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We find the electric field of a point charge in the presence of a higher-dimensional black hole. As the

charge is lowered to the horizon, all higher multipole moments go to zero, and only the Coulomb field

remains.
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I. INTRODUCTION

A black hole has no hair. That is, the properties of a

stationary black hole in four spacetime dimensions are

entirely determined by its mass, spin, and charge [1–4].

When objects fall into a black hole, the black hole settles

down to this simple, unique, stationary state. A nice

illustration of this phenomenon is contained in the paper

of Cohen and Wald [5], which calculated the electric field

of a static point charge in the presence of a Schwarzschild

black hole. While this paper contains a detailed expression

for the electric field, its main result is that as the position of

the charge approaches the event horizon all higher multi-

pole moments of the electric field go to zero, and only the

Coulomb field remains.

In more than four spacetime dimensions, there are many

more exotic possibilities for black holes (for a review see

Ref. [6]). Nonetheless, for static black holes the theorems

of Refs. [1,2] generalize [7]. A static, vacuum, asymptoti-

cally flat black hole in nþ 1 spacetime dimensions is the

Schwarzschild-Tangherlini black hole [8]. In the electrovac

case, it is the charged generalization of the Schwarzschild-

Tangherlini black hole.

Given the uniqueness result of Ref. [7] one would expect

the result of Ref. [5] to generalize to higher dimensions.

This issue was addressed by Fox [9], who considered the

problem of a point charge in the presence of a

Schwarzschild-Tangherlini black hole. The claimed result

of Ref. [9] is that in contrast to the 3þ 1-dimensional case,

the higher multipoles do not go away as the charge is

lowered to the horizon.

In this paper, we calculate the electric field of a point

charge in the presence of a Schwarzschild-Tangherlini

black hole. In contrast to Ref. [9] we find that the higher

multipole moments vanish as the charge is lowered to the

horizon, just as they did in Ref. [5]. The calculation of the

electric field is given in Sec. II, with some of the details of

the calculation provided in Sec. III. Conclusions are given

in Sec. IV.

II. FIELD CALCULATION

The line element of the Schwarzschild-Tangherlini black

hole in nþ 1 spacetime dimensions takes the form

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θγABdx
AdxBÞ: ð1Þ

Here the quantity in parentheses is the line element of the

n − 1-dimensional sphere, with γAB being the metric of the

n − 2-dimensional sphere. The reason for writing the

metric in this way is that we will choose the position of

the charge to be the z axis, and will thus consider functions
depending only on r and θ. The quantity f is given by

f ¼ 1 −
2M

rn−2
: ð2Þ

For the most part, our treatment will be a straightforward

generalization of the treatment in Ref. [5], with one

exception: we will begin by choosing a different set of

coordinates. The reason for this is that the t coordinate is

singular on the horizon. Therefore imposing smoothness

conditions on tensor fields using the coordinate system of

Eq. (1) must involve careful calculation of the behavior of

invariant quantities. In contrast, given a smooth coordinate

system, all that is needed is to check that the coordinate

components of the relevant tensor fields are smooth func-

tions of the coordinates. We will choose ingoing Eddington

coordinates [10] (sometimes called Eddington-Finkelstein

coordinates [11]) given by

dv ¼ dtþ f−1dr: ð3Þ

This puts the line element of Eq. (1) in the form*
garfinkl@oakland.edu
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ds2 ¼ −fdv2 þ 2dvdrþ r2ðdθ2 þ sin2 θγABdx
AdxBÞ: ð4Þ

In terms of metric components we have

gvv ¼ −f; gvr ¼ grv ¼ 1; grr ¼ 0;

gθθ ¼ r2;
ffiffiffi

g
p ¼ rn−1ðsin θÞn−2 ffiffiffi

γ
p

: ð5Þ

The static Killing vector, ξa has component ξv ¼ 1 with all

other components vanishing.

