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We perform numerical simulations of the approach to spacetime singularities. The simulations are done

with sufficient resolution to resolve the small scale features (known as spikes) that form in this process.

We find an analytical formula for the shape of the spikes and show that the spikes in the simulations are

well described by this formula.
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I. INTRODUCTION

Ever since the singularity theorem of Penrose [1], it has

been known that spacetime singularities are a generic

feature of gravitational collapse. However, Penrose’s

theorem gives very little information about the nature of

these singularities, stating only that some light ray fails

to be complete. In order to obtain a better understanding

of the nature of singularities, Belinskii, Lifschitz, and

Khalatnikov [2] (collectively known as BKL) conjectured

an analytic approximation in which near the singularity,

terms in the field equations containing spatial derivatives

were negligible compared to those containing time deriv-

atives. In order to test the correctness of the BKL

conjecture, Berger and Moncrief [3] performed numerical

simulations of the approach to the singularity in Gowdy

spacetimes. The Gowdy spacetimes have two spatial

Killing vectors and physically represent a closed universe

with spatial topology T3 containing plane gravitational

waves and collapsing toward a singularity. The Gowdy

spacetimes thus form a rather specialized class of space-

times, which do not have direct astrophysical significance,

but which can be thought of as a toy model for the general

problem of gravitational collapse. Nonetheless, even in this

special case, Berger and Moncrief found a new and

unexpected feature of singularities: as the singularity

was approached, the dynamics at almost all spatial points

was in accord with the BKL conjecture; however, there

were isolated points at which sharp features developed and

became ever narrower the nearer one got to the singularity.

These sharp features later became known as spikes. The

spikes represent a challenge for numerical simulations

because an accurate numerical simulation requires that

the spatial points that make up the numerical grid have

sufficiently small separation to resolve all features. For a

fixed spatial resolution, an ever narrowing spatial feature,

such as the spikes found in [3] will eventually become

too narrow to be resolved. However, because the Gowdy

spacetimes have two spatial Killing fields, numerical

simulations of these spacetimes require only a single spatial

dimension, and thus can be done with a very fine spatial

resolution. In [4], these fine scale numerical simulations

were compared with an approximate analytical formula for

the behavior of the spikes and were shown to match that

formula. In [5], a class of exact analytic solutions was

found for spikes in Gowdy spacetimes and shown in [6] to

approach the late-time behavior of numerical simulations of

spike formation in G2 spacetimes (a generalization of the

Gowdy model, but still with two spatial Killing vectors).

Thus, despite the numerical challenges that they pose,

spikes in Gowdy spacetimes are well understood.

The work of [3] was generalized to the case of only one

Killing field [7,8] and later (using a different numerical

method based on the analytical work of [9]) to the case

of no symmetry [10]. However, the simulations of [7,10]

did not have sufficient resolution to resolve the spikes. One

method to obtain better resolution is adaptive mesh refine-

ment (AMR) [11], which detects when resolution is about

to become insufficient and then adds extra spatial points

where they are needed. Indeed, AMR was used to resolve

spikes in Gowdy spacetimes by Hern and Stewart [12].

However, though AMR is an effective method to use on

Gowdy spacetimes, it is not so effective for the case of

only one symmetry, or for the case of no symmetry. This is

*
garfinkl@oakland.edu

†
fpretori@princeton.edu

PHYSICAL REVIEW D 102, 124067 (2020)

2470-0010=2020=102(12)=124067(13) 124067-1 © 2020 American Physical Society



because AMR works well when the features that it needs to

resolve occur at isolated spatial points, while (as we will see

later) spikes are features of codimension one: that is, spikes

occur at isolated points in the case of two symmetries,

along curves in the case of one symmetry, and at surfaces in

the case of no symmetry. Thus, in the latter two cases, the

AMR would need to resolve too many regions and would

quickly be overwhelmed. To obtain answers with adequate

resolution in a reasonable amount of time thus requires that

we parallelize the code; we use the PAMR/AMRD [13]

libraries to do this (though again we only use its paralle-

lization features and not AMR). Our highest resolution run

used 112 cores of the Perseus cluster at Princeton, taking

two days to complete.

In Sec. II, we present the field equations used in our

simulations. These are the vacuum Einstein field equa-

tions expressed in terms of the scale invariant variables of

[9]. Section III introduces a truncation of these equations

obtained by applying the BKL approximation and derives

an analytic formula for the spike from these truncated

equations. Sections III A and III B explore the implica-

tions of the approximations made in Sec. III. Section IV

presents one-dimensional (1D) (i.e., the case of two

Killing fields) simulations of the equations of Sec. II

and the comparison of those results to the analytic

formula of Sec. III. Section V performs the same sort

of simulations and comparison to analytic formula for the

two-dimensional (i.e., one Killing field) case. Our con-

clusions are presented in Sec. VI.

II. EQUATIONS OF MOTION

The method we use to evolve the vacuum Einstein

equations is the scale invariant tetrad method of Uggla

et al. [9]. We use this method with constant mean curvature

slicing as is done in the simulations of [14] (or equivalently

as is done in the cosmological simulations of [15,16] but

with no scalar field matter). More information on this type

of method can be found in [9,14–16].

