 © Aa)
— < L -0l <M 01; — Oy + T2
|f1 f2|_' I I | 1 2|_ 1 ZZI | 1 2|+ o,

where the last inequality is obtained using the fact that /5 is a finite positive number. Now,
(g5 0 Xo) < max(1,7%). Thus (¢4 o \2)/I, 1, is bounded above by r,?’'max (1, r"). Next, it is easy
to check that |1y — I| < Mi[|(gi 0 71) — (95 © 72)ll < Mall(97 © 1) — (95" © 72)ll;- Thus we

have |fi — fo| < My ZfQTQM_2 |61; — 0] O]

Remark 1. It follows that H(f1, fo) < Ly/||lfi — fll; < ll\/z:f;fﬂw*2 |01, — | <

Iy \/maxlgjganM_g |61; — 62| for some fixed I, > 0 where H(f1, f2) is the Hellinger metric

between two densities fi and f.

Corollary 1. Let p, be the true density. If k,, ~ n'/ 5+ then asymptotically fing lpo — fllo ~
ePn

n=P/CB+Y) ywhere S is the order of the Sobolev space.

This corollary follows from standard approximation results in IL.? basis (e.g. Fourier) of

Holder functions of order 3. For a detailed discussion please refer to Triebel [2006].

Lemma 2. There exists positive constants Cs, Cy, such that for some positive € < 1,
2e U
/ H1/2(5,7>n)du < Oyn'/?e? (2)

Proof. The u/Cs-cover of a set T with respect to a metric p is a set {f,..., f¥} C T such
that for each f € T, there exists some i € {1,..., N} with p(f, f') < u/Cs. The cover-
ing number N is the cardinality of the smallest delta cover. Then log(/V) is the metric entropy

7
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for T. First we bound the metric entropy for P,. Let us consider a fixed fi, fo € P,. We

choose the Hellinger metric for the space P, so that we can borrow results directly from Wong

and Shen [1995]. We note that H(fi, fo) < [ \/maXlngkn+2M_2 |61; — 04| for some [; > 0
following the Remark 1. So finding a u/C5 covering for P, using Hellinger metric is equiv-
alent to finding an [,/ /Cs5 covering for the space of parameters ©,, = {6, = (¢,\) : ¢ €

[—lo, o)™, A e (L, r ]2 %} using Lo norm for euclidean vectors. The l;\/u/C5 covering

nr'n

(2M-2)

number for ©,, using L., norm is (2—1\/03/7,6) (Lizra) /Oy ) . This is obtained by

partitioning the intervals [y, [y] and [r!, ] into pieces of length I;1/u/Cs corresponding to

n''n

individual coordinates and thus obtaining the partition of ©,, through cross product. Then in
each equivalent class of the partition of ©,, we have ||, — ;|| < l;y/u/C3. Thus the cov-

ering number is (2110\/0 /u) ((T;T\/Cg/U) (210\/03/7,0 (l—"\/ /u)(QM Y

e (knt2M—2) ' ,
(—210\/?:3%”‘/@) = N, say. So the metric entropy for P, H(u/C3,P,) is bounded by

(2M-2)

log(N) = (k, +2M —2) log(%)

Now, note that 7; = €2; logn. Then there exists a constant [, such that 2[0\/63 + 7"2\/63 <

lort. Also, let k, = n'/(2#+1) = p2_ Then there exists a constant I3 such that k, + 2M — 2 <

I3k,,.Thus we have, log(N) < I3k, log(lﬁ%). Thus we have H'Y?(u/C3,P,) < IogN <

I3k, log( riily

llﬁ)' Let Iy = 281, /1;. Hence,

Ve
H1/2 U/Cg, \V lgnA/ 2 n
€2 /28 \/ ll

Then as € 1 1, there exists a constant Cy such that \/ 2l5¢2n2 log lt—gﬁ < Cyn'’?€2. Thus there

exists an € < 1 for which (2) holds. ]

Now we are ready to provide the proof of Theorem 2.