For the electrostatic field of a point charge on the z axis,
the only nonzero components of the electromagnetic field

tensor Fab are Fvr ¼ −Frv and Fvθ ¼ −Fθv where these

components are functions of only r and θ. From the

Maxwell equation ∇½aFbc� ¼ 0 we obtain

0 ¼ ∂vFrθ þ ∂rFθv þ ∂θFvr ð6Þ

which using Eq. (5) becomes

0 ¼ ∂rð−fr2FθvÞ þ ∂θF
rv: ð7Þ

Therefore there is a scalar ψ for which

Frv ¼ ∂rψ ; Fθv ¼ f−1r−2∂θψ : ð8Þ

From the second Maxwell equation

−4πjβ ¼ 1
ffiffiffi

g
p ∂αð

ffiffiffi

g
p

FαβÞ ð9Þ

and Eq. (8) we find

∂r∂rψ þ n − 1

r
∂rψ þ r−2f−1ð∂θ∂θψ

þ ðn − 2Þ cot θ∂θψÞ ¼ −4πjv: ð10Þ

We consider a point charge e located on the z axis at

r ¼ b. Away from the charge, we look for solutions of

Eq. (10) by the method of separation of variables. That is,

we seek a solution of the form ψ ¼ AðrÞBðuÞ where

u ¼ cos θ. We then find that Eq. (10) gives

d2A

dr2
þ n − 1

r

dA

dr
−

K

r2f
A ¼ 0; ð11Þ

ð1 − u2Þ d
2B

du2
þ ð1 − nÞudB

du
þ KB ¼ 0; ð12Þ

where K is the separation constant of the equation. The

solutions of the second of these equations are the

Gegenbauer polynomials Cα
l
ðuÞ. Here, l is the order of

the polynomial and α ¼ ðn − 2Þ=2. The separation constant
is K ¼ lðlþ n − 2Þ. For n ¼ 3 the Gegenbauer polyno-

mials are just the usual Legendre polynomials. The

Gegenbauer polynomials are orthogonal with weight func-

tion ð1 − u2Þðn−3Þ=2 and satisfy the normalization

Z

1

−1

ðCα
l
Þ2ð1 − u2Þðn−3Þ=2du ¼ π21−2αΓðlþ 2αÞ

l!ðlþ αÞðΓðαÞÞ2 : ð13Þ

We will use the symbol Qα
l

to denote the somewhat

complicated looking normalization constant on the right-

hand side of Eq. (13).

With the known value of the separation constant,

Eq. (11) then becomes

d2Al

dr2
þ n − 1

r

dAl

dr
−

lðlþ n − 2Þ
r2f

Al ¼ 0: ð14Þ

For each l we must find separate solutions of Eq. (14): one

for r < b and one for r > b. The solution must be

continuous at r ¼ b, and we will compute the discontinuity

in dA=dr using Eq. (10).

We will treat the l ¼ 0 case separately. Here B ¼ 1 and

d2A0

dr2
þ n − 1

r

dA0

dr
¼ 0: ð15Þ

It then follows that Fvθ ¼ 0 and

Fvr ¼ c0r
1−n ð16Þ

where the constant c0 must be chosen separately for r < b
and r > b. Since the black hole has no charge, we must

choose c0 ¼ 0 for the r < b solution. Since the charge as

calculated from the field at large distances must equal e, it
follows from Eq. (10) that for the r > b solution

c0 ¼ −

4πe

An−1

: ð17Þ

Here An−1 is the area of the n − 1 sphere and is given

explicitly by

An−1 ¼
2πn=2

Γðn=2Þ : ð18Þ

Thus, we find that the l ¼ 0 part of the electromagnetic

field is given by

Fvr ¼ 0 for r < b; Fvr ¼ −

4πe

An−1

r1−n for r > b:

ð19Þ

Now we consider the l > 0 part of the electromagnetic

field. Since f → 1 at large r it follows that the solutions of

Eq. (14) behave like rl and r−ðlþn−2Þ at large r. For r > b
we must choose the solution that goes to zero at large

distances. Denote this solution glðrÞ with its normalization

chosen so that glðrÞ ¼ r−ðlþn−2Þ at large distances. Since f
vanishes on the horizon, it follows from Eq. (8) that in order

to have a smooth electromagnetic field, the solution of

Eq. (14) must vanish on the horizon. Denote by hlðrÞ this
solution, with the normalization chosen so that hlðrÞ ¼ rl

at large distances. Then the l > 0 part of ψ takes the form
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ψl>0 ¼
X

l>0

clglðbÞhlðrÞCα
l
ðcos θÞ r < b;

