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Abstract
Given a 3D surface defined by an elevation function on a
2D grid as well as non-spatial features observed at each
pixel, the problem of surface segmentation aims to classify
pixels into contiguous classes based on both non-spatial
features and surface topology. The problem has important
applications in hydrology, planetary science, and biochemistry
but is uniquely challenging for several reasons. First, the
spatial extent of class segments follows surface contours
in the topological space, regardless of their spatial shapes
and directions. Second, the topological structure exists in
multiple spatial scales based on different surface resolutions.
Existing widely successful deep learning models for image
segmentation are often not applicable due to their reliance on
convolution and pooling operations to learn regular structural
patterns on a grid. In contrast, we propose to represent
surface topological structure by a contour tree skeleton, which
is a polytree capturing the evolution of surface contours at
different elevation levels. We further design a graph neural
network based on the contour tree hierarchy to model surface
topological structure at different spatial scales. Experimental
evaluations based on real-world hydrological datasets show
that our model outperforms several baseline methods in
classification accuracy.

1 Introduction
Given a 3D surface defined by an elevation function over
a 2D grid as well as non-spatial features observed at
each pixel, the problem of surface segmentation aims
to classify pixels into segment classes based on non-
spatial features and surface topology. For example,
in hydrology, scientists are interested in mapping the
surface water extent from remote sensing imagery based
on not only spectral features of pixels but also the
geographic terrains [1, 2, 3, 4]. The problem is unique
from traditional image segmentation in that the spatial
extent of class segments follow a topological structure
based on surface contour patterns. For example, flood
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extent boundary spreads over a geographic terrain with
equal elevation contours.

Societal applications: Topological surface segmen-
tation is important in many applications such as flood
extent mapping on a topographic surface in hydrology,
crater detection in planetary surface, molecular surface
segmentation in bio-science [5], plant branching struc-
ture analysis in phenology. In hydrology, the topological
surface is a digital elevation map, the non-spatial fea-
tures can be optical remote sensing imagery imposed on
the surface, and the target output map can be water
surface extent [6, 7, 8, 9, 10]. Mapping water surface
extent plays an important role in national water fore-
casting and disaster response. In astronomy, scientists
are interested in detecting craters on a 3D planetary
surface based on the topological structures. Such infor-
mation can reveal details on how a planet evolves over
time. In bio-science, people are interested in segmenting
protein surface based on the topology to identify rigid
components and to understand the function of cavities
and protrusions in protein-protein interactions [5]. In
botany, researchers are interested in assessing and com-
paring the branching structure of plants based on the
surface topology. Such structures are important features
to understand the phenotype of a plant (the interactions
of genetic background with the environment).

However, the problem poses several unique chal-
lenges. First, the spatial extent of class segments follows
surface contours in the topological space, regardless of
their spatial shapes and directions. This violates the
assumption by the widely popular deep convolutional
neural networks that the spatial structure of class seg-
ments is regular on a Euclidean plane (a grid framework).
Second, the topological structure exists in multiple spa-
tial scales based on different surface resolutions. Specifi-
cally, on a fine resolution, a surface will show more local
fluctuations; but on a coarse resolution, a surface will
only capture the global trend ignoring local details.

