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ABSTRACT
Weight pruning of deep neural networks (DNNs) has been pro-
posed to satisfy the limited storage and computing capability of
mobile edge devices. However, previous pruning methods mainly
focus on reducing the model size and/or improving performance
without considering the privacy of user data. To mitigate this con-
cern, we propose a privacy-preserving-oriented pruning and mobile
acceleration framework that does not require the private training
dataset. At the algorithm level of the proposed framework, a system-
atic weight pruning technique based on the alternating direction
method of multipliers (ADMM) is designed to iteratively solve the
pattern-based pruning problem for each layer with randomly gen-
erated synthetic data. In addition, corresponding optimizations
at the compiler level are leveraged for inference accelerations on
devices. With the proposed framework, users could avoid the time-
consuming pruning process for non-experts and directly benefit
from compressed models. Experimental results show that the pro-
posed framework outperforms three state-of-art end-to-end DNN
frameworks, i.e., TensorFlow-Lite, TVM, and MNN, with speedup
up to 4.2×, 2.5×, and 2.0×, respectively, with almost no accuracy
loss, while preserving data privacy.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Security
and privacy→ Privacy protections; • Software and its engi-
neering→ Source code generation; • Human-centered com-
puting→Mobile computing.
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1 INTRODUCTION
Recent years have witnessed substantial progress and remarkable
breakthroughs of deep neural networks (DNNs), especially deep
convolutional neural networks (CNNs) in solving complicated vi-
sual tasks [1–3]. Alongwith the great success are the ever-increasing
model size and the computing demand, which highly restrict the
deployments of DNNs on mobile and edge devices with limited
capacities. To mitigate the challenges brought by the large amount
of computations and achieve the goal of real-time inference for
modern DNN models, weight pruning [4–17] is proposed to re-
duce the inherent redundancy in model parameters. Early works
on non-structured pruning [4–6] prune weights at arbitrary loca-
tions using heuristic methods. Via the successful applications of the
powerful Alternating Direction Methods of Multipliers (ADMM)
optimization framework, later research works [7, 8] achieved sub-
stantial weight reduction while maintaining promising accuracy.
However, non-structured pruning leads to sparse and irregular
weight matrices, which require additional indices for the storage
in a compact format. Consequently, these methods are not com-
patible with parallel hardware accelerations for the inference. By
incorporating regularity into weight pruning, structured pruning
[9–15] eliminates the requirements for weight indices, thus is more
hardware friendly. On the downside, the coarse-grained nature of
structured pruning degrades the accuracy more significantly. Re-
cently, pattern-based pruning [16, 17] is proposed to inherit the
benefits from fine-grained pruning while maintaining structures
that can be exploited for hardware accelerations.

Although the above-mentioned weight pruning techniques differ
in sparsity schemes and pruning algorithms, most of them [5–17]
are based on the assumption that the training dataset is available.
However, this is not always the use case for real-world implemen-
tations. For example, in many areas, most notably those related to
medicine, sharing data about individuals is not even permitted by
law or regulations [18, 19]. Furthermore, in commercial applica-
tions, the training data should be kept as business confidentiality.

To deal with this problem, we propose a privacy-preserving-
oriented DNN pruning and mobile acceleration framework. At
the algorithm level, a DNN model compression entity prunes the
pre-trained models provided by users with pattern-based sparsity
without the usage of any information about the private training
dataset. Specifically, the pruning of the DNN model is achieved by
pruning layers sequentially with randomly generated syntheic data.
Instead of using the loss value, we measure the difference of the
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Frobenius norm between the original output of user’s pre-trained
model and the output of the compressed model given the same
input for each layer to evaluate whether enough information is
maintained after pruning. By forming the pruning problem into an
optimization problem, the proposed framework solves the pattern-
based pruning problems iteratively and analytically by extending
the potent ADMM algorithm [20]. At the compiler level, corre-
sponding pattern-enabled compiler optimizations are leveraged.
After retraining the compressed model, users can achieve real-time
inference without accuracy loss. The highlights of our contribu-
tions in this paper are summarized as follows: 1) We formulate
the privacy-preserving-oriented pattern-based pruning problem
as an optimization problem with combinatorial constraints. 2) We
solve the optimization problem with an extension of the ADMM
framework. 3) We accelerate the DNN execution on mobile devices
with a compiler-based framework consisting of several optimiza-
tions enabled by our pattern-based design. 4) We conduct extensive
experiments to compare the proposed framework with the state-of-
the-art pruning methods on representative CNNs.

