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Understanding the interplay between morphological integration and modularity is considered an important topic in the study of
the evolution of the form of complex structures. The mandible is a complex structure that can be shaped by diverse factors such as
ontogeny, ecology, and evolutionary history. In canids, this is particularly interesting because they have a large diversity in
feeding behavior and hunting strategy. Here, we employed geometric morphometric techniques to evaluate the balance between
integration and modularity in 1011 mandibles of a sample of extinct and extant canids. The results show that allometric scaling
seems to have little influence in determining the mandibular shape of canids. Some divergence associated with ecology was
observed, especially for highly specialized taxa (hypercarnivores and insectivores). Finally, macroevolutionary patterns were
more integrated than intraspecific patterns, suggesting that correlational selection might play a strong role in the evolution of
mandibular form and function. We found no evidence of an evolutionary line of least resistance in shaping mandible disparity.
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Introduction

Organisms are integrated wholes that are constituted of mul-
tiple semi-independent anatomical structures, or modules, that
might arise from different embryological pathways, function-
ing independently of one another and having independent
evolutionary histories (Klingenberg et al. 2004; Klingenberg
2008). The degree of covariation between these parts relates to
concepts of morphological integration and modularity
(Klingenberg 2009). Morphological integration is the
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coordinated variation of these different parts (Olson and
Miller 1958; Cheverud 1996), while modularity refers to the
formation of modules, which are internally cohesive units
marked by the strong interconnection among their parts and,
relative independence from other modules (Klingenberg et al.
2004; Esteve-Altava 2017). This not only means that modules
are thought to be able to be modified without interfering with
others (Garcia et al. 2014), but also that more modular organ-
isms are capable of more finely adapting the various aspects of
their morphology to diverging selective pressures (Curth et al.
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2017; Larouche et al. 2018). On the other hand, a strong inte-
gration may act as a constraint and influence the direction of
evolution (Hansen and Houle 2008; Parr et al. 2016). For this
reason, understanding the interplay between integration and
modularity is considered an important topic in the study of the
evolution of the form of complex structures (Hallgrimsson
et al. 2009; Parr et al. 2016); such is the case of the mandible
of mammals.

The mammalian mandible originates from cranial neural
crest cells that migrate to the first pharyngeal arch and gener-
ate a ventral condensation. From this condensation, Meckel’s
cartilage develops and gives rise to the mandible (Cerny et al.
2004). The mandible is a structure that plays a key role in
catching and handling prey and in mastication (Wainwright
and Reilly 1994). These functions are related with two man-
dibular units: the alveolar region and the ascending ramus,
which respectively bear teeth and provide attachment for mas-
ticatory muscles such as the masseter, temporalis, and ptery-
goids (Meloro et al. 2008; Meloro and O’Higgins 2011).
While both units are developmentally distinct and relate to
different orofacial systems, they are also connected by the
need to perform an integrated function defined by the species
ecology. Thus, the contrast between development and ecology
is no more evident than in this structure, raising the question of
which of those two factors is more effective in determining the
evolution of mandibular form.

Here, we investigate this issue in the Canidae family
(Carnivora). Canids are very diverse in their feeding behavior
and strategy (Ewer 1998; Slater et al. 2009), posing an ideal
evolutionary system for the investigation of the effect of ecol-
ogy on morphology. In fact, there is a wealth of evidence
pointing to the fact that mandible morphology is influenced
by ecology (Radinsky 1981a, 1981b; Biknevicius and Ruff
1992; Holliday and Steppan 2004; Meloro et al. 2008; Tseng
and Binder 2009; La Croix et al. 2011a, 2011b; Prevosti et al.
2011; Meloro and O’Higgins 2011; Echarri and Prevosti
2015), suggesting a major role of function in the determination
of form. While studies of intraspecific variation and modular-
ity of the canid mandible are generally scarce (e.g., Prevosti
et al. 2013), canids are thought to have a more modular skull
than other carnivorans (Machado et al. 2018), with facial traits
varying more independently. This skull modularity might
translate into the variation of the mandible, as a variation in
facial length would most likely affect the alveolar region, but
not necessarily the ascending ramus, potentially making this
system ideal to dissect the interplay between those contradic-
tory forces.

In this study, we employ geometric morphometrics tech-
niques to evaluate the balance between integration and mod-
ularity in the mandible of a sample of extinct and extant ca-
nids. We investigate patterns of morphological evolution and
the relative influence of allometry, phylogeny, and integration
in constraining the change within the lineage. Additionally,
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we confront the patterns of between-species divergence with
intraspecific constraints to evaluate the relative effect of mod-
ularity in facilitating the evolution of the structure. The match
between intra- and interspecific patterns of variation is usually
interpreted as the presence of lines of evolutionary least resis-
tance (LLR) where genetic and ontogenetic factors facilitate
evolutionary change along some directions of the
morphospace and constrains it along others (Schluter 1996).
It has recently been suggested that the mandible of Canidae
evolved along a LLR that is similar to that followed by
Mustelidae and Felidae (Conith et al. 2018). However this
inference was based exclusively on macroevolutionary pat-
terns and did not investigate the action of within-species con-
straints. Here, we test this prediction, and discuss our findings
in terms of the ecology and function of the structure in the
group and its consequences in the study of morphological
constraints.

