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ABSTRACT

Flood extent mapping plays a crucial role in disaster management and national water fore-
casting. In recent years, high-resolution optical imagery becomes increasingly available with
the deployment of numerous small satellites and drones. However, analyzing such imagery
data to extract flood extent poses unique challenges due to the rich noise and shadows, ob-
stacles (e.g., tree canopies, clouds), and spectral confusion between pixel classes (flood, dry)
due to spatial heterogeneity. Existing machine learning techniques often focus on spectral and
spatial features from raster images without fully incorporating the geographic terrain within
classification models. In contrast, we recently proposed a novel machine learning model called
geographical hidden Markov tree (HMT) that integrates spectral features of pixels and topo-
graphic constraint from Digital Elevation Model (DEM) data (i.e., water flow directions) in a
holistic manner. This paper evaluates the model through case studies on high-resolution aerial
imagery from National Oceanic and Atmospheric Administration (NOAA) National Geodetic
Survey (NGS) together with DEM. Three scenes are selected in heavily vegetated floodplains
near the cities of Grimesland and Kinston in North Carolina during Hurricane Matthew floods
in 2016. Results show that the proposed HMT model outperforms several state of the art ma-
chine learning algorithms (e.g., random forests, gradient boosted model) by an improvement
of F-score (the harmonic mean of the user’s accuracy and producer’s accuracy) from around
70% to 80% to over 95% on our datasets.
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1. Introduction

Flood extent mapping plays a crucial role in addressing grand societal challenges such as
disaster management, national water forecasting, as well as energy and food security (Efte-
lioglu et al. (2016)). For example, during Hurricane Harvey floods in 2017, first responders
needed to know where flood water was in order to plan rescue efforts to residents in vulnera-
ble communities, to understand the extent of damage to critical infrastructures (e.g., chemical
plants and oil refineries), and evaluate the impact on road networks and transportation. In na-
tional water forecasting, National Oceanic and Atmospheric Administration (2018) and Cline
(2009) introduce a Super-resolution National Water Model being operated at the National
Water Center, which can forecast the flow of over 2.7 million rivers and streams through
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the entire continental U.S.. One main issue of the national water model is that it has a large
number of parameters in physical models that can only be calibrated and validated based on
observations from a few thousands of river gauges. Detailed flood extent maps derived from
remote sensing observations provide an alternative way to calibrate and validate the national
water model in broad spatial coverage.

Mapping flood extent from earth observation imagery has been extensively studied in the
remote sensing community. Existing techniques can be categorized by the types of remote
sensors (optical sensor, radar, Light Detection and Ranging (LiDAR)) or the underlying ap-
proaches (machine learning, non-machine learning). Fayne et al. (2017) uses the Normalized
Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer
(MODIS) optical imagery together with change detection to classify flood extent. McFeeters
(1996) and Xu (2006) propose the use of Normalized Difference Water Index (NDWI) and
modified NDWI to detect surface water features respectively. Sun, Yu, and Goldberg (2011)
proposes to use decision trees to map flood extent from MODIS optical images. Zhang,
Zhu, and Liu (2014) proposes the blend of Land Remote-Sensing Satellite (Landsat) and
MODIS optical images for urban flood mapping. Lin et al. (2019) proposes algorithms fil-
ter noises from terrain shadows to improve National Aeronautics and Space Administration
(NASA)/MODIS Near Real-Time (NRT) Global Flood Mapping. Feng, Liu, and Gong (2015)
uses random forest algorithms on Unmanned Aerial Vehicles (UAV) imagery for mapping
flood extent in China. One major limitation of using imagery from optical sensors is that the
scene is often obscured by obstacles (e.g., cloud, tree canopies). Because of this reason, radar
sensor data are often used to identify flood extent since the signals can penetrate through
clouds and some vegetated areas. Giustarini et al. (2012) proposes a change detection method
on radar imagery from TerraSAR-X. Horritt et al. (2003) proposes to use airbone Synthetic
Aperture Radar (SAR) imagery to identify flooded vegetation. Townsend (2001) proposes to
use multi-temporal SAR imagery to map seasonal flooding in forested wetlands. Oberstadler,
Honsch, and Huth (1997) assessed the capabilities of European Remote Sensing (ERS) satel-
lite ERS-1 SAR data for flood mapping. Yang et al. (2014) proposes change detection algo-
rithms for high-resolution SAR images in the context of flood mapping. Though radar data
have the advantage of penetration through clouds and some vegetation, the signals are often
very noisy (e.g., speckles due to interference with irregular surface). There are works that
propose the integration of optical or radar sensor data together with topographic information
from Digital Elevation Model (DEM) to delineate flood extent. Wang, Colby, and Mulcahy
(2002) proposes the use of Landsat optical imagery together with topography from DEM to
map flood extent. The approach showed significant improvements in identifying the underes-
timated flood extent in heavily vegetated area, but the approach is not automatic and involves
manually thresholding the DEM. Such threshold may vary from one region to another. Mat-
gen et al. (2007) proposes the integration of SAR data, high-precision topographic features,
and a river flow model for near real-time flood management. Rahman et al. (2019) proposes to
use model-driven soil moisture from the Soil Moisture Active Passive (SMAP) data product
for rapid flood progress monitoring to estimate crop loss in several flood events, including the
Hurricane Harvey flood in Houston 2017. There are other review articles on machine learning
or data science techniques for earth observation imagery data, including Jiang and Shekhar
(2017), Jiang (2018), Shekhar et al. (2015), Jiang (2020), and Karpatne et al. (2016). Rah-
man and Di (2017) provides a review on existing methods and approaches that overcome the
constraints in the application of spaceborne remote sensing in flood management, such as bad
weather condition and cloud cover.

