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Abstract—Semi-supervised learning aims to learn prediction models from both labeled and unlabeled samples. There has been
extensive research in this area. Among existing work, generative mixture models with Expectation-Maximization (EM) is a popular
method due to clear statistical properties. However, existing literature on EM-based semi-supervised learning largely focuses on
unstructured prediction, assuming that samples are independent and identically distributed. Studies on EM-based semi-supervised
approach in structured prediction is limited. This paper aims to fill the gap through a comparative study between unstructured and
structured methods in EM-based semi-supervised learning. Specifically, we compare their theoretical properties and find that both
methods can be considered as a generalization of self-training with soft class assignment of unlabeled samples, but the structured
method additionally considers structural constraint in soft class assignment. We conducted a case study on real-world flood mapping
datasets to compare the two methods. Results show that structured EM is more robust to class confusion caused by noise and

obstacles in features in the context of the flood mapping application.

Index Terms—Semi-supervised learning; Expectation-Maximization (EM); Structured prediction

1 INTRODUCTION

Emi-supervised learning aims to learn prediction models

based on both labeled and unlabeled samples. It is
important when training data contains limited labeled sam-
ples but abundant unlabeled samples. In real world spatial
prediction problems, input data often contains abundant
explanatory features but very limited ground truth. For ex-
ample, in earth image classification for land cover mapping,
a large number of image pixels with spectral features are
collected from remote sensing platforms, but only a limited
number of pixels are labeled with ground truth land cover
classes [1], [2]. The reason is that collecting ground truth is
both expensive and time consuming by field crew or well-
trained image interpreters.

The topic of semi-supervised learning has been exten-
sively studied in the literature. According to a survey [3],
techniques can be categorized into generative models with
EM method, graph-based methods, label propagation, self-
training and co-training, etc. In the EM-based method [4],
unknown labels are considered as hidden variables, and
both labeled and unlabeled samples are used to estimate
parameters of a generative model of the joint distribution.
Graph-based methods assume that samples connected by
heavy edges tend to have the same label and thus aim to
obtain a smooth label assignment over the graph [5]. In
label propagation, the main idea is to propagate the labels
of nodes throughout the network and form class commu-
nities [6]. Semi-supervised learning in structured output
space focuses on learning dependency or some internal
relationships between classes [7]. In self-training, a classifier
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is first trained with a small amount of labeled samples and
then is used to classify unlabeled samples [8]. The most
confident predictions on unlabeled samples together with
their predicted class labels are added to the training set.
For co-training, it assumes that features can be split into
two sets and each set is sufficient to train a good classifier
separately [9]. Each classifier then classifies the unlabeled
data and teaches the other classifier with the most confident
predictions on unlabeled samples [3].

Among all the methods, semi-supervised learning with
EM provides clear statistical properties. There are two types
of EM algorithms: unstructured EM and structured EM.
Unstructured EM assumes that data samples follow an
identical and independent distribution and feature variables
are independent [4]. It considers unknown class labels as
hidden variables in generative mixture models(e.g., Gaus-
sian mixture models). It then uses EM algorithm to learn
model parameters and infer hidden classes at the same
time. Structured EM assumes that either input samples or
feature variables within samples follow structural depen-
dency. Existing works on structured EM can be further
categorized into two types: Bayesian structural EM and Hid-
den Markov Model (HMM). Bayesian structural EM uses a
directed acyclic graph (DAG) to represent the conditional
dependency between feature variables within a sample. It
uses EM to learn the DAG structure from samples whose
feature variables are partially unobserved (treated as hidden
variables) [10]. HMM uses a chain [11] or tree [12] to rep-
resent the conditional dependency between samples. It uses
EM to learn the model parameters and infer hidden classes
at the same time. Structured EM is of particular interest
because data in many real-world applications (e.g., earth
science, biology, and material science) often show structural
constraints. However, there is limited study that compares



structured and unstructured methods in EM-based semi-
supervised learning. It remains unclear about their strengths
and weaknesses.

