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We find initial data for numerical relativity simulations of inhomogeneous cosmologies. This involves
treating an exceptional case of the general relativity constraint equations. We devise analytic and numerical
methods to treat this exceptional case. We apply the analytic method to the standard case of cosmology with
a single scalar field. The numerical method is applied to the two-field ekpyrotic cosmology.
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I. INTRODUCTION

Numerical relativity simulations of inhomogeneous cos-
mologies are performed for a variety of reasons: to explore
the inflationary scenario [1-6], or the ekpyrotic scenario
[7-10], or the nature of spacetime singularities [11-15], or
cosmological structure formation [16—18]. Any simulation
must start with initial data, which in general relativity
entails solving coupled nonlinear constraint equations [19].

This is very different from the usual treatments of
inhomogeneous cosmologies. There the inhomogeneities
are typically treated in first order perturbation theory. This
allows the perturbations to be separated into modes that
decouple and thus can each be treated independently. The
initial data can essentially be specified freely.

We would like to have numerical relativity initial data of
sufficient generality that they essentially correspond to the
sort of initial data used in cosmological perturbation theory.
This leads to difficulties, since that sort of data corresponds
to an exceptional case in the treatment of the relativity
constraint equations. However, we present a method to
overcome these difficulties.

In Sec. II we present the constraint equations of general
relativity. In Sec. III we specialize to the case relevant to
cosmology and show how to overcome the difficulties
associated with this exceptional case.

Section IV presents the application of our method to
finding numerical relativity initial data that are as close as
possible to standard one-field cosmological perturbations.
Section V presents a more challenging case associated with
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the two-field ekpyrotic scenario. Our conclusions are given
in Sec. VL.

II. CONSTRAINT EQUATIONS

Initial data for a numerical relativity simulation consist
of three-dimensional manifold X on which there is a spatial
metric y;; and an extrinsic curvature K;;. Here X represents
all of the space at the initial time at which the simulation
starts. In a phase space picture, y;; is the configuration
variable and K;;; is the momentum variable. The data cannot
be freely specified, but instead must satisfy two equations
called the momentum constraint

DZKIJ—DJK = —]/ijTiﬂn” (1)
and the Hamiltonian constraint
GR + K? — KUK;; = 2T, ,n"n". (2)

Here n* is the normal to the initial data surface, D; is the
spatial covariant derivative, and )R is the spatial scalar
curvature. T, is the stress-energy tensor, and we have
chosen units where 8zG = 1. Initial data must also be
specified for the matter fields that make up 7,

It is helpful to decompose the extrinsic curvature into its
trace K and a trace-free part A;; given by

1
Ajj = K;; — 7 Kyij. (3)

J 3

Then the constraint equations become
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. 2 .
DlAl'j —gDJK = —}’lei”n’u, (4)
2 .
(3)R + §K2 —Al]Al‘j = ZTWVL”n”. (5)

The constraint equations are usually solved by the York
method [19]. This method begins by introducing rescaled
quantities 7;; and A;; given by

7ii = vy (6)

and A; = 1//2A,~j. The quantity A; ; 1s then expressed as

It seems odd to introduce these new quantities y and W,.
However, as we will soon see, they are essentially “cor-
rection terms” to be used to convert an initial guess for a
solution of the constraint equations into an actual solution.
Using Egs. (6) and (7) in Eqgs. (4) and (5) we obtain

-~ - 2 - - 2
= k 6

= _w6yijTi/4nM’ (8)
Dby — L (ORyy — L k25 4 LAA
! 8 12 8 Y
1
= —ZTﬂDn"n”ws. 9)

Here spatial indices are raised and lowered with ;.
The derivative operator D; and scalar )R are, respectively,
the covariant derivative and scalar curvature associated
with 7;;.