Mapping flood from high-resolution imagery in heavily vegetated areas poses several
unique challenges that are not well addressed in traditional machine learning classifica-
tion models. First, high-resolution earth imagery often has noise, shadows, clouds, and tree



canopies (Jiang et al. (2012, 2013, 2015)). Second, class confusion exists due to heteroge-
neous spectral features. For example, the spectral signature of pixels in shadows and flooded
areas can be very similar but they are in different classes (Jiang et al. (2017, 2019)). As an-
other example, pixels of tree canopies overlaying flood water have the same spectral features
with pixels of tree canopies in dry areas. This is a challenge for machine learning models
which classify pixel types largely based on pixel or neighborhood features on the imagery.
Shen et al. (2019) finds that though the automation and robustness of non-obstructed inun-
dation mapping have been achieved with acceptable accuracy, they are not yet satisfactory
for the detection of beneath-vegetation flood mapping. Third, implicit directed spatial depen-
dency exists between flood pixel locations. Specifically, due to gravity, flood water tends to
flow to nearby lower locations following topography (Sainju et al. (2020)). Such dependency
is not uniform in all directions (anisotropic). Such topographic constraints are often ignored
in the existing machine learning image classification algorithms. Finally, the data volume is
huge in high-resolution imagery (e.g., hundreds of millions of pixels), requiring algorithms
to be computationally scalable.

To address these challenges, a novel spatial classification model called geographical hid-
den Markov tree (HMT) was recently proposed in the data mining community by Xie, Jiang,
and Sainju (2018); Jiang and Sainju (2019); Jiang, Xie, and Sainju (2019). Intuitively, HMT
is a spatial machine learning model that integrates local likelihood of pixels’ classes derived
from their own spectral signatures and the topographic constraint between pixels derived from
water flow directions. Specifically, HMT is a probablistic graphical model that generalizes
the common hidden Markov model (HMM) from a one-dimensional (1D) sequence to a two
dimensional (2D) geographical map. The hidden class layer contains nodes (pixels) in a re-
verse tree structure to represent anisotropic spatial dependency of water flow directions. Each
hidden class node has an associated observed feature node for the same pixel (local class
likelihood). Such a unique model structure can potentially reduce classification errors due
to noise, obstacles, and heterogeneity among spectral features of individual pixels. Efficient
algorithms exist for model parameter learning and class inference based on the Expectation-
Maximization (EM) algorithm with message propagation on tree traversal.

The goal of this paper is to introduce this technique to the remote sensing community. The
paper first introduces the statistical formulation and intuition of the HMT approach. It pro-
vides three detailed case studies on high-resolution optical imagery from National Oceanic
and Atmospheric Administration (NOAA) National Geodetic Survey (NGS) collected during
Hurricane Matthew floods in North Carolina 2016. Results show that HMT outperforms sev-
eral state of the art machine learning algorithms in accurately mapping flood extent in heavily
vegetated areas. Note that the paper only focuses on machine learning approaches for flood
mapping. Other non-machine learning approaches (e.g., thresholding a water index, simple
change detection) are beyond the scope. The HMT model can be further tested on datasets
collected by different sensors among different areas and in different flood events in future
studies.

2. Materials and Methods

2.1. Dataset Description

Our real-world high-resolution aerial imagery datasets were acquired by the NOAA Re-
mote Sensing Division to support homeland security and emergency response requirements
after each hurricane disaster. The imagery was downloaded from the NOAA NGS at National
Oceanic and Atmospheric Administration (2017) related to the Hurricane Matthew in 2016.
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Figure 1.: The map of three study areas (Source: NOAA NGS, Date: 15 October 2016). (a)
North Carolina. (b) Study area. (¢) Grimesland test region. (d) Kinston region. The same
training set in Kinston region is used for three test scenes (test area 1 and test area 2 in
Kinston region as well as Grimesland test region).