To fill the gap, this paper provides a comparative study
between structured methods and unstructured methods in
EM-based semi-supervised learning for spatial classification
problems [13]. For unstructured methods, we use Gaussian
mixture models as an example. For structured methods, we
use a recent model called geographical hidden Markov tree
(HMT) [12] as a representative example. We compare the
theoretical properties and conducted detailed case studies
on real-world datasets. In summary, this paper makes the
following contributions:

e We compared the theoretical properties of a repre-
sentative unstructured methods (Gaussian Mixture
Model) and structured methods (HMT) in EM-based
semi-supervised learning.

e Through theoretical analysis, we found out that both
EM-based methods can be considered as a general-
ization of self-training with soft class assignment of
unlabeled samples. The difference is that structured
methods additionally consider structure constraints
in soft class assignment.

e We also empirically compared the performance of a
representative unstructured EM (Gaussian mixture
model) and structured EM (hidden Markov tree) in
a case study on real-world flood mapping datasets.
Results showed that in this particular application,
unstructured EM without spatial feature could be
impacted by feature noise and obstacles. Adding
spatial feature into unstructured EM could alleviate
but not fully resolve the issue. In contrast, structured
EM could resolve the issue due to explicit structural
constraint on this particular type of applications

2 PROBLEM FORMULATION

Suppose we have data set D of N data samples, which
is composed of an unlabeled subset D, and a labeled
subset D)(D = D, UD,). D, contains N, data samples of
inputs without class labels, D, = {(x,)}2*,. The labeled
subset D; contains IV; data samples of input-output pairs,
Dy = {(Xnyn)}n_n, 1 Where x,, € R™*! is a vector of
m explanatory features (including both non-spatial features
and spatial contextual feature) with each element corre-
sponding to one feature layer, and y,, € {0,1} is a binary
class label.

Explanatory features of labeled samples and unlabeled
samples are noted as X, = [xi,..,xy,]T and X; =
[XN, 41, Xn]T respectively. The class layers are noted
as Y. = [y1,-yn,]T and Y, = [yn, 1, un] T Y,
is unknown and to be predicted. For example, in flood
mapping from earth imagery, x,, can be the spectral band
values (and elevation) of each pixel, and y,, is the class label
(flood, dry). We also assume N,, > N;. Labeled subset D,
and an unlabeled subset D,, are training and test samples
respectively. Note that both X; and X, are used in training
(semi-supervised learning).

2

3 EM ALGORITHMS FOR SEMI-SUPERVISED

LEARNING

This section compares theoretical properties of EM-based
semi-supervised learning algorithms in unstructured and
structured prediction respectively.

3.1 Example of Unstructured EM: Gaussian Mixture
Models

EM-based semi-supervised learning algorithm in un-
structured prediction does not consider structural depen-
dency of sample classes and assumes that the sample classes
are independent and identically distributed (i.i.d.).

The joint distribution of all samples is as below:

P(X,Y)=P(X,,Y,,X;,Y))

N N
= [[ Pecwswm) I Pxniym)

n=N,+1

¢Y)
n=1

We assume that the sample features follow ani.i.d. Gaus-
sian distribution in each class. The prior class probability
P(y,, = c) follows a Bernoulli distribution below.

P(y, =c¢) =7, c={0,1}. ()
Feature distribution P(x,|y,) is as below,
P(xplyn = ¢) ~ N(p., Ze) 3)

We denote the entire set of parameters as © =
{7tes ey, Be|e = 0, 1}. The labeled data subset D; is used to
initialize parameters ®. Then EM algorithm creates a func-
tion for the posterior expectation of log-likelihood evaluated
using current estimate for the parameters(E-Step) and next
updates parameters maximizing the expected log-likelihood
for the next iteration (M-Step). The unknown class Y, is
hidden variable. The posterior expectation of log likelihood
of all samples is as below:
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The posterior class distribution for unlabeled samples
(1 <n < Ny) P(ynlxn, Oo) is
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Taking the above into the posterior expectation of log
likelihood, we can easily get the following formulas to
update parameters that maximize the posterior expectation
(M-Step). Note that I(y, = ¢) = 1ify, = ¢, and 0 otherwise.