ψl>0 ¼
X

l>0

clhlðbÞglðrÞCα
l
ðcos θÞ r > b; ð20Þ

for some set of constants cl.
Now for each l > 0 multiply Eq. (10) by

ffiffiffi

g
p

Cα
l
ðcos θÞ

and integrate over all angular variables to obtain

− 4πeCα
l
ð1Þδðr − bÞ

¼ An−2Q
α
l

�

d

dr

�

rn−1
dAl

dr

�

− lðlþ n − 2Þrn−3f−1Al

�

:

ð21Þ

Integrating Eq. (21) from b − ϵ to bþ ϵ we obtain

−4πeCα
l
ð1Þ ¼ An−2Q

α
l
clb

n−1Wðhl; glÞ: ð22Þ

Here the Wronskian of two solutions Wðu1; u2Þ is defined
to be W ≡ u1u

0
2
− u2u

0
1
and it is to be evaluated at r ¼ b.

However, since the differential equation that the solutions

satisfy is Eq. (14) we obtain

dW

dr
¼ −

n − 1

r
W ð23Þ

and therefore there is a constant k for which W ¼ kr1−n.
But with our chosen normalization for gl and hl we find

that at large distances W ¼ −ð2lþ n − 2Þr1−n and there-

fore that the constant k is equal to −ð2lþ n − 2Þ. Using
this result in Eq. (22) we obtain

−4πeCα
l
ð1Þ ¼ −ð2lþ n − 2ÞAn−2Q

α
l
cl ð24Þ

and therefore

cl ¼ 4πeCα
l
ð1Þ

ð2lþ n − 2ÞAn−2Q
α
l

: ð25Þ

[Note that for the case n ¼ 3 the expression of Eq. (25)

becomes cl ¼ e.] Using Eq. (25) in Eq. (20) we find that

the l > 0 part of ψ is given by

ψl>0¼
4πe

An−2

X

l>0

Cα
l
ð1Þ

ð2lþn−2ÞQα
l

glðbÞhlðrÞCα
l
ðcosθÞ r<b;

ð26Þ

ψl>0¼
4πe

An−2

X

l>0

Cα
l
ð1Þ

ð2lþn−2ÞQα
l

hlðbÞglðrÞCα
l
ðcosθÞ r>b:

ð27Þ

To obtain explicit expressions for ψl>0 we need explicit

expressions for glðrÞ and hlðrÞ. However, there is already
enough information in Eq. (27) to work out the fate of the

higher multipole field as the charge is lowered to the

horizon. Since hlðrÞ vanishes on the horizon, it follows that

hlðbÞ goes to zero as the charge is lowered to the horizon.

Therefore in this limit the right-hand side of Eq. (27)

vanishes. Thus all higher multipole parts of the field vanish

and only the Coulomb field of Eq. (19) remains.

III. SOLUTIONS OF THE RADIAL EQUATION

We now turn to the problem of obtaining explicit

expressions for glðrÞ and hlðrÞ. Since gl behaves like

r−ðlþn−2Þ near infinity, we define Ãl by Ãl ≡ rlþn−2Al and

find that Eq. (14) takes the form

d2Ãl

dr2
−

2lþ n − 3

r

dÃl

dr
þ lðlþ n − 2Þ

r2
ð1 − f−1ÞÃl ¼ 0:

ð28Þ

Defining the coordinate ρ≡ 1 − f we find that Eq. (28)

takes the form

ρðρ − 1Þ d
2Ãl

dρ2
þ ðρ − 1Þð2sþ 2Þ dÃl

dρ
þ sðsþ 1ÞÃl ¼ 0

ð29Þ

where the quantity s is defined by

s≡
l

n − 2
: ð30Þ

Note that r → ∞ corresponds to ρ ¼ 0 and the horizon is at

ρ ¼ 1. Thus we are interested in solutions to Eq. (28) on the

interval (0,1). Furthermore, gl is the solution that vanishes

at ρ ¼ 0 and hl is the solution that vanishes at ρ ¼ 1.