U
n

[
\/_e - = \/21362nA log %
€



3.2 Main Proof

Theorem 1 of Wong and Shen [1995] states that, if (2) holds for some € < 1, then there exists

constants C', C5 such that the following likelihood surface inequality holds.

P*( sup Hp ) /po(Y;) > exp(— CmeQ)) < 4 exp(—Cone?) 3)
{Ilp*/2—py/* [l >e.pPn} i=1

—Po

Next we derive an expression for an upper bound of the smallest € < 1 that satisfies (2). Let

the smallest ¢, denoted by e,, be of the form v/I;n~"(logn)”. Then log l— = logn®(logn) " =

(2n)logn + (1 — 2v) loglogn < (6 + 2n) logn. Thus an upper bound for ¢,, can be obtained by

solving

\/21314n—2’7(10g n)*nA(2nlogn + (1 — 2v) loglogn) = Cyn'/?l;m=2"(logn)>.

Setting v = 1/2, and noting that A = 1/(26 + 1) we get n = 5/(26 + 1). Thus, ¢, =
\/Enﬁ v/Iog n is an upper bound of the smallest € that satisfies (2).

Consider the family of discrepancies d,,(«) with & = 1. Let the true density be py with
corresponding parameters ¢y and Ag. d,(1) = piengnpl (po,p). = piGnan [ (po — p)2 /p. Let p; =
arginf [ (po — p)°/p. Then 6,(1) < |lpo — pall> [ 1/f < llpo — pr||%, min (1}, w) ~ n=28/ZF+ D 10g n,

PEPn

Let C, C5 satisfy (3). Define as in Theorem 4 of Wong and Shen [1995],

€n, 1f 0, (1) < iClenQ,
(46,(1)/C1)"?, otherwise.
Note that §(1) and ¢, are equal up to constants. It follows from Theorem 4 of Wong and Shen

[1995], that

1
P[P = po |l > €3) < 5exp { — Can(e, }+exp{‘1"01<e;;>2}'

9



+ 4 Tables for comparing performance with other methods

Table 1: A quantitative comparison of the dt code, umd, and scdensity results for unimodal

datasets.
Example: Symmetric Unimodal Contaminated Unimodal
Method: dtcode umd scdensity dtcode umd scdensity

n | Norm | mean sd | mean sd | mean sd | mean sd | mean sd | mean sd
L' 119030 | 158|022 | 1.10 | 026 | 3.06 | 1.56 | 6.66 | 1.44 | 3.14 | 1.09
100 L?| 0.19 |0.06 | 0.28|0.01| 0.18 | 0.05| 0.44 | 023 | 0.95|0.24 | 049 | 0.17
L*>~1] 0.08 | 003 | 0.120.01 | 0.07 | 0.03| 0.11 | 0.06 | 0.15]|0.05| 0.14 | 0.06
L' 057011 ] 1.19]0.11| 056 | 0.10 | 1.23 | 0.52 | 3.42 | 0.87 | 155|045
500 L?| 0.1 [002] 023]001] 0.09|002| 019 |0.09| 0.51|0.16 | 0.26 | 0.08
L*>~1] 0.04 | 0.01 | 0.11 | 0.01 | 0.04 | 0.01 | 0.05|0.03 | 0.15]0.05| 0.09 | 0.03
L'| 048 029 | 1.13[0.06| 0.40 | 0.07 | 0.83|0.32| 3.15[0.89 | 1.06 | 0.29
1000 L?| 0.08 |0.06| 0.22]0.01| 0.06 | 0.01| 0.12 | 0.06 | 0.46 | 0.09 | 0.18 | 0.06
L>~1] 0.04 034 | 0.11 | 001 | 0.03 | 0.01 | 0.04 | 0.13 | 0.05]0.05| 0.06 | 0.03
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Table 2: A quantitative comparison of the performances of dt code and scdensity for the

simulated bimodal example.