2 RELATEDWORK
In practice, the data used for DNN training is often massively dis-
tributed among different users, or is owned by a single party but is
inconvenient or forbidden to share with others. On the one hand,
users tend to store their confidential data locally for privacy con-
cerns. On the other hand, many data owners, e.g., medical institu-
tions, are prevented by regulations from sharing their data with
others [18, 19]. Meanwhile, the demand for model compression on
mobile devices is imperative because of the limited capacity nature.

Only few works achieve weight pruning without the original
training dataset. The early weight pruning work [4] proposed a
magnitude-based heuristic method. Only 10∼20% of weights can be
pruned without hurting accuracy when no retraining is adopted. If
a higher compression rate is desired, several rounds of pruning and
retraining are needed. Work [21] only prunes fully-connected lay-
ers while neglecting computation intensive convolutional (CONV)
layers. Recently, there are tools for data-free pruning that prunes
small value weights directly, such as the one used in Cambricon AI
chips. However, this approach suffers from notable accuracy loss
even when removing only 20% weights.

To overcome the limitations of prior works and achieve real-
time DNN inference, we consider to design a privacy-preserving-
oriented DNN pruning and mobile acceleration framework that
provides high-performance compressed model for users without
the usage of the training dataset. With the proposed framework,
users could directly benefit from the compressed model without
privacy concerns and have no need to handle the time-consuming
weight pruning process.

3 FRAMEWORK OVERVIEW
The overview of the proposed framework is presented in this sec-
tion. We begin by introducing the threat model, then the adopted
pattern-based sparsity. Next, the algorithm-level and compiler-level
frameworks are demonstrated.

Kernel pattern and connectivity pruning

Kernel
patterns

Convolution
kernels

Connectivity pruning

Figure 1: Pattern-based pruning.

3.1 Threat Model
We consider the following threat model in this work. Two partici-
pants, DNN compression entity and data owner, also known as the
user, work together to formulate a DNN model with high perfor-
mance on the private dataset of the user, as shown in Fig. 2. The
DNN compression entity has no access to the original training data
but just a pre-trained DNN model from the user. This work specifi-
cally focuses on protecting the privacy of user data. We assume that
the pre-trained model is trained in a trusted way and its security is
out of the scope of this paper.

3.2 Sparse Convolution Patterns
To incorporate the advantages of both structured pruning and non-
structured pruning while getting rid of the respective shortcomings,
our pruning framework adopts two pattern-based pruning dimen-
sions, i.e., kernel pattern pruning and connectivity pruning. The
objective is to achieve both high inference accuracy and satisfying
execution efficiency. An illustration of pattern-based pruning is
given in Fig. 1, with orange blocks representing remaining weights
while green blocks are pruned weights.

Kernel pattern pruning removes weights at an intra-kernel
level. The locations of the remaining weights in each kernel form
a specific pattern. In this work, we focus on the kernel patterns
for 3 × 3 kernels because they are widely adopted in various DNN
architectures [2, 3]. Different kernels can have different patterns,
but the total types of patterns are restricted to a pattern library
with a fixed size. We represent the finite pattern library as P =
{M1, · · · ,Mm }, withm representing the size of the pattern library.
As Fig. 1 shows, we reserve four non-zero weights in a kernel to
match the single-instruction multiple-data (SIMD) architecture of
embedded CPU/GPU processors, thereby maximizing hardware
throughput.

Connectivity Pruning achieves inter-kernel level pruning by
removing whole kernels, as illustrated in Fig. 1. Connectivity prun-
ing is a good supplement to kernel pattern pruning for a higher
compression and acceleration rate. Both pruning schemes can be
integrated into the same algorithm-level solution and compiler
assisted acceleration framework.

3.3 Algorithm-Level Framework
Fig. 2 illustrates the algorithm-level framework. The DNN com-
pression entity is responsible for the pruning of user’s pre-trained
model while the user only needs to retrain the compressed model
with the help of a retraining function. In the DNN compression
entity side, ADMM algorithm is leveraged to achieve pattern-based
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Figure 2: Algorithm-level framework overview.

pruning layer-by-layer systematically. Note that the DNN compres-
sion entity has no access to the user’s training dataset but only the
pre-trained model to preserve data privacy. Randomly generated
synthetic data is used as the input for the pruning process. In the
user side, retraining is similar to the traditional training of a DNN
model, except that the retraining function sets corresponding gra-
dients as zero for pruned weights. Only a few epochs are required
before the model can make acceptable predictions. Therefore, users
do not have to grasp details about pruning and can easily obtain
compressed models with the proposed framework.

