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ABSTRACT

Multiple networks emerge in a wealth of high-impact applications.
Network alignment, which aims to find the node correspondence
across different networks, plays a fundamental role for many data
mining tasks. Most of the existing methods can be divided into
two categories: (1) consistency optimization based methods, which
often explicitly assume the alignment to be consistent in terms of
neighborhood topology and attribute across networks, and (2) net-
work embedding based methods which learn low-dimensional node
embedding vectors to infer alignment. In this paper, by analyzing
representative methods of these two categories, we show that (1)
the consistency optimization based methods are essentially spe-
cific random walk propagations from anchor links that might be
too restrictive; (2) the embedding based methods no longer explic-
itly assume alignment consistency but inevitably suffer from the
space disparity issue. To overcome these two limitations, we bridge
these methods and propose a novel family of network alignment
algorithms BRIGHT to handle both plain and attributed networks.
Specifically, it constructs a space by random walk with restart
(RWR) whose bases are one-hot encoding vectors of anchor nodes,
followed by a shared linear layer. Our experiments on real-world
networks show that the proposed family of algorithms BRIGHT out-
perform the state-of-the-arts for both plain and attributed network
alignment tasks.
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1 INTRODUCTION

Multiple networks play an important role in many applications,
ranging from academic scholar analysis, bioinformatics, e-commerce
product recommendation to financial fraud detection. Network
alignment aims to find node correspondence across networks, which
is a fundamental step for many downstream tasks. For example, by
aligning users across different social networks, we can integrate
multi-sourced information to model user preferences such that
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more personalized recommendations can be achieved [2]. In bioin-
formatics, human aging which is hard to study due to long human
lifespan can be elucidated by identifying the functional orthologs
and transferring the biological insights across model species and
human via network alignment [5].

Many existing network alignment methods are often based on the
alignment consistency principle and formulated as an optimization
problem. One fundamental assumption underlying these methods
is that the neighborhood topology and/or attributes of the nodes to
be aligned are consistent across networks. Conventionally, network
alignment can be formulated as a graph matching problem, which
considers one network as a noisy permutation of the other [14]. The
objective of this type of methods is to minimize ||A1 — PAzPT||12D
where A1 and Ay are adjacency matrices of two networks and
P is the node permutation matrix. In addition, the consistency
assumption behind IsoRank [23] is that if two nodes are aligned
together, their corresponding close neighbors are also likely to
be aligned. FINAL [34] further integrates node and edge attribute
consistency assumptions to cope with attributed network alignment.
However, this consistency assumption could be violated due to
network heterogeneity. For example, users may have preferences
of certain social platforms (e.g. Facebook) than others (e.g. Twitter).
In this way, they might behave actively in one social network while
being quiet in the other. Moreover, as shown in Figure 1, different
from career-oriented platform LinkedIn, edges in Google scholar
network may describe the co-authorship, which introduces another
type of heterogeneity (i.e., different semantics of relations) between

these two networks.
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Figure 1: An illustrative example where the consistency as-
sumption could be violated.

(4) database,

Network embedding based methods have been proposed recently
that aim to learn low-dimensional node embedding vectors in order
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to infer node alignment. Given a set of anchor node pairs !, the
goals of embedding based methods can be summarized as (1) to
preserve the topology information of each network by node em-
beddings, and (2) in the meanwhile to make embeddings of anchor
node pairs as close as possible. For plain networks, IONE [16] uses
follower/followee edges as the structural information and embeds
nodes similarly to LINE [25] to preserve both inner-network and
cross-network node proximities. Chu et al. propose an embedding
method that assumes the embedding space of two networks can
be transformed linearly, which yet might be ineffective to capture
the complex alignment relationships [3]. For attributed networks,
Origin [36] utilizes graph convolutional networks [11] to capture
both the topology and attribute information for network alignment.
However, although embedding based methods do not explicitly
assume alignment consistency in terms of topology/attribute, they
inevitably introduce the embedding space disparity issue into the
alignment task. As shown in Figure 2, even fixing anchor node pairs
with same embeddings (denoted by green diamond nodes), node
embeddings of two isomorphic networks can lie symmetrically in
the embedding space, which could further mislead the alignment.
In this way, it is crucial yet challenging to train node embeddings
of two networks in one unified space.

| Euclidean Embedding Space

! Anchor nodes

! Corresponding node . .
| Corresponding node ' .

| Edge of networkl

| Edge of network2

Figure 2: An illustrative example of the space disparity is-
sue. Green nodes are anchor nodes, blue nodes represent the
non-anchor nodes in network1 and red nodes represent the
non-anchor nodes in network2. The blue round node of net-
work1 should be aligned to the red round node of network2.
However, because of the space disparity, the blue round node
is closer to the red pentagonal node and aligned to it.

