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Electric field of a charge in the vicinity of a higher dimensional black hole
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We find the electric field of a point charge in the presence of a higher-dimensional black hole. As the
charge is lowered to the horizon, all higher multipole moments go to zero, and only the Coulomb field

remains.
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I. INTRODUCTION

A black hole has no hair. That is, the properties of a
stationary black hole in four spacetime dimensions are
entirely determined by its mass, spin, and charge [1-4].
When objects fall into a black hole, the black hole settles
down to this simple, unique, stationary state. A nice
illustration of this phenomenon is contained in the paper
of Cohen and Wald [5], which calculated the electric field
of a static point charge in the presence of a Schwarzschild
black hole. While this paper contains a detailed expression
for the electric field, its main result is that as the position of
the charge approaches the event horizon all higher multi-
pole moments of the electric field go to zero, and only the
Coulomb field remains.

In more than four spacetime dimensions, there are many
more exotic possibilities for black holes (for a review see
Ref. [6]). Nonetheless, for static black holes the theorems
of Refs. [1,2] generalize [7]. A static, vacuum, asymptoti-
cally flat black hole in n 4 1 spacetime dimensions is the
Schwarzschild-Tangherlini black hole [8]. In the electrovac
case, it is the charged generalization of the Schwarzschild-
Tangherlini black hole.

Given the uniqueness result of Ref. [7] one would expect
the result of Ref. [5] to generalize to higher dimensions.
This issue was addressed by Fox [9], who considered the
problem of a point charge in the presence of a
Schwarzschild-Tangherlini black hole. The claimed result
of Ref. [9] is that in contrast to the 3 4+ 1-dimensional case,
the higher multipoles do not go away as the charge is
lowered to the horizon.

In this paper, we calculate the electric field of a point
charge in the presence of a Schwarzschild-Tangherlini
black hole. In contrast to Ref. [9] we find that the higher
multipole moments vanish as the charge is lowered to the
horizon, just as they did in Ref. [5]. The calculation of the
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electric field is given in Sec. II, with some of the details of
the calculation provided in Sec. III. Conclusions are given
in Sec. IV.

II. FIELD CALCULATION

The line element of the Schwarzschild-Tangherlini black
hole in n + 1 spacetime dimensions takes the form

ds? = —fdf + f~'dr* + r2(d6? + sin? Oy spdx*dxB). (1)

Here the quantity in parentheses is the line element of the
n — 1-dimensional sphere, with y 45 being the metric of the
n — 2-dimensional sphere. The reason for writing the
metric in this way is that we will choose the position of
the charge to be the z axis, and will thus consider functions
depending only on r and 8. The quantity f is given by

2
f=1-M 2)

-

For the most part, our treatment will be a straightforward
generalization of the treatment in Ref. [5], with one
exception: we will begin by choosing a different set of
coordinates. The reason for this is that the ¢ coordinate is
singular on the horizon. Therefore imposing smoothness
conditions on tensor fields using the coordinate system of
Eq. (1) must involve careful calculation of the behavior of
invariant quantities. In contrast, given a smooth coordinate
system, all that is needed is to check that the coordinate
components of the relevant tensor fields are smooth func-
tions of the coordinates. We will choose ingoing Eddington
coordinates [10] (sometimes called Eddington-Finkelstein
coordinates [11]) given by

dv=dt+ f~dr. (3)

This puts the line element of Eq. (1) in the form
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ds* = —fdv?® + 2dvdr + r*(d0* + sin® Oy . gdx"dx®). (4)
In terms of metric components we have

Gy = _fv vr = Grv = I, 9rr = 0,
do =P VG P07, )

The static Killing vector, £&* has component £¥ = 1 with all
other components vanishing.

For the electrostatic field of a point charge on the 7 axis,
the only nonzero components of the electromagnetic field
tensor F® are F"" = —F" and F"Y = —F% where these
components are functions of only r and 6. From the
Maxwell equation V[aF b = 0 we obtain

0=0,F, 9+ 0,Fy, + 0pF,, (6)
which using Eq. (5) becomes

0 =0,(—fr*F%) + 0gF". (7)
Therefore there is a scalar y for which

Frv = 8rw’ F()v — f_lr_zagl//. (8)

From the second Maxwell equation

—4xjf =

1
— Ou(\/gF* 9
7 (VgF™) ©)
and Eq. (8) we find

0,0 + " Loy + 121 000
+ (n—2)cotOdgy) = —4xj". (10)