Existing techniques for 3D surface segmentation
can be categorized into traditional non-deep learning
approaches and deep learning approaches. Non-deep
learning approaches include region growing, hierarchical
clustering, iterative clustering, and graph algorithms [11].
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The region growing approach [12] starts with one or sev-
eral seed elements and greedily expands the seed into
regions by adding in other likely elements. Among the
region’s growing methods, one important technique is
called the watershed method [13], which grows seeds
based on a height function defined on the surface (e.g.,
from a local minimum to a ridge). The hierarchical clus-
tering approach differs from the region growing approach
in that it considers all vertices as individual seeds (clus-
ters) and greedily selects two small clusters to merge into
a bigger cluster in each iteration [14]. The iterative clus-
tering algorithm (e.g., K means) can iteratively assign
vertices into different clusters based on objective criteria.
The graph-based approach considers the surface as a
graph and uses graph-cut algorithms to segment the sur-
face [15]. Deep learning has achieved great progress for
image segmentation [16]. The most popular technique is
to learn a fully convolutional network [17, 18] to extract
high-level semantic features together with deconvolution
or upsampling layers to combine features at multiple
scales for detailed segmentation [19, 20]. These methods
often require partitioning the image into smaller patches
(e.g., 224 by 224) and learning a fully convolutional
network for each patch with the depth channel as an
additional feature [21, 22], without explicitly modeling
the topological constraint. Some works aim to resolve
this issue by adding spatial transformation in convo-
lution kernels through a depth or Gaussian term, e.g.,
bilateral filters [23] and depth-aware CNN [24], but they
still do not fully capture the topological structure for the
entire surface. Other methods incorporate topological
constraints into image segmentation in two ways: enforc-
ing MRF or CRF-based topological constraints in the
inference step [25], which is unable to fully utilize a topo-
logical prior to train a model; or using a topology-aware
loss function to train the neural network by leveraging
persistent homology to define a topological loss on the
predicted class image [26, 27], which only focuses on
basic topology constraint (e.g., the number of connected
components or holes). In summary, existing methods do
not fully incorporate the topological structures in the
form of surface contours.

In contrast, we propose a novel graph neural net-
work model for 3D surface segmentation by representing
surface topological structure as a contour tree skeleton.
A contour tree is a polytree capturing the evolution of
surface contours at different elevation levels in compu-
tational topology. We further design a graph neural
network based on the contour tree hierarchy to model
surface topological structure at different spatial scales.
We design downsampling and upsampling paths in the
graph neural network based on the contour tree hierarchy
to extract features at different scales. Experimental eval-

uations based on real-world hydrological datasets show
that our model outperforms several baseline methods in
classification accuracy.

2 Problem Statement
3D surface: A 3D surface is defined as an elevation (or
depth) function on a 2D grid. We denote the elevation
function by an array E ∈ RN×N , where N is the number
of pixels in each spatial dimension. On a 3D surface,
there can be m non-spatial explanatory features as
well as a target class layer. We denote each pixel as
sn = (xn, en, yn), where xn, en, and yn represent the m
explanatory features, elevation value, and the class of
the pixel respectively. Examples of 3D surface include
the geographic terrains on the Earth’s surface based on
digital elevation and local protein elevation surface in
biochemistry. Note that in these cases, the underlying
2D grid is actually on a sphere, but it can be considered
as a flat in a small local area.

Given a 3D surface with non-spatial explanatory
features and target classes, the problem aims to learn a
model to predict surface classes based on the explanatory
features and the surface topological structure. For
example, in hydrology, scientists are interested in
mapping the surface water extent from remote sensing
imagery based on not only the spectral signature of pixels
but also the geographic terrain in a digital elevation map.

3 Methods
This section introduces our proposed approach to address
the unique challenges in topological surface segmentation.
The key idea is to represent a topological surface by a
contour tree skeleton. We design a graph neural network
model with graph convolutional operations on contour
tree nodes. In order to learn a topological structure
at different spatial scales, we construct a contour-tree
hierarchy and design downsampling and upsampling
paths in the graph neural network.

3.1 Overview of deep model architecture Fig-
ure 1 provides an overview of the proposed model. The
entire model architecture looks similar to the U-Net
model [17] in traditional 2D image segmentation. The
input of the model is a contour tree with extracted fea-
tures on each contour node (through aggregating the
features of individual pixels on the same contour). The
node features are illustrated by a rectangle whose height
represents the number of nodes and whose width rep-
resents the feature dimension. Two consecutive graph
convolution operations are added at each level to further
learn features on the topological skeleton. In the down-
sample path on the left, pooling operation is added by
aggregating contour tree nodes based on node collapsing

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Figure 1: Overview of the model architecture

operations. In the upsample path on the right, unpooling
operations are used to project features to a fine resolu-
tion. Pooled features at a coarse-scale are concatenated
with features at a fine-scale from the downsample path
through skip connection to combine both global and
local features for detailed segmentation.

3.2 Surface representation by a contour tree
The key idea in the proposed approach is to represent
the topological skeleton of a surface by a contour
tree, which is a fundamental concept in computational
topology. We first introduce several important concepts
and formally define a contour tree.