The imagery was originally at 0.5 metre spatial resolution with red, green, and blue bands
only. The limited spectral bands in the visible spectrum and the varying illumination condi-
tions in the imagery were the major challenges in utilizing the data for flood mapping. We
used this dataset to test the potential of HMT in leveraging topography to address spectral
limitations. The imagery for flood disasters only covered a few scattered scenes at river flood-
plains in North Carolina and South Carolina. The specific spatial coverage of the complete
datasets can be found on the Emergency Response Imagery Viewer at National Oceanic and
Atmospheric Administration (2017). The high-resolution imagery was collected only once
during the hurricane flood disaster. Due to the large data volume, we cropped three represen-
tative scenes near the cities of Grimesland and Kinston in North Carolina. We also resampled
the imagery into 2 metre resolution to reduce the data volume and also to make it consistent
with the DEM, which was downloaded from North Carolina State University Library (2018)
at 2 metre resolution. The HMT model uses DEM data to construct a flow dependency tree
structure on all pixels in the a region. This tree structure is the core component of the HMT
model in parameter learning and class inference, since inferring pixels’ classes are not only
based on its own spectral signatures but also the likely classes of other pixels on the topo-
graphic surface. The locations of the three scenes are shown in Figure 1.

The locations of the ground truth polygons in the three study areas are also shown in
Figure 1. These flood and dry polygons were manually labelled through visual interpreting the
aerial imagery together with the DEM. The labeled polygons within the rectangular boundary



Table 1.: Dataset description

Training set Testing set
Dry  Flood Dry Flood
Grimesland, NC 5,000 5,000 49,597 99,532
Kinston area 1, NC 5,000 5,000 46,245 20,331
Kinston area 2, NC 5,000 5,000 110,805 123,366

Dataset

of the test regions are used for testing. The labeled polygons in Kinston region outside the test
areas were used for training. Note that the same training set was used for model learning in all
three test regions. For the test region in Grimsland, the training data was far away from it so
that we can evaluate the effectiveness of the transductive learning in HMT (initializing model
parameters from training data and updating the parameters based on test data that is collected
far away). Training and testing samples (pixels) were randomly drawn from the ground truth
polygons. Their numbers are listed in Table 1.

2.2. Methods

We now introduce the HMT model first proposed by Xie, Jiang, and Sainju (2018), which
explicitly incorporates the physical constraints of water flow directions based on topogra-
phy into image classification process. Figure 2 provides an illustrative example with eight
consecutive locations (pixels) in 1D space. We can consider these eight locations as eight
consecutive pixels on a 1D intersection of a DEM layer. Figure 2 (a) shows the DEM values
of the eight pixel locations with a topography structure. Due to gravity, water tends to flow
from a location to nearby lower locations. If location 5 is flooded, then locations 2 to 4 and
6 to 7 must also be flooded. Such dependency structure of pixel classes based on topography
can be represented in a tree structure shown by Figure 2 (b), whereby any node being flooded
indicates all sub-tree nodes being flooded as well. For example, in Figure 2 (), if node 5 is
flood, all the subtree nodes (2 to 4, and 6 to 7) must be flooded. Similarly, if node 1 is flooded,
nodes 2 to 7 must also be flooded. Though the example shows the flow dependency tree based
on elevation values in one dimensional space (DEM along a 1D line segment), the idea can
be easily generalized to a two dimensional DEM map, which is used in this paper. Figure 3
shows the topography (illustrated by flow directions) on DEM in the three test regions. It is
worth noting that the flow dependency tree structure is not merely based on flow directions
between adjacent pixels. For example, if we were only using flow directions between adjacent
pixels in Figure 2 (a) to construct the flow dependency tree, we can only capture the depen-
dency between pixel 5 and its neighbors 4 and 6 and miss the dependency between pixel 1
and pixel 5 (though in reality, if pixel 1 is flood, pixel 5 should also be flood since water
can fill into pixel 5 from pixel 1). The flow dependency tree can be efficiently constructed
from a DEM layer based on computational topology algorithms (details are in Xie, Jiang, and
Sainju (2018)). Note that in this paper, we use the word node, location, sample, and pixel
exchangeably.

The HMT model incorporates the class dependency structure from topography into a hid-
den class layer. As illustrated in Figure 2 (c), an HMT model consists of two layers: a hidden
class layer of unknown pixel classes (e.g., flood, dry), and an observation layer of sample
spectral features (e.g., spectral band values). Each node corresponds to a spatial data sam-
ple (image pixel location). Arrow directions between class nodes (with gray shading) capture
class transitional probability based on the topography structure. Arrows between an observa-
tion node (without shading) and a hidden class node (with gray shading) captures the con-



4 Elevation

@

O Dry class

O Flood class .