The spacetime is described in terms of a coordinate

system (t; xi) and a tetrad (e0; eα) where both the spatial

coordinate index i and the spatial tetrad index α go from 1

to 3. Choose e0 to be hypersurface orthogonal with the

relation between tetrad and coordinates of the form

e0 ¼ N−1∂t, and eα ¼ eα
i∂i, where N is the lapse and

the shift is chosen to be zero. Choose the spatial frame feαg
to be Fermi propagated along the integral curves of e0.

The commutators of the tetrad components are decomposed

as follows:

½e0; eα� ¼ _uαe0 − ðHδα
β þ σα

βÞeβ; ð1Þ

½eα; eβ� ¼ð2a½αδβ�γ þ ϵαβδn
δγÞeγ; ð2Þ

where nαβ is symmetric and σαβ is symmetric and trace

free. The scale invariant tetrad variables are defined by

∂0 ≡ e0=H and ∂α ≡ eα=H, while scale invariant versions

of the other gravitational variables are given by

fEα
i;Σαβ; A

α; Nαβg≡ feαi; σαβ; aα; nαβg=H: ð3Þ

Note that the relation between the scale invariant tetrad

variables and the coordinate derivatives is

∂0 ¼ N −1∂t; ð4Þ

∂α ¼ Eα
i∂i; ð5Þ

where N ¼ NH is the scale invariant lapse. The time

coordinate t is chosen so that

e−t ¼ 3H: ð6Þ

Here we have used the scale invariance of the physical

system to make both t and H dimensionless quantities.

Note that Eq. (6) means that the surfaces of constant time

are constant mean curvature surfaces. Note also that the

singularity is approached as t → −∞.

Due to Eq. (6), the scale invariant lapse satisfies an

elliptic equation

−∂α∂αN þ 2Aα∂αN þN ð3þ ΣαβΣ
αβÞ ¼ 3: ð7Þ

The gravitational quantities Eα
i, Aα, N

αβ, and Σαβ satisfy

the following evolution equations:

∂tEα
i ¼ Eα

i −N ðEα
i þ Σα

βEβ
iÞ; ð8Þ

∂tAα ¼ Aα þ
1

2
Σα

β∂βN − ∂αN

þN

�

1

2
∂βΣα

β − Aα − Σα
βAβ

�

; ð9Þ

∂tN
αβ ¼ Nαβ − ϵγδðαΣδ

βÞ∂γN þN ð−Nαβ

þ 2Nðα
γΣ

βÞγ − ϵγδðα∂γΣδ
βÞÞ; ð10Þ

∂tΣαβ ¼ Σαβ þ ∂hα∂βiN þ Ahα∂βiN

þ ϵγδðαNβÞ
δ∂γN þN ½−3Σαβ

− ∂hαAβi − 2Nhα
γNβiγ þ Nγ

γNhαβi

þ ϵγδðαð∂γNβÞ
δ − 2AγNβÞ

δÞ�: ð11Þ

Here parentheses around a pair of indices denote the

symmetric part, while angle brackets denote the symmetric

trace-free part.

In addition, the variables are subject to the vanishing of

the following constraint quantities:

ðCcomÞλi ¼ ϵαβλ½∂αEβ
i − AαEβ

i� − NλγEγ
i; ð12Þ
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ðCJÞγ ¼ ∂αN
αγ þ ϵαβγ∂αAβ − 2AαN

αγ; ð13Þ

ðCCÞα ¼ ∂βΣα
β − 3Σα

βAβ − ϵαβγN
βδ
Σδ

γ; ð14Þ

CG ¼ 1þ 2

3
∂αA

α − AαAα −
1

6
NαβNαβ

þ 1

12
ðNγ

γÞ2 −
1

6
Σ
αβ
Σαβ: ð15Þ

Initial data are chosen to satisfy the constraints of

Eqs. (12)–(15), which are then preserved (to within

numerical truncation error) under evolution. The data are

evolved using the evolution equations, Eqs. (8)–(11), where

to obtain a hyperbolic system a multiple of Eq. (14) is

added to the right-hand side of Eq. (9) [17].

III. UNIVERSAL SPIKE BEHAVIOR

We now derive an analytic approximation for the shape

of the spikes. The BKL conjecture for the system in this

form says that sufficiently close to the singularity, Aα and

Eα
i are small enough to be neglected. Note that all spatial

derivatives occur in the equations of motion in the form

∂α ¼ Eα
i∂i, so it follows that all these terms can also be

neglected. Subject to this approximation, we find the

following: Eq. (7) becomes

N −1 ¼ 1þ 1

3
ΣαβΣ

αβ: ð16Þ

Equations (8) and (9) are automatically satisfied.