For our purposes, it is helpful to think of the quantities
used in the York method as follows: K is to be freely
specified. 7;; and X;; are our initial guesses for y;; and A;;.
That is, if we happened to have (y;;, A;;) satisfying Egs. (4)
and (5) then the choice w =1 and W; = 0 would solve
Egs. (8) and (9). If our initial guess does not solve the
constraint equations, then W; and y are correction terms
that turn our initial guess into a solution. That is, by solving
Egs. (8) and (9) for W, and yw we obtain a solution of
Egs. (4) and (5). So our task of solving the constraint
equations has reduced to the task of solving Egs. (8) and (9)
for W; and .

As it stands, Egs. (8) and (9) are coupled, nonlinear
differential equations. However, the standard procedure
decouples them as follows: first define the quantity J ; by

.7] = l//6]/ijT,»ﬂn”. (10)

For each choice of matter fields, we must choose a way of
specifying initial data so that J ;j does not depend on y. In

Sec. IV we will give an explicit example of how to perform
this sort of specification.

Second, choose K to be constant, so that DlK = 0. This
choice of K to be constant sounds like a loss of generality in
the choice of initial data, but it turns out that it is not, for the
following reason: the result of evolving the initial data in a
numerical relativity simulation will be a spacetime. But
spacetime can be divided up into space and time in many
different ways. One such way is to have the surfaces of
constant time be surfaces of constant K. So in choosing
constant K for our initial data surface, we are simply
making use of the coordinate invariance of general rela-
tivity. Or to put it another way: general relativity has gauge
freedom, and we are choosing a convenient gauge.

With these choices, Eq. (8) becomes

o 3 2 . - .
D (D,W,+D,W,- —gy,»jDka) =-D'X;;-J;. (11

This is a linear equation for W; that does not depend on .
So the idea is to first solve Eq. (11) for W, and then plug the
result into Eq. (9) which is to be solved for y. Equation (9)
is a somewhat complicated looking nonlinear equation. But
it is straightforward to solve it using standard numerical
methods for nonlinear elliptic equations. Therefore, for
the rest of the paper we will only concentrate on how to
solve Eq. (11).

Equation (11) is of the form operator acting on W, equals
source, so the first thing we want to know is, does the
operator have a kernel? That is, is there a vector V; for
which

-~ - 2
Di <Dl-Vj+DjV,- —gyijDka> =0? (12)

If there is no kernel, then the operator can be inverted
and therefore there exists a unique solution of Eq. (11).
Multiplying Eq. (12) by V/ and integrating over ¥ using
integration by parts we have

S A - 2 -

But this can be the case only if at each point we have

D,-vj+DjV,-—§7,-jDkvk =0. (14)
Equation (14) is the conformal Killing equation. Its
solutions are conformal Killing vector fields. But spaces
with conformal Killing vectors are rare. Thus the con-
clusion for Eq. (11) is that there is a general case (no
conformal Killing vectors) in which there exists a unique
solution, and then there is an exceptional case in which
there is a conformal Killing vector.
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III. COSMOLOGICAL CASE

Unfortunately, the exceptional case, although in some
sense rare, is also the one of most relevance for cosmology.
Cosmological scalar perturbations have a conformally flat
spatial metric. A conformally flat metric has conformal
Killing vector fields. We are therefore led to investigate the
exceptional case, and in fact to further specialize to the case
where the conformally related metric 7;; is the flat metric J;;
(i.e., the Kronecker delta). Equation (11) then becomes

. 2 . ~

Here 0; is the usual Cartesian coordinate derivative
operator.

For linear equations where there is a kernel, we have the
Fredholm alternative: any vector is expressed as the sum of
two pieces, one in the kernel and one in the space
orthogonal to the kernel (called the adjoint). If the source
is not in the adjoint, then the linear equation has no
solutions. If the source is in the adjoint, then the linear
equation has multiple solutions, where any two solutions
differ by something in the kernel.

Our task in solving Eq. (15) is therefore to first put
conditions on the matter field initial data that ensure that the
right-hand side of the equation is in the adjoint. We must
then find what is essentially the inverse of the operator on
the adjoint space, in order to find a solution of Eq. (15).
There will be multiple solutions. However, using the fact
that any two solutions differ by something in the kernel, an
examination of Eq. (7) shows that the two solutions give
rise to the same A, j» 80 in fact we can pick any solution, and
it does not matter which one we pick.