®

Flood water surface

O Observed feature node
O Hidden class node

Spatial location

(©)

(b)

(@)

Figure 2.: Illustration of hidden Markov tree framework. (a) Eight consecutive sample loca-
tions in 1D space. (b) Partial order constraint in a reverse tree. (¢) Hidden Markov tree
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Figure 3.: Flow direction maps based on DEM of the three test regions. (a) Study Area. (b)
Grimesland (m). (¢) Kinston: Area 2 (m). (d) Kiston: Area 1 (m)



ditional probability of a pixel’s spectral signatures given its class (local likelihood). In this
way, the class of a pixel is determined by not only the spectral signatures of itself but also
the classes of other pixels based on water flow directions in topography surface. Such model
structure is important since the spectral signatures of individual pixels or their local neigh-
borhoods can be misleading due to noise, shadows, obstacles (e.g., tree canopies, clouds), as
well as spectral confusion (i.e., the same pixel color may correspond to different classes due
to varying illustrations). The class dependency structure based on the topography constraint
provides an opportunity to overcome these issues.

HMT is a probabilistic graphic model. It generalizes the common hidden Markov model
from a total order sequence structure to a partial order tree structure. Based on the dependency
structure in the model, the joint distribution of all samples’ features and classes are expressed
as Equation (1), where X and Y are matrices of the spectral features and class labels of all
samples respectively, n is the sample (node) index, N is the total number of samples (i.e.,
nodes, or pixels), &, and y,, are the spectral feature and class label of the nth sample, Z,, is
the set of parent nodes of the nth node in the dependency tree, and M,, = {yx|k € Z,} is the
set of class nodes corresponding to parents of the nth node. For a leaf node n, Z,, = (), and
Pr(yn|M,) = Pr(yn).

Pr(X,Y) = Pr(X|Y)Pr(Y)

N N (D
= [ Pr(@nlyn) [ PryaM.)
n=1 n=1

Specifically, the conditional probability of a sample feature vector given its class can be
assumed independent and identically distributed (i.i.d.) Gaussian for simplicity, as shown in
Equation (2), where p,, and 3, are the mean and covariance matrix of feature vector z,
for class y,, (y, = 0,1 with 0 for dry, and 1 for flood). It is worth noting that Pr(xy, |y, )
could be more general than i.i.d. Gaussian. This conditional probability captures the local
likelihood of a pixel’s class (flood or dry) based on its own spectral features. For example,
pixels corresponding to exposed flood water surface often look brown in color. However, for
pixels corresponding to noise and obstacles (e.g., tree canopies), their spectral colors may
not indicate the true underlying classes. That is why we need to use the class transitional
probability to capture the dependency between pixel classes based on topography.

Pr(zn|yn) ~ N(p‘y,n 2yn) (2)

Class transitional probability follows the partial order constraint from topography. For ex-
ample, due to gravity, if any parent node’s class is dry, the child’s class must be dry; if all
parents’ classes are flood, then the child has a high probability of being flood. For example,
in Figure 2, if node 5 is flood, then nodes 2 to 4 and 6 to 7 must also be flood. Consider flood
as the positive class (class 1) and dry as the negative class (class value 0), the transitional
probability is actually conditioned on the product of parent classes yz, = erZn yi. The
specific transitional probability is expressed in Table 2, where p is the probability of a child
node being class 1 (flood) given all parents in class 1 (flood). Due to spatial autocorrelation,
the value of p is very high (close to 1). For a leaf node n, Z,, = (). The transitional probability
is degraded into simple class prior probability Pr(y,|M,,) = Pr(y,) as expressed on the right
of Table 3, where 7 is the prior probability of y,, being in class 1. The class transitional prob-
ability is a key component is the HMT model. The local likelihood of individual pixels based
on their own spectral features can be misleading due to noise, obstacles, and spectral confu-
sion. The class transitional probability provides additional dependency constraints between



Table 2.: Class transition probability Pr(y,|yz, )

Yz, =0 yz, =1
Yn =10 1 1—-p
yn =1 0 P

Table 3.: Class prior probability

Pr(yn)
Yo =0 1—m
Yn =1 ™

pixels’ classes based on topography. In this case, even if some pixels’ local class likelihood is
wrongly estimated, it can still be corrected by other good pixels (whose local class likelihood
is more trustworthy).

