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1 | INTRODUCTION

In biogeography, there is growing interest in the analysis of datasets

of ever-increasing size and complexity to explain biodiversity patterns

| Piyal Karunarathne!

| Klaus Schliep?

Abstract

1.

Biogeographical regionalization is the classification of regions in terms of their
biota and is key to our understanding of the ecological and historical drivers af-
fecting species distribution in macroecological or large-scale conservation studies.
However, despite the mass production of species distributions and phylogenetic
data, statistical and computational infrastructure to successfully incorporate, ma-

nipulate and analyse such massive amounts of data had not been fully developed.

. Here, we present phyloregion, a statistical package for the analysis of biogeo-

graphical regionalization and macroecology in the R computing environment, tai-
lored for mega phylogenies and macroecological datasets of ever-increasing size

and complexity.

. Compared to available packages, phyloregion is several times faster and allocates

less memory than other packages for analysis of alpha diversity (including phy-
logenetic diversity, phylogenetic endemism and evolutionary distinctiveness and
global endangerment) and beta diversity (including cluster analysis, determining

optimal number of clusters and evolutionary distinctiveness of regions).

. We demonstrate the scalability of the package to large datasets with comprehen-

sive phylogenies and global distribution maps of squamate reptiles (amphisbae-
nians, lizards and snakes), and show that different phyloregions differ strongly
in evolutionary distinctiveness across scales. Visualization tools allow graphical
exploration of the generated patterns of biogeographical regionalization and

macroecology in geographical space.

. Ultimately, phyloregion will facilitate rapid biogeographical analyses that will

accommodate the ongoing mass production of species occurrence records and
phylogenetic datasets at any scale and for any taxonomic group into completely

reproducible R workflows.

KEYWORDS
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and underlying processes. A common approach is biogeographical
regionalization, the grouping of organisms based on shared features
and how they respond to past or current physical and biological de-
terminants (Kreft & Jetz, 2010; Morrone, 2018). The composition of
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species in biogeographical units (i.e. ‘phyloregions’ or ‘bioregions’)
can reflect the historical processes such as extinction, speciation
or dispersal that have shaped present-day distribution of biologi-
cal diversity (Daru, Elliott, Park, & Davies, 2017; Ficetola, Mazel, &
Thuiller, 2017; Kreft & Jetz, 2010; Morrone, 2018). When paired
with phylogenetic information, biogeographical regionalization
allows geographical regions that do not share any species in com-
mon to be quantified (Graham & Fine, 2008), and can identify pat-
terns overlooked by species-level analyses (Daru et al., 2016; Edler,
Guedes, Zizka, Rosvall, & Antonelli, 2017; Holt et al., 2013; Vilhena &
Antonelli, 2015). However, compared to the mass production of spe-
cies distribution and phylogenetic datasets, statistical and computa-
tional approaches necessary to analyse such data, and approaches
that can incorporate efficient storage and manipulation of such data,
are lacking.

A few open-source tools are available and can provide infra-
structural support for analysis of biogeographical regionalization.
For instance, the ape package (Paradis & Schliep, 2019) contains
a comprehensive collection of tools for analyses of phylogenet-
ics and evolution and is useful for reading, writing and manip-
ulating phylogenetic trees, among many other functions. The
BETAPART package (Baselga & Orme, 2012) performs computations
of total dissimilarity in species composition along with their re-
spective turnover and nestedness components. piIcANTE focuses
on analysis of phylogenetic community structure and trait evolu-
tion (Kembel et al., 2010). The use of network methods to detect
bioregions (Bloomfield, Knerr, & Encinas-Viso, 2018; Carstensen
& Olesen, 2009; Rosvall & Bergstrom, 2008; Thébault, 2013;
Vilhena & Antonelli, 2015), while not yet implemented in the
R computing environment, provides an alternative clustering
method based on bipartite networks, and performs well at iden-
tifying interzones between regions (see Edler et al., 2017 for a
simplified and accessible implementation). However, there is no
consensus on which method is the most appropriate for biogeo-
graphical regionalization at large scales (Bloomfield et al., 2018;
Dapporto, Ciolli, Dennis, Fox, & Shreeve, 2015; Morrone, 2018).
The most effective approach to biogeographical regionalization
might therefore depend on the system under study and the re-
search questions.