Ny N
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o n=1 n=N,+1 6)
Te = 4 Nu 1 N (
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Class inference: After learning model parameters, we can

infer hidden class variables by maximizing the log joint
probability of unlabeled data.

N,
log P(Xy,Yy) = log H P(x|yn)P(yn)
o )
= Z log P(xn [yn) P (yn)

n=1

To maximize the total log probability, we can maxi-
mize each term in Equation 9. For each sample n, we
simply choose the class c that gives higher probability of
P(xp|yn = ¢)P(yn = o).

3.2 Example of Structured EM: Hidden Markov Tree

EM-based semi-supervised learning algorithm in struc-
tured prediction assumes a dependency structure between
sample classes. We use a spatial classification model called
geographical hidden Markov tree (HMT) [12]. It is a probabilis-
tic graphical model that generalizes the common hidden
Markov model (HMM) from a one-dimensional sequence
to a partial order tree.

The joint distribution of unlabeled samples’ features and
classes can be formulated as Equation 10, where P, is the
set of parent samples of the nth sample in the dependency
tree (P, = 0 for a leaf node), and yrep, = {yxlk € P} is
the set of parent node classes of node n.

Ny Ny,
P(Xy, Yy) = H P(xn|yn) H P(ynlyrer, ) (10)
n=1 n=1

Similar to EM for unstructured prediction, the model
assumes that features in each class follows an i.i.d. Gaussian

distribution.
P(Xn|yn = C) ~ N(Nm Ec) (11)

Class transitional probability follows the partial order
flow dependency constraint [12], as shown in Table 1.

3
TABLE 1: Class transition probability and prior probability

Plynlyp,) | yp, =0 | yp, =1 Plyn)
yn =0 1 1—p yn =0 i)
yn =1 0 P Yn =1 T

We denote the entire set of parameters as © =
{p, e, ey ele = 0,1}. The posterior expectation of log
likelihood of unlabeled samples (E-step) is as below:

]EYu‘Xu ©0 IOg P(X’M: Yu‘@)

Ny Ny,
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After computation of marginal class posterior distribu-
tion through forward and backward message propagation,
we can get the parameter updating formula by maximizing
the posterior expectation of log likelihood as below (M-
Step).

> 2 2 yr. (1= yn)P(yn, yp, X, Oo)
n|Pn#0 Yn YP, (13)
p =
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n
E(x” - H’c)(x” - p‘c)TP(yn = C‘Xv 60)
== ,c=0,1  (16)
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Class inference: After learning model parameters, we can
infer hidden class variables by maximizing the overall joint
probability.

N, Ny
log P(X,Y) = Z log P(xp|yn) + Z log P(yn|yker, )
n=1 n=1

17)
A naive approach that enumerate all combinations of class
assignment is infeasible due to the exponential cost. We use
a dynamic programming based method called max-sum [14].
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Posterior p(ynlzn), from Bayes p(yn[X), from message (a) Ground truth ~ (b) EM clustering without labels  (c) EM clustering with partial labels

probability  theorem propagation.

Feature P(@nlyn) ~ N (ky, Be) P(@nlyn) ~ N (1, Se) Fig. 1 Illus.tration of importance of labeled samples in

probability Gaussian mixture models (red and green are two classes)

Class

probability  p(yn = ¢) = 7 p(yn = ¢) = 7. for leaf

nodes, p(yn|yrep, ) for
non-leaf nodes

3.3 Comparison

Table 2 summarizes the comparison of theoretical prop-
erties between the two EM methods. From the expression
of joint probabilities, both methods assume that features in
each class follows an i.i.d. Gaussian distribution. The differ-
ence lies in the class prior probability. For unstructured EM
methods, the class prior probability follows i.i.d. Bernoulli
distribution p(y,) ~ B(1,7) while for the structured EM
method, sample classes follow a dependency structure ,

setting of hidden Markov models). However, randomly
initialized parameters of mean and covariance matrix may
not converge to good values after EM iterations, particularly
when the feature clusters of samples in two classes are
not well-separated from each other (as the case of our
flood mapping application), as shown by the example in
Figure 1(b). In this situation, labeled samples in each class
can be used to estimate its corresponding mean vector and
covariance matrix more accurately, as shown by Figure 1(c).