Materials and Methods
Sample

The sample consisted of 1011 mandibles of adult canids of the
19 extant and two extinct species (Fig. 1). The majority of our
sample is concentrated on the South American canids
(Cerdocyonia sensu Zrzavy et al. 2018), both in terms of in-
traspecific and interspecific variation. Our sample of the clade
Canina and of the grade Vulpini (sensu Zrzavy et al. 2018)
covers both basal and derived taxa, covering large portions of
the form disparity within the group. The material studied be-
longs to the mammal collections of the AMNH (American
Museum of Natural History, New York, USA), CFA
(Coleccion Félix de Azara, Buenos Aires, Argentina), CML
(Coleccion Mamiferos Lillo, Tucuman, Argentina), FMNH
(Field Museum of Natural History, Chicago, USA), GECM
(Coleccion Grupo de Ecologia Comportamental de
Mamiferos, Bahia Blanca, Argentina), LIEB (Coleccion de
Mamiferos del Laboratorio de Investigaciones en Evolucion
y Biodiversidad, Esquel, Argentina), MACN (Museo
Argentino de Ciencias Naturales Bernardino Rivadavia,
Buenos Aires, Argentina), MFAZV (Museo Florentino
Ameghino de Zoologia de vertebrados, Santa Fe,
Argentina), MLP (Museo de La Plata, La Plata, Argentina),
MZUSP (Museu de zoologia da Universidade de Sao Paulo,
Sao Paulo, Brazil), and NMNH (National Museum of Natural
History, Washington, D.C., USA) (Appendix 1).

Landmarks
Eighteen landmarks were digitized in three dimensions with a

Microscribe MX6DOF System (GoMeasured3D, Amherst,
VA, USA). These landmarks were types 1, 2, and 3 sensu
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Fig. 1 Canid phylogeny after
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Bookstein (1991), and were placed on the mandibles to de-
scribe the variation of two mandibular modules: the ascending
ramus and the alveolar region (Fig. 2, Table 1).

Data Analysis

To superimpose landmark configurations and to remove the
spatial variation that does not correspond to shape, a general-
ized Procrustes analysis (GPA) was performed (Goodall 1991,
Rohlf 1999). To visualize shape changes based on the position
of the taxa in the morphospace and to identify the major

Fig. 2 Landmark configuration
and partitions (blocks) on
Lycalopex gymnocercus mandi-
ble. References: red, corpus
mandibulae; blue, ramus
mandibulae. Definitions in
Table 1

components of variation, a Principal Components Analysis
(PCA) was performed.

For comparative analyses, we produced a dataset contain-
ing a single configuration for each species. In the case that
species had more than one individual, the mean shape for that
species was used instead. The size was measured as the cen-
troid size (square root of the squared distance between each
landmark and the centroid of the unscaled configuration) and
was also averaged for comparative analysis. Phylogenetic re-
lationships among species were obtained from a recent com-
prehensive analysis including both extant and extinct species
(Zrzavy et al. 2018).
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Table 1 Mandibular landmarks,

Definition of landmarks

names and definitions used in the Number Name
present study
1 infradentale
2
34 semilandmarks
5
6
7
8
9 condylion medial
10 condylion lateral
11
12
13
14
15-18 semilandmarks

alveoli dentalis of il on the midline.

projected point above of mandibular foramen.

margo alveolaris of corpus mandibulae.

distal margin of the alveoli dentale of the last molar.
superiormost margin of the processus coronoideus.

distalmost margin of the processus coronoideus.

middle point in incisura mandibulae.

most medial margin of mandibular condyle.

most lateral margin of mandibular condyle.

separation between collum mandibulae and processus angularis.
most dorsal-caudal tip of processus angularis.

anteriormost point of fossa masseterica.

point in the curved surface between corpus and ramus mandibulae.
ventral border of corpus mandibulae.

Patterns of Evolution

We tested for the presence of significant evolutionary allom-
etry on the sample by regressing shape variables on the log-
transformed centroid size of the configurations using the phy-
logenetic Procrustes ANOVA implemented on the package
Geomorph (Adams and Otarola-Castillo 2013). This method
employs a permutation procedure (9999 permutations in the
present case) to evaluate the significance of high-dimensional
linear models while considering the phylogeny in a
Generalized Least-Squares framework.

To infer the mode of shape evolution, we employed a
Disparity Through Time (DTT) analysis of the Procrustes re-
siduals. The DTT method is based on the calculation of the
average within-clade disparity at each node on a dated phy-
logeny (Harmon et al. 2003). At the base of the phylogeny, the
average disparity is at its maximum because the clade defined
by that node encompasses all descendant species. As we ad-
vance in time, average disparities tend to decrease, as
subclades encompass fewer species and morphological dis-
parity, reaching the lower value (zero) at present. In the case
of an “Early-Burst” scenario of diversification, we would ex-
pect to see an early decrease in average disparity at the begin-
ning of the phylogeny, with later stabilization of average dis-
parity, as different subclades are restricted within their own
adaptive zones. Alternatively, if average disparities are con-
stant throughout the history of the group, this could be asso-
ciated with either a “Late-Burst” scenario or the presence of a
stabilizing selection (single peak Ornstein-Uhlenbeck model).
The empirical DTT curves were confronted against a null-
distribution generated by simulating phenotypic evolution un-
der a Brownian-Motion (BM) model (1000 simulations), and
by calculating the Morphological Disparity Index (MDI) pro-
posed by Slater et al. (2010). The MDI measures if the
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observed line falls above (positive values) or below (negative
values) the expected by BM by quantifying the area between
the empirical curve and the median of the simulated curves.
The difference between the MDI of each simulated curve and
the median was used as a null distribution of the BM model,
and the empirical MDI was compared to it through a two-
tailed test. Additionally, to interpret the DTT graphical results
in terms of tempo of morphological evolution, we calculated
graphical DTT intervals by employing the global envelope
modification of the DTT analysis to control for multiple tests
(Murrell 2018).