Method: dtcode scdensity

n Norm Mean Std Dev Mean Std Dev
L! 4.5947 1.0687 4.2034 1.2635
L2 0.6438 0.1692 0.6285 0.2050

100
L 0.1870 0.0725 0.2122  0.0850
LogLike | -105.8070 11.0621 | -106.7010 10.8278
L! 2.1147  0.5589 2.1785  0.4888
L? 0.3225 0.0981 0.3371 0.0880

500
L 0.1058 0.0450 0.1297 0.0417
LogLike | -554.5179 21.3556 | -555.3835 21.2605
L! 1.6946  0.4362 1.6410 0.3210
L2 0.2694  0.0831 0.2489 0.0628

1000
L 0.1005 .0437 0.0947 0.0339
LogLike -1108.3 33.8369 -1108.5 32.4121

4.1 Effect of number of basis elements

Figure 1 shows some effects of increasing the number of Fourier basis elements with a bimodal
example (sample size 100). The optimal number of basis elements here is four (dashed line).
If we use eight elements (dotted line) or 14 elements (dashed-dotted line) instead, the estimator

tends to place sharp bumps at isolated points. For 14 elements, the overall estimate also suffers as

11



Figure 1: An example showing the effects of increasing the number of basis elements. The true
density is shown as a solid line; the estimate with 4 elements as a dashed line; with 8 elements as

a dotted line; with 14 elements as a dashed-dotted line.

we see a flatter shape at the mode. This motivates the need for a penalized likelihood to estimate

the number of modes.

S Extension to general constraints

Up to this point we have restricted ourselves to density estimates which are zero at the boundary,
even though the true density might not be exactly zero. Also the estimation has inherently as-
sumed that the M modes lie in the interior of the support and not on the boundary. As indicated
in the simulation studies, the method has very good numerical performance for densities which
decay at the boundaries. However, the proposed framework allows a easy extension to more

general constraints: these are discussed in the following sections.

12
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5.1 Densities with non-zero boundary values

The framework can be extended to estimate densities which may have (1) modes located at the
boundaries, or (2) compact support with non-zero values at the boundaries, by simply consider-
ing the height ratios at the boundaries as extra parameters. The rest of the procedure remains the
same. Another special example are monotone densities, where the mode is at one of the bound-
aries. In such a scenario, one can construct the template by setting the modal value of g to be 1,
and then estimate the other boundary value \; with the appropriate constraint.

Further, suppose a density has a flat spot at a modal (or antimodal) location. This indicates
that the mode is not well defined but is actually an interval. The framework, in principle, ac-
commodates such information by simply adding a flat spot in the template function at the desired
location. Thus, we can extend the idea of the ‘shape’ of a continuous density function to an
ordered sequence of increasing, decreasing, or flat pieces that form the entire density function.
For example, a simple bimodal density function can be identified with the sequence increasing-
decreasing-increasing-decreasing. A function with a unique modal interval can be described as
increasing-flat-decreasing. 1f this sequence is known, then simply constructing a template with
the same sequence allows us to provide a maximum likelihood density estimate within the class
of densities corresponding to that shape sequence.

We consider three examples:

1. a monotonically decreasing density function, given by py o< N(0,0.4)I,¢p,1], and zero

otherwise;

2. a density function with a flat modal region, given by py o< xl,cjo,1/3 + 1/31aeqi/s,2/3 +
(1 — ) Iyc[2/3,1), and zero otherwise;

13



Figure 2: The left panel shows the true (solid line), best (dashed line), median (dotted line), and
worst (dashed-dotted line) performances out of 100 samples (according to I.? norm) of size 500
from the monotonically decreasing density; the middle panel shows the same for sample size 500
from the density with a flat region; the right panel shows the same for sample size 1000 from the

truncated bimodal density.

