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1  | INTRODUC TION

In biogeography, there is growing interest in the analysis of datasets 
of ever-increasing size and complexity to explain biodiversity patterns 

and underlying processes. A common approach is biogeographical  
regionalization, the grouping of organisms based on shared features 
and how they respond to past or current physical and biological de-
terminants (Kreft & Jetz, 2010; Morrone, 2018). The composition of 
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Abstract
1.	 Biogeographical regionalization is the classification of regions in terms of their 

biota and is key to our understanding of the ecological and historical drivers af-
fecting species distribution in macroecological or large-scale conservation studies. 
However, despite the mass production of species distributions and phylogenetic 
data, statistical and computational infrastructure to successfully incorporate, ma-
nipulate and analyse such massive amounts of data had not been fully developed.

2.	 Here, we present phyloregion, a statistical package for the analysis of biogeo-
graphical regionalization and macroecology in the R computing environment, tai-
lored for mega phylogenies and macroecological datasets of ever-increasing size 
and complexity.

3.	 Compared to available packages, phyloregion is several times faster and allocates 
less memory than other packages for analysis of alpha diversity (including phy-
logenetic diversity, phylogenetic endemism and evolutionary distinctiveness and 
global endangerment) and beta diversity (including cluster analysis, determining 
optimal number of clusters and evolutionary distinctiveness of regions).

4.	 We demonstrate the scalability of the package to large datasets with comprehen-
sive phylogenies and global distribution maps of squamate reptiles (amphisbae-
nians, lizards and snakes), and show that different phyloregions differ strongly 
in evolutionary distinctiveness across scales. Visualization tools allow graphical 
exploration of the generated patterns of biogeographical regionalization and  
macroecology in geographical space.

5.	 Ultimately, phyloregion will facilitate rapid biogeographical analyses that will 
accommodate the ongoing mass production of species occurrence records and 
phylogenetic datasets at any scale and for any taxonomic group into completely 
reproducible R workflows.
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species in biogeographical units (i.e. ‘phyloregions’ or ‘bioregions’) 
can reflect the historical processes such as extinction, speciation 
or dispersal that have shaped present-day distribution of biologi-
cal diversity (Daru, Elliott, Park, & Davies, 2017; Ficetola, Mazel, & 
Thuiller,  2017; Kreft & Jetz,  2010; Morrone,  2018). When paired 
with phylogenetic information, biogeographical regionalization 
allows geographical regions that do not share any species in com-
mon to be quantified (Graham & Fine, 2008), and can identify pat-
terns overlooked by species-level analyses (Daru et al., 2016; Edler, 
Guedes, Zizka, Rosvall, & Antonelli, 2017; Holt et al., 2013; Vilhena & 
Antonelli, 2015). However, compared to the mass production of spe-
cies distribution and phylogenetic datasets, statistical and computa-
tional approaches necessary to analyse such data, and approaches 
that can incorporate efficient storage and manipulation of such data, 
are lacking.

A few open-source tools are available and can provide infra-
structural support for analysis of biogeographical regionalization. 
For instance, the ape package (Paradis & Schliep, 2019) contains 
a comprehensive collection of tools for analyses of phylogenet-
ics and evolution and is useful for reading, writing and manip-
ulating phylogenetic trees, among many other functions. The 
betapart package (Baselga & Orme, 2012) performs computations 
of total dissimilarity in species composition along with their re-
spective turnover and nestedness components. picante focuses 
on analysis of phylogenetic community structure and trait evolu-
tion (Kembel et al., 2010). The use of network methods to detect 
bioregions (Bloomfield, Knerr, & Encinas-Viso, 2018; Carstensen 
& Olesen,  2009; Rosvall & Bergstrom,  2008; Thébault,  2013; 
Vilhena & Antonelli,  2015), while not yet implemented in the 
R computing environment, provides an alternative clustering 
method based on bipartite networks, and performs well at iden-
tifying interzones between regions (see Edler et  al.,  2017 for a 
simplified and accessible implementation). However, there is no 
consensus on which method is the most appropriate for biogeo-
graphical regionalization at large scales (Bloomfield et al., 2018; 
Dapporto, Ciolli, Dennis, Fox, & Shreeve, 2015; Morrone, 2018). 
The most effective approach to biogeographical regionalization 
might therefore depend on the system under study and the re-
search questions.

Here, we present the phyloregion R package that permits 
the integration of phylogenetic relationships and species distri-
butions for identifying biogeographical regions of different lin-
eages to elucidate the spatial and temporal evolution of biota in 
a region. Specifically, phyloregion provides functions for anal-
yses of standard alpha diversity metrics (such as phylogenetic 
diversity and phylogenetic endemism) as well as metrics for 
analysing spatial compositional turnover between communities 
(e.g. beta diversity, phylogenetic beta diversity and evolutionary 
distinctiveness of regions). We benchmark phyloregion against 
other packages for speed and memory allocation with an em-
pirical dataset of the flora of southern Africa that includes spe-
cies distributions and phylogenetic relationships for 1,400 taxa 
(data from Daru et al., 2016). Moreover, we also demonstrate the 

scalability of the package to big datasets using a case study of 
biogeographical regionalization with comprehensive phylogenies 
and distribution maps of 9,574 species of squamate reptiles (am-
phisbaenians, lizards and snakes) across the globe. Visualization 
tools allow graphical exploration of the generated patterns of 
biogeographical regionalization and macroecology in geograph-
ical space.