A single mode in cosmological perturbation theory has
spatial dependence only in the direction of propagation. So
we now further specialize to the case where there is
dependence on only the x coordinate. We want initial
data for a simulation with periodic boundary conditions,
so we choose x to be a periodic coordinate with period 27z.
We choose W, =W, =0. [That is, we consider only
choices of X;; for which the solution of Eq. (15) gives
W, = W, = 0.] Equation (15) then becomes

42w X, -
- (16)

3 dx? dx

In some cases, the right-hand side of Eq. (16) is sufficiently
simple that the equation can be solved in closed form.
However, other cases require a numerical method. For similar
equations, but ones without a kernel, the standard numerical
method is to write the finite difference approximation of the
equation as a matrix equation and then to perform an LU
decomposition of the matrix [20]. However, Eq. (16) does
have a kernel, since a constant W, gives zero for the left-hand
side of the equation. And indeed, application of the formula

of [20] to this case results in division by zero. Instead, we use
a different type of LU decomposition method, described in
Appendix A, for the numerical solution of Eq. (16).

Whether solved analytically or numerically, a solution of
Eq. (16) for W, gives rise to an expression for A; j» Which
can in turn be used to solve Eq. (9) for y. The expression is
A,-j = X;; for i # j and

~ 4dwW
A, =X -, 17
XX xx+3 d_x ( )
- 2dwW,
Ayy:ny—g dx (18)
~ 2dW,
Azz:Xzz_g dx (19)

IV. STANDARD ONE-FIELD CASE

We now treat the case of cosmology with scalar field
matter. Here we will find that Eq. (16) can be solved in
closed form. We want to find initial data that are as close
as possible to a single mode of a cosmological scalar
perturbation. The stress energy of the scalar field ¢ with
potential V(¢) is

1
T = V¥ = 0 (59°0%04 V). (20

Now using Eq. (20) in Eq. (10) we find
7, =yoPosg. (21)

where the quantity P is defined by P = n*V ,¢. To make J j
independent of y we define the quantity Q by

0 =y°P, (22)
which leads to
J;=00;¢. (23)

So we specify Q, and it is only at the end, when we have
numerically solved for y, that we know the stress energy.
We will find the initial values for Q and ¢ of a
cosmological scalar perturbation, and use those in
Egs. (16) and (23) to find the general relativity initial data.
The background Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetime has the line element

ds? = —di® + a®(1)(dx* + dy? + dz?).  (24)

We will denote quantities in the background with a sub-
script zero and use an overdot for the derivative with respect
to ¢. The Hubble parameter H is given by H = a/a. Then
we have
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KO - —3H, (25)

Q) = d>y. (26)

A single mode of the scalar field is usually written as a
function of time multiplied by e?*, with the notion that
since the equations are linear, we can do all our compu-
tations with the complex mode and at the end of the day
we will take the real part. However, J ; 1s quadratic in the
scalar field, not linear, so we will write our modes as real
quantities from the start. Since we have chosen x to be a
periodic variable going from 0 to 27z, therefore ¢ will be an
integer. The quantities ¢ and Q take the form

¢ = ¢o + ¢ cos(gx) + ¢, sin(gx), (27)

0 = Qy + c3c08(gx) + ¢4 sin(gx), (28)

where ¢, ¢,, ¢3, and ¢4 are constants.
Cosmological scalar perturbations have X;; =0, so
Eq. (16) becomes

4dlPW,
3z = - (29)

Using Egs. (27) and (28) in Eq.. (23) we obtain

—J, = q(Qg + c3 cos(gx) + ¢, sin(gx))
x (¢ sin(gx) — ¢, cos(gx)) (30)

= Qogley sin(gx) — ¢z cos(gx)]

1
+ 5‘1[(0104 — c¢3) = (€1¢4 + €3¢3) cOs(2gx)
+ (c1c3 = ca¢4) sin(2gx)]. (31)

The requirement that the source be in the adjoint means that
the constant term on the right-hand side of Eq. (31) must
vanish. That is, we must require

C1Cq = CC3. (32)

This sort of constraint on the freedom to specify a
cosmological perturbation is known as an integral con-
straint [21].