Equations (10) and (11) become

∂tN
αβ ¼ Nαβ þN ð−Nαβ þ 2Nðα

γΣ
βÞγÞ; ð17Þ

∂tΣαβ ¼ Σαβ þN ½−3Σαβ − 2Nhα
γNβiγ þ Nγ

γNhαβi�: ð18Þ

Equations (12) and (13) are automatically satisfied, while

Eqs. (14) and (15) become

ϵαβγN
βδ
Σδ

γ ¼ 0; ð19Þ

1 −
1

6
NαβNαβ þ

1

12
ðNγ

γÞ2 −
1

6
Σ
αβ
Σαβ ¼ 0: ð20Þ

We begin at an initial time close enough to the singularity

that the conditions of the BKL conjecture are satisfied and

follow the behavior through one bounce.
1
Equation (19)

implies that the matrices Σ
α
β and Nα

β commute and

therefore have a common basis of eigenvectors. It then

follows from Eqs. (17) to (18) that the eigenvectors are

constant in time (see Appendix B of [16] for more details),

so all that we need to do is find the time dependence of the

eigenvalues. Denote the eigenvalues of Σα
β by Σ1, Σ2, and

Σ3 with Σ1 ≤ Σ2 ≤ Σ3 at the initial time. Let N1 be the

eigenvalue of Nα
β corresponding to the eigenvector of Σα

β

that has eigenvalue Σ1, and correspondingly for N2 and N3.

We assume that at the initial time N1, N2, and N3 are all

negligibly small. Then it follows from Eq. (17) that N1

grows in magnitude during the bounce process, but that N2

and N3 decrease in magnitude and therefore remain

negligible. We then find from Eqs. (16) and (20) that

N −1 ¼ 3 −
1

6
ðN1Þ2: ð21Þ

Using Eq. (21) in Eqs. (17) and (18), we then obtain

∂tΣ1 ¼ ð1 − 3N ÞðΣ1 þ 4Þ; ð22Þ

∂tΣ2 ¼ ð1 − 3N ÞðΣ2 − 2Þ; ð23Þ

∂tΣ3 ¼ ð1 − 3N ÞðΣ3 − 2Þ; ð24Þ

∂tN1 ¼ N1ð1þN ð−1þ 2Σ1ÞÞ: ð25Þ

Now define the quantity Z by

Z≡ Σ1 þ 4: ð26Þ

Then it follows from Eqs. (22) to (24) and the fact that Σαβ

is trace free that there is a constant b such that

Σ2 ¼ 2þ ðb − 1ÞZ; ð27Þ

Σ3 ¼ 2 − bZ: ð28Þ

It then follows from Eqs. (16) and (26) and (28) that

N −1 − 3 ¼ 2

3
ðb2 − bþ 1ÞZ2 − 4Z þ 6: ð29Þ

Thus, N −1 − 3 is a quadratic in Z. Let Zþ and Z− be the

roots of this quadratic. Then, we have

Z� ¼ 3� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bð1 − bÞ
p

b2 − bþ 1
: ð30Þ

Using Eq. (30) in Eq. (29), we obtain

N −1 − 3 ¼ 6

ZþZ−

ðZ − ZþÞðZ − Z−Þ: ð31Þ

It then follows from Eqs. (22), (26), and (31) that Z satisfies

the equation of motion

1
Here “bounce” refers to transition from one Kasner-like era to

the next, not to be confused with the usage of the word in
cosmology denoting transition from a contracting to expanding
universe.
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∂tZ ¼ ðZ − ZþÞðZ − Z−ÞZ
1

2
ZþZ− þ ðZ − ZþÞðZ − Z−Þ

: ð32Þ

From Eq. (32), we immediately obtain the following

qualitative picture of spike formation: suppose that at the

initial time there is a region where N1 is positive and a

region where N1 is negative. Then by continuity there must

be a surface where N1 vanishes. It then follows from

Eq. (25) that on this surface N1 will always be zero, and it

then follows from Eqs. (21) and (31) that Z ¼ Z− on this

surface. Now consider a point near this surface. Then N1 is

small but nonzero, and therefore Z is close to, but not equal

to Z−. It then follows from Eq. (32) that the evolution takes

Z from near Z− at the initial time to asymptotically close to

Zþ at large negative time (recall that the convention is that

t → −∞ as the singularity is approached). Thus, the surface

N1 ¼ 0 is stuck in the old phase, while all nearby points

eventually bounce to the new phase. Thus, a feature of ever

more narrow size forms in the vicinity of the surface.