Furthermore, we also calculated the phylogenetic signal of
mandible shape using the multivariate generalization of the K
statistic, the K-mult (Adams 2014). This statistic measures
how closely the pattern of phenotypic diversification resem-
bles a BM model of evolution. If K-mult = 1 then morpholog-
ical evolution matches exactly what is expected under BM. If
K-mult<1, then distantly related relatives are closer to what
would be expected under BM, suggesting convergent evolu-
tion or stabilizing selection. In the case that K-mult>1 species
are thought to be more closely related to their sister taxa than
what would be expected by BM.

Interspecific Integration

In order to evaluate the coordinated evolution of both man-
dibular modules (ascending ramus and the alveolar process),
we employed a phylogenetic version of the Two-Block Least
Squares approach. This approach consists of diagonalizing the
between-block covariance matrix in order to extract the axis of
phenotypic variation that explains the most between-block
covariation (Rohlf and Corti 2000). We performed this analy-
sis on the phylogenetic covariance matrix (Adams and Felice
2014) to take phylogenetic dependence into account.
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For geometric morphometrics, this method is also called
Singular Warp Analysis (Mitteroecker and Bookstein 2008)
in which the eigenvectors of the between-block covariance
matrix represent the axes of coordinated shape change of the
whole landmark configuration. Because this analysis was per-
formed on the phylogenetically informed covariance matrix,
this analysis can be considered a phylogenetic Singular Warp
Analysis (pSWA).

To evaluate if evolution happened along lines of most
between-module integration, we performed a Principal
Component Analysis (PCA) on the phylogenetic covariance
matrix (Revell 2009). These phylogenetic principal compo-
nents (pPCs) are the lines of most shape divergence after ac-
counting for phylogenetic dependence (Polly et al. 2013). The
first two pPCs were than compared to the first two pSW
through vector correlation. High levels of vector correlation
suggest that evolution happened along the lines of most
between-block covariance and that integration was an impor-
tant factor in the evolution of the canid mandible.

Integration between modules was measured as the covari-
ance ratio (CR), which can be understood as the ratio of the
overall covariation between modules relative to the overall
covariation within modules (Adams 2016). As CR gets small-
er (CR< 1), that means that within-module covariation is
greater than between module covariation and that the structure
is more modular. If values are larger (CR > 1) than between
module covariation is larger than within-module covariation,
suggesting that the structure is more integrated. The empirical
CR value was confronted against 9999 values obtained
through permutation of landmarks among modules. This test
is devised to evaluate the null-hypothesis of no modularity,
with the p value being estimated as the proportion of values
that are smaller than the observed one.

Intraspecific Integration

To evaluate if macroevolutionary patterns were influenced by
intraspecific constraints on shape variation, we first obtained
pooled-within group covariance matrix for the following
clades: Urocyon (U. cinereoargenteus, n=37), Vulpes
(V. vulpes, n=54), Canis (Ca. lupus, n=6), South American
foxes (Atelocynus microtis, Cerdocyon thous, Lycalopex
culpaeus, L. griseus, L. gymnocercus, L. sechurae, and
L. vetulus, n=787) and the “Aguard” clade (Speothos
venaticus and Chrysocyon brachyurus, n = 116). As for inter-
specific data, we used the CR index as a measure of between-
block integration. The use of CR is convenient in this case
because the index is invariant to differences in sample sizes,
and it is ideal to compare integration between different groups
and scales (Adams 2016).

As for the intraspecific dataset, we calculated the axis of
most-between module covariance through a SWA and the axis
of most variance through PCA. SW1 obtained for the pooled

data was then compared for the PC1 of the same dataset to
evaluate if the main lines of phenotypic variation are aligned
with the main lines of integration for intraspecific datasets.
These calculations were performed for all clades, except for
Canis due to insufficient sample size to adequately estimate
both SW1 and PC1. Resulting SW1 and PC1 obtained for
each within-group pooled covariance matrices were then com-
pared among each other and with pSW1 and pPC1 through
vector correlation. In the case that evolution was constrained
by within-group patterns of variation and integration forming
a LLR, we would expect a high alignment between axis ob-
tained for the within-group samples and the ones obtained for
the comparative datasets (Marroig and Cheverud 2010).

The visualization and graphics were made using the
Morpho 2.6 R-package (Schlager 2017; R Core Team 2018)
following Mufioz et al. (2017), which allows visualizing shape
changes using color patterns.

Results
Patterns of Evolution

The phylogenetic regression of shape onto size was non-sig-
nificant, explaining a very low portion of the shape change for
the macroevolutionary data (Df=1, SS=0.002, R2 =0.054,
F=1.083,Z=0.393, p=0.335). For this reason, we refrained
from performing any size-correction in downstream analyses.