Level set, contour: A level set on a 3D surface
is the set of pixels with an equal elevation. Formally,
L(e0) = {sn|en = e0}, where e0 is an elevation threshold.
Specifically, each level set on a 3D surface is composed
of one or several connected components called contours,
i.e., L(e0) =

⋃K
k=1 Ck(e0), where Ck(e0) is only self-

connected (no connectivity between contours). For
example, in a 3D surface defined by the elevation function
in Figure 2(a), there are fourteen separate contour
components in total. For instance, there are two contours
Ca(1) and Cb(1) for elevation 1, as well as three contours
Ca(4) and Cb(4) for elevation 4, shown in Figure 2(b).

Topological structure: In this paper, we define
topological structure as the evolution of the topology of
surface contours along with elevation levels. Specifically,
as the elevation level rises, new contours can appear,
merge, split, and disappear. Consider the example
of Figure 2(a). As the elevation level rises from
1 to 6, two contours Ca(1) and Cb(1) first appear,
then spread to Ca(2) and Cb(2) respectively, merge
into Ca(3) for elevation 3, split into three contours
Ca(4), Cb(4), Cc(4), Cd(4), and finally disappear after
elevation 6. The topological structure provides a
constraint on how the spatial extent of class segments
spread over the surface. Pixels on the same contour
have the same segment class. If we look at the evolution
of a contour, we can find a topological order such as
Ca(1)→ Ca(2)→ Ca(3). For example, in hydrological
applications, the spatial extent of water on the surface
in Figure 2(a) is constrained by the contour patterns.
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Figure 2: An example of an elevation surface (a), its
contours (b) and contour tree (c)

Contour tree: A contour tree is a polytree whose
nodes are surface contours and whose edges are the
topological order (based on elevation gradient directions)
between two adjacent contours. Formally, a contour
tree can be denoted by T = (V, E), where V is
the set of contours denoted by V = {Ck(e)|emin ≤
e ≤ emax} (emin and emax are the minimum and
maximum elevation), and E ⊂ V × V are the topological
order between adjacent contours based on the elevation
gradient. Contour tree is a fundamental tool to represent
a surface topological structure in computational topology.
For example, the contour tree corresponding to the 3D
surface in Figure 2(a) is shown in Figure 2(c), where the
tree branches show the evolution of contours at different
elevation levels. The contour tree structure provides
a topological structural constraint on how a potential
class segment evolves on the surface. Since pixels on
the same contour have the same segment class based
on the topological constraint, we can aggregate features
and classes from individual pixels to their corresponding
contour tree nodes. We denote the node features and
classes in a contour tree as X ∈ Rn×m and Y ∈ Rn×1
respectively, where n is the total number of nodes in a
contour tree.

Its more general definition in the field of topology is
Reeb graph [28], which captures how the level sets of a
smooth and differential function evolves on a manifold
(more details can be found in Morse theory [29]). A
contour tree is a special case of Reeb graph when the
function is defined on a 2D plane such that its level sets
are in the form of loops called contours.
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Representing the topological skeleton of a surface
using a contour tree is important for our surface
segmentation problem. The contour tree provides a
global topological structure of a surface that often
reflect the physical constraints of the target surface class
segments. In other words, the contour tree structure
provides an opportunity to learn structural features
on a surface in the topological space. For example,
in hydrology, the extent of water distribution on an
elevation surface (also called geographic terrain surface)
follows the topological structure of contours due to
gravity. In botany, the branching structure of a planet
also follows the topology of the plant body along with
the height. Such topological structural features are
very hard, if possible, to learn in the original surface
representation (2D grid map) due to a lack of a regular
shape or direction. Extensive research has been done
in the field of computational topology to study efficient
algorithms for contour tree construction [29, 28]. We
use the algorithm in [30], which involves scanning all
locations by an decreasing (and increasing) order of
elevation values to create a joint tree (and a split tree)
and then merging the two trees together. Its overall
time complexity is approximately O(n log n), where n
is the number of vertices [30]. To apply the algorithm,
we added random perturbation to make pixel elevation
unique and then collapsed pixels on the same contour
into one tree node.