3.4 Compiler-Level Framework
After pattern-based pruning, we rely on a compiler-based accelera-
tion framework to achieve real-time DNN executions on resource-
restricted mobile devices, as shown in Fig. 3. This framework aims
to address three key challenges in the pruned DNN execution: 1)
heavy control-flow dependency existing within each thread; 2) com-
putation divergence and load imbalance among different threads; 3)
poor memory performance caused by irregular memory accesses.
Correspondingly, we design three pattern-enabled compiler opti-
mizations that work on each DNN layer: filter kernel reorder, com-
pressed weight storage, and load redundancy elimination. These
optimizations are conducted on a layer-wised representation that
consists of multiple parts like layer shape, pattern style, connectiv-
ity information, etc. These optimizations are general, working for
both CPU and GPU code generations.

Filter kernel reorder addresses two challenges i) increased
control-flow instructions, and ii) thread divergence and load imbal-
ance, by grouping the filters and kernels with similar lengths/patterns
together. This optimization is specifically enabled by our pattern-
based pruning design.

Compressed weight storage is specifically designed for our
kernel pattern and connectivity pruning by leveraging the fact that
the preserved weights follow our designed patterns. Together with
filter kernel reordering, this compact data structure yields much
better compression rates than the conventional CSR (compressed
sparse row) format [22].

Load redundancy elimination [23] addresses the poor mem-
ory performance of non-structured pruning by exploring register-
level load redundancy opportunities during executable kernel code

generation. It is crucial when data accesses between memory and
cache have already been optimized using tiling [24].

4 PRIVACY-PRESERVING-ORIENTED
WEIGHT PRUNING

Our algorithm-level design is presented in this section. We first
provide the formulation of the privacy-preserving-oriented pruning
problem. Then the ADMM-based solution is demonstrated. Finally,
the overall pruning algorithm is outlined.

4.1 Formulation of the Pruning Problem
We consider the pruning of an N -layer DNN with a major focus on
the computation-intensive CONV layers. Our objective is to find
specific sparse patterns for the kernels without the usage of the
original dataset. The compressed model is then sent back to the
user for retraining. For each layer n, the weights and biases are
denoted asWn and bn , respectively. During the pruning process,
the input to the DNN is X0. Note that X0 is not derived from the
original training dataset, but only randomly generated synthetic
data, to preserve privacy for the original training dataset. In our
experiment, we set the value of each pixel within the synthetic
data with a discrete uniform distribution in the range of 0 to 255.
Layer n takes the output Xn−1 from the previous layer as the input
volume, and produces an output volume Xn = σ (WnXn−1 + bn ),
where σ is the activation function. In order to evaluate whether
representative weights are kept to maintain enough information
after pruning, we measure the Frobenius norm between the original
output volume X ′n of user’s pre-trained model and the output Xn
of the compressed model given the same input volume Xn−1. A
smaller value means that the layer can provide similar results after
pruning, indicating that more information is kept. Therefore, we
could formulate the problem of the pruning for the n-th layer as

min
Wn,bn



σ (WnXn−1 + bn ) −X
′
n


2
F ,

subject to Wn ∈ Cn ,
(1)

where Cn denotes the constraint set for the n-th layer. Cn restricts
the pattern shapes and is defined as Cn := {Wn | each kernel inWn
needs to satisfy one specific pattern shape in the pattern set P}.

4.2 Pattern Library (Set) Design
An appropriate design of the pattern library P is the prerequisite to
attain both good pruning results and efficient hardware implemen-
tations. The design includes the size of the pattern library and the
shape of each specific candidate pattern in the library. If the size of
the pattern library is too small, the pruning might not be flexible
enough, thereby leading to accuracy degradation. On the contrary,
it is more challenging to generate efficient codes by the compiler
for hardware accelerations and finding the sparsity solution with a
large pattern library size. Through empirical study, we found out
that a library withm = 6 − 8 patterns achieves a desirable balance
between compiler overhead and accuracy for the commonly used
3 × 3 kernels.