We consider a point charge e located on the z axis at
r = b. Away from the charge, we look for solutions of
Eq. (10) by the method of separation of variables. That is,
we seek a solution of the form w = A(r)B(u) where
u = cos 6. We then find that Eq. (10) gives

d’A n-1dA K
L A=0, 11
T e f (11)
d’*B dB
l-u?)—+(1-n)ju—+ KB =0, 12
(=) 4 (L=npus + (12)
where K is the separation constant of the equation. The
solutions of the second of these equations are the
Gegenbauer polynomials C%(u). Here, ¢ is the order of
the polynomial and @ = (n — 2)/2. The separation constant
is K=7¢(¢+ n—-2). For n =3 the Gegenbauer polyno-
mials are just the usual Legendre polynomials. The
Gegenbauer polynomials are orthogonal with weight func-

tion (1 — u?)"=3)/2 and satisfy the normalization

(CoP (=) odu = S e

1 1-2a
/ 72! 7T (¢ + 2a) (13)
We will use the symbol Q% to denote the somewhat
complicated looking normalization constant on the right-
hand side of Eq. (13).

With the known value of the separation constant,
Eq. (11) then becomes

PA, n—1dA, (¢+n=2)
dr? rodr rf

A, =0.  (14)

For each # we must find separate solutions of Eq. (14): one
for r <b and one for r > b. The solution must be
continuous at r = b, and we will compute the discontinuity
in dA/dr using Eq. (10).

We will treat the £ = 0 case separately. Here B = 1 and

d2A0 n—1 dAO o

0. 15
dr? + rodr (15)
It then follows that F*? = 0 and

F'r = cor'™ (16)

where the constant ¢y must be chosen separately for r < b
and r > b. Since the black hole has no charge, we must
choose ¢y = 0 for the r < b solution. Since the charge as
calculated from the field at large distances must equal e, it
follows from Eq. (10) that for the » > b solution

dre

An—l .

Here A,_; is the area of the n — 1 sphere and is given
explicitly by

Co=— (17)

2”11/2

A, r(n/2)" (18)

Thus, we find that the # = 0 part of the electromagnetic
field is given by

dre

1-n
r for r > b.
A,

F'"=0 forr<b, F7' = —

(19)

Now we consider the £ > 0 part of the electromagnetic
field. Since f — 1 at large r it follows that the solutions of
Eq. (14) behave like 7 and r~(“*"=2) at large r. For r > b
we must choose the solution that goes to zero at large
distances. Denote this solution g,(r) with its normalization
chosen so that g,(r) = r~(“*"=2) at large distances. Since f
vanishes on the horizon, it follows from Eq. (8) that in order
to have a smooth electromagnetic field, the solution of
Eq. (14) must vanish on the horizon. Denote by h,(r) this
solution, with the normalization chosen so that A, (r) = r*
at large distances. Then the £ > 0 part of y takes the form
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Weso = _crge(b)he(r)C(cosO) r<b,
>0

Weso =Y _crhy(b)gy(r)C(cosd) r> b, (20)
>0

for some set of constants c,.

Now for each # > 0 multiply Eq. (10) by ,/gC%(cos )
and integrate over all angular variables to obtain
—47eC%(1)8(r — b)

a1 d4¢

d
= An_zQ’; {E <r ar ) - f(f +n— 2)7”"_3f_1Af ]

(21)
Integrating Eq. (21) from b — € to b + ¢ we obtain
—471'€C(;(1) = An—2 ;Cfbn_IW(hf, gf) (22)

Here the Wronskian of two solutions W (u, u,) is defined
to be W = uju — upu); and it is to be evaluated at r = b.
However, since the differential equation that the solutions
satisfy is Eq. (14) we obtain

dW_ n—1

dr

W (23)

and therefore there is a constant k for which W = kr!=".
But with our chosen normalization for g, and h, we find
that at large distances W = —(2¢ + n — 2)r!'™" and there-
fore that the constant k is equal to —(2¢ 4+ n — 2). Using
this result in Eq. (22) we obtain

—4reCy(1) = —(2¢ +n—-2)A,,0%, (24)
and therefore

4meC4(1)
(26+n-2)A,,0%

Cp = (25)
[Note that for the case n = 3 the expression of Eq. (25)
becomes ¢, = e.] Using Eq. (25) in Eq. (20) we find that
the £ > O part of y is given by

_ dne 2(1) .
l//f>0_An_2 — (Zf_'_n_2>Q?gf(b)hf(r)cf(cose) r<b7
(26)
4re 2(1)

= h,(b r)C%(cos@) r>b.
Y=o An_2f>0(2f+n_2)Q? f( )gf( ) f( )

(27)

To obtain explicit expressions for .-, we need explicit
expressions for g,(r) and h,(r). However, there is already
enough information in Eq. (27) to work out the fate of the
higher multipole field as the charge is lowered to the
horizon. Since &, (r) vanishes on the horizon, it follows that

hs(b) goes to zero as the charge is lowered to the horizon.
Therefore in this limit the right-hand side of Eq. (27)
vanishes. Thus all higher multipole parts of the field vanish
and only the Coulomb field of Eq. (19) remains.