TABLE 3: Summary of unstructured EM and structured EM
in unsupervised learning and semi-supervised learning.

which can be expressed by class transition probability Unstructured EM Structured EM
.. e Samples are identical and | e  Either samples or feature
P(yn|yk€77n) [12] MOI'EOVEI', both methods have similar independent. variables follow structural
formulas for parameter update where sample mean and Example *  Feature variables are dependency.
independent. e Unknown classes and missing

covariance are reweighted by each sample’s class posterior
probability. The difference lies in the way they compute
the class posterior probability. For unstructured model, it
is from Bayes theorem; while for structured model it is from
message propagation, considering the class dependency
structure [12], [15], [16], [17].

When analysing the theoretical properties of the two EM
algorithms, we found that EM algorithms can be considered
as a generalization of self-training [6]. In self-training, a
classifier is first trained with a small amount of labeled
data. The classifier is then used to classify the unlabeled
data. The most confident unlabeled points together with
their predicted labels are added to the training set in the
next iteration [3]. In contrast, EM algorithm first uses labeled
samples to initialize model parameters, and then estimates
the class posterior probability of each unlabeled sample. In
the next iteration, it uses the class posterior probability as a
weight to re-estimate model parameter (Equations 13, 14, 15,
and 16). In summary, both self-training and EM algorithm
use the labeled data to iteratively learn model parameters.
The difference is that self-training makes a hard class as-
signment of unlabeled samples to retrain model in iterations
while the EM algorithm uses the class posterior probability
to make a soft class assignment for each unlabeled sample.

It is important to note that the local optimal problem
exists for both approaches. If class estimation of unlabeled
data is misleading, it may further hurt learning in itera-
tions. This potential problem can be alleviated by a good
initial parameters estimation from representative training
samples. The labeled samples are used to initialize some
model parameters, i.e., the mean vectors . and covariance
matrices ¥, of features of samples in each class. These
parameters could have been initialized randomly without
labeled samples (unsupervised setting of Gaussian mixture
model, also called EM clustering, as well as unsupervised

e Unknown classes as
hidden variables

features are hidden variables.

Unsupervised Learning
e Randomly initialize model | Generative mixture models
parameters. without labels (EM clustering)
e Update model parameters | [11]-
without labels.

Bayesian structural model [8].

Semi-supervised Learning

o Initialize model parameters
with labeled samples.

e Update model parameter
with or without labeled
samples.

Generative mixture models
with partial labels [1].

Hidden Markov model (HMM)
with extra labeled samples [10].

Table 3 compares unstructured EM versus structured
EM in both unsupervised and semi-supervised settings in
a broader perspective. Both unstructured and structured
EM learn model parameters with the existence of missing
variables (e.g., hidden class labels or missing feature obser-
vations). The difference is that structured EM incorporates
structural dependency between samples or feature variables
within a sample. In unsupervised setting, class labels are ei-
ther fully unknown (e.g. , EM clustering) or not of relevance
(e.g., feature dependency learning in Bayesian structured
EM). Thus, initialization and update of model parameters
do not rely on class labels. In semi-supervised setting, class
labels are partially available. These labels can be used in
parameter initialization and potentially in parameter update
as well. Specifically, in Gaussian mixture models with partial
labels, both labeled and unlabeled samples are used in
parameter initialization as well as class inference. In hidden
Markov models, if extra labeled samples are available, these
labels can be used to provide a reasonable initialization of
some model parameters (e.g., mean and covariance matrix
in each class). After this, model parameters are iteratively
updated based on the features and dependency structure on
test samples. The process belongs to transdutive learning
since a model is learned for a specific structure across
test samples. It is worth to note that HMMSs can also be



unsupervised with randomly initialized parameters without
class labels. But the converged parameters in this case may
be ineffective in discriminating two classes on test samples
(see [12]).