2  | OVERVIE W AND GENER AL 
WORKFLOW OF PHYLOREGION

The phyloregion package interacts with few other R packages  
including Matrix (Bates & Maechler, 2019), ape (Paradis & Schliep, 
2019), betapart (Baselga & Orme, 2012), raster (Hijmans, 2019) 
and sp (Bivand, Pebesma, & Gómez-Rubio, 2013). We provide a 
workflow of the phyloregion package for biogeographical assess-
ment of any selected taxa and region (Figure 1). The workflow 
demonstrates steps from preparation of different types of data 
to visualizing the results of biogeographical regionalization, to-
gether with tips on selecting the optimal method for achieving the 
best output, depending on the types of data used and research 
questions. The package is available for direct installation through 
R from the Comprehensive R Archive Network (CRAN, https:// 
CRAN.R-proje​ct.org/packa​ge=phylo​region), while the develop
ment version is hosted on GitHub at https://github.com/darun​
abas/phylo​region. To install phyloregion directly from CRAN, in R, 
type:

install.packages(“phyloregion”)

An alternative is to install the development version of phylore-
gion hosted on GitHub as follows:

if (!requireNamespace(“devtools”, quietly = TRUE)) 
     install.packages(“devtools”) 
devtools::install_github(“darunabas/phyloregion”) 
library(phyloregion)

3  | R AW DATA

3.1 | Distribution data input

The phyloregion package provides functions for manipulating at 
least three categories of distribution data at varying spatial grains 
and extents: point records, polygons and raster layers. Polygons 
can be derived from the International Union for the Conservation of 
Nature's spatial database (https://www.iucnr​edlist.org/resou​rces/
spati​al-data-download), published monographs or field guides that 
have been validated by taxonomic experts. Point records are com-
monly derived from major data hubs such as the Global Biodiversity 
Information Facility (Edwards, Lane, & Nielsen, 2000), Integrated 

https://CRAN.R-project.org/package=phyloregion
https://CRAN.R-project.org/package=phyloregion
https://github.com/darunabas/phyloregion
https://github.com/darunabas/phyloregion
https://www.iucnredlist.org/resources/spatial-data-download
https://www.iucnredlist.org/resources/spatial-data-download
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Digitized Biocollections (www.idigb​io.org) or Botanical Informa
tion and Ecology Network (Enquist, Condit, Peet, Schildhauer, & 
Thiers, 2016), and typically have columns of geographical coordi-
nates for each observation. We note, however, that these major 
data hubs show strong overlap in their collections. Raster layers are 
typically derived from species distribution modelling, such as aqua-
maps (Kaschner et al., 2016). An overview can be easily obtained 
with the functions points2comm, polys2comm and raster2comm 
for point records, polygons or raster layers respectively. Depending 
on the data source, all three functions ultimately provide conveni-
ent interfaces to convert the distribution data to a community 
data frame at varying spatial grains and extents for downstream 
analyses.

3.2 | Phylogenetic data

Phylogenies are often derived from DNA sequences; however, 
the issue of missing data is a significant obstacle in reconstruct-
ing phylogenetic relationships for most non-charismatic groups, 
for example, plants or insects. When paired with distribution 
data, phylogenies can aid the discovery of common patterns and 
processes that underlie the formation of biogeographical re-
gions (Daru et al., 2017; Wiley, 1988). The function phylobuilder 
appends missing taxa to a supertree. Unlike other tree-building 
algorithms that manually graft missing taxa into a working su-
pertree, phylobuilder creates a subtree with the largest over-
lap from a species list at a fast speed. If species in the taxon 

F I G U R E  1   Typical workflow for 
analysis of biogeographical regionalization 
and macroecology using phyloregion. 
(a) Input data: distribution data (point 
records, polygons and raster layers) are 
converted to a long community data 
frame format before conversion to a 
sparse community matrix. When paired 
with phylogenetic data, the function 
phylobuilder creates a subtree with 
largest overlap from a species list, thereby 
ensuring complete representation of 
missing data. (b) Analysis: phyloregion 
allows analysis of standard alpha diversity 
metrics commonly used in conservation, 
such as phylogenetic diversity and 
phylogenetic endemism as well as metrics 
for analysing compositional turnover 
(e.g. beta diversity and phylogenetic 
beta diversity). (c) Visualization: efficient 
tools allow graphical exploration of the 
generated patterns of biogeographical 
regionalization and macroecology in 
geographical space. In the phylogenetic 
community matrix in (b), the zeros are 
represented with dots for clarity, whereas 
the non-zero elements are represented 
with vertical bars. Numbers on the maps 
are arbitrary and indicate the regions that 
have been delimited
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list are not in the tree (tip label), species will be added at the 
most recent common ancestor at the genus or family level when 
possible.

4  | DATA PREPAR ATION AND ANALYSES

4.1 | Sparse community matrix

A community composition dataset is commonly represented as a 
matrix of 1s and 0s, with species as columns and rows as spatial 
cells or communities. In practice, such a matrix can contain many 
zero values because species are known to generally have uni-
modal distributions along environmental gradients (ter Braak & 
Prentice, 1988), and storing and analysing every single element 
of that matrix can be computationally challenging and expensive. 
Indeed, for large matrices, most base R functions cannot make a 
table with more than 231 elements. One approach to overcome 
this limitation is to utilize a sparse matrix, a matrix with a high 
proportion of zero entries (Duff, 1977). Because a sparse matrix 
is comprised mostly of 0s, it only stores the non-zero entries, 
from which several measures of biodiversity including biogeo-
graphical regionalization can be calculated. Our long2sparse 
function allows conversion of community data from either long 
or wide (dense2sparse) formats to a condensed sparse matrix 
(Figure  2) to ease downstream analyses such as compositional 
dissimilarity and avoid the exhaustion of computer memory 
capacities.