Here, we present the phyloregion R package that permits
the integration of phylogenetic relationships and species distri-
butions for identifying biogeographical regions of different lin-
eages to elucidate the spatial and temporal evolution of biota in
a region. Specifically, phyloregion provides functions for anal-
yses of standard alpha diversity metrics (such as phylogenetic
diversity and phylogenetic endemism) as well as metrics for
analysing spatial compositional turnover between communities
(e.g. beta diversity, phylogenetic beta diversity and evolutionary
distinctiveness of regions). We benchmark phyloregion against
other packages for speed and memory allocation with an em-
pirical dataset of the flora of southern Africa that includes spe-
cies distributions and phylogenetic relationships for 1,400 taxa

(data from Daru et al., 2016). Moreover, we also demonstrate the

scalability of the package to big datasets using a case study of
biogeographical regionalization with comprehensive phylogenies
and distribution maps of 9,574 species of squamate reptiles (am-
phisbaenians, lizards and snakes) across the globe. Visualization
tools allow graphical exploration of the generated patterns of
biogeographical regionalization and macroecology in geograph-
ical space.

2 | OVERVIEW AND GENERAL
WORKFLOW OF PHYLOREGION

The phyloregion package interacts with few other R packages
including Matrix (Bates & Maechler, 2019), ape (Paradis & Schliep,
2019), BeTAPART (Baselga & Orme, 2012), rasTer (Hijmans, 2019)
and sp (Bivand, Pebesma, & Gémez-Rubio, 2013). We provide a
workflow of the phyloregion package for biogeographical assess-
ment of any selected taxa and region (Figure 1). The workflow
demonstrates steps from preparation of different types of data
to visualizing the results of biogeographical regionalization, to-
gether with tips on selecting the optimal method for achieving the
best output, depending on the types of data used and research
guestions. The package is available for direct installation through
R from the Comprehensive R Archive Network (CRAN, https://
CRAN.R-project.org/package=phyloregion), while the develop-
ment version is hosted on GitHub at https://github.com/darun
abas/phyloregion. To install phyloregion directly from CRAN, in R,
type:

install.packages(“phyloregion”)

An alternative is to install the development version of phylore-

gion hosted on GitHub as follows:

if ('requireNamespace(“devtools”, quietly = TRUE))

install.packages(“devtools”)
devtools:install_github(“darunabas/phyloregion”)
library(phyloregion)

3 | RAW DATA
3.1 | Distribution data input

The phyloregion package provides functions for manipulating at
least three categories of distribution data at varying spatial grains
and extents: point records, polygons and raster layers. Polygons
can be derived from the International Union for the Conservation of
Nature's spatial database (https://www.iucnredlist.org/resources/
spatial-data-download), published monographs or field guides that
have been validated by taxonomic experts. Point records are com-
monly derived from major data hubs such as the Global Biodiversity

Information Facility (Edwards, Lane, & Nielsen, 2000), Integrated
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FIGURE 1 Typical workflow for
analysis of biogeographical regionalization
and macroecology using phyloregion.

(a) Input data: distribution data (point
records, polygons and raster layers) are
converted to a long community data
frame format before conversion to a
sparse community matrix. When paired
with phylogenetic data, the function
phylobuilder creates a subtree with
largest overlap from a species list, thereby
ensuring complete representation of
missing data. (b) Analysis: phyloregion
allows analysis of standard alpha diversity
metrics commonly used in conservation,
such as phylogenetic diversity and
phylogenetic endemism as well as metrics
for analysing compositional turnover

(e.g. beta diversity and phylogenetic

beta diversity). (c) Visualization: efficient
tools allow graphical exploration of the
generated patterns of biogeographical
regionalization and macroecology in
geographical space. In the phylogenetic
community matrix in (b), the zeros are
represented with dots for clarity, whereas
the non-zero elements are represented
with vertical bars. Numbers on the maps
are arbitrary and indicate the regions that
have been delimited