3. a bimodal density function truncated to [0, 1], given by py o< 3/4N(0.3,0.2*)Ijg ) +

1/4N(0.75,1/8%) I -

As before, we use the MATLAB function fmincon for optimization. Figure 2 shows the
results. The left panel shows the true (solid line), best (dashed line), median (dotted line), and
worst (dashed-dotted line) performances out of 100 samples (according to IL.? norm) of size 500
from the monotonically decreasing density; the middle panel shows the same for sample size 500
from the density with a flat region; the right panel shows the same for sample size 1000 from the

truncated bimodal density.

5.2 Upper bound on modes

In many situations, the exact number of modes might be unclear, but one can put an upper bound
on the number of modes in the true density. The proposed framework extends naturally to con-

straints giving an upper bound M on the number of modes, producing an estimate which has

14



20

m < M modes, as follows. Note that if the template has M modes, then subsequent compo-
sition with a diffeomorphism and renormalization (the group action) cannot create new modes.
However, the number M of modes is maintained by the inequalities imposed on the height ratio
vector, which do not allow the height ratio of a mode to become less than the adjacent antimodes,
and vice versa. If these inequality constraints on the height ratio vectors are relaxed, then one can

obtain any m < M modes. However, a detailed analysis of this topic is beyond the scope of this

paper.

6 Simulation Study For Conditional Density Estimation

We consider two illustrative examples:
1. a unimodal conditional density, given by X ~ A(0,10) and Y'|X ~ DExp((2X — 1)? 1);

2. abimodal conditional density, given by X ~ A(0,1),and Y|X ~ 0.5 N(X —1.5,0.5%) +

0.5 N(X +1.5,0.5%).

In both cases, we study 100 samples of size 100 and 1000, and compute the conditional
density at the 25", 50™, and 75" quantile of the predictor support. Figure 3 and Figure 4 illustrate
the true (solid), best (dashed), worst (dashed-dotted), and median (dotted) performances among
the 100 samples for the unimodal example and the bimodal example respectively.

For sample size 100, the performance is slightly unstable and the worst performance often
has a bias and is wiggly in nature. Naturally, for larger sample size 1000, the results are much
more stable. Also noteworthy is the more pronounced bias for the conditional densities evaluated

at the 25" and 75™ quantiles, because of the borrowing of information via weighted likelihood
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Figure 3: Conditional density at three different locations in the support of the predictors, at

sample size n = 100 (top row) and n = 1000 (bottom row), for a unimodal conditional density.

estimation. However, the bias is substantially reduced for sample size 1000. The average per-
formance based on average IL? loss function is illustrated in Figure 5 for the two examples at the
three locations with sample sizes 100 and 1000. The boxplots indicate that for higher sample

size, the average performance and performance stability improve in all cases.

7 Application to DNA methylation profile

As an application of modality-constrained density estimation, we consider the dataset discussed
in Eckstein et al. [2017]. The dataset is quite large, with 820374 data points. It is univariate,
consisting of methylation levels in HeLa cells, with values between 0 and 1. Values close to zero
indicate low methylation levels and values close to 1 indicate uniform (high levels of) methylation

in the cell. It is well known in the methylation literature (see the paper by Harris et al. [2010]
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Figure 4: Conditional density at three different locations in the support of the predictors, at

sample size n = 100 (top row) and n = 1000 (bottom row), for a bimodal conditional density.
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density examples.
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Figure 6: The figure illustrates the histogram (left) and the estimated density of methylation

levels (right) for dt code (solid) and ksdensity (dashed).

for example), that methylation levels are usually distributed bimodally, because most cells exhibit
either very low levels or very high levels. It is thus natural to perform bimodal constrained density
estimation.

For this experiment, we use up to 4 basis elements for the tangent space representation of the
warping functions. Also, we allow the boundary values of the density estimate to be non-zero.
We also present a kernel density estimate found using the inbuilt MATLAB function ksdensity,
with bandwidth chosen by Silverman’s rule of thumb. Figure 6 illustrates the dataset and the
performance of the estimators. Note that since the sample size is high, both the estimators give

similar performances, though the kernel estimate seems to overestimate the right boundary.
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