3.3 Graph convolution on a contour tree After
representing a topological surface by a contour tree skele-
ton, we can conduct graph convolution operations on
the contour tree. A graph convolution layer general-
izes the traditional convolutional layer from 2D images
to a graph. This is non-trivial since a graph usually
does not have a fixed neighborhood size. There exists
extensive research on designing convolutional layers on
graphs [31, 32, 33, 34, 35]. Techniques can be catego-
rized into spectral methods and spatial methods. The
former utilizes graph Laplacian to aggregate features
from neighboring nodes. The latter re-samples a neigh-
borhood to a fixed size so that a traditional convolutional
operator can be applied. It is worth to note that graph
convolution does not consider the geometric structure
of the mesh surface. But since the previous curvature
filter layer already extracts geometric features at local
vertices, the graph convolution layer simply focuses on
incorporating spatial contiguity into extracted geometric
features based on graph connectivity.

Specifically, we propose to use two popular graph
convolutional layers: ChebyNet [36] and diffusion graph
convolution [37]. ChebyNet is a spectral-based method
that uses graph Laplacian matrix to average neighbor

features into a node. It uses Chebyshev polynomial
to avoid eigenvalue decomposition for the graph Lapla-
cian. The order of the Chebyshev polynomial corre-
sponds to the number of neighbor hops being incorpo-
rated. Specifically, the graph convolution operator in
ChebyNet can be expressed as X′ = σ(

∑
gθ(L)X+ b),

where X′ and X are node feature matrices before and
after the graph convolution, gθ(L) =

∑K−1
0 θkTk(L̂),

Tk(L̂) is the ChebyShev polynomial of order k, eval-
uated at the scaled Laplacian L̂ with θk as kernel
weights [36]. The diffusion graph convolution uses
the indegree and outdegree normalized adjacency ma-
trix to aggregate neighbor node features. Specifically,
X′ = σ(

∑K−1
0 (θk,1(D

−1
O W)k + θk,2(D

−1
I WT )k)X+ b),

where DI and DO are diagonal indegree matrix and
outdegree matrix, W is the node adjacency matrix, θk,1,
θk,2 and b are kernel weights and bias parameters [37].
Multiplying the degree normalized adjacency matrix
multiple times is equivalent to conducting the diffusion
multiple hops. We can use multiple filters together to
output multiple feature channels. Diffusion graph con-
volution defines convolutional operations on a directed
graph based on two different node adjacency matrices
on both directions.

3.4 Downsample and upsample paths based on
contour tree hierarchy The purpose of the down-
sampling path is to extract semantic features of loca-
tions on the surface topology at a coarser resolution so
that the extracted feature at each location has a global
topological context. The task is non-trivial since the
traditional max-pooling operation on 2D image data
cannot be directly applied to a contour tree due to the
lack of a regular grid structure. There exist some re-
search on designing pooling operators on graphs. For
example, one method is based on greedy node clustering
(also called Graclus [38]), which iteratively merges two
nodes with a high edge weight and low degrees. Another
method called DIFFPOOL learns a cluster assignment
matrix over graph nodes on top of the output of a GNN
model [39]. Another work uses a trainable projection
vector to perform k-max-pooling (i.e., selecting nodes
based on the projected values from node features) [40].
However, the existing pooling operations can not pre-
serve the topological structures of the graph. To fill
the gap, we propose to do pooling operation based on a
multi-scale contour tree hierarchy. The main intu-
ition is to look at the surface height function at different
precision levels. When the precision is high, more lo-
cal fluctuations of the surface show up and the contour
tree structure provides more local topological details.
When the precision is low, the surface will look smoother
and the contour tree structure focuses more on global
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topological trends.
Moreover, as the surface height precision keeps

decreasing, previously separate contours (tree nodes)
will merge together into one, creating a collapsing
hierarchy. The process can be considered as a bottom-up
hierarchical clustering of contour tree nodes. Figure 1
provides an example, where the original contour tree
is downsampled twice. The original contour tree is
based on elevation values rounded to integers, the second
contour tree has elevation rounds to even integers, and
the third contour tree is based on elevation values
rounded to multiples of fours. The one to many mapping
relationships between nodes on a coarse-scale contour
tree to those on a fine-scale contour tree can be expressed
in a pooling matrix Tl, where Tij = 1 if node i at the
level l is collapsed into node j in level l+1, and Tij = 0
otherwise. Based on the pooling matrix, we can design
an average-pooling layer on contour tree node features, as
shown by Xl+1 = T̃lXl, where T̃l is the row-normalized
pooling matrix from level l to level l + 1, and Xl and
Xl+1 are node feature matrices at level l and level l + 1
respectively. This can be easily implemented based on
sparse matrix multiplication.