(@

Points

N

Polygons

Rasters (SDM)

(b)

(c)

plot

T
y -

Phyloregion map*

**Colour

Digitized Biocollections (www.idigbio.org) or Botanical Informa-
tion and Ecology Network (Enquist, Condit, Peet, Schildhauer, &
Thiers, 2016), and typically have columns of geographical coordi-
nates for each observation. We note, however, that these major
data hubs show strong overlap in their collections. Raster layers are
typically derived from species distribution modelling, such as aqua-
maps (Kaschner et al., 2016). An overview can be easily obtained
with the functions points2comm, polys2comm and raster2comm
for point records, polygons or raster layers respectively. Depending
on the data source, all three functions ultimately provide conveni-
ent interfaces to convert the distribution data to a community
data frame at varying spatial grains and extents for downstream

analyses.

Distribution

points2comm

U polys2comm

., raster2comm

4
aﬂ‘f

Phylogeny

P EE B E

Raw community data

hylobuilder
(long or wide format) phy

long2sparse

Sparse community matrix

match phylo COMM

Complete phylogeny

P B [ BEE

g4|..\
gs | .| |11

Phylogenetic community matrix

phylobeta

(Phylo) B-diversity N
1 Linkage selection
' UPGMA

optimal _phyloregioni \é\{ﬁglie
1 Complete

Clustering

Distance
matrix

---

Optimal clusters

O

Visualization
]

plot swatch

¥

MDs2
010 005 000 005 010

ER

NMDS of pmﬁz}loregions”

1 oo o1

2 03

*

Evolutionary distinctiveness

differences depict the amount of phylogenetic turnover among phyloregions

3.2 | Phylogenetic data

Phylogenies are often derived from DNA sequences; however,
the issue of missing data is a significant obstacle in reconstruct-
ing phylogenetic relationships for most non-charismatic groups,
for example, plants or insects. When paired with distribution
data, phylogenies can aid the discovery of common patterns and
processes that underlie the formation of biogeographical re-
gions (Daru et al., 2017; Wiley, 1988). The function phylobuilder
appends missing taxa to a supertree. Unlike other tree-building
algorithms that manually graft missing taxa into a working su-
pertree, phylobuilder creates a subtree with the largest over-

lap from a species list at a fast speed. If species in the taxon
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list are not in the tree (tip label), species will be added at the
most recent common ancestor at the genus or family level when

possible.

4 | DATA PREPARATION AND ANALYSES
4.1 | Sparse community matrix

A community composition dataset is commonly represented as a
matrix of 1s and Os, with species as columns and rows as spatial
cells or communities. In practice, such a matrix can contain many
zero values because species are known to generally have uni-
modal distributions along environmental gradients (ter Braak &
Prentice, 1988), and storing and analysing every single element
of that matrix can be computationally challenging and expensive.
Indeed, for large matrices, most base R functions cannot make a
table with more than 23! elements. One approach to overcome
this limitation is to utilize a sparse matrix, a matrix with a high
proportion of zero entries (Duff, 1977). Because a sparse matrix
is comprised mostly of Os, it only stores the non-zero entries,
from which several measures of biodiversity including biogeo-
graphical regionalization can be calculated. Our long2sparse
function allows conversion of community data from either long
or wide (dense2sparse) formats to a condensed sparse matrix
(Figure 2) to ease downstream analyses such as compositional
dissimilarity and avoid the exhaustion of computer memory

capacities.
4.2 | Matching phylogeny and community
composition data

In community ecology and biogeographical analyses, it is sometimes

desirable to make sure that the taxa in different datasets match each

Community composition data

(a) Long format
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gl .
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PEEEERCEED 55 SR
DenseZsparse () g4 |
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(c) Sparse community matrix
sl s2 s3 s4

4 x 4 sparse Matrix of
‘ngCMatrix’

other (Kembel et al., 2010). However, existing tools are not tailored
for comparing taxa in mega phylogenies spanning thousands of taxa
with community composition datasets at large scales. We present
match_phylo_comm that compares a sparse community matrix
against a phylogenetic tree and adds missing species to the tree at
the genus or higher taxonomic levels.