After the size of the pattern library is settled and 4-entry pat-
terns are utilized, the influence of patterns on the compiler and
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Figure 3: Compiler-level inference acceleration framework overview.

hardware is determined, regardless of specific pattern shapes. How-
ever, the pattern shapes will affect the accuracy of the compressed
model and thus should be designed carefully. We select candidate
pattern shapes using a simple but effective heuristic based on the
following insights: 1) the central weight in a 3 × 3 kernel is critical
and shall not be pruned; and 2) a smaller distortion of the kernel
after pruning is preferred. Therefore, we find 3 largest weights for
each kernel within the pre-trained model. The locations of the 3
largest weights together with the central weight form a 4-entry pat-
tern. Then, top-m most commonly appeared patterns in the whole
DNN are selected as the candidates, forming the pattern library
P = {M1, · · · ,Mm }, where each M only contains binary-valued
elements and has the same size as the kernels. Pattern pruning
is achieved by applying element-wise multiplication of M ∈ P
with kernels. A found pattern library with 8 candidate patterns is
illustrated in Fig. 1, with orange blocks representing the locations
to maintain weights.

4.3 ADMM-based Kernel Pattern Pruning
Directly solving the optimization problem (1) is difficult due to the
non-convex constraint. Hence, we resort to the ADMM framework
by decomposing the original problem into two subproblems to be
solved separately. To leverage the ADMM optimization framework,
we define an indicator function In (Wn ), that is zero when the con-
straintWn ∈ Cn is satisfied, but +∞ otherwise. After incorporating
auxiliary variable An , problem (1) can be rewritten as

min
Wn,bn



σ (WnXn−1 + bn ) −X
′
n


2
F + In (An ),

subject to Wn = An .
(2)

Note that our ADMM-based method is different from previous work
[7, 8] as we not only remove redundant weights, but also enforce
certain regularity of the remaining weights in a kernel with the
leverage of kernel patterns. The augmented Lagrangian [20] of the
optimization problem (2) is given as

L(Wn ,bn ,An ,Dn ) =


σ (WnXn−1 + bn ) −X

′
n


2
F

+In (An ) +
ρ

2 ∥Wn −An + Dn ∥
2
F +

ρ

2 ∥Dn ∥
F
2 ,

(3)

where Dn is the dual variable. To solve the problem above, we
decompose it into two subproblems. At iteration k , the first sub-
problem (primal problem) is

min
Wn,bn



σ (WnXn−1 + bn ) −X
′
n


2
F +

ρ

2




Wn −A
k−1
n + Dk−1

n




2
F
.

(4)
Both of these two terms are differentiable and this subproblem
could be solved by standard solvers such as stochastic gradient
descent (SGD) effectively.

The second subproblem (proximal problem) is given by

min
An
In (An ) +

ρ

2




W k
n −An + Dn




2
F
. (5)

As In (·) is the indicator function of the constraint set Cn , the glob-
ally optimal solution of the second subproblem can be derived as
[20]

Ak
n =

∏
Cn

(W k
n + D

k−1
n ), (6)

where
∏

Cn is the Euclidean projection ofW k
n + Dk−1

n onto the
constraint set Cn . The special structure of Cn allows us to find the
optimal analytical solutions, which is to select the pattern resulting
the pruned kernel with the largest Frobenius norm, for each kernel
in the layer. Then the derived Ak

n is fed into the primal problem in
the next iteration k + 1.

Next, we update the dual variable Dk
n according to

Dk
n := Dk−1

n +W k
n −A

k
n . (7)

The above alternating optimization process then proceeds to the
next iteration until convergence.

4.4 Connectivity Pruning
Besides the above-mentioned kernel pattern pruning, we could
further adopt connectivity pruning into the proposed framework
to achieve a higher compression rate for users demanding a faster
inference speed. Connectivity pruning can be integrated into the
same algorithm-level solution in Section 4.3. We further define a
constraint setC ′n := {Wn | the number of nonzero kernels is nomore
than βn } for connectivity pruning, where βn is a predetermined hy-
perparameter. By replacingCn withC ′n in the problem formulation
and ADMM-based solution framework , we could obtain the results
for connectivity pruning.
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Algorithm 1: Overall Pruning Algorithm
Input :User’s pre-trained DNN model {W 0

n }
N
n=1, total

iteration K , augmented penalty ρ, batch size T ,
constraint set Cn for n = 1 to N

