Environmental Modelling and Software 140 (2021) 104992

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: http://www.elsevier.com/locate/envsoft

ELSEVIER

Check for

An attention U-Net model for detection of fine-scale hydrologic streamlines |

Zewei Xu ™", Shaowen Wang >, Lawrence V. Stanislawski ©, Zhe Jiang ‘,

Nattapon Jaroenchai ®°, Arpan Man Sainju 4. Ethan Shavers©, E. Lynn Usery ©, Li Chen be
Zhiyu Li*", Bin Su®"

@ Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Y CyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois at Urbana-Champaign, Urbana, IL, USA

€ U.S. Geological Survey, Center of Excellence for Geospatial Information Science, Rolla, MO, USA

4 Department of Computer Science, University of Alabama, Tuscaloosa, AL, USA

€ School of Geosciences and Info-Physics, Central South University, Changsha, Hunan, China

ARTICLE INFO ABSTRACT

Keywords:

CyberGIS

Deep learning
Hydrologic streamlines
Hydrography

Lidar data analysis

Surface water is an irreplaceable resource for human survival and environmental sustainability. Accurate, finely
detailed cartographic representations of hydrologic streamlines are critically important in various scientific
domains, such as assessing the quantity and quality of present and future water resources, modeling climate
changes, evaluating agricultural suitability, mapping flood inundation, and monitoring environmental changes.
Conventional approaches to detecting such streamlines cannot adequately incorporate information from the
complex three-dimensional (3D) environment of streams and land surface features. Such information is vital to
accurately delineate streamlines. In recent years, high accuracy lidar data has become increasingly available for
deriving both 3D information and terrestrial surface reflectance. This study develops an attention U-net model to
take advantage of high-accuracy lidar data for finely detailed streamline detection and evaluates model results
against a baseline of multiple traditional machine learning methods. The evaluation shows that the attention U-
net model outperforms the best baseline machine learning method by an average F1 score of 11.25% and ach-
ieves significantly better smoothness and connectivity between classified streamline channels. These findings
suggest that our deep learning approach can harness high-accuracy lidar data for fine-scale hydrologic streamline
detection, and in turn produce desirable benefits for many scientific domains.

1. Introduction resources (Clubb and Bookhagen, 2019; Muller and Oberlander, 1976).

Therefore, the key objective of this research is to understand how to

Interactions of water within Earth’s systems have been studied
extensively, yet increased demand for this vital resource has expanded
interest in monitoring and management of water resources. Accurate,
finely detailed delineation of surface hydrologic features is crucial for
various scientific investigations and water resource applications, such as
agricultural suitability, river dynamics, flood mapping, landslide risk
analysis, wetland inventory, watershed analysis, environmental moni-
toring, and climate modeling, to name just a few (Maidment, 2017;
Poppenga and Gesch, 2013; Schultz et al., 2017; Simley and Carswell,
2009; Terziotti, 2018; Wright and Nielsen, 2012). While other terrain
conditions have a role, the spatial pattern of a surface water drainage
network is largely a reflection of the type and arrangement of subsurface
bedrock, which can assist with classification and management of land

advance machine intelligence for automatic extraction of detailed hy-
drologic features from high-resolution elevation data and other open
geospatial datasets, yielding important data that can be used for this
type of scientific work.

The National Hydrography Dataset (NHD) is a digital database of
surface water features of the United States that is managed by the U.S.
Geological Survey (USGS) and partner organizations (Sheng and Wilson,
2007; Simley and Carswell, 2009). It provides a common reference for
regulation, research and modeling (NOAA, 2016). The NHD High Res-
olution (HR) is a multi-scale dataset compiled from the best available
data sources having scales of 1:24,000 or larger (finer detail), except in
Alaska where 1:63,360 or larger scales (finer details) are used. However,
the quality of hydrographic data that has been compiled from

* Corresponding author. Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

E-mail address: shaowen@illinois.edu (S. Wang).

https://doi.org/10.1016/j.envsoft.2021.104992
Accepted 13 February 2021
1364-8152/© 2021 Elsevier Ltd. All rights reserved.


mailto:shaowen@illinois.edu
www.sciencedirect.com/science/journal/13648152
https://http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.104992
https://doi.org/10.1016/j.envsoft.2021.104992
https://doi.org/10.1016/j.envsoft.2021.104992
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.104992&domain=pdf