4.3 | Generating beta diversity (phylogenetic
and non-phylogenetic)

The phyloregion package provides functions for analysis of compo-
sitional turnover (beta diversity) based on widely used dissimilarity
indices such as Simpson, Sorensen and Jaccard (Laffan et al., 2016).
The phyloregion's functions beta_diss and phylobeta compute ef-
ficiently the pairwise dissimilarity matrices for large sparse commu-
nity matrices and phylogenetic trees for taxonomic and phylogenetic
turnover respectively. The results are stored as distance objects for
downstream analyses.

4.4 | Cluster algorithm selection and validation

To overcome the lack of a priori justification for using a par-
ticular method for identifying phyloregions, the function select_
linkage can contrast eight widely used hierarchical clustering
algorithms (including UPGMA and single linkage) on the (phylo-
genetic) beta diversity matrix for degree of data distortion using
Sokal and Rohlf's (1962) cophenetic correlation coefficient. The
cophenetic correlation coefficient measures how faithfully the
original pairwise distance matrix is represented by the dendro-
gram (Sokal & Rohlf, 1962). Thus, the best method is indicated by
higher correlation values, resulting in regions with a maximum
internal similarity but with maximum differences from other

regions.

FIGURE 2 lllustration showing
community data conversion to a sparse
community matrix by (a) long2sparse

[ function when the raw data are in

long community data format or (b)

i ) dense2sparse for wide community

: data format—typically 1s and Os—with
species as columns and rows as spatial
cells or communities. The result is (c) a
sparse community matrix, which holds
only the non-zero data for downstream
analysis. For this illustration, the zeros are
represented with dots for clarity, whereas
the non-zero elements are represented
with vertical bars
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4.5 | Determining the optimal number of clusters

The function optimal_phyloregion utilizes the efficiency of the so-
called ‘elbow’ (also known as ‘knee’) method corresponding to the
point of maximum curvature (Salvador & Chan, 2004), to determine
the optimal number of clusters that best describes the observed
(phylogenetic) beta diversity matrix. Depending on the research
question, the scale of the cutting depth or clustering algorithm
method can be varied systematically. The output is used to visualize
relationships among phyloregions using hierarchical dendrograms of
dissimilarity and non-metric multidimensional scaling (NMDS) ordi-
nation, and are assessed for spatial coherence by mapping and/or
quantifying their evolutionary distinctiveness.

4.6 | Evolutionary distinctiveness of phyloregions

The function phyloregion estimates evolutionary distinctiveness
of each phyloregion by computing the mean value of (phyloge-
netic) beta diversity between a focal phyloregion and all other phy-
loregions in the study area. It takes a distance matrix and returns
a ‘phyloregion’ object containing a phyloregion x phyloregion
distance object. Areas of high evolutionary distinctiveness can
provide new insights on the mechanisms that are responsible
for generating ecological diversity such as speciation, niche con-
servatism, extinction and dispersal (Daru et al., 2017; Holt et al.,
2013).

5 | VISUAL REPRESENTATION AND
ASSESSMENT OF BIOGEOGRAPHICAL
REGIONS

The phyloregion package also provides a number of functions that

aid visualization and assessment of biogeographical regions.

e plot.phyloregion can display clusters of cells (i.e. ‘phyloregions’
for phylogenetic approaches or ‘bioregions’ for non-phylogenetic
approaches) in multidimensional scaling colour space matching
the colour vision of the human visual system (Kruskal, 1964). The
colours indicate the levels of differentiation of clades in differ-
ent phyloregions. Phyloregions with similar colours have similar
clades and those with different colours differ in the clades they
enclose (Figure 1).

e plot_swatch maps discretized values of a quantity based on
continuous numerical variables of their cells or sites for visual-
ization as heatmap in sequential colour palettes. This function
can also be used to quantify the evolutionary distinctiveness
of phyloregions, defined as the mean of pairwise beta diver-
sity values between each phyloregion and all other phylore-
gions and displays them in hue-chroma-luminance colours that
are much more suitable for capturing human colour perception
(Figure 1).