4.2 | Matching phylogeny and community 
composition data

In community ecology and biogeographical analyses, it is sometimes 
desirable to make sure that the taxa in different datasets match each 

other (Kembel et al., 2010). However, existing tools are not tailored 
for comparing taxa in mega phylogenies spanning thousands of taxa 
with community composition datasets at large scales. We present 
match_phylo_comm that compares a sparse community matrix 
against a phylogenetic tree and adds missing species to the tree at 
the genus or higher taxonomic levels.

4.3 | Generating beta diversity (phylogenetic  
and non-phylogenetic)

The phyloregion package provides functions for analysis of compo-
sitional turnover (beta diversity) based on widely used dissimilarity 
indices such as Simpson, Sorensen and Jaccard (Laffan et al., 2016). 
The phyloregion's functions beta_diss and phylobeta compute ef-
ficiently the pairwise dissimilarity matrices for large sparse commu-
nity matrices and phylogenetic trees for taxonomic and phylogenetic 
turnover respectively. The results are stored as distance objects for 
downstream analyses.

4.4 | Cluster algorithm selection and validation

To overcome the lack of a priori justification for using a par-
ticular method for identifying phyloregions, the function select_
linkage can contrast eight widely used hierarchical clustering 
algorithms (including UPGMA and single linkage) on the (phylo-
genetic) beta diversity matrix for degree of data distortion using 
Sokal and Rohlf's (1962) cophenetic correlation coefficient. The 
cophenetic correlation coefficient measures how faithfully the 
original pairwise distance matrix is represented by the dendro-
gram (Sokal & Rohlf, 1962). Thus, the best method is indicated by 
higher correlation values, resulting in regions with a maximum 
internal similarity but with maximum differences from other 
regions.

F I G U R E  2   Illustration showing 
community data conversion to a sparse 
community matrix by (a) long2sparse 
function when the raw data are in 
long community data format or (b) 
dense2sparse for wide community 
data format—typically 1s and 0s—with 
species as columns and rows as spatial 
cells or communities. The result is (c) a 
sparse community matrix, which holds 
only the non-zero data for downstream 
analysis. For this illustration, the zeros are 
represented with dots for clarity, whereas 
the non-zero elements are represented 
with vertical bars
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4.5 | Determining the optimal number of clusters

The function optimal_phyloregion utilizes the efficiency of the so-
called ‘elbow’ (also known as ‘knee’) method corresponding to the 
point of maximum curvature (Salvador & Chan, 2004), to determine 
the optimal number of clusters that best describes the observed 
(phylogenetic) beta diversity matrix. Depending on the research 
question, the scale of the cutting depth or clustering algorithm 
method can be varied systematically. The output is used to visualize 
relationships among phyloregions using hierarchical dendrograms of 
dissimilarity and non-metric multidimensional scaling (NMDS) ordi-
nation, and are assessed for spatial coherence by mapping and/or 
quantifying their evolutionary distinctiveness.

4.6 | Evolutionary distinctiveness of phyloregions

The function phyloregion estimates evolutionary distinctiveness 
of each phyloregion by computing the mean value of (phyloge-
netic) beta diversity between a focal phyloregion and all other phy-
loregions in the study area. It takes a distance matrix and returns 
a ‘phyloregion’ object containing a phyloregion  ×  phyloregion  
distance object. Areas of high evolutionary distinctiveness can 
provide new insights on the mechanisms that are responsible 
for generating ecological diversity such as speciation, niche con-
servatism, extinction and dispersal (Daru et al., 2017; Holt et al.,  
2013).

5  | VISUAL REPRESENTATION AND 
A SSESSMENT OF BIOGEOGR APHIC AL 
REGIONS

The phyloregion package also provides a number of functions that 
aid visualization and assessment of biogeographical regions.

•	 plot.phyloregion can display clusters of cells (i.e. ‘phyloregions’ 
for phylogenetic approaches or ‘bioregions’ for non-phylogenetic 
approaches) in multidimensional scaling colour space matching 
the colour vision of the human visual system (Kruskal, 1964). The 
colours indicate the levels of differentiation of clades in differ-
ent phyloregions. Phyloregions with similar colours have similar 
clades and those with different colours differ in the clades they 
enclose (Figure 1).

•	 plot_swatch maps discretized values of a quantity based on 
continuous numerical variables of their cells or sites for visual-
ization as heatmap in sequential colour palettes. This function 
can also be used to quantify the evolutionary distinctiveness 
of phyloregions, defined as the mean of pairwise beta diver-
sity values between each phyloregion and all other phylore-
gions and displays them in hue-chroma-luminance colours that 
are much more suitable for capturing human colour perception 
(Figure 1).