But we can do even better than this qualitative picture

and obtain a complete quantitative picture by integrating

Eq. (32). Suppose that at some spatial point at time t0 we
have Z ¼ Zðt0Þ. Then some straightforward but tedious

algebra leads to the following integral of Eq. (32):

exp

�

2

Zþ
ðZþ − Z−Þðt0 − tÞ

�

¼
�

Z − Z−

Zðt0Þ − Z−

��

Zþ − Z

Zþ − Zðt0Þ

�

−Z−=Zþ

×

�

Z

Zðt0Þ

�

−3ðZþ−Z−Þ=Zþ
: ð33Þ

Now consider Eq. (33) in the vicinity of a spike. Choose

time t0 sufficiently early in the process that no sharp

features have formed, and choose a local coordinate x to

vanish where N1 vanishes. Then for sufficiently small x we
have that N1 is well approximated by N1 ¼ ϵx where ϵ is a
function of the coordinates transverse to x. It then follows

from Eqs. (16) and (21) that near x ¼ 0, we have

Zðt0Þ ¼ Z−

�

1þ Zþ
Zþ − Z−

�

ϵx

6

�

2
�

: ð34Þ

Then using Eq. (34) in Eq. (33), we obtain

�

ϵx

6

�

2

exp

�

2

Zþ
ðZþ − Z−Þðt0 − tÞ

�

¼
�ðZþ − Z−Þ2

ZþZ−

��

Z − Z−

Zþ − Z

�� ðZþ − ZÞZ3
−

ðZþ − Z−ÞZ3

�ðZþ−Z−Þ=Zþ
:

ð35Þ

Equation (35) shows that spikes are essentially a codi-

mension one phenomenon, since everything can be

expressed in terms of a single coordinate orthogonal to

the spike surface. Thus, one should obtain essentially the

same behavior in a two-dimensional simulation as in a

one-dimensional simulation.

We now consider how to compare the results of the

simulations to the prediction of Eq. (35). Though so far we

have talked about the eigenvalues of Σα
β and Nα

β, all the

information about the eigenvalues of a matrix is contained

in the invariants of that matrix and it is far simpler to

compute invariants than to compute eigenvalues. In par-

ticular, since Nα
β has only one non-negligible eigenvalue,

N1, we find that the invariant Nα
α is simply equal to N1. It

then follows from Eqs. (21) and (31) that

Nα
α ¼

�6
ffiffiffiffiffiffiffiffiffiffiffiffi

ZþZ−

p ðZþ − ZÞ1=2ðZ − Z−Þ1=2: ð36Þ

Note that Eqs. (36) and (35) together give a parametric

equation for Nα
α as a function of x (because the equations

give both x and Nα
α as functions of Z). Thus, to make a

comparison with simulations, one should find from the

simulation Nα
α as a function of x and compare to this

parametric curve.

We now consider the behavior of the invariants of Σα
β.

Define the quantity S by

S ¼ Σ
α
βΣ

β
γΣ

γ
α: ð37Þ

Since Σα
β is trace free, it follows that the invariants of Σ

α
β

are Σ
αβ
Σαβ and S. However, from Eq. (20) and the fact

that N2 and N3 are negligible, it follows that Σαβ
Σαβ ¼

6 − 1

2
ðNα

αÞ2 so there is no information in Σαβ
Σαβ that is not

already contained in Nα
α. Therefore, in characterizing the

invariants of Σα
β, we can restrict our attention to S. From

Eqs. (26) and (27), we find

S ¼ 6½1 − ðZ − 3Þ2� þ 3bð1 − bÞZ2ðZ − 4Þ: ð38Þ

Equations (35) and (38) give a parametric equation for S as

a function of x. Thus, one should find from the simulations

S as a function of x and compare to this parametric curve.

The formulas given in Eqs. (35), (36), and (38) contain

two parameters: b and ϵ. Thus, to make comparisons with

the simulations, we must specify how to determine these

parameters from the simulations. To determine b, it is

helpful to recall the definition of the BKL parameter u.
Consider a time before the bounce when N1 is negligible

and the eigenvalues of Σα
β are approximately constant. This

is a Kasner era, and the Kasner exponents p1, p2, and p3

are expressed in terms of the corresponding eigenvalues

of Σ
α
β by pi ¼ ð1þ ΣiÞ=3. The BKL parameter u is

defined by

u ¼ p3=p2: ð39Þ
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Note that since Σ2 ≤ Σ3 it follows that p2 ≤ p3 and

therefore that u ≥ 1. Then it follows from Eqs. (27),

(28), (30) using some straightforward algebra that

b ¼ 1

u2 þ 1
; ð40Þ

Z− ¼ 3ðu2 þ 1Þ
u2 þ uþ 1

: ð41Þ

Before the bounce we have Z ≈ Z−. Let S− denote the value

of S before the bounce. Then using Eqs. (38), (40), and (41)

straightforward but tedious algebra yields

S− ¼ 6 −
81u2ðuþ 1Þ2
ðu2 þ uþ 1Þ3 : ð42Þ

As long as −6 < S− < 6, there is a unique u > 1 such that

Eq. (42) is satisfied. Thus, to compute the parameter b in

the simulations, we simply compute the invariant S before a

bounce and then use Eq. (42) to determine u, and then use

Eq. (40) to determine b.
There are two different ways to determine the parameter

ϵ. This parameter is defined so that at time t0 we have

N1 ¼ ϵx, so we can simply use the definition to read off ϵ

from the properties of N1 at a time before the bounce.

Alternatively, if we wait until a time t1 at which a spike has
formed, we can use the properties of the spike to determine

ϵ as follows: from Eq. (36), it follows that the maximum

value of Nα
α occurs at Z ¼ ðZþ þ Z−Þ=2. (Note also that

this maximum value is 3ðZþ − Z−Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi

ZþZ−

p
, a prediction

that can easily be compared to the simulations). Let xm be

the value of x at which this maximum value of Nα
α occurs.