6 | CASE STUDY OF BIOGEOGRAPHICAL
REGIONALIZATION OF SQUAMATE
REPTILES

We validated the application of the phyloregion package on the
geographical distributions and phylogenetic data for all 9,574
species of squamate reptiles across the globe (data from Tonini,
Beard, Ferreira, Jetz, & Pyron, 2016). Despite the fact that rep-
tiles were part of the dataset used in Wallace's original zooge-
ographical regionalization along with birds, mammals and insects
(Wallace, 1876), they have been largely neglected in modern re-
gionalization schemes (Edler et al., 2017; Holt et al., 2013; Kreft
& Jetz, 2010; Meiri & Chapple, 2016). Nevertheless, squamate
reptiles are one of the most diverse and widely distributed ver-
tebrate groups in the world (Béhm et al., 2013). Most notably,
due to the high extinction rates they are facing, the distribution
data, phylogeny and evolutionary relatedness of squamates have
recently been well-documented (Tonini et al., 2016 and references
therein). These make squamate reptiles an ideal system to test the
robustness and implementation of phyloregion for biogeographical
regionalization at large scales.

We used updated polygons representing the maximum geo-
graphical extent of each squamate reptile species (Roll et al., 2017).
We ran the polys2comm, long2sparse and match_phylo_comm
wrapper functions to generate the community data at a resolution of
1° x 1° (see Figure S1 for an example of varying spatial extents). Note
that this resolution can be adjusted by varying the res argument in
the function fishnet(mask, res = 0.5). We accounted for phylogenetic
uncertainty in our analyses by drawing 100 trees at random from a
posterior distribution of fully resolved trees (Tonini et al., 2016) to
generate phylogenetic dissimilarity matrices (with Simpson's pair-
wise phylogenetic dissimilarities as default because of its indepen-
dence to differences in species richness among sites, Koleff, Gaston,
& Lennon, 2003; Kreft & Jetz, 2010), and took the mean across grid
cells using mean_dist. Note that other dissimilarity indices such as
‘Jaccard’ and ‘Sorensen’ can be used as desired (Laffan et al., 2016),
depending on the data used and research questions.

Using the ‘elbow method’ (function optimal_phyloregion), we
identified 18 optimal phyloregions (i.e. maximum explained vari-
ance of 0.72 for clustering achieved at k = 18) of squamate reptiles
(Figure 3). UPGMA was identified as the best clustering algorithm
(cophenetic correlation coefficient = 0.8; selected using function
select_linkage).

The resulting phyloregions for squamate reptiles at the global
extent show substantial congruence to Holt et al.'s (2013) updates
of Wallace's original zoogeographical regions, including Oceanian,
Australian, Madagascan, Palearctic and Nearctic (Figure 3a).
However, we also identified some discrepancies. For example, the
Afrotropical realm (sensu Holt et al., 2013) was divided into four
phyloregions in our study corresponding to West and Central Africa
(11), Horn of Africa (12), Zambezian (15) and South African (17). We
also identified a new phyloregion overlapping Chile-Patagonian in

temperate South America. This discrepancy might be due to the
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FIGURE 3 A global phylogenetic regionalization of 9,574 species of squamate reptiles reveals their evolutionary affinities. (a) Map of
phyloregions shows evolutionary affinities among disjunct assemblages (function plot.phyloregion). (b) The ordination of phyloregions in
NMDS space shows that different phyloregions differ strongly in evolutionary uniqueness (function plot_NMDS). (c) Map of evolutionary
distinctiveness for squamate reptiles of the world, calculated as the mean value of phylogenetic beta diversity between a phyloregion and all
other phyloregions in the study area (function plot_swatch). The colours indicate the degree to which each phyloregion differs from all other
phyloregions based on mean pairwise phylogenetic beta diversity values, with darker colours indicating high evolutionary distinctiveness.
Colour differences in the map (a) and NMDS plot (b) depict the amount of phylogenetic turnover among phyloregions. (d) The threshold of
explained variances to identify the optimal number of phyloregions. The ‘elbow’ (optimal phyloregion) of the graph is indicated by the red
circle. Numbers on the maps are arbitrary and indicate the regions that have been delimited