Z. Xu et al.

topographic maps, which include the NHD, is not suitable for certain
hydrologic, regulatory, and engineering purposes because of inconsis-
tent drainage density and missing headwater content (Caruso, 2014;
Chorley and Dale, 1972; Colson and Gregory, 2008; Colson, 2006; Fritz
et al., 2013; Russell, 2008). Headwaters are small streams formed at the
upstream extent of a watershed and comprise more than 50 percent of
the stream network by length in the United States (Nadeau and Rains,
2007). To overcome these issues, since 2009 NHD HR is being updated
with more detailed hydrography derived from finer-scale source infor-
mation, up to 1:2400 (Simley and Carswell, 2009; Stanislawski, 2009).
Economically, these enhanced hydrographic data are expected to
generate over 600 million dollars per year in potential benefits to water
resource and emergency response managers, in addition to the 500
million dollars in annual benefits already being generated from the
existing program (Hoegberg, 2016).

Updating the NHD HR applies the best available digital elevation
model (DEM) data, which should use Quality Level 2 (QL2) lidar data or
better in the conterminous United States (Heidemann, 2018). Since
2014, the USGS 3D Elevation Program (3DEP) has been coordinating the
collection of QL2 or better lidar point cloud data for the United States,
except for Alaska where cloud-penetrating interferometric synthetic
aperture radar (ifsar) is being acquired to simplify collection in remote
areas (Lukas et al., 2015). QL2 lidar provides an aggregate nominal
pulse spacing of less than 1-m (m) for first returns (Heidemann, 2018),
which supports derivation of a 1 meter (m) resolution DEM. The detail
inherent to this high-resolution DEM data enables modeling of surface
water dynamics from the continental scale to catchment and headwater
scales.

Although some methods to improve the NHD HR have been studied
(Lopez-Torrijos, 2018; Poppenga et al., 2013; Sheng et al., 2007; Sta-
nislawski and Survila, 2018), extracting accurate and fine-scale hy-
drography from high-resolution DEM data using traditional flow
accumulation methods is a costly and laborious process. Depending on
the selected workflow, various sophisticated issues must be handled,
which include conditioning the DEM for flow modeling, estimating flow
accumulation weights and a minimum contributing area for stream
formation, along with tailoring solutions to diverse environmental
conditions. Coupled with the fact that multiple methods are available,
solutions can vary, and assessing the accuracy of extracted drainage
lines is further complicated by temporal environmental variations.
Procedures generally involve well-known automated methods to derive
drainage lines from DEMs (Anderson, 2012; Jenson and Domingue,
1988; Maidment and Morehouse, 2002; Metz and Mitasova, 2011;
Montgomery and Foufoula-Georgiou, 1993; O’Callaghan and Mark,
1984; Passalacqua and Belmont, 2012; Poppenga et al., 2013; Tarboton
and Bras, 1991), with subsequent manual editing to adjust drainage
lines and collect waterbodies from high-resolution orthorectified
images.

Remotely sensed information at high spatial and temporal resolu-
tions, such as repeat lidar, can facilitate automated analysis and
extraction of hydrographic features, saving time and increasing the ac-
curacy and consistency of extracted features (Sharma and Xu, 2016).
Advanced computationally-intensive machine learning approaches in-
tegrated with cyberGIS (cyber geospatial information science and sys-
tems) for the resolution of computational and data intensive geospatial
analyses (Wang, 2010; Wang and Goodchild, 2019; Wang and Liu,
2016), represent an exciting frontier for extracting accurate and
fine-scale hydrography from lidar to improve the NHD HR.

Recent rapid advances in deep learning have been widely acknowl-
edged and adopted in many challenging pattern recognition and object
detection tasks (Kampffmeyer and Salberg, 2016; LeCun and Bengio,
2015; Maggiori and Tarabalka, 2017; Reichstein et al., 2019; Schmid-
huber, 2015; Sun and Zhang, 2018; Xu and Guan, 2018; Zhu et al.,
2017). Compared to the traditional or hand-crafted feature engineering,
deep learning has demonstrated advances in accuracy and efficiency for
complex feature learning in various application domains (Liang and Sun,
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2017; Lin and Tegmark, 2017; Lin and Nie, 2017; Xu and Mountrakis,
2017). While such strategies promise a new way for hydrologic feature
extraction from geospatial big data, limited effort has taken advantage
of deep learning for accurate, efficient, and fine-scale delineation of
hydrologic features. Moreover, the full utilization of the most recent
technology of Geiger-mode lidar could significantly improve
high-quality delineation of natural features (Clifton et al., 2015; Stoker
and Abdullah, 2016).