The purpose of the upsampling path is to concate-
nate global and local topological features and to project
those features to a surface at a fine scale. The traditional
transposed convolution cannot be applied due to two rea-
sons. First, there is no regular window (neighborhood)
structure on the contour tree as in the traditional 2D
image. Second, the mapping of pixel locations from a
coarser scale to a fine-scale is not as regular in a contour
tree as in a traditional 2D image. Thus, we cannot easily
design a pooling operation with learnable parameters by
transposed weight matrix multiplication as in U-Net. To
fill the gap, we propose to use simple unpooling based
on the same one to many mapping between nodes in the
hierarchical clustering. Specifically, we can upsample
node features from a coarse contour tree to a fine-scale
contour tree based on the transpose of the pooling ma-
trix TT

l . The unpooling operation can be expressed as
X̃l = TT

l X̃l+1, where TT
l is the transpose of the pooling

matrix from level l to level l+1, and X̃l is the upsampled
feature matrix at level l from the level l + 1.

4 Evaluation
The goal of the evaluation is to compare our proposed
method with several baseline methods in classification
performance on two real-world hydrological datasets.
We also conducted self-comparison studies to evaluate
the effect of different configurations in our model.
Experiments were conducted on a workstation with four
NVIDIA RTX 6000 GPUs. Unless specified otherwise,
we used default parameters in open source tools for

baseline methods. Candidate classification methods
are listed below. The source codes, data samples,
and more implementation details are provided in the
supplementary materials.

• Per-pixel classifiers: We used random forest
(RF), maximum likelihood classifier (MLC), and
gradient boosted tree (GBM) from R randomForest
and gbm packages.

• Fully convolutional network (FCN): We used
U-Net [17] in Python. The model consists of ten
double convolution layers with batch normalization,
together with max-pooling layers and transposed
convolution layers, for the downsample path and
the upsample path. We used the Adam optimizer
with a learning rate of 10−4 and a mini-batch size
of 10.

• Contour tree neural network (CTNN): This is
our proposed method. We implemented our codes in
Python and Tensorflow. We used U-Net to extract
pixel features by removing the last non-linear and
softmax layers and aggregated pixel features as
inputs into tree nodes. We used the Adam optimizer
with a learning rate of 10−4 and a mini-batch size
of 1.

Dataset description: We used two flood mapping
datasets from the cities of Grimesland and Kinston
in North Carolina during Hurricane Mathew in 2016.
Explanatory features were red, green, blue bands in aerial
imagery from NOAA National Geodetic Survey [41].
There are two classes: flood and dry. The digital
elevation maps were from the University of North
Carolina Libraries [42]. All data were resampled into
2-meter by 2-meter resolution. For the Grimland dataset,
there are 80 training images, 120 validation images, and
16 test images. Each image size is 672 by 672 pixels,
which are collapsed into 451584 contour tree nodes. For
the Kinston dataset, there are 132 training images, 113
validation images, and 113 test images. Each image size
is 3000 by 100, totally 3× 105 nodes in the contour tree.

Evaluation Metric: For classification performance
evaluation, we used precision, recall, and F-score. We
also used overall accuracy given that the two classes are
relatively balanced.