Output :Compressed model {W K
n }

N
n=1, the retraining

function
1 Initialize {A0

n }
N
n=1 ← {W

0
n }

N
n=1, {D

0
n }

N
n=1 ← 0 ;

2 for iteration k ← 1 to K do
3 Randomly generate a batch of T synthetic images;
4 for layer n ← 1 to N do
5 Get the output of the n-th layer from the current

model and the pre-trained model;
6 UpdateW k

n by solving problem (4) with standard
solvers;

7 Update Ak
n by solving problem (5) using Eqn. (6);

8 Dk
n := Dk−1

n +W k
n −A

k
n ;

9 end
10 end
11 Send the pruned model {W K

n }
N
n=1 and the retraining function

back to the client for retraining process;

4.5 Overall Algorithm
We formally present the overall pruning algorithm as Algorithm 1.
The DNN compression entity starts pattern-based pruning upon
it receives the pre-trained model from a user. At the beginning of
each iteration k , a batch of T synthetic images are generated and
preprocessed as the input for the pruning process. The pruning is
going through layer-by-layer for the whole model. The generation
of the synthetic images does not depend on any information about
the user’s private dataset. The pruning process iteratively solves
the two subproblems (4) and (5) until convergence. At last, the
compressed model and retraining function are released to the user
for retraining.

5 EXPERIMENTAL RESULTS
In this section, we present the evaluations of our privacy-preserving-
oriented DNN pruning and mobile acceleration framework. We
begin by measuring the performance of the algorithm-level method.
Then, we demonstrate the accelerations achieved by the overall
framework on mobile platforms.

5.1 Experiment Settings
In order to evaluate whether the proposed algorithm-level method
can consistently attain efficient compressed models for tasks with
different complexities, we test on three representative network
structures, i.e., VGG-16, ResNet-18, and ResNet-50, with two major
image classification datasets, i.e., CIFAR-10 and ImageNet. Here,
CIFAR-10 and ImageNet are viewed as users’ private training datasets
and are not revealed to the DNNmodel compression entity. All these
evaluations are carried out on one NVIDIA GTX 1080Ti GPU and
three NVIDIA RTX 6000 GPUs. Then we experimentally analyse
the execution performance of our compiler-assisted framework.

During pruning, we use the following parameter settings for
the DNN model compression entity. We initialize the penalty value

Table 1: Comparison results on CIFAR-10 dataset

Methods Base
Accuracy

Prune
Accuracy

Conv
Comp.Rate

Sparsity
(Pattern)
Type

Re
sN

et
-1
8

DCP[12] 88.9% 87.6% 2.0× Structured
AMC[11] 90.5% 90.2% 2.0× Structured

Variational Pruning[13] 92.0% 91.7% 1.6× Structured
Privacy-Preserving 94.1% 94.9% 8× Pattern
Privacy-Preserving 94.1% 94.5% 12× Pattern
Privacy-Preserving 94.1% 94.2% 16× Pattern

Re
sN

et
-5
0 One Shot Pruning[6] 93.8% 93.6% 2.5× Irregular

AMC[11] 93.5% 93.5% 1.7× Structured
Privacy-Preserving 94.2% 95.0% 8× Pattern
Privacy-Preserving 94.2% 94.7% 12× Pattern
Privacy-Preserving 94.2% 94.4% 16× Pattern

VG
G-

16

Iterative Pruning[4][6] 92.5% 92.2% 2.0× Irregular
One Shot Pruning[6] 92.5% 92.4% 2.5× Irregular

2PFPCE[28] 92.9% 92.8% 4.0× Structured
Efficient ConvNet [10] 93.2% 93.4% 2.7× Structured
Privacy-Preserving 93.5% 93.1% 8× Pattern
Privacy-Preserving 93.5% 92.4% 12× Pattern
Privacy-Preserving 93.5% 91.6% 16× Pattern

ρ = 1 × 10−4, and increase ρ by 10 times for every 11 epochs, until
ρ reaches 1 × 10−1. SGD optimizer is utilized for the optimization
steps with a learning rate of 1 × 10−3. An epoch corresponds to 10
iterations, and each iteration process a batch of data. The batch size
T is set to 32. Each input image is generated by setting the value of
each pixel with a discrete uniform distribution in the range of 0 to
255.