This research develops a deep learning model based on the U-net
structure (Ronneberger and Fischer, 2015) and attention mechanism
(Oktay et al., 2018; Vaswani et al., 2017), which consists of a contractive
path and an expanding path for segmenting streamlines from input
feature maps. The contractive path is comprised of six triple convolu-
tional layers plus five pooling layers for accurate extraction of global
features and reduction of spatial redundancy, while the expanding path
is comprised of five transposed convolutional layers plus five triple
convolutional layers for projecting the extracted global feature content
to original locations in the prediction map. The number of layers is
chosen to reduce (contractive path) and upsample (expanding path) the
x-y dimension of feature maps from 224-by-224 to 7-by-7 or from 7-by-7
to 224-by-224 with a stride of two. The patch size of 224 influences the
model accuracy and efficiency. Small patch sizes cause poor accuracies
due to the lack of context information while large patch sizes add extra
computational burden without particular benefits to model perfor-
mance. In this research, patch sizes of 64, 112, 224, 448, and 512 were
tested and 224 was chosen over smaller or larger ones based on evalu-
ation of model accuracy and efficiency. Meanwhile, feature concatena-
tion is used to combine the extracted local and global information at
different levels from the contractive path to its corresponding locations
in the expanding path, to enhance the expressivity of the model during
the convolution and transposed convolutional processes.

Computationally, we use GPU processing to speed up model training
that is based on Keras and TensorFlow. Two types of benchmark
methods are adopted for model comparisons. The first type includes two
traditional pixel-based classification methods — a Support Vector Ma-
chine (SVM) and an Artificial Neural Network (ANN) model. The other
types include the NHD HR data compiled from topographic maps and
orthophotography, and elevation-derived drainage lines generated from
GeoNet tools (Sangireddy and Stark, 2016). The comparison shows that
our method based on the attention U-net model outperforms the best
benchmark method by 8.61%, 9.39%, 13.68%, and 13.31% in four
different scenarios. The resulting streamline map also indicates that the
attention U-net model generates smoother and more topologically con-
nected features than the benchmark methods, which is significant for
hydrologic applications. The major contributions of this research are
two-fold: (1) a novel application of the attention U-net for accurate and
fine-scale hydrologic streamline detection, and (2) an effective stream-
line detection method that fully utilizes the geometric and intensity
information from high-resolution lidar data.

2. Study area and input dataset development

Our study area is a watershed in Rowan County, which is located in
west central North Carolina (Fig. 1). This area encompasses a set of
tributaries that flow into Second Creek, which is the primary flowline
feature of 12-digit NHD watershed 030401020504. The study area is 6.3
km? and has a humid, subtropical climate. Winters are short and mild,
while summers are usually hot and humid. Spring and fall are distinct
and refreshing periods of transition. Temperature ranges between 100°F
(38°C) to 10°F (—12°C) within a year. The watershed lies in the Central
Interior and Appalachian ecological division (Comer et al., 2003). In
terms of land cover types, forest dominates the area and most of the
stream channels are underneath closed-canopy. The lidar dataset used in
this research is small-footprint, discrete-return, Geiger-mode lidar that
was collected by the state government of North Carolina in the fall of
2016. The lidar dataset requires about 21 GB of disk storage, and the
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Fig. 1. Research area (Left: boundary of North Carolina state; middle: a 1-m resolution image from the National Agriculture Imagery Program,; right: reference data).

projection coordinate system is the 2011 State Plane of North Carolina.
This area has elevations ranging from 194 to 256 m. Because a
Geiger-mode lidar sensor was used, the point density of all returns
reaches 43 returns per square meter. A field validated set of intermittent
stream heads surveyed between 2013 and 2014 along with on-screen
editing was used to generate reference data (Shavers and Stanislawski,
2018). A 3-m buffer was generated along the reference streamline to
simulate the width of stream channels.