Then it follows from Eq. (35) that

�

ϵxm
6

�

2

exp

�

2

Zþ
ðZþ − Z−Þðt0 − t1Þ

�

¼
�ðZþ − Z−Þ2

ZþZ−

��

4Z3
−

ðZþ þ Z−Þ3
�ðZþ−Z−Þ=Zþ

: ð43Þ

Combining Eqs. (35) and (43), we obtain

�

x

xm

�

2

exp

�

2

Zþ
ðZþ − Z−Þðt1 − tÞ

�

¼
�

Z − Z−

Zþ − Z

��ðZþ þ Z−Þ3ðZþ − ZÞ
4ðZþ − Z−ÞZ3

�ðZþ−Z−Þ=Zþ
: ð44Þ

Thus, Eqs. (44) and (36) provide a parametric curve forNα
α

versus x, while Eqs. (44) and (38) provide such a curve

for S versus x.

A. Ephemeral nature of universal spike behavior

The universal spike formulas of the previous section

were derived under the assumption that spatial derivatives

are negligible. However, it follows from the spike formulas

that spatial derivatives become arbitrarily large. Can a

quantity be both arbitrarily large and negligible? In the

equations of motion, all spatial derivatives appear multi-

plied by Eα
i. Thus, spatial derivatives of a quantity F are

negligible in the equations of motion provided that the

quantity Eα
i∂iF is negligible. Specifically, we will use

the spike formulas to calculate the quantity Eα
i∂iN

β
β at the

center of the spike. Let the subscript I denote tetrad

component in the direction of the Ith eigenvector of Σα
β.

Then using Eqs. (8) and (25) and the fact that N ¼ 1=3 in

the center of the spike, we find that

∂tðEI
i∂iN1Þ ¼

1

3
½4þ 2Σ1 − ΣI�ðEI

i∂iN1Þ: ð45Þ

It then follows that the magnitude of EI
i∂iN1 gets smaller

as the singularity is approached if and only if the quantity in

square brackets is positive. However, using Eqs. (26)–(28)

and (40) and (41), we find

1

3
½4þ 2Σ1 − Σ1� ¼

u2 þ 1

u2 þ uþ 1
;

1

3
½4þ 2Σ1 − Σ2� ¼

uðu − 2Þ
u2 þ uþ 1

;

1

3
½4þ 2Σ1 − Σ3� ¼

2ð1 − uÞ
u2 þ uþ 1

: ð46Þ

The first of these quantities is always positive, the last is

always negative, and the one in the middle is positive when

u > 2. What is going on is the following: during this

particular epoch, as the singularity is approached, E1
i and

E2
i are getting smaller, while E3

i is getting larger. Since the

spatial derivative of N1 is getting larger, it follows that the

product of that spatial derivative and E3
i is always getting

larger, though if at the beginning of the epoch E3
i starts out

very small, it may take some time before this product is

non-negligible. In contrast, E1
i is getting small faster than

the spatial derivative of N1 is getting large, so the product

of these two quantities is always negligible. E2
i is getting

small at a rate that is faster (resp. slower) than the spatial

derivative of N1 is getting large if u > 2 (resp. u < 2); thus,

the product of the two quantities may be getting larger or

smaller, depending on the value of u.
This line of reasoning suggests that spikes are ephem-

eral, or at least that there is only a limited time period under

which each spike is accurately described by the spike

formulas of the previous section. This is consistent with

the transient spike solutions for Gowdy spacetimes found

in [5].

B. Early spikes and late spikes

We now consider the extent to which we should expect

the approximate formulas of Sec. III to match an actual
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evolution of the Einstein field equations. The results of

Sec. III are based on the assumptions of that section,

namely, that Eα
i and Aα are negligibly small. We expect this

assumption to be better and better satisfied the closer we are

to the singularity, i.e., the longer the simulation is run. Or to

put it another way: we expect late spikes (the ones that

occur later in the simulation) to be better modeled by the

analytic formulas of Sec. III. However, a simulation can

only be run as long as it maintains enough resolution for

accurate results. Since spikes are features that become very

narrow, that means that eventually in every simulation some

spike will become sufficiently narrow to make the simu-

lation lose resolution. Or to put it another way: simulations

can only see early spikes. Thus, there is something of a

mismatch between the needs of the simulations and the

needs of the spike formula: we expect the spike formula to

be a crude, rather than exact, model for the early spikes

produced in the simulations.