Using Eq. (31) in Eq. (29) and integrating, we obtain

idWx
3 dx

= —Qolc; cos(gx) + ¢, sin(gx)]

— % [(crcq + cac3) sin(2gx)
+ (c1c3 — cac4) cos(2gx)]. (33)

This is our solution of the momentum constraint equation.

We will now express the parameters (cy, ¢y, ¢3,¢4) in
terms of the standard cosmological perturbation theory
[22,23] in Newtonian gauge.

The line element in Newtonian gauge takes the form

ds? = —(1 4+ 2¥)dr* + a*(1 = 2¥)5;;dx'dx/,  (34)

where W is the cosmological Newtonian potential.
The scalar field in Newtonian gauge takes the form

¢y = ¢o + a(t) cos(gx) + (1) sin(gx).  (35)

From Eq. (34) we find that Q and K in Newtonian
gauge are

Oy = @ o(1 = 4¥) + a*(icos(gx) + Bsin(qx)),  (36)
Ky = —3H +3(¥ + HY). (37)

It is clear from Eq. (37) that K, has dependence on the
spatial coordinates, and therefore that Newtonian gauge is
not constant mean curvature (CMC) gauge. However, we
can transform to CMC gauge through the use of a gauge
transformation. In general relativistic perturbation theory,
for every vector field & there is a gauge transformation that
consists of adding to each quantity Lie derivative with
respect to & of the background quantity. We will choose
our vector field to have only a time component. The gauge
transformed K is then

K:KN‘F,CEKO

— —3H +3(¥ + HY) + £0,(-3H)
—3(—H+ ¥+ HY — £'H). (38)

Thus to make K spatially constant, we choose & to be

Y+ HY

& 7 (39)

However, a standard result of cosmological perturbation
theory in Newtonian gauge is [23]

. 1.
‘P+H‘P=§¢0(¢N—¢o) (40)
so we find

_h

gt 2H (¢N_¢O>' (41)

Applying the gauge transformation, we find that the scalar
field in CMC gauge is
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b=y + Lepo = Py + Ey
72
— o+ <1+f—13><¢1v—¢o>

72

— g0+ (1 T f—H) (acos(qx) + Bsin(gr)).  (42)

Comparing Egs. (27) and (42) we see that two of the
parameters of our momentum constraint solution are
given by

42 12
¢ = (1 +;b_£1>a, = <1 —l—j—g)ﬂ, (43)

where all quantities are evaluated at the time f, of our
initial data.
We now find the quantity Q in CMC gauge. We have

V(o) .,
0 d)() 5

(& — ¢n). (44)

Q=0yN+L:0Qy=0n—

V()
2H

:QN_QO

where we have used the equation of motion for the
background scalar field.

To evaluate the term proportional to ¥ in the expression
of Eq. (28) for Qpy, we use the following result of
cosmological perturbation theory in Newtonian gauge [23]:

. 1. 1. . .
(H+q*/a*)¥ = §¢0(¢N — o) — §¢o<¢zv — o). (45)
Combining Eqgs. (28), (44), and (45) we obtain

)
Q:Qo+a3<l+$>(dcos(qx)+/ﬁsin(qx))
3 V/(¢0) 24'50
a¢0< 2H +H—i—qz/a2

> (acos(gx) + fBsin(gx)).
(46)

Comparing Eqgs. (28) and (46) we find that the remaining
two parameters of our momentum constraint solution are

given by
205 (V' 24
c3:a3<1~|—.¢20>0'z—a3¢0< @O)ﬁ— - %o )a,
H+q*/a® 2H  H+q*/d®

52 . Yy Yy

C4:a3<1+%>ﬂ_a3¢0< (¢0)+ _ ¢20 2>ﬂ7
H+q"/a 2H H+qg/a

(47)

where all quantities are evaluated at the time 7, of our

initial data.