Eight co-registered 1-m resolution raster data layers were derived
from the lidar point cloud data and were used for training, validation,
and testing in the research. The layers were selected through extensive
comparison of elevation derivatives and optical imagery having national
coverage with validated surface hydrography in diverse landscapes. The
raster layers include: (1) a 1-m resolution digital elevation model (DEM)
derived from the ground return points; (2) geometric curvature deter-
mined from the DEM; (3) a topographic position index (TPI) derived
from the DEM using a 3-cell by 3-cell window; (4) a TPI derived from the
DEM using a 21-cell by 21-cell window; (5) zenith angle positive
openness derived from the DEM using a 10-cell radius with 32 directions
(Doneus, 2013); (6) return intensity determined from the lidar ground
points averaged with inverse distance weighting using 10 nearest points;
(7) point density for return points between zero and 1 foot above
ground; and (8) point density for return points between 0 and 3 feet
above ground. Geometric curvature is determined using GeoNet soft-
ware (Sangireddy et al.,, 2016). The software applies the non-linear
diffusion Perona-Malik filter on the DEM to remove noise and sharpen
the localization of channels (Passalacqua et al., 2010). Geometric cur-
vature, which sums curvature in the x and y directions, is then deter-
mined for the filtered DEM. The TPI value of a cell is the difference
between the cell elevation and the local average elevation within a
specific radius or within a surrounding window of cells (De Reu et al.,
2013). As noted, average values for TPI layer (3) and (4) are computed
based on 3 x 3 and 21 x 21 surrounding cell windows, respectively. The
TPI exaggerates local lows and highs in a DEM relative to the nearby
topographic features, accentuating ridges and valleys. Zenith angle
positive opennes (5) with 10-m radius can enhance drainage and small
stream channels (Doneus, 2013). Lidar return intensity (6) is usually
lower for water surfaces and wet areas than for dry areas because of
energy absorption by water (Hooshyar et al., 2015). Return point

density layers (7) and (8) respectively estimate the density of land sur-
face features such as shrubs and tree limbs up to 1 and 3 feet above
ground, which is most likely vegetation under the forest canopy. Shavers
and Stanislawski (2018) suggest vegetation density structure in the ri-
parian zones may be reflected in these layers. The eight raster layers are
shown in Fig. 2 with summary statistics presented in Table 1.

Inputs to our model are individual image patches sampled from the
eight different feature maps derived from the lidar data at a resolution of
1 m. The feature maps are normalized versions of the eight raster data
layers, normalizing each of the floating point datasets within the study
area to a corresponding unsigned integer feature map. To effectively test
our method, we created four different classification scenarios by split-
ting the research area into upper/lower and left/right portions. When
conducting our experiments, we used one of the portions for generating
training/validation patches, and the other portion to generate testing
patches for accuracy assessment in order to evaluate model generaliz-
ability. Sample patches for training and validation were generated based
on a random process that ensures no overlap between training and
validation patches. A visualization of the locations of our generated
training and validation patches is shown in Fig. 3. To further enhance
our training data, we applied image augmentation by randomly rotating
each training patch by 30-150 and 210-330°, rescaling each sample by
0.5-0.8 and 1.5-2.0, shearing each sample by random ranges from —30
to 30°, and mirroring each sample horizontally to create six augmented
samples for each training sample. Finally, 200 training (1400 after data
augmentation) and 30 validation patches were selected.

3. Methods
3.1. Benchmark methods

To evaluate the performance of our method, it is compared to
existing hydrography data, elevation-derived drainage lines, and hy-
drography predicted from two machine learning methods. We set up
four baseline benchmarks, which include NHD HR, elevation-derived
drainage lines from GeoNet, SVM, and an ANN model. The high reso-
lution NHD HR was retrieved from the USGS NHD website (https
://WWWw.usgs.gov/core-science-systems/ngp/national-hydrography).
NHD data for the study area were compiled from 1:24,000-scale digital
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Fig. 2. Lidar feature maps: (a) Digital Elevation Model (DEM); (b) Digital Surface Model (DSM) of returns up to 1 feet above ground; (c) Digital Surface Model (DSM)
of returns up to 3 feet above ground; (d) Lidar Reflectance; (e) Positive openness; (f) TPI with moving window size 3; (g) TPI with moving window size 21; (h)

Topological Curvature.

line graph data in 2001, with waterbodies and associated features
manually adjusted in 2013 to fit National Agriculture Imagery Program
(NAIP) 1-m resolution color-infrared digital orthophotography. The
GeoNet lines are extracted from the DEM using a least-cost path-tracing
technique that is guided by a minimum threshold flow accumulation
skeleton (Sangireddy et al., 2016). In our case, the flow accumulation
skeleton is generated using a minimum threshold of 1000 cells, which is
expected to over extract water flow network and fully define the
drainage paths.

We used a SVM classifier based on a radial basis function (RBF)
kernel with a kernel approximation strategy for speeding up the training
process (Rahimi and Recht, 2008). The parameters of kernel degree (g)
and penalty (C) are tuned using a two-level grid search in the range of
10-5 to 105 and 10-5 to 1, respectively. For the benchmark neural
network model, we construct a model with two hidden layers and a
sigmoid activation function as the output layer. The parameters of
number of hidden layers, learning rate, momentum, and decaying rate
are also tuned using grid search. The reference data including training,
validation, and testing data are the same between different models for
model training, parameter tuning and generating the final feature maps.