focal group being reptiles, whereas Holt et al. (2013) present results
for birds, mammals and amphibians. However, as there is increasing
evidence that patterns of biodiversity are scale-dependent (Daru,
Farooq, Antonelli, & Faurby, 2020; Jarzyna & Jetz, 2018), it is likely
that the mechanisms underlying patterns of biogeographical re-
gionalization are sensitive to differences in spatial grain and extent
(Daru et al., 2017; Holt et al., 2013; Keil et al., 2012). We found that
these effects are lost at the continental to regional/local scales. At
the continental extent, for instance, phyloregions are less spatially
clumped and more differentiated from each other; for example,
Africa splitinto 15 phyloregions at the continental extent compared
to six phyloregions at the global extent (Figure S1). At the regional/
local extent, spatial patterns of phylogenetic regionalization be-
came more scattered across regions also with a loss of distinction
(Figure Sic).

Geographically disjunct assemblages such as Panamanian and
Temperate South America harbour closely related assemblages
(Figure 3b), whereas some geographically proximal bioregions have
low levels of faunistic similarity, suggesting spatial patterns of spe-
cies diversity can have different phylogenetic structures (Hawkins

et al, 2012). However, we also found that assemblages from

Box 1 Glossary of terms

Biogeographical regionalization: the partitioning of the
biotic world into distinct geographical units.
Biogeographical realm: large biogeographical divisions
within which ecosystems share a broadly similar evolution-
ary history.

Ecoregion: geographical regions that are defined by spe-
cific ecological patterns, including soil, flora and fauna,
climatic conditions, among other factors.

Phyloregions: association of species into distinct phyloge-

netically delimited biogeographical units.

different phyloregions tend to cluster with each other, for example,
the Neotropics and Palaeotropics, suggesting that more spatially
close phyloregions might also be more similar. Mean phylogenetic
turnover of squamate reptiles between a phyloregion and all other
phyloregions (function phyloregion) indicates that different phy-

loregions differ most strongly in evolutionary distinctiveness, with
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higher evolutionary distinctiveness in the tropics and southern
hemisphere (Figure 3c), a similar observation to Tonini et al. (2016).
Notably, the Australian phyloregion has the highest mean phyloge-
netic turnover (mean phylogenetic turnover between Australian and
all other phyloregions = 0.67; Figure 3c), reflecting limited dispersal
of lineages in this phyloregion.

The use of phylogenetic information and species distributions
allows a deeper understanding of the mechanisms determining cur-
rent patterns of biodiversity. Our evolutionary distinctiveness anal-
ysis in the recognized phyloregions (Box 1) brings a new component
of evolutionary importance of each region to the biogeographical
regionalization as well as for conservation prioritization. Most of the
phyloregions found here spanned multiple ecoregions and biogeo-
graphical realms, suggesting that conservation planning should be

adjusted to cover these larger phyloregions.

7 | BENCHMARKING PHYLOREGION

To benchmark phyloregion's functions with available packages for
speed and memory allocation, we used an empirical dataset of the
flora of southern Africa that includes species distributions and
phylogenetic relationships for 1,400 plant taxa (data from Daru
et al., 2016). This dataset is included in the phyloregion package di-
rectly as one of the example data in a helpfile: data(africa). We com-
pared phyloregion to other packages in terms of analyses of alpha
diversity metrics that are commonly used in biodiversity conserva-
tion, such as phylogenetic diversity and phylogenetic endemism
as well as metrics for analysing compositional turnover (e.g. beta
diversity and phylogenetic beta diversity; R code for benchmark-
ing phyloregion with available packages is included in the bench-
marking vignette; https://darunabas.github.io/phyloregion/articles/
Benchmark.html). These tests indicate that phyloregion is faster and
more efficient in memory allocation than other packages (Table 1;
Figure S2).