Using Egs. (43) and (47), we see that the constraint on
the parameters c;c, = c,c3 becomes

apf = pa. (48)

V. EKPYROTIC TWO-FIELD CASE

We now treat the case of the ekpyrotic two-field model
[24]. In this model there is a scalar field ¢ with a potential
V(¢) and thus the same stress energy as in Eq. (20).
However, there is also a second scalar field y whose kinetic
term is coupled to the first scalar field through a function
k(¢). In the ekpyrotic scenario, ¢ causes the smoothing
during a contracting phase prior to the bounce into the
big bang, while ¢ and y together ensure the appropriate
spectrum of perturbations. The combined stress energy of
the two fields is

1
T/w = vy¢vy¢ ~ 9w <§ VepV,p + V>
1
+ () [V,,;(Vy;( - Egﬂyvaxvax} . (49)

As before, we define P and Q by P =n"V,¢ and
QO = y°P. However, we also define P, and Q, by P, =
n'V,yand Q, = 1//6PI. Since we are concerned with scalar
modes, we will choose X;; =0. Then the momentum
constraint once again takes the form

AW, -
g dx2 - _JX' (50)

But now with J, taking the form

Jo= 00,4 +x(¢)0,0.1. (51)

In this case, we are not so much concerned with
matching a particular perturbative mode, but rather with
coming up with a class of initial data, not necessarily small,
of sufficient generality to allow a thorough numerical
exploration of the two-field ekpyrotic scenario. The con-
dition needed for a solution of Eq. (50), namely that J, be
in the adjoint, becomes

2z -
/ dxJ, =0. (52)
0

One simple way to satisfy this condition is to make ¢, y, O,
and Q, functions of cosx. In this way, both Q0,¢ and
k(¢)Q,0,x become odd functions of x, whose integral over

one period therefore vanishes. We will take the usual choice
for k(¢) of

K(p) = e, (53)
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where ¢ is a constant. For nonperturbative initial data, we
cannot solve Eq. (50) in closed form. Therefore instead we
use the numerical method presented in Appendix A. If we
were doing a perturbative treatment, we would replace e~“¢
with 1 — c¢ and solve Eq. (50) using the analytic methods
of the previous section. Figures 1 and 2 show the results
of such a numerical solution. Here we have used ¢, y, O,
and Q, of the form ¢ = ¢jcos(gx), Q = c;cos(gx),
x = dycos(gx), Q, = d; cos(gx). We plot the results of
the numerical treatment in a solid line and the results of the
corresponding perturbative-analytic treatment in a dashed
line. In Fig. 1 we pick parameters ¢ =5, ¢ = 1, ¢y = 0.1,
¢ =0.2, dy=0.2, d; = 0.3, which correspond to weak
initial data. Note that in this case the perturbative result is
quite close to the numerical result. In contrast, in Fig. 2
we pick parameters ¢ =5, g=1, ¢g=1.0, ¢; =14,
dy = 2.0, d; = 1.6 corresponding to much stronger initial
data. Here the perturbative result is not at all a good

0.02

0.015

0.01

0.005

(4/3)Wx
o

-0.005

-0.01

-0.015[

-0.02O

FIG. 1. (4/3)W, vs x for the numerical method (solid line) and
perturbative method (dashed line) for weak initial data.

(4/3)Wx

FIG. 2. (4/3)W, vs x for the numerical method (solid line) and
perturbative method (dashed line) for strong initial data.

approximation for the full numerical treatment, and so the
numerical method is definitely needed.

VI. CONCLUSION

We have provided methods to generate more extensive
sets of initial data for numerical relativity simulations of
inhomogeneous cosmologies. The sort of data needed for
inhomogeneous cosmologies constitute an exceptional case
within the York method for finding general relativity initial
data. Because it is exceptional, this case cannot be treated
using the standard numerical methods. Nonetheless, we
have found some situations where the problem can be
solved in closed form. And for the situations that cannot be
treated in closed form, we have found a numerical method,
a subtle modification of the standard LU decomposition
method, that works.