6  | C A SE STUDY OF BIOGEOGR APHIC AL 
REGIONALIZ ATION OF SQUAMATE 
REPTILES

We validated the application of the phyloregion package on the 
geographical distributions and phylogenetic data for all 9,574 
species of squamate reptiles across the globe (data from Tonini, 
Beard, Ferreira, Jetz, & Pyron,  2016). Despite the fact that rep-
tiles were part of the dataset used in Wallace's original zooge-
ographical regionalization along with birds, mammals and insects 
(Wallace, 1876), they have been largely neglected in modern re-
gionalization schemes (Edler et al., 2017; Holt et al., 2013; Kreft 
& Jetz,  2010; Meiri & Chapple,  2016). Nevertheless, squamate 
reptiles are one of the most diverse and widely distributed ver-
tebrate groups in the world (Böhm et  al.,  2013). Most notably, 
due to the high extinction rates they are facing, the distribution 
data, phylogeny and evolutionary relatedness of squamates have 
recently been well-documented (Tonini et al., 2016 and references 
therein). These make squamate reptiles an ideal system to test the 
robustness and implementation of phyloregion for biogeographical  
regionalization at large scales.

We used updated polygons representing the maximum geo-
graphical extent of each squamate reptile species (Roll et al., 2017). 
We ran the polys2comm, long2sparse and match_phylo_comm 
wrapper functions to generate the community data at a resolution of 
1° × 1° (see Figure S1 for an example of varying spatial extents). Note 
that this resolution can be adjusted by varying the res argument in 
the function fishnet(mask, res = 0.5). We accounted for phylogenetic 
uncertainty in our analyses by drawing 100 trees at random from a 
posterior distribution of fully resolved trees (Tonini et al., 2016) to 
generate phylogenetic dissimilarity matrices (with Simpson's pair-
wise phylogenetic dissimilarities as default because of its indepen-
dence to differences in species richness among sites, Koleff, Gaston, 
& Lennon, 2003; Kreft & Jetz, 2010), and took the mean across grid 
cells using mean_dist. Note that other dissimilarity indices such as 
‘Jaccard’ and ‘Sorensen’ can be used as desired (Laffan et al., 2016), 
depending on the data used and research questions.

Using the ‘elbow method’ (function optimal_phyloregion), we 
identified 18 optimal phyloregions (i.e. maximum explained vari-
ance of 0.72 for clustering achieved at k = 18) of squamate reptiles 
(Figure 3). UPGMA was identified as the best clustering algorithm 
(cophenetic correlation coefficient  =  0.8; selected using function 
select_linkage).

The resulting phyloregions for squamate reptiles at the global 
extent show substantial congruence to Holt et al.'s (2013) updates 
of Wallace's original zoogeographical regions, including Oceanian, 
Australian, Madagascan, Palearctic and Nearctic (Figure  3a). 
However, we also identified some discrepancies. For example, the 
Afrotropical realm (sensu Holt et  al.,  2013) was divided into four 
phyloregions in our study corresponding to West and Central Africa 
(11), Horn of Africa (12), Zambezian (15) and South African (17). We 
also identified a new phyloregion overlapping Chile-Patagonian in 
temperate South America. This discrepancy might be due to the 
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focal group being reptiles, whereas Holt et al. (2013) present results 
for birds, mammals and amphibians. However, as there is increasing 
evidence that patterns of biodiversity are scale-dependent (Daru, 
Farooq, Antonelli, & Faurby, 2020; Jarzyna & Jetz, 2018), it is likely 
that the mechanisms underlying patterns of biogeographical re-
gionalization are sensitive to differences in spatial grain and extent 
(Daru et al., 2017; Holt et al., 2013; Keil et al., 2012). We found that 
these effects are lost at the continental to regional/local scales. At 
the continental extent, for instance, phyloregions are less spatially 
clumped and more differentiated from each other; for example, 
Africa split into 15 phyloregions at the continental extent compared 
to six phyloregions at the global extent (Figure S1). At the regional/
local extent, spatial patterns of phylogenetic regionalization be-
came more scattered across regions also with a loss of distinction 
(Figure S1c).

Geographically disjunct assemblages such as Panamanian and 
Temperate South America harbour closely related assemblages 
(Figure 3b), whereas some geographically proximal bioregions have 
low levels of faunistic similarity, suggesting spatial patterns of spe-
cies diversity can have different phylogenetic structures (Hawkins 
et  al.,  2012). However, we also found that assemblages from 

different phyloregions tend to cluster with each other, for example, 
the Neotropics and Palaeotropics, suggesting that more spatially 
close phyloregions might also be more similar. Mean phylogenetic 
turnover of squamate reptiles between a phyloregion and all other 
phyloregions (function phyloregion) indicates that different phy-
loregions differ most strongly in evolutionary distinctiveness, with 

F I G U R E  3   A global phylogenetic regionalization of 9,574 species of squamate reptiles reveals their evolutionary affinities. (a) Map of 
phyloregions shows evolutionary affinities among disjunct assemblages (function plot.phyloregion). (b) The ordination of phyloregions in 
NMDS space shows that different phyloregions differ strongly in evolutionary uniqueness (function plot_NMDS). (c) Map of evolutionary 
distinctiveness for squamate reptiles of the world, calculated as the mean value of phylogenetic beta diversity between a phyloregion and all 
other phyloregions in the study area (function plot_swatch). The colours indicate the degree to which each phyloregion differs from all other 
phyloregions based on mean pairwise phylogenetic beta diversity values, with darker colours indicating high evolutionary distinctiveness. 
Colour differences in the map (a) and NMDS plot (b) depict the amount of phylogenetic turnover among phyloregions. (d) The threshold of 
explained variances to identify the optimal number of phyloregions. The ‘elbow’ (optimal phyloregion) of the graph is indicated by the red 
circle. Numbers on the maps are arbitrary and indicate the regions that have been delimited
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Box 1 Glossary of terms

Biogeographical regionalization: the partitioning of the 
biotic world into distinct geographical units.
Biogeographical realm: large biogeographical divisions 
within which ecosystems share a broadly similar evolution-
ary history.
Ecoregion: geographical regions that are defined by spe-
cific ecological patterns, including soil, flora and fauna, 
climatic conditions, among other factors.
Phyloregions: association of species into distinct phyloge-
netically delimited biogeographical units.
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higher evolutionary distinctiveness in the tropics and southern 
hemisphere (Figure 3c), a similar observation to Tonini et al. (2016). 
Notably, the Australian phyloregion has the highest mean phyloge-
netic turnover (mean phylogenetic turnover between Australian and 
all other phyloregions = 0.67; Figure 3c), reflecting limited dispersal 
of lineages in this phyloregion.

