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1977; Yopak et al., 2010; Yopak, 2012; Tsuboi et al., 2016; Salas et al., 
2017). Few studies have explored the brain allometric parameters in 
squamate reptile clades, and even less research has been done in snakes 
(Platel, 1979; Tsuboi et al., 2018; De Meester et al., 2019; Font et al., 
2019). Here, we provide one of the first macroevolutionary analyses of 
allometry of brain size in snakes and lizards. 

Regarding the energetic consequences of the brain and body size 
relationship, hypotheses such as the Expensive Tissue Hypothesis (ETH) 
(Aiello and Wheeler, 1995), the Energetic Trade-Off Hypothesis (ETOH) 
(Isler and van Schaik, 2006) and the Expensive Brain Hypothesis (EBH) 
(Isler and van Schaik, 2009) postulate that the evolution of brain size 
reflects the interplay between selection for larger brains and the miti
gation of the energetic costs of brain size increase. Specifically, the ETH 
indicates that the costs of large brains in hominids are mitigated by a 
reduction in the gut size, accompanied by an improvement in dietary 
quality (Aiello and Wheeler, 1995). The ETOH predicts reductions in 
tissues, and also in physiological and life history traits (Isler and van 
Schaik, 2006). The EBH unifies the concepts of ETH and ETOH and 
incorporate the increases in energetic turnover, as compensatory stra
tegies for mitigating brain size increase (Isler and van Schaik, 2009). For 
example, vertebrates with relative large brains incur high energetic costs 
that result in a reduction in size of other organs and tissues. This in
cludes, a reduction in digestive tissues in some primates (Aiello and 
Wheeler, 1995; Barrickman and Lin, 2010; Hartwig et al., 2011), fishes 
(Kaufmann et al., 2003; Kotrschal et al., 2013b; Tsuboi et al., 2015) and 
frogs (Liao et al., 2016), adipose tissue in mammals (Navarrete et al., 
2011), pectoral muscle mass in birds (Isler and van Schaik, 2006), and 
gonads in bats (Picknick et al., 2006). Even a reduction of offspring 
production in birds and fishes (Isler and van Schaik, 2006; Kotrschal 
et al., 2013b), as well as an increase in oxygen consumption in electric 
fishes (Sukhum et al., 2016) has been observed. To our knowledge, 
however, no study have explored these energetic tradeoffs in snakes and 
lizards. 

Snakes and lizards provide an opportunity to assess patterns in brain- 
body size relationship across macroevolutionary scales. They are 
phylogenetically closely-related suborders, but present interesting con
trasts in their overall body plan. And differences in the body plan are 
expected to have a strong influence in the allometric patterns among 
taxa (Smaers et al., 2012; Font et al., 2019; Rogell et al., 2020). In 
addition, snakes have a similar body design across extant taxonomic 
hierarchies, facilitating comparisons of patterns of brain and body size 
evolution under a common and simple body plan (i.e., tubular, elon
gated and limbless design). By contrast, lizards present variation in limb 
development, ranging from limbless to limbed clades (Vitt and Caldwell, 
2014; Wiens et al., 2006). Additionally, the energy budget for brain of 
reptiles is comparable to that of endotherms (Mink et al., 1981), but 
their global energetic budget for other physiological processes is lower 
(White et al., 2006). To our knowledge, only two studies have assessed 
brain size allometry in snakes and lizards at macroevolutionary scale. 
Specifically, Platel (1979) showed that the brain of basal Henophidia 
snakes changed at higher rates following changes in body size than that 
of advanced snakes in Caenophidia, but this study only included two 
henophidian species and 12 caenophidians (Platel, 1979). More 
recently, De Meester et al. (2019) showed that lizards present large brain 
size for a given body size, likely as a consequence of limb development. 
Interestingly, snakes have a disproportionally elongated body, such that 
snakes with similar body mass to lizards present longer bodies. This 
body elongation entails an elongation of the spinal cord, with potential 
consequences for variation in brain size. For instance, body elongation 
in primates is known to promote both neuronal and whole brain changes 
related to spinal cord length (Burish et al., 2010). 

We expand on the research on brain allometry in squamate reptiles 
using a combination of fresh (from this study) and published (from 
Platel, 1979; Zippel et al., 1998; De Meester et al., 2019) samples. We 
also evaluate potential energetic trade-offs involved in the brain-body 
size relationship of snakes, following the theoretical framework of 

ETH and ETOH (Aiello and Wheeler, 1995; Isler and van Schaik, 2006). 
By combining these data, we explore: i) what are the patterns of brain 
allometry at higher macroevolutionary scales among and within snakes 
and lizards?, and ii) are there energetic trade-offs compensating brain 
size increase in snakes? For the first question, we assessed allometric 
parameters at the level of Infraorder, Superfamily, Family and Subfamily 
in snakes and lizards, using measurements of both body mass and body 
length, and contrasting limbed and limbless taxa. For the second, we 
evaluated interspecific correlations between brain size and the size of 
other organs in pit-viper species of Crotalinae (Viperidae). 