3.2. The U-net model

The U-net model is a special type of Fully Convolutional Networks
(FCNs). Unlike normal convolutional neural networks (CNNs), the last
fully connected layer from FCNs are substituted by a series of transposed
convolutional layers with larger and larger receptive fields. FCNs are
built only by locally connected layers including convolution, pooling
and upsampling layers without using any dense connected layer. This

practice greatly reduces the number of parameters for model tuning and
thus reduces redundant computation compared to traditional CNNs. A
typical FCN has two parts: a contractive path and an upsampling path,
where the former is used to extract important information and reduce
spatial redundancy, and the latter is used to project the extracted in-
formation to specific locations in the original image (Ronneberger et al.,
2015). The U-net model is a state-of-the-art FCN that achieves high ac-
curacy for solving image segmentation problems (Ronneberger et al.,
2015). Based on the fundamental structure of an FCN, it further applies
feature concatenations to recover and fully utilize the information
extracted at different resolution levels in the contractive path to the
corresponding locations in the expanding path. Details of model layers
are described as follows.

Convolutional layer: the convolutional layer is the major workforce
for extracting important features from images (Krizhevsky and Sutsk-
ever, 2012). It conducts image filtering by using kernel filters. In this
process, image features with strong signals are extracted.

Pooling layer: Pooling layer is used to conduct downsampling on
activation maps. Downsampling reduces the sampling rate of a raster by
decreasing the raster resolution (i.e., increasing pixel size). The max
function is often used to filter out redundant information and preserve
the strongest feature signals.

Relu layer: Relu layer is short for rectified linear unit layer, which is
one of the most commonly used activation functions in CNNs (Agarap,
2018). It consists of a linear function for all positive input values, and
zero for all negative values. It truncates unimportant features generated
from the convolutional layer and only reserves the important ones.

Transposed convolutional layer: This layer projects the extracted
dense features from the coarse resolution to its precise location in the
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Table 1
Summary statistics for 1-m resolution raster datasets derived from lidar point
cloud data collected for Rowan County watershed.

Raster Dataset Minimum  Maximum  Mean Standard Range

Deviation

Digital 194.11 256.19 229.07 12.96 62.07
elevation
model
(meters)

Geometric
curvature

Topographic -8.59 5.58 6.38 0.18
position
index (3 x 3
window)

Topographic
position
index (21 x
21 window)

Openness (R10,  21.52 118.8 83.41 7.35 97.28
D32) degrees

Return 0
intensity

Return point 0 0.94 0.02 0.04 0.94
density 1 ft
above
ground
(points per
m2)

Return point 0 2.89 0.12 0.23 2.89
density 3 ft
above
ground
(points per
rn2)

—97.25 97.93 0.01 3.05 195.18

14.167

—13.62 13.29 0 0.93 26.91

55185.39 29047.18 10624.11 55185.39

original image by using upsampling (i.e., increasing pixel resolution) or
spatial interpolation.

The attention module is a technique originally designed for sequence
dependency modeling that has recently been adopted for modeling
feature dependencies in image analysis (Oktay et al., 2018; Vaswani
etal., 2017). It can progressively suppress feature responses in irrelevant
background regions and make the model focus on important features. In
this research, we integrate five attention gates (AGs) into the U-net
model and thus create an attention U-net model for achieving high ac-
curacy results. As shown in Fig. 4a, the standard attention module maps
query pixels and their key-value pairs to the output. The output is a set of
weighted values and the attention weight matrix is calculated by a
compatibility function of the query with the corresponding key (Vas-
wani et al., 2017). Finally, the weighted inputs are multiplied by a
scaling hyperparameter o (initialized as 1) and added to the original
input to produce the final output. Since the original attention weight
matrixes at shallower layers are too large to fit in the memory, we used a
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second attention module (Fig. 4b) adapted from (Oktay et al., 2018) in
our model. The only difference is the second one directly combines the
convolutional results from the feature maps and the gating signal to a
Relu layer to remove negative values, and utilizes a bottleneck con-
volutional layer to reduce the channel dimension for memory saving and
a sigmoid function to calculate the final attention weight matrix.

The architecture of the attention U-net model is shown in Fig. 5. It
applies six triple convolutional layers to the contractive path and five in
the expanding path. Five pooling layers are used between each of the
triple convolutional layers for downsampling. In the expanding path,
five transposed convolutional layers (size 2 x 2 and stride 2) are used for
feature upsampling. In each horizontal level of the two paths, the
network uses attention gates to filter the features propagated through
the skip connections based on the gating signal of the contextual in-
formation from coarser scales to achieve high accuracy in segmentation
results. We utilize an “Adam” optimizer for calculating the change di-
rection of loss and adjust the weights in the back-propagation process
(Kingma and Ba, 2014).