IV. 1D SIMULATIONS

Our methods for the one-dimensional (i.e., two Killing

field) case are essentially those of [15,16] but without the

scalar field matter. In particular, we must choose initial data

that satisfy the constraint equations (12)–(15). We do this

using the York method [18]. That is, we write the initial

data in terms of a freely specifiable piece and an unknown

conformal factor which we solve for numerically. The

initial data are as follows:

Eα
i ¼ H−1ψ−2δα

i; ð47Þ

Aα ¼ −2ψ−1Eα
i∂iψ ; ð48Þ

Nαβ ¼ 0; ð49Þ

Σαβ ¼ ψ−6Zαβ: ð50Þ

Here ψ is the unknown conformal factor and H is a

constant. The constraint equations require that Zik be

divergence free: that is ∂iZik ¼ 0. In addition, since Σαβ

is trace free, so is Zik. We choose the following simple Zij

having both these properties:

Zik ¼

2

6

4

b2 κ1 κ2

κ1 a1 cos xþ b1 a2 cos x

κ2 a2 cos x −b1 − b2 − a1 cos x

3

7

5
: ð51Þ

Here, a1, a2, b1, b2, κ1, and κ2 are constants. The constraint
equations require that the conformal factor satisfy the

equation

∂i∂iψ ¼ 3

4
H2ψ5 −

1

8
ZikZikH

2ψ−7; ð52Þ

which we solve numerically.

Figures 1–3 show the results of three simulations for three

different choices of the parameters ða1; a2; b1; b2; κ1; κ2Þ. In
each case, snapshots of Nα

α versus x are plotted at different

times in the simulation. The simulations are run with a

spatial step size of dx ¼ 2π=2500 ≈ 0.00251 and each

simulation is run only for as long as good resolution can

be maintained.

Since the initial data have Nαβ ¼ 0, it follows that

initially Nα
α vanishes, and its early structure reflects simple

linear growth driven by the initial data for Σαβ through the

right-hand side of Eq. (10). However, eventually spikes

form around points where Nα
α remains zero. Thus, the later

panels in these figures show structure that is mostly

indicative of the presence of spikes.

It is clear from the figures that each simulation produces

several spikes. However, as argued in the previous section,

the early spikes of a simulation cannot be expected to be

well described by the formulas of that section, and even the

“late” spikes of a simulation are sufficiently “early” that

the formulas of Sec. III can only be expected to be a fairly

crude approximation. For this reason, we will examine one

late spike per simulation.

Figure 4 shows the spike of the simulation of Fig. 1 that

forms at x ¼ 5.6825. In the figure, we have translated x so

that the spike is centered at x ¼ 0. The figure displays Nα
α

as a function of x for the times t ¼ −12;−13;−14;−15,
and −16.

Figure 4 clearly shows a narrowing feature. However, to

compare with the formulas of Sec. III, we must perform a

different type of comparison. Using Eq. (44), we define the

rescaled spatial coordinate w by

w≡

�

x

xm

�

exp

�

1

Zþ
ðZþ − Z−Þðt1 − tÞ

�

: ð53Þ

Then aside from the detailed shape, Eqs. (44) and (36)

contained the prediction that Nα
α plotted as a function of w

will give the same shape regardless of time. Figure 5

contains such a plot. Here, six different curves are plotted:

the five curves of Fig. 5, but now as a function of w, and a

sixth curve given parametrically by Eqs. (44) and (36). To

obtain the parameters in the analytic formula, we find u
from the simulations and choose t1 ¼ −12 and find xm for

that time. Figure 6 contains the corresponding six curves

for the quantity S. It is clear from Figs. 5 and 6 that the

formulas of Sec. III are a good, but by no means perfect,

match to the results of the simulation.

Figures 7–9 do the same thing for the simulation of

Fig. 2 that Figs. 4–6 do for the simulation of Fig. 1. That is,

in Fig. 7, one of the late spikes of the simulation of Fig. 2 is

plotted as a function of x for five different times. In Fig. 8,
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FIG. 2. t ¼ const snapshots of Nα
α for 0 ≤ x ≤ 2π (with x ¼ 0 and x ¼ 2π identified) for several different times. Here the parameters

of the initial data (51) are a1 ¼ 2.0, a2 ¼ 1.2, b1 ¼ 2.0, b2 ¼ −0.5, κ1 ¼ 0.2, κ2 ¼ 0.5.
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FIG. 1. t ¼ const snapshots of Nα
α for 0 ≤ x ≤ 2π (with x ¼ 0 and x ¼ 2π identified) for several different times. Here the parameters

of the initial data (51) are a1 ¼ 2.5, a2 ¼ 1.2, b1 ¼ 1.5, b2 ¼ 1.2, κ1 ¼ 0.4, κ2 ¼ 0.3.

SPIKE BEHAVIOR IN THE APPROACH TO SPACETIME … PHYS. REV. D 102, 124067 (2020)

124067-7



that same spike is plotted as a function of the rescaled

coordinate w along with the corresponding formula from

Sec. III. In Fig. 9, the quantity S for the 5 times is plotted as

a function of w along with its formula. Correspondingly,

Figs. 10–12 perform the same analysis of one of the late

spikes of the simulation of Fig. 3.

In all cases, we find that the formulas of Sec. III are a

good but not perfect fit for the results of the simulations.

This is just what we expect from the analysis of that section,

due to the fact that even the late spikes of our simulations

are comparatively early in the sense of Sec. III.