2. Materials and Methods 

2.1. Sampling design and snake body size 

We sampled adult individuals of seven pit-viper snake species (Cro
talinae), one boid (Boidae), one coral snake (Elapidae) and two colu
brids (Colubridae) collected in Panama during 2016 and 2017. All the 
samples, except for Cerrophidion sasai, were collected during the rainy 
season, which could reduce the effect of environmental variation on 
body size, body condition and brain size. Individuals were euthanized 
within 24 h of sampling, using an intraperitoneal injection of 2% bro
moethanol solution. We then obtained body mass for each individual, 
using two digital scales: a HCB 123 (Adam Equipment®) for small in
dividuals and a H-110 Digital Hanging Scale (American Weigh Scales 
Inc.) for larger individuals. Both scales are 0.001 g of precision, but the 
former has a high upper limit. We also estimated the snout vent length 
(SVL) for each individual using a measuring tape. We then dissected 
each individual, and stored the head and trunk in 10% formaldehyde 
and 70% ethanol, respectively. We complemented our field data with 
data (i.e., adult brain mass, body mass and SVL) of other snake species 
from the literature (Platel, 1979; Shine 1994; Zippel et al., 1998; Santos 
and Pleguezuelos, 2003; Luiselli et al., 2005; Ramesh and Bhupathy, 
2010; Feldman and Meiri, 2013; Penning et al., 2015; De Meester et al., 
2019). We also included, in the Crotalinae sample, a few individuals 
stored and preserved at the herpetological collections at the Universidad 
Autónoma de Chiriquí. We removed the viper species Agkistrodon pisci
vorus from Platel, 1979) because the reported brain mass (0.64 g) and 
body mass of (728 g), falls outside the possible brain mass for a snake 
with such body size. Thus, these values likely represent measurement 
errors. To contrast patterns of brain and body size allometry between 
snakes of lizards, we obtained recently published data on brain and body 
mass in lizards as well as SVL (Feldman et al., 2015; De Meester et al., 
2019). Data on body mass and SVL of snakes and lizards, and brain mass 
of lizards are available in Table S1. 

2.2. Snake dissection 

To perform brain dissections, we first cleaned each skull and decal
cified them by overnight immersion in Decalcifier System I (composi
tion: <12% formic acid, <2% methanol, <6% formaldehyde of total 
volume) (Leica Biosystems). We then dissected intact brains which 
included olfactory bulbs and tracts, brain hemispheres, tectum opticum, 
cerebellum, medulla oblongata, and hypophysis. However, for the cur
rent analyses, we only focus on overall brain mass, which we quantified 
immediately after dissection of the skull, using a digital scale (HCB 123; 
Adam Equipment®), 0.001 g of precision. Data for brain mass for snakes 
are in Table S1. We also quantified the mass of other organs such as liver, 
heart, trachea, gut, esophagus, gall bladder, pancreas, kidneys, ovaries 
(when possible) and intestines. We weighted each organ three times to 
reduce measurement errors. In addition, we subtracted the mass of prey 
remains and feces from the gastrointestinal tract from the body mass 
obtained in the field. Thus, we used a body mass measurement free of 
food or fecal content in our analysis. We also dissected the trunk’s skin 
(with scales) and obtained three replicates of both the mass of the 
trunk`s skin and the musculoskeletal and osseous tissue of the trunk 
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body length in our analyses. The only exceptions were Henophidia and 
Colubrinae, which showed non-significant relationships, likely due to 
small sample size. In addition, we did not find evidence for trade-offs 
between brain size and the size of other organs in the snake sub- 
family Crotalinae. These findings contrasts with previous studies 
reporting substantial variation in allometric parameters at macroevo
lutionary scales in ectotherms, such as fishes, amphibians and even 
reptiles, including dinosaurs (Jerison, 1969; Bauchot et al., 1977; 
Yopak, 2012; Salas et al., 2017). Other studies have also reported low 
brain allometric variation across vertebrates (Yopak et al., 2010; Tsuboi 
et al., 2018; Burger et al., 2019; Font et al., 2019), but to our knowledge, 
few studies have focused on snakes (Platel, 1979). Thus, despite limi
tations in sample size, our results suggest that basal henophidian and 
derived caenophidian snakes have a uniquely conserved pattern of brain 
allometry at macroevolutionary scales among vertebrates. This 
conserved pattern of brain allometry in alletinophidian clades also 
contrasts with previous analyses, which found higher brain size varia
tion, for a given body size, in henophidian than in caenophidian snakes 
(Platel, 1979). 