We use Python 2.7 and Keras 2.0 with backend of TensorFlow 1.0 for
the model construction. We also utilize Python libraries including
sklearn 0.18.1, scikit-image 0.16.2, GDAL 3.0.2, NumPy 1.17.3 sup-
ported by Anaconda 2.0. The model is tested using both GPU and CPU
devices. It takes 15 h using a state-of-the-art CPU and 2 h for a Tesla M80
GPU to finish model training for our 6.07 km? study area. In this paper,
we run the attention U-net and the U-net model separately five times and
the average statistics are reported for evaluation.

The attention U-net model uses Dice’s coefficient (1) as the loss
function. The coefficient is the quotient of similarity and ranges between
0 and 1. Dice’s coefficient value equals twice true positive (TP) divided
by the sum of twice true positive (TP), false positive (FP), and false
negative (FN) as shown in equation (1). We use precision, recall, and F1
score to evaluate the model performance against testing data. Because of
the difficulty in correctly labeling all streamline pixels, relaxed methods
are adopted to calculate precisions and recalls (Mnih and Hinton, 2010).
The relaxed precision is defined as the fraction of number of pixels
predicted as stream within a range of p pixels from pixels labeled as
stream. The relaxed recall is the fraction of number of pixels labeled as
stream that are within a range of p pixels from pixels predicted as stream
pixels. In our experiments, the slack parameter p is set to 3 according to
previous research (Mnih and Hinton, 2010).

' 2TP
Dice s coefficient = TP+ FP LN (€8]

We used a grid search for hyperparameter tuning of the learning rate,
filter size, dropout rate, and decaying factor. In this process, the “Adam”
optimizer is used to calculate and adjust the weights during training
(Zhang, 2018). Fig. 6 shows the change of training accuracy from
different learning rates against the number of training epochs using the
standard U-net model. We can see that the learning rate of 3.59-05

Fig. 3. Distribution of training and validation patches in the four scenarios (gray area: locations of training patches; white area: locations of validation patches).
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Fig. 4. Attention gates of the U-net model (a: attention gate 1; b: attention gate 2).
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achieves a good convergence and accuracy. The plot of training and
validation losses using the selected learning rate is shown in Fig. 7.

4. Results

We evaluate our method against multiple benchmark methods in
four scenarios. For the first two scenarios, we split the study area hori-
zontally and use the lower portion as testing data in scenario one, and
the upper portion as testing data in scenario two. For scenarios three and
four, we split the study area vertically and use the right portion as testing
data in scenario three, and the left portion as testing data in scenario
four. Three metrics, precision (2), recall (3), and F1 score (4) are used to
evaluate the performance of the methods and are defined as follows (TP:
True Positive; FP: False Positive; FN: False Negative).

TP

- 2
TP + FP 2

Precision =

TP

Recall= ————
ecall = 7pFN

3

., Precision* Recall

Flscore=2 Precision + Recall )

In this research, we focus on the F1 score because it is the harmonic
mean of precision and recall. The highest F1 score means the model has
an optimal balance of recall and precision. While recall expresses the
model’s ability to find all streamline pixels in the input data, precision
expresses the portion of pixels that a model classifies as streamline
correctly. Therefore, there is a trade-off between these two metrics.

The F1 score, precision, and recall of test accuracies for the attention
U-net, U-net, and benchmark methods among the four scenarios are
shown in Tables 2-4 respectively. Table 2 shows that both the attention
U-net and U-net models outperform all benchmark methods for the four
scenarios in overall F1 score. Also, the attention U-net slightly out-
performs the U-net model in terms of the average F1 score. Among the
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Fig. 7. Loss of the training and validation against epochs.