The DTT analysis revealed that average clade disparity is
relatively constant throughout the history of the group (Fig. 3).
Drops in average disparity are observed mainly at the base of the
phylogeny with the divergence of Canini (sensu Zrzavy et al.
2018), which encompasses both South American canids and
wolf-like groups (Canis and associated genera), and at more
recent times, probably associated with within genera diversifica-
tion of Canis and Lycalopex. After the initial drop, disparities are
relatively constant, superseding what would be expected under
drift. This result is mirrored by the MDI and phylogenetic signal
analyses. While MDI showed a positive and significant value
(MDI=0.198, p =0.026), the phylogenetic signal was low, de-
spite being also significant (K-mult = 0.568, p = 0.026). While it
might be possible that the observed pattern is due to incomplete
species sampling, it is worth noticing that our sampling gaps are
restricted to less inclusive taxa. Thus, while inclusion of more
species probably might reveal details regarding patterns of evo-
lution, our results are probably a good approximation of large-
scale patterns for the group.

Interspecific Integration
The analysis of the evolutionary modularity of the mandible

showed a high degree of between-module integration (CR =
1.276), which was larger than all values of the null hypothesis
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Fig. 3 Diversity through Time
plot. Disparity is given in average
clade disparity for Procrustes
residuals. Both disparity and time
are normalized by their maximum
value, i.e., the maximum disparity
and the height of the phylogeny,
respectively. Black line represents
the empirical disparity through
time. Gray polygon represents the
confidence interval corrected for
multiple tests
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of integration (p =1.000). The phylogenetic PCA and SWA
produced very similar results (Online Resource 1). In fact, the
vector correlation between the first two sets of axes shows that
they are almost collinear, with the correlation between pPC1
and pSW1 being 0.991 and the one between pPC2 and pSW2
being 0.956. Because the morphospace described by both
analyses are so similar, we here focus on the space described
by pSWA for simplicity.

The singular warp analysis shows that the first two pSWs
explain more than 65% covariance among blocks (Fig. 4). The
pSWs vectors can be visualized as colored surface deforma-
tions in Fig. 4. The shape changes associated with the pSW1
range from a slender mandible (around the average shape) to a
robust-like mandible to more extreme positive values.
Consequently, they show a robust mandible, a high alveolar
ramus, the end of the tooth row closer to the fulcrum and a
deep angular process, well-developed coronoid process, and
an articular process closer to the occlusal plane. The pSW2
shape changes range from an elongated mandible with a very
gracile alveolar ramus (negative values) to a short mandible
with a deep and curved alveolar ramus (positive values). The
morphospace depicted by these two pSWs clusters the omni-
vore forms around the origin, with the mesocarnivores and
hypercarnivores towards positive values. The hypercarivores
show a larger disparity than omnivores and mesocarnivores
forms, which can be accounted by the extreme position of Ca.
nehringi towards positive values of pSW1 and Speothos
venaticus and Theriodictis platensis in positive extreme and
negative values of pSW2, respectively. While there is no clear
phylogenetic pattern in the species dispersion along those ax-
es, there seems to be a clear concentration of species around
the average shape. As lineages diverge along the SW1 on the
positive side, a subset of these also tends to diverge along
SW2, both on positive or negative sides.
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Intraspecific Integration

The CR index values calculated for the pooled within-group
covariance matrices were considerably lower than the one
observed for interspecific data (Fig. 5), ranging from 0.760
for Vulpes to 0.901 for Urocyon. All observed values were
found to be lower than the majority of the null-distribution
constructed by permuting points among modules (p < 0.042
for all analysis), suggesting that the within-group variation is
modular in nature (see also Online Resource 2).

Vector correlation between PC1 and SW1 for each pooled
within-group covariance matrix showed very low correlations,
ranging from 0.004 to 0.091, suggesting that between-module
integration is not aligned with the main directions of variation
(Table 2). Despite this, the comparison of PC1 and SW1
among taxa showed high vector correlations (>0.6; see also
Online Resource 3), suggesting that both lines of maximum
variation and among module integration are conserved among
canid species (Table 2).

While the comparison among the intraspecific PCls and
the pPC1 showed moderate correlation values, the comparison
of intra-group SW1s with the evolutionary pSW1 shows the
intraspecific vectors show small correlation with the interspe-
cific one, contrary to what would expected if those lines where
acting as LLR (Table 2).