In this paper, we first analyze some representative methods of
two categories, including (1) consistency optimization based meth-
ods and (2) embedding based methods. Specifically, we show that
consistency optimization based methods that build upon topol-
ogy/attribute consistency assumption (e.g., FINAL [34] and Iso-
Rank [23]) can be considered as conducting random walks from
anchor nodes simultaneously in different networks. However, ran-
dom walk propagation with the exactly same number of steps in
two networks might be too restrictive to capture structural inconsis-
tency/differences between them (restrictive propagation limitation).
On the other hand, by breaking down the typical objective functions
of embedding based methods, we reveal that their loss functions are

!n this paper, we use anchor node pairs and anchor links interchangeably.
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essentially the upper bound of the objective function of consistency
optimization based methods. As we will show in Section 3.2, the
error introduced by this upper bound can be accumulated, which
eventually leads to the space disparity issue.

To address the above limitations, we propose a novel family of
network alignment algorithms BRIGHT, including BRIGHT-U for
plain networks and BRIGHT-A for attributed networks. The key
idea is to use the training anchor links as the bases/landmarks to
construct a certain unified space by random walk with restart (RWR)
[27]. The RWR scores with respect to an anchor node are used as the
values of initial node embeddings at the corresponding dimension.
We then use a shared linear layer to learn the importance of the
RWR scores at different dimensions. In this way, the proposed
methods bear the flexibility of handling the restrictive propagation
limitation and the ability of addressing the space disparity issue. For
attributed networks, we additionally utilize a graph convolution
network (GCN) module to leverage the attribute information. The
main contributions of this paper can be summarized as follows.

o Theoretic Analysis. To our best knowledge, we are the first
to reveal some fundamental limitations of the consistency
optimization based methods and embedding based methods
and aim to bridge them.

¢ Novel Models. We propose a family of novel network align-
ment algorithms BRIGHT, including BRIGHT-U for plain
networks and BRIGHT-A for attributed networks.

¢ Experimental Results. We perform extensive experiments
on five datasets in different scenarios, which demonstrate
the effectiveness of the proposed model.

The rest of the paper is organized as follows. Section 2 defines
network alignment problem. Section 3 gives the analysis of consis-
tency optimization based methods and embedding based methods.
Section 4 presents the proposed BRIGHT model. Section 5 shows
the experimental results. Related works and conclusion are given
in Section 6 and Section 7 respectively.

2 PROBLEM DEFINITION

Table 1 summarizes main notations used in this paper. Bold upper-
case letters are used for matrices (e.g., A). Bold lowercase letters
are for vectors (e.g., s) and lowercase letters (e.g., p) for scalars. For
matrix, we use A(i, j) to denote the entry at the intersection of the
i-th row and j-th column of matrix A, The transpose of A is denoted
by the superscript T (i.e., AT). A is the normalized matrix of A, e.g.,
the symmetrically normalized adjacency matrix A = D 2AD"2
where D is the degree matrix of A. The corresponding lowercase is
used to denote the vectorization of a matrix (e.g., s = vec(S)).

An attributed network is represented as G = {A, X}, where (1)
A is the adjacency matrix, and (2) X is the node attribute matrix.
The network alignment task can be defined as follows:

PROBLEM 1. SEMI-SUPERVISED ATTRIBUTED NETWORK ALIGNMENT.
Given: (1) two attributed networks Gi = {A1,X1} and G2 =
{A2,X2}; (2) a set of anchor node pairs L.
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Table 1: Symbols and Notations.

Symbol Definition
G1.G2 input networks
A1, Az adjacency matrices of networks
X1, Xs node attribute matrices of networks
R1, Ry RWR score matrices
E1,Ez embedding matrices of networks
ni, n2 # of nodes in G1, Go
mi, ma # of edges in G1, Go
ab node indices of G1
X,y node indices of G
1 an anchor link between G; and G»
L the set of anchor node links
I an identity matrix
1 a vector of 1s
H ny X np prior alignment preference
S ny X np alignment/similarity matrix
r the random walk with restart vector
o4 the parameter, 0 < o < 1
B the restart probability in RWR
d(-,-) the distance for node embeddings
s = vec(S) vectorization of matrix S in the column order
A normalized matrix of A
D = diag(d) diagonal matrix of the degree vector d
® Kronecker product
[-11] matrix or vector concatenation

Output: an ny X ny alignment/similarity matrix S, where S(x, a)
represents the alignment/similarity between node-a in G1 and node-x

inGo.

Remarks. If we do not have X; and Xj, this will become the
semi-supervised plain network alignment problem. If we do not have
L, this will become the unsupervised attributed network alignment
problem.

3 ANALYSIS

In this section, we analyze both consistency optimization based
methods and embedding based methods. Through the analysis, we
show that the consistency optimization based methods conduct re-
strictive random walk propagation of anchor links and embedding
based methods are essentially the relaxed versions of the consis-
tency optimization based methods.