four benchmark methods, ANN achieves the highest accuracy and NHD
has the lowest accuracy. The attention U-net model outperforms ANN by
8.61%, 9.39%, 13.68%, and 13.31%; SVM by 12.12%, 12.98%, 22.69%,
and 13.54%; NHD by 45.51% and GeoNet by 23.61% on average. For
precision, SVM achieves the best and outperforms the attention U-net
model by 12.04%, 7.64%, 1.99%, and 9.51% from scenario 1 to 4. The
attention U-net model outperforms the U-net model by 4.73%, 3.23%,
3.18%, and 2.84% from scenario 1 to 4. For recall, the GeoNet model has
the highest accuracy of 92.66%, which is 1.78% higher than the atten-
tion U-net model. Apart from that, the attention U-net model achieves

the next highest recalls and outperforms the U-net model by 0.64%, SVM
by 32.15%, ANN by 17.62%, and NHD by 54.92% on average in scenario
1 to 4. Overall, the attention U-net model outperforms the U-net and all
benchmark methods according to the average F1-score. Although one of
the benchmark methods generates better precision values, errors re-
flected by recall values are large and makes it worse in terms of general
performance compared to both the attention U-net and U-net model.
We visualize two large-extent locations (Fig. 8) and two further
zoomed-in contexts (Fig. 9) in scenario 1 to demonstrate the improved
performance compared with the benchmark methods. Both the attention
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Table 2
Comparison of the F1 scores between the attention U-net, the U-net and
benchmarks.

Scenarios Attention U-net SVM ANN NHD Geonet
(F1 score) U-net model
model

Scenario 1 83.02% 78.94% 70.90%  74.41%  41.05%  62.95%
Scenario 2 90.53% 87.94% 77.55%  81.14%

Scenario 3 91.91% 90.61% 69.22%  78.23%

Scenario 4 80.79% 79.82% 67.25%  67.48%

Average 86.56% 84.33% 71.23%  75.32%

Table 3

Comparison of the precisions between the attention U-net, the U-net and
benchmarks.

Scenarios Attention U-net SVM ANN NHD Geonet
(Precision) U-net model
model

Scenario 1 74.53% 69.80% 86.57%  80.90%  47.84%  47.67%
Scenario 2 87.96% 84.73% 95.60% 82.40%

Scenario 3 91.06% 87.88% 93.05%  82.34%

Scenario 4 78.16% 75.32% 87.67%  65.38%

Average 82.92% 79.43% 90.72%  77.76%

Table 4

Comparison of the recalls between the attention U-net, the U-net and
benchmarks.

Scenarios Attention U-net SVM ANN NHD Geonet
(Recall) U-net model
model

Scenario 1 93.80% 91.10% 60.04% 68.88% 35.96% 92.66%
Scenario 2 93.27% 91.41% 65.24%  79.92%

Scenario 3 92.78% 93.53% 55.10%  74.50%

Scenario 4 83.66% 84.93% 54.55%  69.73%

Average 90.88% 90.24% 58.73% 73.26%

U-net and U-net model generate better streamline delineations with
better connectivity and smoother shapes following channels compared
to ANN and SVM, which generate fragmented channels. The NHD vector
features are smooth and well-connected, as are the GeoNet drainage

Reference data U-net Attention U-net %

N

0 0204~ 0.
—

8.
Kilometers
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lines, which are generated from a least-cost path model guided by flow
accumulation (Sangireddy et al., 2016). However, GeoNet lines over-
estimate channels by false recognition of the dry drainage lines as stream
channels. As expected from 1:24,000-scale data the NHD is sparse and
only contains the several major channels in the study area. The U-net
and attention U-net model also perform better in extracting most
water-related features including water bodies in the two locations,
where all the automated benchmark methods fail to do so. NHD includes
the small lakes interpreted from orthophotography. When the attention
U-net model is compared to the U-net model, the former eliminates
many overestimated streamlines in the middle part of location 1 and 2,
and better extracts water bodies. From Fig. 9, we can see that the
attention U-net model is superior to traditional machine learning
methods in extracting smooth streamlines and water bodies and avoids a
majority of overestimated streamline pixels in NHD HR and the GeoNet
flow accumulation model. The U-net model performs similarly to the
attention U-net model, but the latter has a better delineation of the
streamlines in the north and middle parts (less overestimations) of
location 1 and better delineation of water bodies of location 2.

5. Discussion and conclusions

This research developed an attention U-net model for hydrologic
streamline extraction using lidar-derived feature maps. Specifically, we
have solved an image segmentation problem (segmentation of stream-
lines) based on the binary classification of stream versus non-stream
pixels. This problem is difficult because hydrologic streamlines are
formed by complex processes and occupy only a small portion of diverse
land cover types while extracted streamlines need to be well connected.
Furthermore, surface water features (e.g., clear/turbid rivers, swamps,
ponds, and lakes) are spatially heterogeneous, and thus are difficult to
extract using traditional machine learning methods (e.g., ANN and SVM)
that cannot effectively handle multi-scale context information (e.g.,
topology, land cover distribution, topography).