Discussion

The mandible is a complex structure that can be shaped by
diverse factors such as ontogeny, ecology, and evolutionary
history (Prevosti et al. 2011). Here, we tried to parse these
effects out by analyzing a large dataset of 3D morphometric
data in a comparative approach. Our results show that
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Fig. 4 Phylogenetic Singular Warp Analysis depicting the first two
vectors of maximum covariation among modules. Dots represents
species and gray lines represent the phylomorphospace reconstruction
(Sidlauskas 2008) of the evolutionary trajectory. Gray mandible

allometric scaling seems to have little influence in determining
the mandibular shape of canids. This is in contrast with several
studies that showed that allometry is one important factor
affecting the shape in many other carnivoran lineages
(Radinsky 1981a, 1981b, 1982; Segura et al. 2017) and in
Canidae specifically (Wayne 1986; Penrose et al. 2016;
Machado et al. 2018; Machado and Teta 2020). Because size
has an effect on the whole organism, it has the capacity to

represents the mean shape. Colored mandibles are deformations from
the mean shape to the extremes of the pSW axis. The minimum of
pSW1 was omitted because it was similar to the mean shape

integrate disparate parts of the organism, thus reducing
modularity patterns and possibly hindering evolutionary
outcomes (Mitteroecker and Bookstein 2007; Klingenberg
2009; Porto et al. 2013). For example, when allometric ef-
fects are strong, integration patterns (SW axes) and lines of
most variance (PC axes) tend to converge (e.g., Sydney
et al. 2012). Here, the comparison between intraspecific
PC1s with SW1s shows that, within a taxa, those axes are

@ Springer



152

J Mammal Evol (2021) 28:145-157
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not the same. The lack of allometric scaling could then im-
ply that the structure of the mandible is modular in nature,
leading to higher evolvability of the structure (Hansen and
Houle 2008).

However, while our intraspecific Covariance Ratios analy-
ses showed that morphological variation in the mandible was
modular on all accounts (as expected under weak allometric
scaling), the comparative analysis failed to show any modu-
larity (Fig. 5). This suggests that, despite being a modular
structure in ontogenetic and genetic terms, the mandible is
evolving as an integrated whole (see Oudot et al. 2019 for
an example of the opposite pattern). The inspection of vector
correlations are congruent with this conclusion: both intraspe-
cific PCls and SW s were not aligned with evolutionary pat-
terns depicted by pSWI1 (Table 2). The lack of association
between intraspecific axes of variation and evolutionary pat-
terns further suggests a lack of a single LLR influencing the
group (contra Conith et al. 2018). This suggests that, instead
of being constrained by internal structural factors, the evolu-
tion of the mandible is more likely guided by functional de-
mand (Greaves 1982, 1983; Rayner 1985).

The inspection of the between-species morphospace defined
by the first phylogenetic Singular Warps (Fig. 4, or the identical
phylogenetic Principal Component, Online Resource 1) shows
a large lineage overlap (sensu Sidlauskas 2008) of species near
the origin. This suggests that species were mostly evolving
within a restricted region of the morphospace. Our Diversity
Through Time analysis reinforces this idea, as average dispar-
ities were high throughout the evolutionary history of the group.
Together with the presence of low phylogenetic signal, this
pattern is consistent with a single-peak mode of evolution
(Hansen 1997). In this model, the morphological disparity is
restricted to a certain region of the morphospace, forcing line-
ages to revisit common regions repeatedly, eroding phylogenet-
ic signal and erasing the effect of phylogenetic history on the
determination of the phenotype. This could mean that the canid
mandible presents a generalized shape that can be used by
species with different diets and habits (see Silva et al. 2017
for a similar pattern). In fact, species clustered around the origin
seem to be preferentially omnivorous and generalist in nature.
These species are shown to possess mandibles that are slender
(long and thin, see results) and to possess a shorter coronoid

Table 2 Vector correlation

between PC1 and SW1 for each Axis Taxonomic scale 1 2 3 4 5 6 7 8
pooled within-group covariance type
matrix
1 pSWI Evolutionary
2 SWI Urocyon 0.262
3 Swi Vulpes 0.100  0.606
4 SWI South American 0256 0.864 0.800
foxes
5 Swi “Aguard” Clade 0305 0.868 0.692 0.943
6 PCI Urocyon 0.573  0.075 0.033 0.084 0.079
7 PCI Vulpes 0486 0.088 0.004 0.029 0.069 0.748
8 PCl South American 0.553  0.020 0.049 0.041 0.019 0910 0918
foxes
9 PCl “Aguara” Clade 0.646  0.035 0.047 0.077 0.091 0906 0.884 0.980
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process, a combination that is thought to lead to lower killing
bite forces (Radinsky 1981a, 1981b; Biknevicius and Ruff
1992; Christiansen 2008; Figueirido et al. 2010). While propor-
tionally longer mandibles increase the shorter out lever arm,
producing weaker bite forces, smaller coronoid processes also
reduce the available area for muscle insertion. While a lower
coronoid process might allow for a larger gape, which can be
important during the killing bite, it is also tied to a decreased
biting force (Greaves 1983; Christiansen 2008; Prevosti et al.
2011). Thus, species with this generalized morphology are
probably better at quickly snatching smaller prey items, than
they are at bringing down larger prey (Slater et al. 2009; Segura
et al. in review).

Despite this apparent morphological constraint, some line-
ages can be seen as diverging from the common region in
favor of more robust morphologies. Because these departures
from the generalized morphology are associated with changes
along the first pSW, they represent shape changes that are
highly integrated throughout the structure (Fig. 4). This could
have been achieved in two major ways. First, between-species
changes could be aligned with lines of most integration among
modules, as defined by the intraspecific covariation among
mandibular regions. Our vector correlation analysis shows
that is not the case, as pSW1 could not be considered to be
aligned to the first SW obtained for any taxa. Alternatively, the
association among traits can be achieved through functional
demands, which force structures to change following specific
rules in order to maintain functionality (Greaves 1982, 1983;
Rayner 1985). This is probably the case for the mandible of
Canidae, given that changes along with pSW1 form a gradient
of shape variation that can be tentatively associated with diet
in canids (see also Zurano et al. 2017).