The use of phylogenetic information and species distributions 
allows a deeper understanding of the mechanisms determining cur-
rent patterns of biodiversity. Our evolutionary distinctiveness anal-
ysis in the recognized phyloregions (Box 1) brings a new component 
of evolutionary importance of each region to the biogeographical 
regionalization as well as for conservation prioritization. Most of the 
phyloregions found here spanned multiple ecoregions and biogeo-
graphical realms, suggesting that conservation planning should be 
adjusted to cover these larger phyloregions.

7  | BENCHMARKING PHYLOREGION

To benchmark phyloregion's functions with available packages for 
speed and memory allocation, we used an empirical dataset of the 
flora of southern Africa that includes species distributions and 
phylogenetic relationships for 1,400 plant taxa (data from Daru 
et al., 2016). This dataset is included in the phyloregion package di-
rectly as one of the example data in a helpfile: data(africa). We com-
pared phyloregion to other packages in terms of analyses of alpha 
diversity metrics that are commonly used in biodiversity conserva-
tion, such as phylogenetic diversity and phylogenetic endemism 
as well as metrics for analysing compositional turnover (e.g. beta 
diversity and phylogenetic beta diversity; R code for benchmark-
ing phyloregion with available packages is included in the bench-
marking vignette; https://darun​abas.github.io/phylo​regio​n/artic​les/
Bench​mark.html). These tests indicate that phyloregion is faster and 
more efficient in memory allocation than other packages (Table 1; 
Figure S2).

8  | DISSIMIL ARIT Y-BA SED 
REGIONALIZ ATION VERSUS NET WORK 
APPROACHES

Although phyloregion implements a dissimilarity-based algorithm 
to quantify spatial patterns of biodiversity, we recognize that such 
clustering methods could be sensitive to sampling biases in spe-
cies occurrence data. This could potentially influence the delinea-
tion of bioregions, especially when the goal is to identify transition 
zones compared to network methods (e.g. Bloomfield et al., 2018; 
Vilhena & Antonelli, 2015). We did not explicitly evaluate the per-
formance of our phyloregion package against network methods 
such as mapequation (Rosvall & Bergstrom, 2008) or modularity 
metrics (Guimera & Amaral, 2005); however, we believe that any 
difference between the two methods might be complementary 
and offer additional biogeographical insights where phyloregion is 

more informative at detecting bioregions at continental to global 
scales (Daru et  al.,  2017; Holt et  al.,  2013; Kreft & Jetz,  2010), 
whereas network methods are efficient at identifying interzones 
(Bloomfield et al., 2018). Depending on the goal of the study, users 
can integrate a dissimilarity-based approach (as implemented in 
phyloregion) with network approaches to understand patterns and 
processes of biogeographical regionalization. In addition to com-
putations of compositional turnover, phyloregion can run other 
standard spatial biodiversity analyses such as phylogenetic diver-
sity, phylogenetic endemism and evolutionary distinctiveness that 
are commonly used in conservation. It can also handle analysis 
for any form of organism at any grain size or spatial extent and 
does not suffer from a resolution limit unlike standard network-
based approaches (Fortunato & Barthélemy, 2007; Kawamoto & 
Rosvall, 2015).

9  | CONCLUDING REMARKS

Although there are other packages such as ape (Paradis & 
Schliep, 2019), betapart (Baselga & Orme, 2012) or vegan (Oksanen 
et  al.,  2019) that can be used for analysis of biogeographical re-
gionalization, phyloregion adds three novelties. First, it can utilize 
a sparse matrix by holding only the non-zero elements of a matrix 
thereby taking up significantly less memory and making it possible 
to handle larger datasets efficiently and rapidly. Second, it has novel 
functions for speedy raw data conversion from traditional data ta-
bles (e.g. a dense matrix of 1s and 0s) to a sparse community matrix 

TA B L E  1   Comparison of phyloregion against comparable 
packages for analysis of alpha and beta diversity for woody plant 
species of southern Africa. The magnitude of change in memory 
allocation and run time are shown in parentheses

Packages
Memory 
allocation (MB) Speed (s)

Phylogenetic 
diversity

phyloregion 1.83 0.00287

hilldiv 170.22 (×93) 1.09 (×380)

pez 60.79 (×33) 0.13 (×45)

picante 59.5 (×33) 0.12 (×42)

Phylogenetic 
endemism

phyloregion 1.06 0.0036

pez 498.93 (×471) 1.89 (×525)

Beta diversity phyloregion 0.40 0.0010

betapart 0.60 (×1.5) 0.0011 
(×1.1)

vegan 1.02 (×2.6) 0.0013 
(×1.3)

BAT 31.76 (×79) 0.044 (×44)

Phylogenetic 
beta diversity

phyloregion 1.07 0.0051

betapart 1,240 (×1,159) 2.14 (×420)

picante 1,240 (×1,159) 4.38 (×859)

BAT 207.39 (×194) 1.61 (×316)

Abbreviation: MB, megabyte.

https://darunabas.github.io/phyloregion/articles/Benchmark.html
https://darunabas.github.io/phyloregion/articles/Benchmark.html
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as well as a user-friendly analysis of biogeographical regionalization 
into completely reproducible R workflows. Third, the functional-
ity of the package can be extended for analysis of alpha diversity 
such as mapping hotspots of species richness, endemism or threat  
(e.g. Daru et al., 2020).