V. 2D SIMULATIONS

The base of the code used for the 2D results is essentially

identical to the 1D code, except now the fields can vary

along two of the spatial dimensions x and y, and corre-

sponding discretizations in the code are represented as 2D

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

T
r(

N
)

w

analytic
t=-12
t=-13
t=-14
t=-15
t=-16

FIG. 5. Nα
α versus the rescaled coordinate w for

t ¼ −12;−13;−14;−15, and −16 for the same data depicted

in Fig. 4, along with the spike formula.
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FIG. 4. Nα
α versus x for t¼−12;−13;−14;−15, and−16 for the

spike located at x ¼ 5.6825 from the evolution depicted in Fig. 1.

Here we have translated x so that zero is the center of the spike.
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FIG. 3. t ¼ const snapshots of Nα
α for 0 ≤ x ≤ 2π (with x ¼ 0 and x ¼ 2π identified) for several different times. Here the parameters

of the initial data (51) are a1 ¼ 2.5, a2 ¼ 0.5, b1 ¼ 1.0, b2 ¼ −1.5, κ1 ¼ 0.6, κ2 ¼ 0.3.
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arrays. We compactify on a torus, identifying x ¼ 0 (y ¼ 0)

with x ¼ 2π (y ¼ 2π). As mentioned, the PAMR/AMRD

framework allows for adaptive mesh refinement; however,

here the spikes are essentially volume filling (see Fig. 14),

and little benefit is achieved compared to unigrid evolution;

hence, all our runs are unigrid.

PAMR achieves parallelization via the standard domain

decomposition approach: the full 2D spatial domain

x ∈ 0::2π; y ∈ 0::2π is broken up into m × n rectangles,

where N ¼ m × n is the number of processors in the run.

Each processor solves the equations on one of these

rectangles. The actual domain stored on a given processor

is the corresponding 2π=m × 2π=n piece of the full domain,

plus (in this case) two additional ghost cells around each

local boundary. For each iteration step of the numerical

evolution, the ghost cells of all fields are updated from the
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FIG. 6. S versus the rescaled coordinate w for t ¼ −12;−13;
−14;−15, and −16, along with the spike formula, for the spike at

x ¼ 5.6825 shown in Fig. 1.
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FIG. 7. Nα
α versus x for t ¼ −7;−7.5;−8;−8.5, and −9 for the

spike located at x ¼ 5.683 from the evolution depicted in Fig. 2.

Here we have translated x so that zero is the center of the spike.
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FIG. 8. Nα
α versus the rescaled coordinate w for t ¼ −7;−7.5;

−8;−8.5, and −9 for the same data depicted in Fig. 7, along with

the spike formula.
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FIG. 9. S versus the rescaled coordinate w for t ¼ −7;−7.5;
−8;−8.5, and −9, along with the spike formula, for the spike at

x ¼ 5.683 depicted in Fig. 2.
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FIG. 10. Nα
α versus x for t ¼ −13;−13.5;−14;−14.5, and

−15 for the spike located at x ¼ 2.5405 from the evolution

depicted in Fig. 3. Here we have translated x so that zero is the

center of the spike.
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interior (nonghost) cells of adjacent processors, then the

equations are solved at the interior points. The ghost cells

thus allow standard, centered finite difference operators to

be applied at all interior cells, and are also the vehicles

whereby local boundary information is communicated from

one processor to its neighbors, and vice versa. The hyper-

bolic equations are solved with a second order iterative

Crank-Nicolson scheme, and the elliptic slicing condition is

solved with a full approximation storage multigrid algo-

rithm [19] using Gauss-Seidel relaxation as the smoother;

both these methods are straightforwardly compatible with

the domain decomposition algorithm just described.

The same initial data procedure is used for the 2D versus

1D code, though modifying the ansatz for Zik to

Zik ¼

2

6

4

b2 þ ay cosðyþ ϕyÞ κ1 κ2

κ1 a1 cosðxþ ϕxÞ þ b1 0

κ2 0 −b1 − b2 − a1 cosðxþ ϕxÞ − ay cosðyþ ϕyÞ

3

7

5
: ð54Þ

Here, a1, ay, b1, b2, ϕx, ϕy, κ1, and κ2 are constants. The

2D simulations are computationally quite expensive com-

pared to the 1D case, so here we only show results for a

single set of initial data: a1 ¼ 0.2, a2 ¼ 0.7, b1 ¼ 1.80,

b2 ¼ −0.15, ϕx ¼ 0.15, ϕy ¼ 0.25, κ1 ¼ 0.5, and

κ2 ¼ 0.3. To check convergence, the above initial data

were evolved with resolutions 1922, 3842, 7682, 15362; see

Fig. 13 for a plot of the norm of the constraints with time.

The comparison figures shown below were obtained from

the highest resolution data.

As discussed, the hypothesis is that spikes form along

codimension one volumes of the spacetime whereNα
α ¼ 0.

For the 2D case then, this would correspond to lines within

the ðx; yÞ subspace, and the analytic approximation for the

spike profiles should approximate the full (numerical)

results on any slice orthogonal to a given point along

the spike line. The parameters ϵ and b (see Sec. III)

governing the spike profile can vary along the spike line.