4 EVALUATION

In this section, we compared the performance of un-
structured EM prediction with structured EM prediction
through case studies on real world datasets. Our goal is to
get insights on how well different EM methods can handle
class confusion due to noise and obstacles in features. More-
over, we also compare EM algorithm with other baseline
methods. We chose Gradient Boost Machine and Random
forest models as baseline because these models have well-
tested source codes and have also shown superior perfor-
mance over other models in the literature. The candidate
classification methods are listed below.

e Unstructured EM (Gaussian mixture model) w/o
elevation feature: We implemented our codes in
Matlab.

e Unstructured EM (Gaussian mixture model) w/
elevation feature : We implemented our codes in
Matlab.

e Structured EM (HMT): We implemented the HMT
source code in C++.

e Gradient Boost Model (GBM): We used the GBM
in R gbm packages on raw features together with
elevation feature.

o Random forest (RF) : We used the random forest in
R randomForest packages on raw features together
with elevation feature.

Hyperparameter: For unstructured EM, the hyper-
parameter includes the parameter convergence threshold,
and the cutoff threshold to decide the positive and negative
classes. For structured EM, the hyper-parameter includes
the parameter convergence threshold, and initial parameter
values of p (class transitional probability) and 7 (class prior
probability). The parameter convergence threshold was set
as le-5, and the cutoff threshold was set as 0.5. We set
p = 099 and m = 0.5 based on earlier sensitivity study
(see [12]). For random forest, the hyper-parameters include
the number of trees Nj, the number of variables randomly
sampled as candidates at each split Ny and the minimum
size of terminal nodes N3. For N7, we tried values of 300,
350, 400, 450, 500. For N5, we tried values of 1, 2, 3. For N3,
we tried values of 5, 10, 20, 40. When choosing the optimal
value for one parameter, we kept other parameters constant.
The optimal values are: N; = 350, No = 2 and N3 = 10.
For gradient boosted model, the hyper-parameters include
the number of trees T, the maximum depth of each tree 15,
and the shrinkage parameter T3 that is used to reduce the
impact of each additional fitted tree. For T, we tried values
of 1000, 1500, 2000, 2500, 3000. For 15, we tried values of 1,
2,3, 4. For T3, we tried values of 0.1, 0.01, 0.001. The optimal
hyper-parameters are: 71 = 2000, 175 = 1, and T3 = 0.01.

Dataset description: We used two flood mapping datasets
from Hurricane Harvey floods in Texas 2017 and Hurricane
Mathew in North Carolina 2016 respectively. Non-spatial
explanatory features include red, green, blue bands in aerial

Dry training
samples

Fig. 2: Training and test polygons

imagery from PlanetLab Inc. and NOAA National Geodetic
Survey [18] respectively. The spatial contextual feature was
digital elevation map from Texas natural resource man-
agement department and the University of North Carolina
Libraries [19] respectively. All data were resampled into
2 meter by 2 meter resolution. Figure 3 shows the entire
input features in the Harvey dataset, including non-spatial
features (RGB bands) in Figure 3(a) and spatial contextual
feature (elevation) in Figure 3(b). From the images, we can
see class confusion due to noise and obstacles in non-spatial
features (there are pixels with tree colors in both flood and
dry areas). Due to space limit, we put the results on the
second dataset in Appendix.