Typically the goal of numerical relativity simulations of
inhomogeneous cosmologies is to make assertions about
what outcomes result from “generic” initial conditions. But
this means that the wider the class of initial data used for the
simulations, the more confidently one can assert that the
simulations give the generic outcome. It would be interest-
ing to repeat some of the simulations of inhomogeneous
cosmologies (e.g., some of the ones given in the references
of this paper) with our more general initial data to see if the
conclusions about outcomes remain the same.

ACKNOWLEDGMENTS

We thank Anna Ijjas, Paul Steinhardt, and Frans
Pretorius for helpful discussions. D. G. thanks Princeton
University for hospitality and acknowledges support from
NSF Grant No. PHY-1806219.

APPENDIX: NUMERICAL METHOD

We need to numerically solve an equation of the form

d*f
— = Al
2= (A1)
on a grid with periodic boundary conditions. We pick N
grid points with spacing A and denote with a subscript i the
value of the function at grid point i. Using centered
differences, Eq. (A1) becomes

fi+1+];z‘2—1_2fi:gi' (A2)

This equation can be used at all grid points except grid
points 1 and N. To evaluate Eq. (A1) at these points, we add
two ghost zones, grid points 0 and N + 1 that implement
the periodic boundary conditions: f, = fy and fy.| = f.
We then find
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Algy = fr+ fo—2f1 = fa+ fn =211, (A3)

Ay = fyer + fva = 2fn = f1+ fvo1 = 2fn. (A4)

Using the notation |f) for the column vector of f; and
similarly for |g) we find that Eq. (A2) with periodic
boundary conditions applied can be written as the matrix
equation A|f) = A?|g) where for definiteness we display
the matrix A for the case N = 4:

2 1 0
2 1 0
A= (A5)
0 -2 1
0 1 -2

If A were invertible, we could solve for |f) by multi-
plying both sides of the equation A|f) = A%|g) by A~
However, it is easy to see that A is not invertible, since it
annihilates the vector |f) where all the f; are equal to the
same constant. This is just the finite difference version of
the statement that the operator d?/dx* annihilates the
function f that is a constant.

For an invertible matrix, there is a standard decompo-
sition of the matrix into lower and upper triangular matrices
(called LU decomposition) that allows a convenient algo-
rithm [20] for solving the system of linear equations
associated with the matrix. The matrix A is not invertible,
but, nonetheless, we have an analog of the LU decom-
position, which we display for the N =4 case: A = LU
where

-1 0 0 1
1 -1 0 0
L= , (A6)
0 1 -1 0
0o 0 1 -1
1 -1 0 0
0 1 -1 0
U= (A7)

(=)
=
—_
|
—_

Note that despite their names, the matrix L is not lower
triangular because of the entry in the upper right-hand
corner, and the matrix U is not upper triangular because of
the entry in the lower left-hand corner.

As with standard LU decomposition, the idea is that to
solve the equation LU|x) = |r) for |x), we first solve
Lly) = |r) for |y) and then solve U|x) = |y) for |x). We
will work out this problem explicitly for the N = 4 case
illustrated in Eqs. (A5)—(A7). Then we will describe

the corresponding algorithm for general N. The equation
Lly) = |r) becomes the following set of linear equations:

Vit ya=ry, (A8)
Y1 = Y2 =T, (A9)
Y2 = y3 =13, (A10)
Y3 —Ya =Ty (All)

Adding Eqs. (A8)—(All) we obtain ry + r, + 13 + 14 = 0.
In other words |r) must be in the adjoint, which is what the
Fredholm alternative tells us needs to be true anyway if
there is to be a solution to the original problem A|x) = |r).