For a given point that we want to compare, we measure

these parameters at one time within the simulation. We find

that the extracted value for b, the quantity characterizing the

-5

-4

-3

-2

-1

 0

 1

 2

 3

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

S

w

analytic
t=-13.0
t=-13.5
t=-14.0
t=-14.5
t=-15.0

FIG. 12. S versus the rescaled coordinate w for t ¼ −13;−13.5;
−14;−14.5, and −15, along with the spike formula, for the spike

at x ¼ 2.5405 depicted in Fig. 3.
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FIG. 11. Nα
α versus the rescaled coordinate w for t ¼ −13;

−13.5;−14;−14.5, and −15, for the same data depicted in

Fig. 10, along with the spike formula.
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FIG. 13. An l2 norm of all terms in the constraint equa-

tions (12)–(15) over the computational domain, versus time, from

four different resolution runs of the 2D case discussed in Sec. V.

This shows close to second order convergence to zero for most of

the run time; the drop in the rate toward the end is due to the spike

regions becoming under-resolved.
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geometry of the spike point (40), varies by a few percent

depending on what time we choose to measure it; this is not

unexpected, in particular because we only have the reso-

lution to uncover the early time evolution of the spike,

whereas the analytical formula should govern its late time

behavior. The parameter ϵ sets the scale of the spike at a

given time, so is more a function of the initial data than

intrinsic to the spike geometry; thus, we set it to give a best

fit to Nα
α at the time b is measured.

In the 2D case, there is also more gauge ambiguity in

performing the comparison than the 1D case; in particular,

how to define “orthogonal” far from the spike line, as well

as defining the coordinate measure w (53) along the spike.

Here we simply define tangent/orthogonal to a spike line as

measured in coordinate space ðx; yÞ, setting the overall

scale (ϵ) for the orthogonal direction w at the time the spike

parameters are measured, and then assuming the scale

narrows with time as predicted by the analytic formula (i.e.,

we cannot distinguish between the differences in scale that

arise with time from gauge effects vs limitations of the

approximation).

Here we show a comparison of the numerical results

versus analytic formulas along two slices of the simulation,

as depicted in Fig. 14. Figure 15 shows Nα
α and S

orthogonal to a point on the spike line at ðx; yÞ ¼ ðπ; πÞ

FIG. 14. Snapshots of Nα
α (top) and S (bottom) at jtj ¼ 11 of

the 2D simulation. The solid (dashed) line illustrates the slice of

the domain where the spike profiles centered at ðx; yÞ ¼ ðπ; πÞ
[ðx; yÞ ¼ ð3.37; 3.75Þ], depicted in Fig. 15 (Fig. 16) below, was

measured. The width and height of each picture cover x ¼ ½0; 2π�
and y ¼ ½0; 2π�, respectively.
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FIG. 15. Nα
α (top) and S (bottom) measured along the slice of

the 2D simulation orthogonal to the spike centered at ðx; yÞ ¼
ðπ; πÞ (solid line in Fig. 14), at several times, together with the

analytic approximations (for the latter, the spike parameter b was

measured at t ¼ −8 to be b ∼ 0.35).
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and Fig. 16 for that at ðx; yÞ ¼ ð3.37; 3.75Þ. The results for
the 2D runs are thus qualitatively consistent with that

demonstrated for the 1D case: the formulas show decent

agreement at intermediate times of the runs (late enough

that a spike has clearly formed, but not so late that the spike

has become under-resolved).

VI. CONCLUSIONS

BKL dynamics consists of a sequence of bounces in

the approach to the singularity. When spikes were first

found in the simulations of [3], they seemed like a

mysterious exception to the behavior of the rest of the

spacetime. Instead, we see that spikes are a straightfor-

ward consequence of BKL behavior. Each bounce is

driven by growth in Nα
α. But in general Nα

α vanishes on

surfaces of codimension one. Points on that surface do

not bounce, while nearby points do, leading to an ever

narrower feature: the spike. This qualitative picture gives

rise to a quantitative description encapsulated in the

formulas of Sec. III for the behavior of the invariants of

Nαβ and Σαβ as functions of transverse distance from

the spike.

Spikes are a significant challenge for numerics, due to

the need to resolve small scale features at so many points as

to make adaptive mesh refinement impractical. This places

severe limitations on the amount of time for which such a

simulation can be run. However, the BKL approximation

itself (and its consequences like the spike formulas) gets

better the closer the singularity is approached, and thus the

longer the simulation is run. The simulations of this paper

are a compromise between these two stringent require-

ments: long enough to comewithin the regime of validity of

the BKL approximation, but short enough that resolution is

not overwhelmed.

Within this uneasy compromise, we find compelling

evidence for the picture of Sec. III. That is, the simulations

match the formulas of that section as well as can be

expected. This characterization of spikes completes the

numerical evidence that BKL behavior describes the

approach to the singularity in spacetimes with compact

Cauchy surfaces.
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