Training and test dataset split: We used simple validation.
The separation of training and test sets is shown in Figure 2.
We had a test region (highlighted by the black rectangle)
with labeled polygons in both classes. The training region
with training polygons in both classes was outside the
test region. In the experiment, we randomly selected 10000
pixels from training polygons (5000 in flood and 5000 in
dry) and 103374 pixels from test polygons (43972 in dry and
59402 in flood)

4.1 Parameter Convergence

Parameter iteration and convergence: Our convergence
threshold was set to 0.001%. Figure 4 shows the iterations
of p., 3. (c = 0 for the dry class, ¢ = 1 for the flood class)
in unstructured EM without spatial contextual feature (ele-
vation). For X., we only plotted the diagonal elements (i.e.,
the variance of each feature) and omitted covariance values
due to space limit. From the results, we can see that the
converged mean values of the two classes are well separated
with p, converged to 3500 to 5500 and g, converged to
6300 to 6500. This is consistent with Figure 3(a) since flood
areas have lighter color than dry areas. Note that the range
of values in red, blue, and green bands are bigger than 256
due to a different imagery data type. We can also observe
that the variance of the flood class ¥ converged to a lower
range of values (around 1 x 105 ~ 3x 10%). The reason is that
unstructured EM without spatial contextual feature will re-
group samples with class confusion in their feature values



Dry area
covered by«tree &

Tralnlng Reglon

(a) High-resolution satellite imagery in NC.

-

’

Test Region

Training Region
(b) Digital elevation

Fig. 3: RGB feature and spatial elevation feature

x10°

7000 7
650096006060 0006 6 680 o sod e/”ﬂﬁfﬂ“ EM) ﬁﬁ

NI /

11) (22) (33
6000 5} DS L)
5500 4l o
< Al f -
5000; 3
1 2 3]

450067#%) kﬂg) 777ug) 2/\’\‘\“—1\‘—»—._._,_,_,_‘_‘_‘_(_‘
0] P W
QL — — 0

0 5 10 15 20 0 5 10 15 20

Iteration
(b) Iteration of parameter X

lteration
(a) Iteration of parameter p

Fig. 4: Parameter iterations and convergence for unstruc-
tured EM without elevation feature

x10°

o g0 o5

8000 25

o (22) (22)
6000F 2z
3,3 3,3
4000 4R I IV
0 1
(1) @2 ___, 0 @) ”
— +— *—
soool - Ho Iz Ho Iz

0 5 10 15 20 0 5 10 15 20
Iteration Iteration

(a) Iteration of parameter p (b) Iteration of parameter 3

Fig. 5: Parameter iterations and convergence for unstruc-
tured EM with elevation feature

10°
7000 250
R R E X
ol 0 0 0
6000 ! 972(111) . 2(212),,, 2(3,3)
\ i 1 1 1
; 15t
250004 = : = = no
A
1 2 3
e e B
3000 0
0 5 10 15 20 0 5 10 15 20

Iteration
(b) Iteration of parameter 3

Iteration
(a) Iteration of parameter p

Fig. 6: Parameter iterations and convergence for structured
EM algorithm

(e.g., tree pixels with the same color in both flood and dry
areas) into the same class based on class posterior (Figure 7),
which in turn will influence the update of parameters in
each class.

For unstructured EM with spatial contextual feature
(elevation), the parameter iteration and convergence are
shown in Figure 5. Note that there is one more dimension
for elevation in the plots. We can see that the converged
mean values of two classes are less separately compared
with Figure 4. p, converges to a range of 3800 to 5500
and p; converges to a range of 5000 to 6000. Another
dramatical change is on the variance of flood class X1,
which increases to a much larger range of values (0.5 x 10°
to 2.5 x 10%). This can be explained by the marginal class
posterior probabilities in Figure 8, where samples with high
posterior probability in the flood class (yellow color) are
growing and include more tree pixels in the flood areas.
Because of this, the variance of the flood class grows bigger
and the mean of the flood class drops (tree pixels in water
are darker than exposed flood water).