4.1 Classification Performance Comparison We
first compared different methods on their precision, recall,
and F-score on the two real-world datasets. The results
were summarized in Table 1 and Table 2 respectively. In
this experiment, we used the default model architecture
in CNTT with a four-level contour tree hierarchy based
on different precision of elevation values at 0.01 meter,
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Table 1: Classification on Real Dataset in Grimesland NC

Classifiers Class Precision Recall F Avg. F Accuracy

RF Dry 0.68 0.75 0.71 0.73 0.73Flood 0.79 0.72 0.75

MLC Dry 0.69 0.67 0.68 0.72 0.73Flood 0.75 0.77 0.76

GBM Dry 0.68 0.75 0.71 0.73 0.73Flood 079. 0.72 0.75

U-Net Dry 0.99 0.71 0.82 0.85 0.86Flood 0.81 0.99 0.88

CTNN Dry 0.98 0.82 0.89 0.90 0.90Flood 0.84 0.99 0.91

Table 2: Classification on Real Dataset in Kinston NC

Classifiers Class Precision Recall F Avg. F Accuracy

RF Dry 0.82 0.73 0.77 0.74 0.74Flood 0.65 0.76 0.70

MLC Dry 0.87 0.63 0.73 0.72 0.72Flood 0.61 0.86 0.71

GBM Dry 0.82 0.73 0.77 0.74 0.74Flood 0.65 0.76 0.70

U-Net Dry 0.93 0.97 0.95 0.94 0.94Flood 0.96 0.92 0.94

CTNN Dry 0.95 0.98 0.96 0.96 0.96Flood 0.96 0.94 0.95

0.1 meters, and 1 meter respectively. We used ChebyNet
graph convolution operators at each level with the
number of neighbor hops as 4 and 2 in each level,
and the number of graph convolution operators as 16,
32, 64, and 128 at each level respectively. On the
Grimesland dataset, random forest, maximum likelihood
classifier, and gradient boosted tree achieved overall F-
score around 0.73. The poor performance of per-pixel
classifiers was due to class confusion from feature noise
and obstacles. For example, pixels of tree canopies
overlaying flood water have the same spectral features
with those in dry areas. Without incorporating spatial
dependency structure between pixel locations, these per-
pixel classifiers cannot overcome the class confusion.
U-Net performed much better with an average F-score
of 0.85 due to its capability of learning complex spatial
contextual features from input aerial imagery (e.g., color
and texture of floodwater). Our CTNN model performed
the best with an overall F-score of 0.90 (higher than
the F-score of 0.85 in U-Net only). The reason was
that the CTNN model can not only utilize the complex
spatial contextual features extracted from U-Net but also

incorporate topological structural dependency among
class labels in the contour tree hierarchy. In this dataset,
additional topological constraints made a significant
difference because feature obstacles obscured some flood
boundaries in the aerial imagery, making it difficult to
delineate those boundaries in U-Net only.

Results on the Kinston dataset were summarized
in Table 2. Similar to the Grimesland dataset, we
can observe that most non-spatial classifiers performed
poorly with an overall F-score below 0.74. Both U-Net
and CTNN performed very well in this data because
the flood boundaries in this dataset were distinguishable
in comparison to the Grimesland dataset. Thus, U-
Net could successfully identify most flood boundaries
with high accuracy. Our CTNN model performed
slightly better than U-Net only, indicating that learning
additional topological structure along surface contours
still added some value in this case.

4.2 Self-comparison on model configurations
We also conducted a sensitivity analysis to analyze the
effect of different configurations in our CTNN model,
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such as the type of graph convolutional filters, the
number of filters at each contour tree level, the number
of neighbor hops in each graph convolution filter, and
the number of contour tree hierarchical levels. Due
to limited space, we only focused on the Grimesland
dataset. Unless specified otherwise, we used the same
configurations for our CTNN model as in Section 4.1.
Note that the metrics were directly reported on test data
for sensitivity analysis. This is different from the results
in Section 4.1, in which we used independent validation
data to select hyper-parameters.