Equation (29) has the form of the hypergeometric

differential equation. Recall [12] that the hypergeometric

differential equation for a function yðxÞ has three param-

eters ða1; a2; a3Þ and takes the form

xðx − 1Þ d
2y

dx2
þ ½ða1 þ a2 þ 1Þx − a3�

dy

dx
þ a1a2y ¼ 0:

ð31Þ

Furthermore, the solution to the hypergeometric equation

that is regular at x ¼ 0 is the hypergeometric function

Fða1; a2; a3; xÞ. Comparing Eq. (29) to Eq. (31) we find

that the values of the parameters are

a1 ¼ s; a2 ¼ 1þ s; a3 ¼ 2þ 2s: ð32Þ

It then follows that gl is given by

gl ¼ r−ðlþn−2ÞFðs; 1þ s; 2þ 2s; ρÞ: ð33Þ

Since Fða1; a2; a3; 0Þ ¼ 1, it follows that Eq. (33) has the

normalization for gl that we chose in the previous section.
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We could attempt to find hl by using a linear combi-

nation of the singular solution and the nonsingular solution

of Eq. (29). However, it turns out to be both easier and more

straightforward to use f as a variable instead of ρ and to

build in the property that hl needs to vanish at the horizon:
from Eq. (29) we obtain

fðf − 1Þ d2

df2
ðf−1ÃlÞ þ ½ð2sþ 4Þf − 2� d

df
ðf−1ÃlÞ

þ ðsþ 1Þðsþ 2Þf−1Ãl ¼ 0: ð34Þ

Equation (34) is also the hypergeometric equation, but now

with the parameters

a1 ¼ 1þ s; a2 ¼ 2þ s; a3 ¼ 2: ð35Þ

Taking the nonsingular solution, we then find that hl is

given by

hl ¼ klr
−ðlþn−2ÞfFð1þ s; 2þ s; 2; fÞ: ð36Þ

Here kl is a normalization constant to be chosen to satisfy

the normalization condition chosen in the previous section.

IV. CONCLUSION

We have found that all the higher multipole moments

vanish as the charge is lowered to the horizon. What then

went wrong in the analysis of Ref. [9] to yield the opposite

conclusion? Simply put, the treatment of Ref. [9] chooses

solutions of Maxwell’s equations that are singular on the

horizon, with that choice being obscured by the coordinate

systems used. The method of Ref. [9] uses the t coordinate
throughout, and uses the ρ coordinate to analyze all

solutions of the radial equation, which makes for a very

complicated analysis at the horizon. Using the Eddington

coordinate v, one can immediately see from Eq. (8) that the

higher multipole part of ψ must vanish at the horizon. But

in any coordinate system, one can calculate invariant

quantities and demand that they be nonsingular. From

Eqs. (5) and (8) it follows that the electromagnetic invariant

FabFab is given by

FabFab ¼ −2½ð∂rψÞ2 þ f−1r−4ð∂θψÞ2�: ð37Þ

Therefore, from an examination of this invariant one can

conclude that the nonmonopole part of ψ must vanish on

the horizon. The treatment of Ref. [9] fails to impose this

condition and is therefore not treating the correct electro-

magnetic field.

In contrast, we impose smoothness on the horizon and

find that everything proceeds as a straightforward gener-

alization of Ref. [5] with the same conclusion: all higher

multipoles vanish as the charge approaches the horizon.

There may be many cases in which higher-dimensional

black holes lead to exotic, unexpected behavior, but this is

not one of them.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. PHY-

1806219.

[1] W. Israel, Phys. Rev. 164, 1776 (1967).

[2] W. Israel, Commun. Math. Phys. 8, 245 (1968).

[3] D. C. Robinson, Phys. Rev. Lett. 34, 905 (1975).

[4] P. Mazur, J. Phys. A 15, 3173 (1982).

[5] J. M. Cohen and R. M. Wald, J. Math. Phys. (N.Y.) 12, 1845

(1971).

[6] S. Hollands and A. Ishibashi, Classical Quantum Gravity

29, 163001 (2012).

[7] G.W. Gibbons, D. Ida, and T. Shiromizu, Phys. Rev. Lett.

89, 041101 (2002).

[8] F. R.Tangherlini,NuovoCimento (1955–1965)27, 636 (1963).

[9] M. S. Fox, J. Math. Phys. (N.Y.) 60, 102502 (2019).

[10] A. S. Eddington, Nature (London) 113, 192 (1924).

[11] D. Finkelstein, Phys. Rev. 110, 965 (1958).

[12] I. S. Gradshteyn and I. M. Rhzhik, Table of Integrals,

Series, and Products (Academic Press, New York, 1980).

DAVID GARFINKLE PHYS. REV. D 103, 024056 (2021)

024056-4