For structured EM, the converged parameter values are
moderate in the middle of the above two cases, but more
similar to unstructured EM with spatial contextual feature
(elevation). The results can be explained by the posterior
class probability in Figure 9, where samples with high
posterior probability in the flood class (yellowish pixels) are
moderately in between the previous two maps. The main
difference is that p, and ¥, converge in fewer (only 2)
iterations compared with unstructured EM with elevation.
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Fig. 8: Posterior Probability of Unstructured EM with elevation
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4.2 Posterior Class Probability

Figures 7, 8, and 9 show the iterations of posterior
probabilities of samples in the flood class for unstructured
EM without and with elevation features as well as struc-
tured EM respectively. Sample class posterior probability is
important in understanding how the EM algorithm works
because it shows how much a sample contribute to the
parameter update for the next iteration in each class (e.g.,
Equations 6, 7, 8, and Equations 13, 14, 15, 16). For unstruc-
tured EM, posterior class probability is estimated based on
the Bayes Theorem with an i.i.d. assumption. Thus, samples
with class confusion in feature values will be estimated
towards the same class. This explains why pixels correspond
to trees in the flood have low posterior probability in the
flood class in Figure 7 (same as the trees in dry areas). In
contrast, unstructured EM with the elevation feature could
separate confused tree pixels in flood and dry areas since
their elevation values differ. This is shown in Figure 8(f).
Finally, for structured EM, posterior class probability is esti-
mated based on both local class likelihood from non-spatial
features (RGB colors) and class dependency structure. This
explains why the class posterior in Figure 9 is moderate
compared with Figure 7 and Figure 8. It is worth noting that
posterior class probability for individual pixels are not the
same as final class prediction in structured EM (final class
prediction could be smoother due to jointly predicting all
classes with dependency).

4.3 Prediction Result

Table 4 and Figure 11 show the final classification results
of the three methods. We can see that unstructured EM

(d) Iteration 10
Fig. 9: Posterior Probability of structured EM
TABLE 4: Comparison on Harvey, Texas flood data

(e) Iteration 15 (f) Iteration 20

Classifiers Class Prec. Recall F Avg. F
G Flood 0% 070 o081 0¥
RF Food 0% 06 051 0%
Unstructured EM w/o elev. Fll)org d 883 ggg 8% 0.75
Unstructured EM w/ elev. FllDor(Z,d 833 823 833 0.99
EM Structured F]i)rg d ggg 823 ggg 0.99

without spatial contextual feature (elevation) performed
poorly with class confusion. Unstructured EM with spatial
contextual feature performs significantly better with less
class confusion, but also produces some salt-and-pepper
noise errors since spatial features are used with an ii.d.
assumption. In contrast, the structured EM method can
both address the class confusion issue and show a smooth
class map due to explicitly considering spatial dependency
structure.

Moreover, we plot the ROC curve and calculate the AUC
of ROC curve for unstructured EM, GBM and RF classifier.
As shown in Figure 10 and Table 5, the unstructured EM
with elevation. gives the best ROC curve with AUC of
0.996, while the unstructured EM without elevation. shows
the less significant result with AUC of 0.786. It means the
spatial features play an important role in the unstructured
EM classifier. The two baseline methods random forest and
GBM show better results than unstructured EM without
elevation classifier.
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Fig. 10: ROC curve on Harvey, Texas data

TABLE 5: Comparison on AUC of ROC curve

Classifiers AUC

GBM 0.975

RF 0.946
Unstructured EM w/o0 elev.  0.786
Unstructured EM w/ elev. 0.996

4.4 Salt-and-pepper Noise

TABLE 6: Comparison on the total number of salt-and-
pepper noise (The total number of pixels is 19,167,008)

Classifiers Number of Salt-and-pepper noise
GBM 62,846
RF 69,354
Unstructured EM w/o elev. 77,625
Unstructured EM w/ elev. 23,803
EM Structured 3,740

We used a spatial autocorrelation statistic called Gamma
index [20] to quantify the salt-and-pepper noise level.
Gamma index measures the similarity between the attribute