According to our results, hypercarnivorous canids are
shown to possess a more robust mandible (short, broad, and
deep, see Results), which is an adequate morphology to un-
dergo the stress of this type of diet (Biknevicius and Ruff
1992; Therrien 2005; Tseng and Binder 2009; Segura 2014).
A shorter mandible implies a shorter out lever arm and, in
consequence, a stronger bite force (Emerson and Radinsky
1980). Besides, the presence of well-developed coronoid, con-
dylar, and angular processes produces larger areas of insertion
for masticatory muscles, allowing for increased bite forces
(Ewer 1998; Van Valkenburgh 1991). In this way, this config-
uration is associated with the biomechanical demands im-
posed by the necessity to bring down large prey and to better
process and exploit vertebrate carcasses.

One clear exception for this pattern is the position of
Otocyon megalotis among the hypercarnivorous morphs.
This species is primarily insectivorous presenting a highly
modified dentition that includes more molars than the rest of
canids (Nowak 2005). The mandible of this species presents a
bone structure called the subangular process or lobe located
anteroventral to the angular process, on the region of the

insertion of the digastric muscle (Ewer 1998). The digastric
muscle inserts in the lobe and presents another line of action
allowing for more rapid chewing, a feature that is used by the
species to break down insect exoskeletons (Ewer 1998; Clark
2005). While the mandible of the species is somehow gracile,
it does present a highly developed ascending ramus that is
compatible with the one observed for hypercarnivorous forms.
Furthermore, the presence of the subangular lobe makes the
alveolar region relatively thicker than those of other foxes.
These features might lead this species to “invade” the region
restricted to hypercarnivores, as it converges with them in
some features. Despite this, O. megalotis also differentiates
from other species (hypercarnivores and omnivores alike) in
the pSWs explaining lower levels of covariation (not shown).
This suggests instead that the species is highly modified and
does not fit the patterns observed for other species other than
the obvious departure from the generalized omnivore
morphology.

In summary, while the evolution of the mandible was mostly
marked by the resampling of a restricted region of the
morphospace, some divergence associated with ecology was ob-
served, especially for highly specialized taxa (hypercarnivores
and insectivores). Despite the fact that mandibles are modular
in nature, conservation of function might have led to coordinated
changes among modules, leading to an integrated evolution of
both the ascending ramus and the alveolar region (Meloro et al.
2011). This evolution, however, did not follow a line of least
resistance, and was marked mostly by stasis of shape. This con-
trasts to what is observed for the skull of Canidae, for which
functional differences are described both at the intraspecific
(Van Valkenburgh and Wayne 1994; Machado and Hingst-
Zaher 2009; Segura 2014; Martinez et al. 2018; Schiaffini et al.
2019) and interspecific levels (Meloro et al. 2014; Bubadué et al.
2016; Zurano et al. 2017; Machado and Teta 2020; Machado in
rev; Segura et al. in review). Direct comparisons between the
evolution of mandible and skull shape in Lycalopex culpaeus
shows that the mandible is less prone to change than the skull
(Segura and Prevosti 2012; Segura 2014; Martinez et al. 2018),
suggesting that morphological conservatism and adaptive change
can be at play at the same time (Silva et al. 2017). Future work on
diverse parts of the Canidae phenotype might be necessary to
understand the interplay of different evolutionary forces shaping
morphological disparity in the group.
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Appendix 1. List of specimens used in this
study

Atelocynus microtis (N=23). AMNH: 76031; 76579;
95284; 95285; 98639; 100095. FMNH: 5249; 57836;
60674; 60675; 60676; 93955; 98080; 98081; 110949,
121286. MZUSP: 4320; 19750; 19751; 19752; 19753;
19754. NMNH: 361013.

Canis aureus (N=1). MLP: 1035-1031.

Canis latrans (N=1). MACN: 25.123.

Canis lupus (N=5). AMNH: 18215. MACN 3.76; 23.15;
35.210. MLP: 1031.

Canis nehringi (N=1). MACN-PV: 500.

Cerdocyon thous (N =109). CFA: 3697; 3875; 4265; 4419;
4496; 4511; 4512; 4661; 4663; 4664; 4717, 5048; 5197,
5278; 5283; 5313; 5375; 6000; 6071; 6128; 6129. CML:
588; 3719; 3756; 3827; 4083; 4083; 4692; 5964; 5966;
5967; 6213; 6214; 6340. MACN: 4.213; 20.32; 24.85;
24.127; 25.119; 25.159; 29.839; 30.344; 30.345; 32.261;
32.262; 32.75; 33.6; 34.676; 36.191; 36.481; 39.460; 43.26;
44.11;45.34, 45.40; 47.116; 47.189; 47.190; 47.191; 47.192;
47.193;47.402; 48.3; 48.5; 48.6, 48.7, 48.10; 49.221; 49.367,
50.40; 50.43; 50.45; 50.57; 50.59; 50.60; 50.61; 50.62; 50.63;
50.64; 52.54; 52.63; 52.64; 13051; 14,322; 14681; 15741,
16189; 20316; 20454; 20456; 20815; 20816; 20817; 21228;
23180; 23669; 23670; 23726; 23727, 24045; 24046; 24207,
24208. MFA-ZV: 228; 1204. MLP: 20.1X.49.13; 16.X.01.7;
31.X11.02.77; 1322. MZUSP: 9687.