8 | DISSIMILARITY-BASED
REGIONALIZATION VERSUS NETWORK
APPROACHES

Although phyloregion implements a dissimilarity-based algorithm
to quantify spatial patterns of biodiversity, we recognize that such
clustering methods could be sensitive to sampling biases in spe-
cies occurrence data. This could potentially influence the delinea-
tion of bioregions, especially when the goal is to identify transition
zones compared to network methods (e.g. Bloomfield et al., 2018;
Vilhena & Antonelli, 2015). We did not explicitly evaluate the per-
formance of our phyloregion package against network methods
such as mapequation (Rosvall & Bergstrom, 2008) or modularity
metrics (Guimera & Amaral, 2005); however, we believe that any
difference between the two methods might be complementary

and offer additional biogeographical insights where phyloregion is

TABLE 1 Comparison of phyloregion against comparable
packages for analysis of alpha and beta diversity for woody plant
species of southern Africa. The magnitude of change in memory
allocation and run time are shown in parentheses

Memory
Packages allocation (MB)  Speed (s)
Phylogenetic phyloregion 1.83 0.00287
diversity hilldiv 170.22(x93)  1.09 (x380)
pez 60.79 (x33) 0.13 (x45)
picante 59.5 (x33) 0.12 (x42)
Phylogenetic phyloregion 1.06 0.0036
S pez 49893 (x471)  1.89 (x525)
Beta diversity phyloregion 0.40 0.0010
betapart 0.60 (x1.5) 0.0011
(x1.1)
vegan 1.02 (x2.6) 0.0013
(x1.3)
BAT 31.76 (x79) 0.044 (x44)
Phylogenetic phyloregion 1.07 0.0051
betadiversity  petapart 1,240 (x1,159)  2.14 (x420)
picante 1,240 (x1,159) 4.38 (x859)
BAT 207.39 (x194) 1.61 (x316)

Abbreviation: MB, megabyte.

more informative at detecting bioregions at continental to global
scales (Daru et al.,, 2017; Holt et al., 2013; Kreft & Jetz, 2010),
whereas network methods are efficient at identifying interzones
(Bloomfield et al., 2018). Depending on the goal of the study, users
can integrate a dissimilarity-based approach (as implemented in
phyloregion) with network approaches to understand patterns and
processes of biogeographical regionalization. In addition to com-
putations of compositional turnover, phyloregion can run other
standard spatial biodiversity analyses such as phylogenetic diver-
sity, phylogenetic endemism and evolutionary distinctiveness that
are commonly used in conservation. It can also handle analysis
for any form of organism at any grain size or spatial extent and
does not suffer from a resolution limit unlike standard network-
based approaches (Fortunato & Barthélemy, 2007; Kawamoto &
Rosvall, 2015).

9 | CONCLUDING REMARKS

Although there are other packages such as ape (Paradis &
Schliep, 2019), seTapArT (Baselga & Orme, 2012) or vecaN (Oksanen
et al., 2019) that can be used for analysis of biogeographical re-
gionalization, phyloregion adds three novelties. First, it can utilize
a sparse matrix by holding only the non-zero elements of a matrix
thereby taking up significantly less memory and making it possible
to handle larger datasets efficiently and rapidly. Second, it has novel
functions for speedy raw data conversion from traditional data ta-

bles (e.g. a dense matrix of 1s and Os) to a sparse community matrix


https://darunabas.github.io/phyloregion/articles/Benchmark.html
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as well as a user-friendly analysis of biogeographical regionalization
into completely reproducible R workflows. Third, the functional-
ity of the package can be extended for analysis of alpha diversity
such as mapping hotspots of species richness, endemism or threat
(e.g. Daru et al., 2020).

The goal of phyloregion is to facilitate the analysis of biogeo-
graphical regionalization and macroecology at any scale and for
any taxonomic group, tailored to accommodate the ongoing mass

production of species occurrence data and phylogenetic datasets.
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