The parameters of HMT include the mean and covariance matrix of sample features in
each class, prior probability of leaf node classes, and class transition probability for non-leaf
nodes. We denote the entire set of parameters as ® = {p,m, p., X.|c = 0,1}. Learning
the set of parameters poses two major challenges: first, there exist unknown hidden class
variables Y = [y, ..., yN]T (T refers to Transpose), which are non-i.i.d.; second, the number
of samples (nodes) is huge (up to hundreds of millions of pixels).

To address these challenges, the EM algorithm and message (belief) propagation can be
used. The EM-based approach has the following major steps:

(1) Initialize parameter set @
(2) Compute posterior distribution of hidden classes: Pr(Y|X, ®¢)
(3) Compute posterior expectation of log likelihood:
LL(®) = Eyx e, log Pr(X,Y|O®)
(4) Update parameters: @¢ <— arg maxg LL(O)
Return @y if it’s converged (no updates), otherwise go back to (2)

Among the four steps above, step (2) that computes the joint posterior distribution of all
sample classes Pr(Y|X, ®g) is practically infeasible due to the large number of hidden class
nodes that are non-i.i.d. Fortunately, it is not necessary to compute the entire joint poste-
rior distribution of all sample classes. In fact, we only need the marginal posterior distri-
bution of a node’s and its parents’ classes for non-leaf nodes, as well as the marginal pos-
terior distribution of a node’s class for leaf nodes. The reason can be explained through
the expression of the posterior expectation of log likelihood in Equation (3). Note that for
leaf node, Z,, = (), and the last term in the last line of above equation is degraded, i.e.,
log Pr(yn| My, ©)Pr(y,, M,,| X, ®9) = log Pr(y,|®)Pr(y,|X, Op). It can be seen that the
joint likelihood can be decomposed into local factors only related to an individual node n and
its parents Z,. To compute the expected log likelihood expression, we first need to compute



the local marginal posterior distribution such as Pr(y,|X, ®¢) and Pr(y,, M, |X, ).

LL(@) = Ey‘x’(.)o log PI‘(X,Y’@)

N N
= IEY\X,G‘)o IOg {H Pr(xn‘yna 6) H Pl"(yn|Mn, @)}

n=1 n=1

N
= "Pr(Y[X,00) > {log Pr(zy|yn, ©) + log Pr(yn|M,, ©)}
Y n—1 )

N
= Z Z Pr(yn|X, ®¢) log Pr(x,|y,, ®)

n=1 Yn

N
+ Z Z Pr(ynuMn’X7 ®0)logPr(yn’Mn7®>
n=1 y,,M,

To compute the marginal posterior distribution Pr(y,,, M,,) and Pr(y,,) (we omit the condi-
tion on X and ® for brevity), we can use the message propagation method based on the sum
and product algorithm. Due to space limit, we do not provide the detailed math formula. The
intuition of message propagation along graph (or tree) nodes is a process of marginalizing
out those corresponding node variables in a joint distribution. The marginalization process is
done over a tree by a traversal order to reduce redundant computation. More details can be
found in Kschischang, Frey, and Loeliger (2001); Ronen, Rohlicek, and Ostendorf (1995).

After learning model parameters, we can infer hidden class variables by maximizing the
overall probability. A naive approach that enumerate all combinations of class assignment is
infeasible due to the exponential cost. We use a dynamic programming based method called
max-sum from Rabiner (1989). The process is similar to the sum and product algorithm above.
The main difference is that instead of using sum operation, we need to use max operation in
message propagation, and also memorize the optimal variable values. We omit the details
due to space limit. The main intuition is that in class inference, the class label for each node
is not only based on the likelihood of its own spectral features, but also other nodes’ class
labels through transitional probability. In other words, the class labels of all nodes are jointly
inferred based on the topography constraint.

Note that our HMT model uses transdutive learning, i.e., the model is trained based on
not only the features and labels from the training pixels but also the features from the test
samples. This is reflected by the fact that the model will create a flow dependency tree basd on
the topography of the test region. Thus, the model needs to be re-trained for each specific test
region. This is different from many existing machine learning algorithms based on inductive
learning: once a general model is learned from training pixels, it can be applied to any test set
instead of only being applied to a particular test set. Since the computational structure of both
the parameter learning and class inference is largely based on tree traversal operations, the
time cost is linear to the number of tree nodes. The model training is computationally very
fast.