If the conserved pattern for snakes holds with the addition of new 
data, it may reflects a macroevolutionary equilibrium resulting from the 
balance of the energetic requirements of brain and body size increase 
(Kleiber, 1947; Mink et al., 1981; Isler and Van Schaik, 2006, 2009; 
Niven and Laughlin 2008), despite rapid ecological and body size 
diversification in snakes. This possibility appears to be supported by the 
absence of negative relationships between brain size and the size of the 
other organs in Crotalinae, and the isometric trends observed for most of 
the organs in this group. In fact, we only found slight deviations from 
isometry in a few organs such as stomach, trachea and the MSOTT, 
suggesting an overall absence of energetic trade-offs associated with 
brain size increase. It is unclear to us if diet shifts from small to large 
preys following the increase of body size in Crotalinae, similar to other 
snake clades (Vitt and Caldwell, 2014), is associated with an increase in 
energetic turnover to mitigate energetic constraints of brain size or 
whole body size (Isler and van Schaik, 2006, 2009), but this is certainly a 
possibility that deserves further research. 

The specific mechanisms driving this conserved pattern of macro
evolutionary brain allometry in snakes are not yet clear, but it is likely 
that changes in either brain or body size (or both) are involved (Deacon, 
1990; Montgomery et al., 2010). We propose that perhaps the snake 
body plan, a tubular and elongated shape together with the loss of limbs, 
may play an important role. Previous studies indicate that body size 
imposes constraints on brain size increase (Tsuboi et al., 2016; De 
Meester et al., 2019), but the snake body plan may be more energetically 
efficient than the body plan in other taxa, likely facilitating the balance 
of the energetic constraints between both brain and body size increase at 
macroevolutionary scales. This could be supported by the fact that the 
basic snake body plan – including the loss of limbs – has remained 
almost invariable across clades since their divergence from lizards 
approximately 170 Myr ago (Caldwell et al., 2015; Zheng and Wiens, 
2016). Furthermore, snakes present lower energetic costs of body 
maintenance than lizards, possibly because of their simple body plan 
(Zhang et al., 2018). This might also explain the repeated evolution of 
this body design in modern lizards (Wiens et al., 2006). 

Limb development is an important factor driving brain size evolution 
in squamate reptiles (Platel, 1979; De Meester et al., 2019). In lizards, 
limb development appears to be associated with higher variation in 
brain allometric parameters (Platel 1979). For instance, the infraorders 
Gekkota and Iguania showed low slopes, and a very low intercept in the 
case of Iguania. Moreover, some families with pronounced limb devel
opment within infraorders with high brain allometric parameters also 
showed a reduction in both slope and intercept, such as Varanidae from 
Anguimorpha and Lacertidae from Lacertoidea. Interestingly, the brain 
allometric parameters for the entire sample of limbless or limb reduced 
lizards were similar to the sample of the Scincidae family and the entire 
suborder Sauria, which suggests that brain allometry in these lizards is 

less variable, possibly associated with their body plan (Platel 1979). 
However, the allometric parameters controlling for the effect of SVL 
appeared more variable in limbless lizards, also suggesting a more 
complex brain allometric pattern across lizards. Thus, the snake body 
plan might be an important factor maintaining conserved the brain 
allometric parameters across taxonomic scales. 

Although our sampling effort included, to our knowledge, all 
currently available brain mass data for snakes and lizards, additional 
data are crucial to explore these patterns further. In particular, future 
studies must include a wider range of body sizes in snakes of the su
perfamilies Henophidia and Caenophidia, and the Infraorder Scoleco
phidia, as well as families of limbless or limb-reduced lizards such as the 
ancestral Dibamidae and Pygopodidae (Wallach et al., 2014; Uetz et al., 
2020). Future studies should also consider the effect of body length on 
brain allometry, given that the spinal cord is known to influence brain 
mass and organization in primates (Burish et al., 2010). Thus, given that 
weight and length are different physical entities with potentially 
different consequences for brain evolution, their complementary effects 
deserves further attention in snakes, as well as in other taxa. Finally, 
expanding current available data will also help solve the nested pattern 
of snake species in our sampling, as well as improving our phylogenetic 
statistical approach for both lizards and snakes. 

5. Conclusions 

We found remarkable differences in macroevolutionary patterns of 
brain allometry in snakes and lizards. Brain allometric parameters were 
highly variable in lizards across taxa. By contrast, in snakes, they 
showed a conserved pattern at multiple taxonomic scales, without evi
dence for trade-offs between brain size and the size of other organs in 
Crotalinae. Body length favored brain allometry in both snakes and 
lizards, but less variability was observed in snakes. While these findings 
are preliminary, given the limited availability of data, they suggest the 
possibility of a macroevolutionary equilibrium in brain size allometry in 
snakes. Although the mechanisms driving this pattern are unknown, we 
suggest that the snake body plan, which has remained nearly invariable 
since the evolution of the clade, may play an important rolein balancing 
energetic constraints of brain and body size increase at macroevolu
tionary scales. We hope that these results will encourage future research 
on the evolution of brain and body size in lizards and snakes – a fasci
nating, yet understudied branch of the tree of live. 
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