First, we studied the effect of the type of graph
convolutional filters in our CTNN model. We fixed the
other configurations of the model and compared three
different choices: no graph convolution (i.e., only use
a non-linear function to map input channels to output
channels for each node, or 1D convolution), diffusion
graph convolution, and ChebyNet. The results were
summarized in Figure 3(a). We can see that without
graph convolution (i.e., only using 1D convolution
on each node), the overall accuracy is 0.87. This
configuration was equivalent to learning additional multi-
layer perceptrons on the features of each node extracted
from U-Net. Thus, the performance slightly improved
over U-Net only. Adding diffusion convolution improved
the overall accuracy from 0.87 to 0.89, indicating that the
graph convolution filters along the contour tree structure
helped better delineate flood boundaries. The accuracy
of a (spectral based) ChebyNet graph convolutional filter
was the highest. It was interesting that the undirected
graph convolution in ChebyNet performed slightly better
than the directed diffusion graph convolution on our
contour tree (which is a directed graph). The reason
was probably that most neighboring nodes should have
the same classes due to spatial autocorrelation except
for nodes near the flood boundary (the flood extent is
contiguous).

We also tested the effect of the number of neighbor
hops in the ChebyNet graph convolutional operations.
We used the default setting and varied the number of
neighbor hops in three different settings. We first fixed
the number of neighbor hops as 2 in all four downsample
levels, and then increased the neighbor hops of the first
two downsample levels to 4 and 6 respectively. The
comparison was summarized in Figure 4(a). We can see
that using a larger number of neighbor hops degraded
the performance. This was due to the fact that a larger
number of neighbor hops had an over-smoothing effect
between the adjacent contours near the flood boundary.

Finally, we also tested the effect of the number
of levels in the contour tree hierarchy. We used the
default setting for the other hyper-parameters and varied
the number of downsampling operations from 1 to 4.
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Figure 3: The effect of graph convolutional filter types
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Figure 4: The effect of the number of neighbor hops and
downsample levels in GNN

Specifically, when using four downsample operations
(five different contour tree scales), we keep reducing the
precision of elevation values four times from 0.01 to 0.1
meters, 1 meter, and 10 meters respectively. We found
out that downsampling the contour tree 3 times (into
four levels) had the best overall accuracy.

5 Discussion on Significance and Impact
This work has a significant potential societal impact in
the flood mapping application. Flood extent mapping
plays a crucial role in addressing grand societal challenges
such as disaster management, national water forecasting,
as well as energy and food security. For example, during
Hurricane Harvey floods in 2017, first responders needed
to know where flood water was in order to plan rescue
efforts. In national water forecasting, detailed flood
extent maps can be used to calibrate and validate the
NOAA National Water Model [43], which can forecast
the flow of over 2.7 million rivers and streams through
the entire continental U.S. [44]. In current practice, flood
extent maps are mostly generated by flood forecasting
models, whose accuracy is often unsatisfactory in high
spatial details [44]. Other ways to generate flood maps
involve sending a field crew on the ground to record high-
water marks, or visually interpreting earth observation
imagery [45]. However, the process is both expensive
and time-consuming. With a large amount of high-
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resolution earth imagery being collected from satellites
(e.g., DigitalGlobe, Planet Labs), aerial planes (e.g.,
NOAA National Geodetic Survey), and unmanned aerial
vehicles, the cost of manually labeling flood extent
becomes prohibitive. This paper develops a classification
model that can automatically classify earth observation
imagery pixels into flood extent maps. The results can
be used by first responders to plan rescue efforts, by
hydrologists to calibrate and validate water forecasting
models, as well as by insurance companies to process
claims. The proposed model advances the state of the
art methods by modeling the surface contour structures
on geographic terrains.

6 Conclusion and Future Work
In this paper, we propose a contour tree neural network
for 3D surface segmentation in the context of hydrological
applications. The model represents a 3D elevation
surface by a contour tree skeleton from computational
topology. Graph convolution and pooling operations are
used in a multi-level hierarchy to learn node features
at multiple surface scales. The unique advantage of the
model compared with other existing models is that it can
capture the topological structure of class segments along
with surface contour patterns. Evaluations on real-world
datasets show that the proposed model outperformed
several baseline methods in classification accuracy.

One limitation in our current model is that the
graph convolution filters assume specific contour tree
structures, which often vary from one surface to another.
Another limitation is that our model still relies on pre-
extracted spatial contextual features from U-Net for each
tree node due to the relatively small parameters in a
graph neural network. We plan to address these issues
in future work. For example, we can potentially study
how to partition a geographic area along a river into
pieces such that their contour tree structure is generally
similar.
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