To demonstrate the acceleration of pattern-based sparsity pro-
vided by our framework on mobile devices, we compare the pro-
posed framework with three state-of-the-art DNN inference accel-
eration frameworks, i.e., TFLite [25], TVM [26], and MNN [27]. Our
experiments are conducted on a Samsung Galaxy S10 cell phone
with the latest Qualcomm Snapdragon 855 mobile platform that
consists of a Qualcomm Kryo 485 Octacore CPU and a Qualcomm
Adreno 640 GPU.

5.2 Accuracy and Compression Rate
Evaluations

We first experiment on CIFAR-10 dataset with the VGG-16, ResNet-
18, and ResNet-50 networks. As shown in Table 1, our method not
only preserves data privacy, but also reaches a very high compres-
sion rate, which is comparable or even better than other pruning
algorithms that use the original training dataset during pruning. For
ResNet-18, we achieve a 16× compression rate and 94.2% accuracy
after pruning. And for ResNet-50, we achieve a 16× compression
rate and 94.4% accuracy after pruning. Our method also works well
on VGG-16, with a 16× compression rate and 91.6% accuracy.

With promising results on CIFAR-10, we also investigate the per-
formance of our method on ImageNet using ResNet-18. We achieve
a 4× compression rate with almost no top-5 accuracy degradation
on ResNet-18, which is much better than Network Slimming and
DCP. We could further reach a 6× compression rate with 88.0%
top-5 accuracy. Moreover, it only takes 14 hours for the proposed
method to finish the pruning process using one RTX 6000 GPU.

Furthermore, we notice that our proposed method can even
achieve accuracy improvement compared to the pre-trained model
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Table 2: Comparison results on ImageNet dataset

Methods
Base

Top-1/5
Accuracy

Prune
Top-1/5
Accuracy

Conv
Comp.Rate

Sparsity
(Pattern)
Type

Re
sN

et
-1
8 Network Slimming[15] 68.9/88.7% 67.2/87.4% 1.4× Structured

DCP[12] 69.6/88.9% 69.2/88.8% 3.3× Structured
Privacy-Preserving 69.9/89.1% 69.3/89.0% 4× Pattern
Privacy-Preserving 69.9/89.1% 68.0/88.0% 6× Pattern
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Figure 4: Compiler-based acceleration on 6× compressed
ResNet-18 with ImageNet.

on various network structures. The accuracy improvement is attrib-
uted to the enhanced image processing ability with the leverage of
patterns. Note that performing pattern pruning solely can reserve
a 2.25× compression rate due to the intra-kernel sparsity.

5.3 Performance Evaluation on Mobile
Platform

In this part, we demonstrate our evaluation results on a mobile
device to show the real-time inference of our proposed pattern-
based sparse model with the help of the compiler-based acceler-
ation framework. To guarantee fairness, the same pattern-based
sparse model are used for all frameworks, and the fully optimized
configurations of TFLite, TVM and MNN are enabled.

Fig. 4 shows the mobile CPU/GPU execution time of the pattern-
based model on different platforms. The testing model is ResNet-
18 with a 6× compression rate on ImageNet dataset. We can ob-
serve that our approach achieves significant acceleration on mo-
bile devices compared with other frameworks. On CPU, the pro-
posed framework achieves 4.2× speedup over TFLite, 2.3× speedup
over TVM, and 2.0× speedup over MNN. On GPU, our framework
achieves 3.3× speedup over TFLite, 2.5× speedup over TVM and
1.4× speedup over MNN. This is because previous frameworks
such as TFLite, TVM, and MNN do not have specific optimizations
for compressed models as leveraged in our framework. Therefore,
there is no obvious acceleration in real implementations on mobiles
with such frameworks even though the models have been highly
compressed. Real-time execution typically requires 30 frames/sec,
i.e., 33ms/frame. From our results, all of our DNN models meet or
far exceed this requirement. Furthermore, some of them can even
accomplish real-time inference on a mobile CPU.

6 CONCLUSION
In this paper, we propose a privacy-preserving-oriented DNN prun-
ing and mobile acceleration framework. At the algorithm level, we
formulate the problem of pattern-based pruning without the usage
of the original training dataset as an optimization problem and
solve it successfully with an extension of the powerful ADMM. At

the compiler level, we adopt corresponding pattern-enabled opti-
mizations. Extensive experiments demonstrate that the proposed
framework can achieve real-time inference and maintain accuracy
on representative large-scale CNNs while preserving data privacy.
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