III. SOLUTIONS OF THE RADIAL EQUATION

We now turn to the problem of obtaining explicit
expressions for g,(r) and h,(r). Since g, behaves like
r~(¢+1-2) pear infinity, we define A, by A, = r’+"2A, and
find that Eq. (14) takes the form

A, 20+n-3dA, ¢(f+n-2)
dr? r dr P2

(1-f1A, =0.

Defining the coordinate p = 1 — f we find that Eq. (28)
takes the form

d?A d »
plp—1) dpf Fp-1)2s+2) =L 4 s(s + DA, =0
(29)
where the quantity s is defined by
4
= . 30
YTa2 (30)

Note that r — oo corresponds to p = 0 and the horizon is at
p = 1. Thus we are interested in solutions to Eq. (28) on the
interval (0,1). Furthermore, g, is the solution that vanishes
at p = 0 and h, is the solution that vanishes at p = 1.

Equation (29) has the form of the hypergeometric
differential equation. Recall [12] that the hypergeometric
differential equation for a function y(x) has three param-
eters (ay,a,,a3) and takes the form

2

d
x(x — l)d—x};—l- [(a; +ay + 1)x — aj]

dy
r + ajay = 0.
(31)

Furthermore, the solution to the hypergeometric equation
that is regular at x = 0 is the hypergeometric function
F(ay,a,, az, x). Comparing Eq. (29) to Eq. (31) we find
that the values of the parameters are
a =1+s,

a, = s, as =2+2s. (32)

It then follows that g, is given by
Gy = 2 (s, 1 45,2 4 25, p). (33)

Since F(ay, a,, az,0) = 1, it follows that Eq. (33) has the
normalization for g, that we chose in the previous section.

024056-3



DAVID GARFINKLE

PHYS. REV. D 103, 024056 (2021)

We could attempt to find s, by using a linear combi-
nation of the singular solution and the nonsingular solution
of Eq. (29). However, it turns out to be both easier and more
straightforward to use f as a variable instead of p and to
build in the property that /1, needs to vanish at the horizon:
from Eq. (29) we obtain

fF-1) dﬁfz(f-lixf) s + 4 =202 (130
+(s+1)(s+2)f A, =0. (34)

Equation (34) is also the hypergeometric equation, but now
with the parameters

a =1+s, a=2+s, a3 =2.  (35)
Taking the nonsingular solution, we then find that A, is
given by

hy = kf’”—(ﬂ”_z)fF(l +5,24 5.2, f). (36)

Here k, is a normalization constant to be chosen to satisfy
the normalization condition chosen in the previous section.

IV. CONCLUSION

We have found that all the higher multipole moments
vanish as the charge is lowered to the horizon. What then
went wrong in the analysis of Ref. [9] to yield the opposite
conclusion? Simply put, the treatment of Ref. [9] chooses
solutions of Maxwell’s equations that are singular on the

horizon, with that choice being obscured by the coordinate
systems used. The method of Ref. [9] uses the 7 coordinate
throughout, and uses the p coordinate to analyze all
solutions of the radial equation, which makes for a very
complicated analysis at the horizon. Using the Eddington
coordinate v, one can immediately see from Eq. (8) that the
higher multipole part of y must vanish at the horizon. But
in any coordinate system, one can calculate invariant
quantities and demand that they be nonsingular. From
Egs. (5) and (8) it follows that the electromagnetic invariant
FeF,, is given by

F©F g = =2[(0)* + f~'r*(0w)’].  (37)

Therefore, from an examination of this invariant one can
conclude that the nonmonopole part of y must vanish on
the horizon. The treatment of Ref. [9] fails to impose this
condition and is therefore not treating the correct electro-
magnetic field.

In contrast, we impose smoothness on the horizon and
find that everything proceeds as a straightforward gener-
alization of Ref. [5] with the same conclusion: all higher
multipoles vanish as the charge approaches the horizon.
There may be many cases in which higher-dimensional
black holes lead to exotic, unexpected behavior, but this is
not one of them.
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