(a) Unstructured EM with-(b) Unstructured EM with
elevation

out elevation

(c) Structured EM (d) Satellite imagery

Fig. 11: Comparison of class prediction
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Fig. 12: Sensitivity to the ratio of labeled samples

values of a location and those of its neighbors. It is defined
as

I — Zj Wi,jlilj
% Zj Wi,j

where i and j are locations, W ; is 1 if j is is neighbor, and
0 otherwise, I; is 1 if pixel i is flood pixel and -1 otherwise.
We define a salt-and-pepper noise pixel as a pixel that has
a negative local Gamma index (I'; < 0). We calculated
the total number of salt-and-pepper noise pixels across all
locations in the predicted class map. The total numbers of
salt-and-pepper noise pixels of the five classifiers are sum-
marized in Table 6. We can see that RF, GBM, and EM i.i.d.
without elevation have the highest salt-and-pepper noise
level (above 60,000). EM i.i.d. with elevation is much better
with only 23,803 salt-and-pepper noise. The EM structured
method has the lowest number of salt-and-pepper noise,
ie., 3,740, about one order of magnitude lower than other
classifiers.

(18)

4.5 Effect of the ratio of labels

We analyzed the sensitivity of three candidate EM meth-
ods to the ratio of training labels. Specifically, we increased
the ratio of labeled samples from 5 x 1077 to 5 x 1072
The results were summarized in Figure 12. We can see
that as the ratio of labeled samples increase, the F-scores
of all three methods first improved and then converged
to an optimal value. Specifically, EM ii.d. (represented by
Gaussian mixture model) achieved the lowest peak F-score
(around 0.75), while EM i.i.d. with elevation feature and
EM structured model (represented by HMT) have a much
better peak F-score (around 0.99). We also observe that
when the ratio of labeled sample is small (e.g., below 107°),
EM structured model has a poor performance (with an F-
score below 0.65). This is probably because more labeled
samples are needed to initialize good parameters for our
representative EM structured model (HMT).

5 CONCLUSIONS AND FUTURE WORK

This paper makes a comparative study between unstruc-
tured and structured EM in semi-supervised learning. We
compare the two methods in their theoretical properties
and find that EM-based semi-supervised learning can be
considered as a generalization of self-training method with



soft class assignment on unlabeled samples. A case study
on flood mapping datasets shows that unstructured EM
method can be significantly impacted by noise and obstacles
in sample features. Adding spatial contextual features in
unstructured EM method can reduce the impact of noise
and obstacles but will still produce salt-and-peper noise
errors. Finally, structured EM can better address the issue
compared with the other methods in this flood mapping
applications. In future work, we plan to conduct the com-
parison studies on more types of datasets and applications
to see if the conclusion can hold in general.
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APPENDIX

This appendix shows empirical evaluation results on the
Hurricane Mathew flood in North Carolina. Figure 13, 14,
and 15 show the parameter iterations of model parameters
in unstructured EM without elevation, unstructured EM
with elevation feature, and structured EM respectively. The
overall trends look similar to the results on the Harvey
dataset. The corresponding class posterior probabilities of
pixels in three methods are shown in Figure 17, 18, and 19.
Comparison on class predictions are shown in Table 7 and
Figure 16.
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Fig. 13: Parameter iterations and convergence for unstruc-
tured EM without elevation feature
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Fig. 14: Parameter iterations and convergence for unstruc-
tured EM with elevation feature

TABLE 7: Comparison on Mathew, Kinston flood data

Classifiers Class Prec. Recall F Avg. F
EM iid.(Converged) F]f;g’d 8:2}) 8:52 8::;8 0.51
EMiid(iterations) 00, 0% 050 963 g7
» Dry 096 081 088
EM ii.d.+ elev. Flood 0.84 0.9 0.90 0.89
Dry 094 099 096
EM-Structure Flood 099 094 096 0%
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Fig. 15: Parameter iterations and convergence for structured
EM algorithm
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