3. Results

In this section, we compared the HMT model with several baseline methods in classifica-
tion performance on three real-world datasets. Unless specified otherwise, we used default
parameters in open source tools for baseline methods. Candidate classification methods in-



clude:

e Non-spatial classifiers: We tested random forest (RF) and gradient boosted tree
(GBM) in R packages on spectral features (red, green, blue spectral bands).

e Non-spatial classifier with post-processing label propagation (LP): We tested RF
and GBM together with label propagation smoothing using 4 neighborhood Zhu and
Ghahramani (2002). Label propagation was added on top of the pre-classified map from
a classifier through updates based on neighborhood majority.

o HMT: We used the model from Xie, Jiang, and Sainju (2018) implemented in C++. We
added an additional hidden class layer to accommodate the large scale of tree canopies
overlaying flood water.

The evaluation metrics we used include precision (P) (user’s accuracy), recall (R) (pro-
ducer’s accuracy), and F'-score (F1) (the harmonic mean between precision and recall). The
definition of the metrics are provided in Equation 4, Equation 5 and Equation 6, where TP, FP,
and FN are the numbers of true positives (TP) (i.e., pixels truly in the positive class and cor-
rectly predicted into the positive class), false positives (FP) (i.e., pixels truly in the negative
class but mistakenly predicted into the positive class) and false negatives (FN) (i.e., pixels
truly in the positive class but mistakenly predicted into the negative class) respectively. A
high precision on a class means that among the pixels predicted into the class, most predic-
tions are correct. A high recall on a class means that among the pixels that are actually in the
class category, most of them are correctly identified in the prediction. Quantitative evaluation
results on classification accuracy was based on the predictions on randomly sampled pixels
from labeled test polygons.

_ (TP)
~ (TP)+(FP) @)
_ (TP)
~ (TP)+(FN) ©®)
Rx P
Fl =2x Rip (6)

3.1. Classification Performance Comparison

The comparison of classification performance between different methods on the three
datasets are summarized in Table 4, Table 5, and Table 6 respectively.

From the results on Grimesland dataset in Table 4, we can see that traditional classification
models such as RF and GBM performance poorly (with overall F; scores of 0.6 and 0.68).
The GBM is slightly better than RF. Within each method, the precision for the flood class is
very high (0.95 and 0.9), meaning that the flood pixels being identified are largely correct.
These correctly predicted flood pixels are mostly open exposed flood surface. However, the
recall of the flood class is very low (0.42 and 0.59), meaning that there are a significant
amount (around half) of flood pixels not being identified. The large amount of actual flood
pixels being missed in the prediction results are largely due to the obstacles in the image (e.g.,
tree canopies). The spectral signature of the tree canopies overlaying flood water is very close
to that of the trees in the dry area, and thus they are mistakenly classified into the dry class
(though there are flood water beneath). Adding post-processing through label propagation

10



Table 4.: Classification on real dataset in Grimesland NC

Classifier Class P R Fy Average F}
Dry 045 096 0.61

RE " Flood 095 042 058 0%
GBM s 0s0 o059 om0
RELP 00 099 o040 o057 0%
GBMHP % 097 057 072 070
o Dy 099 098 099 o o

Flood 0.99 0.99 0.99

Table 5.: Classification on real dataset in Kinston NC: Area 1

Classifier Class P R Fy Average F)
Dry 0.84 0.96 0.90

RF Flood 0.87 0.57 0.69 0.79
GBM ¥ 0% 061 070 07
RFLP % 057 oss 072 02
GBMLP Y S oee 075 083
HMT Dry 1.00 094 0.96 0.95

Flood 0.87 0.99 0.93

Table 6.: Classification on real dataset in Kinston NC: Area 2

Classifier Class P R Fy Average F}
Dry 057 096 0.72

RE Flood 090 036 o051 0O
GBM g% 085 050 062 067
RELP 0% 0os 031 046 O
GBMALP % 001 048 063 06
ovr Dy 100 092 096 oo

Flood 093 1.00 0.97
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slightly decreases the F; of RF (from 0.6 to 0.59) but slightly increases the F; of GBM (from
0.68 to 0.7). The reason is that neighborhood smoothing could reduce salt-and-pepper noise
errors, but also could mistakenly change a correctly predicted pixel if most of the neighbors
were mis-classified. In contrast, the HMT model performed the best, with an F; around 0.99.
It almost perfectly identified the flood extent. The results of the Area 2 in the city of Kinston
are summarized in Table 6. The trends look very close to the results in Table 4.

The results on the dataset collected from the Area 1 in the city of Kinston are summarized
in Table 5. The overall comparison between methods looks similar to the results on the other
two datasets. Some differences exist though. The classification performance of non-spatial
classifiers is generally better compared with the results on the other datasets, with the F}
scores of RF and GBM around 0.8. The precision on the flood class is generally worse than
other datasets, while the recalls is generally better. This means that the non-spatial models
identified more flood pixels on this dataset compared with the other datasets, but the accuracy
is lower among those flood pixels being identified. We also observe that HMT performed
slightly worse on this dataset than other dataset, largely due to a lower precision on the flood
class (0.87). HMT is still significantly more accurate than the other methods on this dataset.