Chrysocyon brachyurus (N=82). AMNH: 36962; 71179;
120999; 133940; 133941, 135274. CFA: 12826; 12827.
CML: 1376; 6133; 6352. FMNH: 28311; 28312; 28313;
44534, 46003; 54406; 96003; 101848; 125401; 127434,
134483; 137425; 150739. MACN: 3.71; 3.73; 4.32; 4.303;
24.4; 30.29; 30.231; 53.49; 13466; 19146; 20646; 23456;
23984; 24043; 24201. MFA-ZV 517; 524; 581; 651; 652;
919; 1166. MLP: 2.1V.02.4; 5.X.99.1; 31.X11.02.88; 6; 92;
564; 695; 1684; 1686. MZUSP: 525; 3025; 3338; 9420;
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19733; 19736; 29870; 31981; 32039; 32042; 32043; 32056;
32199; 32505; 32629. NMNH: 196975; 258614; 261022;
261023; 270371; 271567; 314863; 521007; 534807,
534970; 588,223; 588425.

Lycalopex culpaeus (N=107). CFA: 2129; 6451. CML:
5067; 5068; 5069; 5070; 5071; 5970; 5974; 6343; 6344.
LIEB: 791; 793. MACN: 3.68; 4.41; 7.42; 24.119; 25.128;
27.131; 30.69; 31.58; 31.59; 33.67; 33.68; 33.69; 38.39;
41.55; 15024; 15033; 15037; 15040; 15044; 15045; 15049;
15050; 15055; 15062; 15063; 15064; 15073; 15078; 15081;
15082; 15083; 15089; 15093; 15096; 15101; 15106; 15112;
15119; 15121; 15124; 15127; 15138; 15140; 15149; 15151;
15154; 15158; 15163; 15168; 15172; 15173; 15177; 15181,
15882; 15190; 15194; 15196; 15208; 15212; 15220; 15223,
15224; 15226; 15227; 15228; 15229; 15232; 15233; 15240;
15243; 15246; 15248; 19221; 19222; 20813; 21899; 23072;
23076; 23077; 23093; 23095; 23103; 23108; 23119; 23123;
23125; 23148, 23719; 23720, 23721; 23,915; 24210. MLP:
1264; 1266.

Lycalopex fulvipes (N =2). FMNH: 23814; 23815.

Lycalopex griseus (N=127). AMNH: 17440a; 174400b;
17441a. CFA: 2175; 4197; 5291; 5649; 5650; 5777; 5782;
10243. CML: 837; 838; 1177; 1178; 1427; 1489; 3714;
4967; 6189; 6190; 6192. FMNH: 154639; 154640. LIEB:
794; 809. MACN: 4.253; 23.20; 24.50; 24.52; 24.53; 24.54;
24.56;24.57;24.59; 24.62; 24.63; 24.64; 24.66; 24.68; 24.69;
24.71; 24.74; 24.75; 24.76; 24.79; 24.80; 24.81; 223; 225;
226; 13781; 14540; 14902; 15020; 15185; 15186; 15187,
15189; 15262; 15263; 15264; 15265; 15269; 16321; 16322;
16325; 20205; 20206; 20207; 20208; 20276; 20277; 20278,
20814; 20829; 23150; 23468; 23662; 23,663; 2664; 23668;
23718;23728;23729; 23730; 23910; 24206; 29.895; 50.419;
50.420; 50.432; 50.490; 51.170. MLP: 5.111.36.12;
5.111.36.27; 2.1V.60.1; 4.VII1.98.4; 240; 441; 559; 696; 701;
712. NMNH: 92139; 92140; 92141; 92142; 92143; 92144,
92145; 92146; 92147; 92149; 92150; 92151; 92152; 92169;
92173;92174; 92175;92176; 92177, 92178; 92179; 482163;
482164.