The goal of phyloregion is to facilitate the analysis of biogeo-
graphical regionalization and macroecology at any scale and for 
any taxonomic group, tailored to accommodate the ongoing mass 
production of species occurrence data and phylogenetic datasets.

ACKNOWLEDG EMENTS
B.H.D. is supported by Texas A&M University at Corpus Christi. We 
are grateful to Kristen Ruggles for helping with English language ed-
iting, and Abubakar Bello and Danmallam Bello Adamu for translat-
ing the abstract to Hausa language.

AUTHORS'  CONTRIBUTIONS
B.H.D. conceived the project, analysed the data and led the writing 
with help from P.K.; B.H.D. and K.S. developed the method; B.H.D., 
K.S. and P.K. tested the method. All the co-authors assisted with  
editing and approved for publication.

PEER RE VIE W
The peer review history for this article is available at https://publo​ns. 
com/publo​n/10.1111/2041-210X.13478.

DATA AVAIL ABILIT Y S TATEMENT
The phyloregion R package and documentation are hosted on 
CRAN (https://CRAN.R-proje​ct.org/packa​ge=phylo​region) and 
GitHub (https://github.com/darun​abas/phylo​region), whereas a 
website with the major vignettes is available at https://darun​abas.
github.io/phylo​regio​n/index.html. All data and scripts necessary to 
repeat the analyses for the squamate reptiles described here have 
been made available through the Dryad Digital Data Repository 
https://doi.org/10.5061/dryad.tdz08​kpw6 (Daru, Karunarathne, & 
Schliep, 2019).

ORCID
Barnabas H. Daru   https://orcid.org/0000-0002-2115-0257 
Piyal Karunarathne   https://orcid.org/0000-0002-1934-145X 
Klaus Schliep   https://orcid.org/0000-0003-2941-0161 

R E FE R E N C E S
Baselga, A., & Orme, C. D. L. (2012). betapart: An R package for the study 

of beta diversity. Methods in Ecology and Evolution, 3(5), 808–812.
Bates, D., & Maechler, M. (2019). Matrix: sparse and dense matrix classes 

and methods. R package version 1.2-17. Retrieved from https://cran.r-
proje​ct.org/packa​ge=Matrix

Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied spatial data 
analysis with R (2nd ed.). New York, NY: Springer.

Bloomfield, N. J., Knerr, N., & Encinas-Viso, F. (2018). A comparison of 
network and clustering methods to detect biogeographical regions. 
Ecography, 41(1), 1–10. https://doi.org/10.1111/ecog.02596

Böhm, M., Collen, B., Baillie, J. E. M., Bowles, P., Chanson, J., Cox, N., 
… Zug, G. (2013). The conservation status of the world's reptiles. 

Biological Conservation, 157, 372–385. https://doi.org/10.1016/ 
j.biocon.2012.07.015

Carstensen, D. W., & Olesen, J. M. (2009). Wallacea and its nectarivo-
rous birds: Nestedness and modules. Journal of Biogeography, 36(8), 
1540–1550. https://doi.org/10.1111/j.1365-2699.2009.02098.x

Dapporto, L., Ciolli, G., Dennis, R. L. H., Fox, R., & Shreeve, T. G. (2015). 
A new procedure for extrapolating turnover regionalization at mid-
small spatial scales, tested on British butterflies. Methods in Ecology 
and Evolution, 6(11), 1287–1297.

Daru, B. H., Elliott, T. L., Park, D. S., & Davies, T. J. (2017). Understanding 
the processes underpinning patterns of phylogenetic regionaliza-
tion. Trends in Ecology & Evolution, 32(11), 845–860. https://doi.
org/10.1016/j.tree.2017.08.013

Daru, B. H., Farooq, H., Antonelli, A., & Faurby, S. (2020). Endemism pat-
terns are scale dependent. Nature Communications, 11, 2115. https://
doi.org/10.1038/s4146​7-020-15921​-6

Daru, B. H., Karunarathne, P., & Schliep, K. (2019). phyloregion: R 
package for biogeographic regionalization and spatial conserva-
tion. Dryad Digital Repository, https://doi.org/10.5061/dryad.tdz08​
kpw6

Daru, B. H., Van der Bank, M., Maurin, O., Yessoufou, K., Schaefer, H., 
Slingsby, J. A., & Davies, T. J. (2016). A novel phylogenetic region-
alization of the phytogeographic zones of southern Africa reveals 
their hidden evolutionary affinities. Journal of Biogeography, 43(1), 
155–166.

Duff, I. S. (1977). A survey of sparse matrix research. Proceedings of the 
IEEE, 65(4), 500–535. https://doi.org/10.1109/PROC.1977.10514

Edler, D., Guedes, T., Zizka, A., Rosvall, M., & Antonelli, A. (2017). 
Infomap Bioregions: Interactive mapping of biogeographical regions 
from species distributions. Systematic Biology, 66(2), 197–204.