3.2. Interpretation of Results

We now provide detailed interpretation of classification results through visualized flood
maps from different methods. The input aerial imagery and digital elevation model, as well
as classified flood maps from methods on three datasets are shown in Figure 4, Figure 5, and
Figure 6 respectively.

Figure 4 shows the classified flood maps on the Grimesland dataset (flood is shown in blue
while dry is shown in brown). The study area is shown in Figure 4 (a) and the input aerial im-
agery with red, green, and blue bands are shown in Figure 4 (b). The elevation map is shown
in Figure 4 (c), with black color indicating low elevation and white color indicating high el-
evation. From the aerial imagery, we can found that the central part of the region is largely
flooded (black and brown colors). We can also observe that there are a significant amount of
vegetation (tree canopies in green color) among the flooded area. These tree canopies have
the same color and texture (spectral signature) as the tree canopies in the dry area. Moreover,
the aerial imagery has various illumination condition (the same flood surface shows discon-
tinuity in color tones). All these issues pose significant challenges in identifying the correct
flood extent. From Figure 4 (d) - (e), we can see that RF and GBM successfully identified
part of exposed flood surface on the lower right part of the region. There are some part of ex-
posed flood surface in the lower left part not being identified, probably because the colors of
exposed flood pixels in two parts are different due to varying illumination. We also observed
that the two models almost all missed the flooded pixels obscured by significant tree canopies.
This is because the spectral signatures of the tree canopies overlaying flood water are very
close to those signatures in dry areas. This observation is consistent with the low recall ob-
served in Table 4. In addition, we observe a significant amount of salt-and-pepper noise in the
classified maps, due to the fact that both models classify each pixel independently (per-pixel
classification) without incorporating the spatial autocorrelation effect. Figure 4 (f) - (g) show
the results after conducting post-processing through neighborhood label propagation. We can
see that post-processing can significantly reduce the amount of salt-and-pepper noise due to
the incorporation of neighborhood context. But post-processing with neighborhood level la-
bel propagation could not address the errors in missing a large area of flood areas under tree
canopies because the errors are systematic beyond a neighborhood scale. Finally, we can see
from Figure 4 (k) that HMT successfully identified most of the flooded areas, including the ar-
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eas under tree canopies. The reason is that HMT incorporate the spatial structural dependency
between pixel locations based on the topography. For example, the exposed flood surface on
the lower right part has relatively higher elevation on the elevation map in Figure 4 (¢). These
pixels have a higher elevation than the other flooded areas obscured by tree canopies. Thus,
the model is able to fill the gap of missed flood areas under tree canopies since the topography
indicates water flow directions.

The results on Area 1 of Kinston are shown in Figure 5. The study area is shown in Figure 5
(a). From the aerial imagery and elevation map in Figure 5 (b) - (c), we can observe that the
central part of the region is flooded (with brown flood water). There are a significant amount
of tree canopies overlaying flood water. The upper and lower parts are mostly dry. There are
also varying illuminations within the region (similar to the Grimesland dataset). This is shown
in several vertical strips in the aerial images. From the classified maps of RF and GBM, we
can observe a significant among of salt-and-pepper noise and missed flood areas due to tree
canopies as well as spectral confusion due to varying illumination. Adding post-processing
reduces the salt-and-pepper noise, as shown in Figure 5 (f) - (g). Finally, the HMT model
identifies more flood areas with tree canopies.

The results on Area 2 of Kinston are shown in Figure 6. The study area is shown in Fig-
ure 6 (a). From the aerial image and the elevation map, we can see similar challenges to the
other two datasets. What is more significant in this region is the varying illumination between
different strips of the aerial imagery. We can observe a clear horizontal line separating the
top part (much darker color) from the central part (lighter color). This is also reflected by the
artifacts (horizontal flood boundary) in the classified flood maps from RF and GBM (Figure 6
(d) - (e)). The results of the two non-spatial models miss a significant amount of flood areas,
but GBM is slightly better in identifying flood. This is consistent with the low recalls of the
two methods in Table 6 (with recall slightly higher in GBM). Post-processing reduces salt-
and-pepper noise, but still could not correct the missing flood areas. In contrast, HMT can
identify most of the flood areas due to incorporating the topography.

Note that the HMT prediction output is the entire inundation extent, including the perennial
water surface. Perennial water can be separated from the flood water through further post-
processing, e.g., change detection. Our reported classification accuracy metrics were based
on test polygons that were drawn from the flood area outside the perennial water.