Notice that the left-hand sides of Eqs. (A8)—(All) are
each differences of two y;. This means that if we have a
solution of these equations, then we can obtain another
solution simply by adding the same constant to each y;. We
will exploit this freedom to choose y, = 0. Note that
Eq. (A8) then yields y; = —ry. But knowing y; now allows
us to solve Eq. (A9) for y,, which in turn allows us to solve
Eq. (A10) for y3. This solution for the y; is then

—r
—(ry 4 r)
—(r +ry+13)
0

y) = (A12)

Note that the average value of the y; is then y =
(=1/4)(3r; +2r, + r3). We will produce a new solution
by subtracting this average from each y; and thus have a
solution where the sum of the y; vanishes. (As we will soon
see, we will need this solution in order to solve the equation
Ulx) = |y).) The new solution is

—r1+2r2—|—r3

1 —r1—2r2—|—r3

y) = (A13)

T4 —ry —2ry = 3r;
3r1 +2ry 4+ 13

The equation U|x) = |y) becomes the following set of
linear equations:

X1 — X2 =DV, (A14)
Xy = X3 = Y2, (AIS)
X3 = X4 = Y3, (A16)
—X; + X4 = Yy (A17)
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Adding Eqgs. (A14)—(A17) we obtain y; +y, +y3+ys=0.
In other words, we did need to impose the condition that |y)
is in the adjoint on the previous solution.

Since the left-hand sides of Eqs. (A14)—(A17) are each
differences of two x;, we can obtain from any solution
another solution simply by adding the same constant to
each x;. We will exploit this freedom to choose x; = 0.
Note that Eq. (A17) then yields x4 = y4. But knowing x4
now allows us to solve Eq. (A16) for x5, which in turn
allows us to solve Eq. (A15) for x,. This solution for the x;
is then

0
Y2+ Y3+

Y3+ Vs
Ya

|x) = (A18)

Note that the average value of the x; is then x =
(1/4)(y, 4 2y3 + 3y4). Though not strictly necessary, we
will proceed in analogy to our previous method for finding
|y) and produce a new solution for |x) by subtracting this
average from each x; and thus have a solution where the sum
of the x; vanishes. The new solution is

—y2 —2y3 =3y,
1] 3y +2y;+y4
41 =2+ 23+
—y2—2y3+y4

(A19)

Finally, using Eq. (A13) in Eq. (A19) we obtain the
solution to the original problem LU|x) = |r):
=3r; +r3
1| —ri—4r,—r;

8 ri—3r;
3ry +4ry 4+ 3r;

|x) = (A20)

This solution can also be expressed in a slightly more
natural looking way using r; +r, +r3 +r4 =0 as

r3—3r1

1] ry—3r
== 7 (A21)

8 r1—3r3

r2—3r4

We now describe the general form of the algorithm to
obtain this solution (i.e., for general N, not restricted to
N = 4). The kernel of A consists of all |f) where the f; all
have the same values. The adjoint of A consists of all |f)
where Y% | f; = 0. This kernel of A is also the kernel of L
and U, and the adjoint of A is also the adjoint of L and U.
The vector |r) must be in the adjoint, or there is no solution
of L|y) = |r). But if |r) is in the adjoint, then there are
multiple solutions for |y) each differing by something in the
kernel. We make use of this freedom to choose yy = 0. It
then follows that y; = —r; and thaty; | = y; — r;; 1, which
we iteratively solve in succession for y,, ys, ..., Vy_;. This
ly) is generally not in the adjoint, which would make it
impossible to solve Ulx) = |y). However, we turn it into a
solution in the adjoint by subtracting the appropriate vector
in the kernel. That is, we find the average y of the y; and
then subtract y from each y; to make our new vector |y).
Now we use the same sort of procedure to solve
Ul|x) =|y). We use the freedom to add something in
the kernel to choose x; = 0. We then have xy = yy, as
well as x,_; = x; +y;_; which we solve iteratively for
XN—1sXN—2,---»X2. This |x) is a solution of the equation
Alx) = |r) but we go ahead and produce a solution in the
adjoint by subtracting X from each x;.

This algorithm may sound a bit complicated, but it is
straightforward to program and the resulting code is about
the same length as the general description given above of
the algorithm.
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