Lycalopex gymnocercus (N =355). AMNH: 41502; 41503;
41504;41505; 41506; 41507; 41508; 41509; 41510. CFA: 3255;
3698; 3962; 4256; 4406, 4416; 4417, 4659; 8312; 8313; 8588;
8589; 8590; 8591; 10887; 11062; 11063. CML: 192; 495; 545;
645; 834; 836; 895; 908; 909; 959; 1179; 1526; 1526; 3072;
4081; 4082; 5143; 5473; 5474; 5479; 5480; 5772; 6342.
GECM: 24, 34; 40; 51; 57; 65; 67; 75; 76; 85; 100; 108; 112;
119;121;129; 139; 149; 152; 153; 179; 217Bis; 220Bis; 227Bis.
MACN: 4.271; 20.33; 26.28; 20.35; 23.33; 23.34; 23.36; 23.37,
23.38; 24.48; 24.49; 24.133; 24.134; 24.140; 24.141; 24.142;
24.143; 24.144; 24.145; 24.146; 24.147; 24.148; 24.149;
24.151; 24.152; 24.154; 24.156; 24.162; 24.169; 24.170;
26.129; 26.162; 26.163; 27.53; 28.182; 29.35; 30.150; 30.210;
30.211;30.212; 32.252; 32.263; 33.177; 33.266; 33.268; 34.317,
35.241; 36.178; 36.479; 36.480; 37.82; 38.243; 39.191; 39.194;
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41.220; 41.221; 44.17; 48.266; 49.134; 49.139; 49.148; 49.149;
49.159; 49.160; 49.167; 50.56; 50.443; 50.491; 50.492; 50.494;
50.495; 50.497; 50.498; 50.500; 50.501; 50.502; 50.503; 50.504;
50.505; 51.81; 53.2; 54.133; 246; 285; 293; 13299; 13313;
13327; 13331; 13337; 14319; 14323; 14386; 14409; 15363;
15364; 15387; 15388; 15389; 15390; 15601; 15692; 15742,
15748; 15749; 15750, 15751; 15752; 15754; 15757; 15758;
15760; 15761; 15762; 15764; 15765; 1766; 157769; 15771,
15783; 15784; 15785; 15787; 15788; 15791; 15792; 15794,
15795; 15796; 15797, 15800; 15818; 15820; 15831; 15833;
15834; 15838; 15854; 15859; 15862; 15863; 15864; 15865;
15866; 15867; 15868; 15869; 15870; 15871; 15873; 15875;
15879; 15882; 15888; 15892; 15894; 15895; 15896; 15898;
15901; 15902; 15906; 15908; 15909; 15917; 15932; 15933;
15934; 15938; 15941; 15958; 15963; 15964; 15966; 15970;
15973; 15979; 15981; 15982; 15986; 15987; 15992; 15998;
15999; 16000; 16001; 16006; 16009; 16010; 16013; 16014,
16015; 16024; 16025; 16026; 16027; 16030; 16031; 16032;
16035; 16036; 16037; 16038; 16039; 16040; 16041; 16046;
16047; 16048; 16049; 16050; 16055; 16059; 16062; 16063;
16066; 16068; 16074; 16077; 16079; 16080; 16083; 16085;
16088; 16094; 16096; 16097; 16099; 16100; 16101; 16102;
16103; 16104; 16105; 16106; 16107; 16108; 16110; 16111;
16115; 16117; 16118; 16120; 16122; 16123; 16130; 16131;
16139; 16143; 16145; 16149; 16151; 22936; 23153; 23154,
23155; 23156; 23157; 23158; 23290; 23920; 24203; 24204,
24205; 24208; 24209; 24259; 24265, 24282. MLP:
16.111.99.16; 13.1V.99.3; 13.1V.99.13; 13.1V.99.14; 13.1V.99.36;
26.V.95.9; 4.VII1.98.9; 30.XI1.02.65; 710. NMNH: 172789;
172790; 236366; 331065.

Lycalopex sechurae (N=35). AMNH: 100091; 100100;
133926; 133927; 133928; 133929; 133937; 2091, 349;
36457, 391; 46525; 46526; 46527; 46528; 46529; 46530;
46531; 46532; 46533; 63709; 70091. FMNH: 19971,
19972; 20747; 53911; 80953; 80954; 80955; 80956; 80957,
80958; 80959; 80960; 80961; 80962; 80963; 80964; 80965;
80966; 80967; 80968; 80969.

Lycalopex vetulus (N=31). MLP: 1258. MZUSP: 1011;
1012; 1014; 1015; 1016; 1018; 1075; 1076; 1084; 12040;
13611; 3046; 3047; 3047; 3048; 3049; 3050; 825. NMNH
121171; 121172; 181150; 5451009.

Speothos venaticus (N=34). AMNH: 136285; 167846;
175306; 184688; 37472; 76035; 76805; 76806; 98558;
98559; 98560; 98640. FMNH: 121544; 125402; 60290;
87861. MACN: 50.67; 16510. MZUSP:19743; 19744.
NMNH: 253504; 270165; 270171; 270368; 270369;
270370; 307650; 314048; 395841; 398030; 521045;
538307; 544414; 582465.

Urocyon cinereoargenteus (N = 37). AMNH: 255645;
255648; 254470; 8197; 243449; 100301; 243095; 120989;
184105; 184122; 184012; 183939; 184002; 184065,
183979; 184098; 184094; 184077; 184091; 184126;
184083; 184121; 184014; 184087; 184013; 184009;

183991; 183956; 183942; 183943; 183960; 183953,
183995; 183954; 185512; 184064; 184007.

Vulpes lagopus (N=1). MACN: 4.1.

Vulpes vulpes (N = 54). FMNH: 106726; 107271; 140172;
140176; 74472; 74987, 74988; 74989; 75644; 75645; 75646;
77130; 77136; 78650; 78651; 80827; 80829; 80836; 80837,
80839; 80840; 84697; 84698; 85216; 85217; 85218; 86820;
89369; 89370; 89371; 89372; 89587; 89710; 89712; 89963;
90361; 90473; 90474; 91605; 91725; 91726; 91731; 91741,
92727; 95863; 95865; 95867; 95870; 95872; 95873; 98733,
98734; 98735; 98736.

Vulpes zerda (N=2). CML: 3731. MACN: 3.14.

Theriodictis platensis (N =1). MLP-PV: 96-1X-1-1.

Otocyon megalotis (N=1). MACN: 26.115.

Lycaon pictus (N=1). MACN: 38.249.
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