3.3. Computational Time Costs

We also conducted computational experiments on the three test regions to measure the
time costs of the tree construction, parameter learning and class inference process. Experi-
ments were conducted on a Dell workstation with Intel(R) Xeon(R) Central Processing Unit
(CPU) E5-2687w v4 @ 3.00GHz, 64GB main memory, and Windows 10. As mentioned in
the earlier, our HMT model was implemented in C++. The codes ran sequentially on one
CPU core only. Table 7 summarizes the results. The number of pixels in three test regions are
around 7.6 million, 7.4 million and 7.7 million respectively. The tree construction part only
took around 3 seconds. The class inference was also very fast, only taking less than 2 sec-
onds for over 7 million pixels. The parameter learning part contributed to the vast majority of
the time costs (around 260 seconds). The reason is that the parameter learning step involves
multiple iterations, each of which has message propagation over the entire tree. Overall, the
HMT algorithm was highly efficient. It could process over 7 million pixels within 5 minutes.
Please note that we did not compare the computational time costs of HMT with those of the
baseline models such as GBM and RF, since these baseline models were implemented in a
different programming language (R instead of C++) and they did not capture the topography
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in the classification process.

Table 7.: Computational time costs for three study areas

Study area  Size (pixels) Tree construction (s) Learning (s) Inference (s)

Grimesland 1856 x 4104 2.88 264.57 1.94
Kinston 1 2313 x 3207 3.00 257.75 1.73
Kinston 2 2418 x 3205 3.26 268.25 1.93

4. Discussions

This paper introduces a machine learning approach called hidden Markov tree for flood
extent mapping from high-resolution optical imagery and DEM data. Existing image classi-
fication algorithms for flood mapping often uses spectral and spatial features at the pixel or
neighborhood level, and thus cannot fully address the issues of noise and large scale obstacles
(e.g., a large area of vegetation over flood water). In contrast, HMT model captures the to-
pography constraint of water flow directions over the entire study area. Water flow directions
are incorporated as a directed tree structure in a hidden class layer. In this way, the order of
class labels of pixels (flood or dry) are constrained by the topography. Thus, the model can
automatically infer the class labels of pixels not only based on its local (or neighborhood)
spectral signatures, but also based on other pixels information in a topography surface. Re-
sults show that the model can fill the gap of missing flood extent due to dense vegetation.
There exist other ways of incorporating topography into flood extent mapping, e.g., adjusting
thresholds on elevation map to find the best matching of flood extent (e.g., Wang, Colby, and
Mulcahy (2002)). But the HMT model can add value in learning and inferring class labels
automatically without the need of manually tuning the thresholds. The HMT model provides
a clear statistical framework that makes the model easily interpretable. In addition, the HMT
model is also very fast due to the linear time complexity. Classifying the entire area with over
7 million pixels took just a few minutes.

One limitation of the HMT approach is the flow dependency tree derived from the DEM
data is quite simple. It assumes that the inundation surface is flat (with equal elevation). Such
assumption is valid for river floodplain with relatively flat topography. When the study area
is a big watershed with complex inters of flow direction, the flow dependency tree structure
in HMT needs to be re-designed to reflect the complex topography (i.e., to allow for non-flat
flood surface). Theoretically, the HMT model can work with any flow direction dependency
structure as long as it can be represented in a tree or polytree. Otherwise, we may choose
to divide the big watershed into smaller pieces such that the flood surface in each piece can
be considered as flat. In future work, we plan to address the limitation by integrating a more
sophisticated topography model into HMT for vast watershed areas.

5. Conclusion and Future Work

This paper conducts several case studies on using a spatial machine learning model called
hidden Markov tree for flood extent mapping based on high-resolution aerial imagery and
DEM. The model can automatically incorporate topography constraint (water flow directions)
in the image classification process in an efficient manner. Incorporating topography constraint
is critically important in addressing noise and obstacles (e.g., tree canopies blocking the view
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of flood water) in high-resolution imagery. Results show that the HMT model significantly
improves several existing methods in classification accuracy (with F} increasing from around
70% to 80% to over 95%) on three study areas in hurricane Matthew floods in North Carolina
2016.

In future work, we plan to further test the generalizability of the HMT model on datasets
collected by different remote sensors (e.g., radar image, MODIS or Landsat imagery) in dif-
ferent flood events and study areas. The HMT model can also be potentially improved by
adding morphological characters of a watershed (in addition to spectral bands from optical
imagery) as model inputs. We plan to evaluate the HMT approach in refining pre-classified
flood maps from other sensors (e.g., MODIS Flood Water maps, which have coarser spa-
tial resolution and contain gaps due to feature obstacles such as tree canopies). We will also
explore the integration of the HMT with the recent deep learning models.
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