Edwards, J. L., Lane, M. A., & Nielsen, E. S. (2000). Interoperability of 
biodiversity databases: Biodiversity information on every desktop. 
Science, 289(5488), 2312–2314.

Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M., & Thiers, B. M. 
(2016). Cyberinfrastructure for an integrated botanical informa-
tion network to investigate the ecological impacts of global climate 
change on plant biodiversity. PeerJ Preprints, 4, e2615v2.

Ficetola, G. F., Mazel, F., & Thuiller, W. (2017). Global determinants of 
zoogeographical boundaries. Nature Ecology & Evolution, 1(4). https://
doi.org/10.1038/s4155​9-017-0089

Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community 
detection. Proceedings of the National Academy of Sciences of the 
United States of America, 104(1), 36–41. https://doi.org/10.1073/
pnas.06059​65104

Graham, C. H., & Fine, P. V. A. (2008). Phylogenetic beta diversity: Linking 
ecological and evolutionary processes across space in time. Ecology 
Letters, 11, 1265–1277. https://doi.org/10.1111/j.1461-0248.2008. 
01256.x

Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex 
metabolic networks. Nature, 433, 895–900. https://doi.org/10.1038/
natur​e03288

Hawkins, B. A., McCain, C. M., Davies, T. J., Buckley, L. B., Anacker, B. 
L., Cornell, H. V., … Stephens, P. R. (2012). Different evolutionary 
histories underlie congruent species richness gradients of birds 
and mammals. Journal of Biogeography, 39, 825–841. https://doi.
org/10.1111/j.1365-2699.2011.02655.x

Hijmans, R. J. (2019). raster: Geographic data analysis and modeling. R 
package version 3.0-7. Retrieved from https://cran.r-proje​ct.org/
packa​ge=raste​r%0A

Holt, B. G., Lessard, J. P., Borregaard, M. K., Fritz, S. A., Araújo, M. B., 
Dimitrov, D., … Rahbek, C. (2013). An update of Wallace's zoogeo-
graphic regions of the world. Science, 339(6115), 74–78.

Jarzyna, M. A., & Jetz, W. (2018). Taxonomic and functional diversity 
change is scale dependent. Nature Communications, 9, 2565. https://
doi.org/10.1038/s4146​7-018-04889​-z

https://publons.com/publon/10.1111/2041-210X.13478
https://publons.com/publon/10.1111/2041-210X.13478
https://CRAN.R-project.org/package=phyloregion
https://github.com/darunabas/phyloregion
https://darunabas.github.io/phyloregion/index.html
https://darunabas.github.io/phyloregion/index.html
https://doi.org/10.5061/dryad.tdz08kpw6
https://orcid.org/0000-0002-2115-0257
https://orcid.org/0000-0002-2115-0257
https://orcid.org/0000-0002-1934-145X
https://orcid.org/0000-0002-1934-145X
https://orcid.org/0000-0003-2941-0161
https://orcid.org/0000-0003-2941-0161
https://cran.r-project.org/package=Matrix
https://cran.r-project.org/package=Matrix
https://doi.org/10.1111/ecog.02596
https://doi.org/10.1016/j.biocon.2012.07.015
https://doi.org/10.1016/j.biocon.2012.07.015
https://doi.org/10.1111/j.1365-2699.2009.02098.x
https://doi.org/10.1016/j.tree.2017.08.013
https://doi.org/10.1016/j.tree.2017.08.013
https://doi.org/10.1038/s41467-020-15921-6
https://doi.org/10.1038/s41467-020-15921-6
https://doi.org/10.5061/dryad.tdz08kpw6
https://doi.org/10.5061/dryad.tdz08kpw6
https://doi.org/10.1109/PROC.1977.10514
https://doi.org/10.1038/s41559-017-0089
https://doi.org/10.1038/s41559-017-0089
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1111/j.1461-0248.2008.01256.x
https://doi.org/10.1111/j.1461-0248.2008.01256.x
https://doi.org/10.1038/nature03288
https://doi.org/10.1038/nature03288
https://doi.org/10.1111/j.1365-2699.2011.02655.x
https://doi.org/10.1111/j.1365-2699.2011.02655.x
https://cran.r-project.org/package=raster%0A
https://cran.r-project.org/package=raster%0A
https://doi.org/10.1038/s41467-018-04889-z
https://doi.org/10.1038/s41467-018-04889-z


     |  1491Methods in Ecology and Evolu
onDARU et al.

Kaschner, K., Ready, J. S., Agbayani, E., Rius, J., Kesner-Reyes, K., 
Eastwood, P. D., & Close, C. H. (2016). AquaMaps: Predicted range 
maps for aquatic species. Retrieved from www.aquam​aps.org

Kawamoto, T., & Rosvall, M. (2015). Estimating the resolution limit of 
the map equation in community detection. Physical Review E, 91(1). 
https://doi.org/10.1103/PhysR​evE.91.012809

Keil, P., Schweiger, O., Kühn, I., Kunin, W. E., Kuussaari, M., Settele, 
J., … Storch, D. (2012). Patterns of beta diversity in Europe: The 
role of climate, land cover and distance across scales. Journal of  
Biogeography, 39(8), 1473–1486. https://doi.org/10.1111/j.1365-2699. 
2012.02701.x

Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., 
Ackerly, D. D., … Webb, C. O. (2010). Picante: R tools for integrating 
phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. https://
doi.org/10.1093/bioin​forma​tics/btq166

Koleff, P., Gaston, K. J., & Lennon, J. J. (2003). Measuring beta diversity 
for presence–absence data. Journal of Animal Ecology, 72, 367–382. 
https://doi.org/10.1046/j.1365-2656.2003.00710.x

Kreft, H., & Jetz, W. (2010). A framework for delineating biogeographical 
regions based on species distributions. Journal of Biogeography, 37(11), 
2029–2053. https://doi.org/10.1111/j.1365-2699.2010.02375.x

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical 
method. Psychometrika, 29(2), 115–129. https://doi.org/10.1007/
BF022​89694

Laffan, S. W., Rosauer, D. F., Di Virgilio, G., Miller, J. T., González-Orozco, 
C. E., Knerr, N., … Mishler, B. D. (2016). Range-weighted metrics of 
species and phylogenetic turnover can better resolve biogeographic 
transition zones. Methods in Ecology and Evolution, 7(5), 580–588. 
https://doi.org/10.1111/2041-210X.12513

Meiri, S., & Chapple, D. G. (2016). Biases in the current knowledge of 
threat status in lizards, and bridging the ‘assessment gap’. Biological 
Conservation, 204, 6–15. https://doi.org/10.1016/j.biocon.2016. 
03.009

Morrone, J. J. (2018). The spectre of biogeographical regionalization. 
Journal of Biogeography, 45(2), 282–288. https://doi.org/10.1111/
jbi.13135

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, 
D., … Solymos, P. (2019). vegan: Community ecology package. R pack-
age version 2.5.6. Retrieved from https://cran.r-proje​ct.org/packa​
ge=vegan

Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern 
phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 
526–528.

Roll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A. M., Bernard, R., 
… Meiri, S. (2017). The global distribution of tetrapods reveals a need 

for targeted reptile conservation. Nature Ecology and Evolution, 1(11), 
1677–1682. https://doi.org/10.1038/s4155​9-017-0332-2

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex 
networks reveal community structure. Proceedings of the National 
Academy of Sciences of the United States of America, 105(4), 1118–
1123. https://doi.org/10.1073/pnas.07068​51105

Salvador, S., & Chan, P. (2004). Determining the number of clusters/
segments in hierarchical clustering/segmentation algorithms. In 
Proceedings of the Sixteenth IEEE International Conference on Tools 
with Artificial Intelligence (pp. 576–584). Piscataway, NJ: Institute of 
Electrical and Electronics Engineers.

Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objec-
tive methods. Taxon, 11(2), 33–40. https://doi.org/10.2307/1217208

Ter Braak, C. J. F., & Prentice, I. C. (1988). A theory of gradient analysis. 
Advances in Ecological Research, 18(C), 271–317.

Thébault, E. (2013). Identifying compartments in presence–absence 
matrices and bipartite networks: Insights into modularity measures. 
Journal of Biogeography, 40(4), 759–768. https://doi.org/10.1111/
jbi.12015

Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W., & Pyron, R. A. (2016). 
Fully-sampled phylogenies of squamates reveal evolutionary pat-
terns in threat status. Biological Conservation, 204, 23–31. https://
doi.org/10.1016/j.biocon.2016.03.039

Vilhena, D. A., & Antonelli, A. (2015). A network approach for identifying 
and delimiting biogeographical regions. Nature Communications, 6, 
6848. https://doi.org/10.1038/ncomm​s7848

Wallace, A. R. (1876). The geographical distribution of animals. Cambridge, 
UK: Cambridge University Press.

Wiley, E. O. (1988). Vicariance biogeography. Annual Review of Ecology 
and Systematics, 19, 513–542. https://doi.org/10.1146/annur​ev.es. 
19.110188.002501

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Daru BH, Karunarathne P, Schliep K. 
phyloregion: R package for biogeographical regionalization and 
macroecology. Methods Ecol Evol. 2020;11:1483–1491. https://
doi.org/10.1111/2041-210X.13478

http://www.aquamaps.org
https://doi.org/10.1103/PhysRevE.91.012809
https://doi.org/10.1111/j.1365-2699.2012.02701.x
https://doi.org/10.1111/j.1365-2699.2012.02701.x
https://doi.org/10.1093/bioinformatics/btq166
https://doi.org/10.1093/bioinformatics/btq166
https://doi.org/10.1046/j.1365-2656.2003.00710.x
https://doi.org/10.1111/j.1365-2699.2010.02375.x
https://doi.org/10.1007/BF02289694
https://doi.org/10.1007/BF02289694
https://doi.org/10.1111/2041-210X.12513
https://doi.org/10.1016/j.biocon.2016.03.009
https://doi.org/10.1016/j.biocon.2016.03.009
https://doi.org/10.1111/jbi.13135
https://doi.org/10.1111/jbi.13135
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan
https://doi.org/10.1038/s41559-017-0332-2
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.2307/1217208
https://doi.org/10.1111/jbi.12015
https://doi.org/10.1111/jbi.12015
https://doi.org/10.1016/j.biocon.2016.03.039
https://doi.org/10.1016/j.biocon.2016.03.039
https://doi.org/10.1038/ncomms7848
https://doi.org/10.1146/annurev.es.19.110188.002501
https://doi.org/10.1146/annurev.es.19.110188.002501
https://doi.org/10.1111/2041-210X.13478
https://doi.org/10.1111/2041-210X.13478