The U-net model is a special type of fully CNNs using skip connec-
tions to combine local content from the contractive path to global con-
tent in the expanding path, which ensures adequate connectivity of
segmentation results because it enables the model to take both the global
and local context information into consideration while extracting
streamlines. The attention module is added to the U-net model to

U-net Attention U-net

Geonet

oS

Reference data
Il Streamlines

Fig. 8. Comparison of classification results from the attention U-net, U-net, and different benchmark methods.
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@ (b

Fig. 9. Visualization of the feature differences between the attention U-net model versus the GeoNet and ANN models for two zoomed-in contexts: (a) and (f): Ground
reflectance maps from lidar; (b) and (g): the reference data; (c) and (h): the difference map of the attention U-net model and the ANN model; (d) and (i): the
difference map of the attention U-net model and the GeoNet model; (e) and (j): the difference map of the attention U-net model and the U-net model. Red areas are

the pixels labeled as the stream feature by the attention U-net model and recognized as the non-stream feature by the benchmark models or the U-net model. The
yellow areas are the pixels labeled as stream feature by the benchmark models or the U-net model and recognized as non-stream feature by the attention U-net model.

progressively suppress feature responses in irrelevant background re-
gions and make the model focus on important streamline features ac-
cording to the reference data. Addition of the attention module further
enhances the accuracy for difficult instances such as the boundary of
lakes, river bends, and dried channels.

A comprehensive evaluation of the model shows that our method
outperforms multiple machine learning models and conventional flow
accumulation methods by providing smoother and better-connected
streamline and waterbody features. To evaluate the model thoroughly,
we created four different scenarios by splitting our research area into
upper/lower and left/right portions for generating training/validation
and testing patches respectively. The attention U-net model generates
Fl-scores of 83.02%, 90.53%, 91.91%, and 80.79% across the four
scenarios, which outperforms the best benchmark by 8.61%, 9.39%,
13.68%, and 13.31%.

Streamlines extracted using ANN and SVM are fragmented with
missing parts mainly because these pixel-based classification methods
fail to consider the global context. SVM achieves a high-precision result
but a poor recall. This indicates that it underestimates the stream class
pixels but provides good confidence of those extracted. Since the
reference data are highly imbalanced (1:100 between stream and non-
stream), we also conducted additional experiments that artificially
upsample the stream samples. Although the imbalanced issue is
resolved, the model has heavy overestimation of the stream class and the
accuracy is not comparable to the imbalanced case. Compared to the
manually verified reference data, the elevation-derived GeoNet drainage
lines and features furnish higher recall scores than precision scores,
which indicates that this method overestimates the stream class in
general and performs better in terms of completeness than precision.
These overestimations indicate local climate is drier than was assumed
when selecting the flow accumulation threshold for the GeoNet lines,
which include more dry tributaries than collected in the reference data.
The 1:24,000-scale NHD only contains major stream channels and lake
features and ignores the smaller tributaries, so the accuracy is much
lower than the other datasets. Only the NHD benchmark data includes
the water bodies in the study area, and the attention U-net model per-
forms much better in terms of water body extraction than the other
benchmark methods.

(h) W ()

The attention U-net model utilizes its special feature concatenation
design and a CNN to achieve high accuracy, adequate connectivity, and
efficient streamline detection. Conventional machine learning models
produce less optimal results primarily because they employ a pixel-
based classification strategy. The attention U-net model also departs
from traditional flow accumulation models that heavily rely on expert
inputs, which in this case includes over-extracted drainage lines and no
water body extraction leading to large errors. This research utilizes
Geiger-mode lidar, which provides high-density point clouds and precise
measurements for enabling transformative discovery and innovative
opportunities in many scientific domains (McManamon et al., 2017).

The following set of principles distilled from this research are
important for guiding the application of the method to other areas of
study or solving similar problems.

Ensure a balanced number of convolutional layers at each horizontal
level in both the contractive and expanding paths. We find triple
convolutional layers achieved adequate results and adding more
convolutional layers would not benefit the model but increase
computational intensity.

Training patches should be randomly generated and have no overlap
with validation and testing data. Training patches can overlap with
themselves (effect of data augmentation).

e Use data augmentation by randomly rotating, mirroring, shearing,
and rescaling training samples to ensure the expressivity of the
model.

A dropout layer and a proper dropping rate (hyperparameter) are
necessary in the final convolutional process for the model
regularization.

Use early stopping to enhance the training efficiency and prevent
overfitting of the model.

Future work will focus on applying the method to more study sites,
and scaling the model up to regional and national scopes.
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