3.1 Consistency Optimization Based Methods

For consistency optimization based methods, the anchor node links
set L is encoded in the form of the prior alignment matrix H, where
the entry corresponding to an anchor link is 1 and 0 otherwise. We
start with the semi-supervised plain network alignment task and
attributed network alignment task will be discussed later in this
subsection. For plain network alignment task, topology consistency
is a basic assumption, which assumes that if a and b are neighbors in
G1, x, y are neighbors in G and if a is aligned to x, it is very likely
that b should be aligned to y. In addition, the final similarity matrix
S should be consistent with prior alignment matrix H. The objective
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function of consistency optimization based methods [23, 34] can
be formulated as:

0.(5) = [
aa,,,,zx,y Va()di@)

+(1-a)lIs - H|I}

Sca)  S@w.b)
V&)1 ()

*A1(a, b)Az(x, 1)

(1)

where dz(x), di(a), d2(y), d1(b) are the degrees of nodes x, a, y, b
and «a is the parameter. This objective function has a closed form
solution given by [34]:

s=(1-a)I-aW)'h ()

where s and h are vectorizations of S and H respectively, W =
A; ® Aj is the Kronecker product of A; and Ay and W is the
symmetrically normalized matrix of W. It is equal to the following
summation:

s=(1 —a)zaf\fv’h 3)
t=0

Then, let us take any node pair (b, y) into consideration, where b is
anode in G and y is anode in G. Assuming that (b, y) corresponds
to the i-th entry in s, we can break the prior alignment vector h for
each anchor link:
naXni—1 oo
si)=(-a) ) > aWij)ih() @

=0 =0
where 1(-) takes 1 if the condition inside the parenthesis is true

and zero otherwise. If h(j) = 0, the value of the corresponding
item in summation is 0, which will be ignored. If h(j) = 1, let
1 1

us take the item af WZ(j, j) for analysis. Since W = D‘_NEWD‘;VE
and W = A; ® Ay, Wi(i, j)1(h(j)) means that the anchor link
represented by h(j) = 1 moves exactly ¢ steps and it will arrive the
node pair (b, y), which is represented by s(i). So, the node pair (b, y)
will get a score s(i) from the anchor link h(j) = 1 with a decaying
rate a. At last, scores from all anchor links will be added together.

From the above analysis we know that consistency optimization
based methods are random walk propagation of anchor links, which
is shown in Figure 3. Methods for attributed network alignment
task relying on node/edge attribute consistency to prune the infea-
sible choices when choosing the direction of next step, which is a
generalized version of plain methods. From Eq. (4), we can see that:

e The equation requires that only when two anchor nodes of
an anchor link (e.g., h(i)) arrive at the given node pair (b, y)
with the exactly same step t (W (i, j)1(h(}))), can the given
node pair (b, y) receive a score. Even a little perturbation
(e.g., deleting a node/edge) could make the node pair (b, y)
receive a zero score from this anchor link.

e The weights of scores from all anchor links are set equally
as 1s and simply added together. If some anchor link has a
negative effect on the alignment task, these methods are not
able to weed out such an anchor link.

3.2 Embedding Based Methods

For embedding based methods, we show that they can be viewed as
the relaxation of consistency optimization methods with objective
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t=4 t=3

Anchor node

Figure 3: An example of random walk propagation of anchor
link with 4 steps. The anchor link between two networks
moves step by step (t = 0 to t = 4). Once it arrives at a pair of
nodes, this pair of nodes will obtain a score for alignment.

function in Eq. (1). Specifically, we show that consistency opti-
mization based methods directly optimize node similarities across
networks (i.e., S(y, b)). In contrast, embedding based methods relax
it into indirectly optimizing the node similarities through a path
of node pairs {(y, x), (x, a), (a, b)}. To analyze the space disparity
issue, we start from analyzing the loss functions of embedding
based methods. Loss functions of these methods [3, 16, 36] can be
generally written as follows:

0 = 0" + O}" + 0°Toss (5)

where 0{" and Oé" are the within network loss functions of G; and
G- respectively, and O€"°%% is the cross network loss. Considering
one negative sample for each positive sample, O;" can be written

as

oin = Z(d(a, b) — d(a, c)) 6)

where d(-, -) is the distance or dissimilarity function of two nodes in
the embedding space, which could be Euclidean distance or negative
cosine similarity as a dissimilarity measure. Here, (a, b) denotes
a positive node pair which has an edge between them [25] or is
sampled in a fixed length random walk [21] and (a, ) is a negative
sample of node pairs. Oé” can be computed similarly as O{" but in
terms of G». In addition, the O°"?%% can be written as:

>, db) ()
(h,l)eL

where [; and I, are corresponding training anchor node pairs in G;
and G».

To better illustrate our analysis, we simplify the alignment set-
ting into the following scenario that (1) G; and G, are isomorphic
k-regular graphs; (2) d(+, -) is a distance metric; (3) the alignment
matrix S is computed by e=d() (e.g., S(x,a) = e~4(x.a)). and (4)
the positive node pairs (a, b) and (x, y) have edges between them.

Since consistency optimization based methods are random walk
propagation of anchor links, we also conduct our analysis from
anchor links. Let (g, x) is be an anchor link between G; and Go,
(a,b) be an edge in G and (x, y) be an edge in Go. Then, the corre-
sponding item of (a, x) in Eq. (1) to minimize the objective function

OCVOSS —
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is as following:
1 -
0c(S) = (1 = e )As(a b)As(x, ) ®)

where K is the degree in K-regular graph. In the ideal case, obvi-
ously, d(y, b) = 0 is a trivial solution. Taking the loss function of
embedding based methods into consideration, O; minimizes d(a, b)
and Oz minimizes d(x, y). Here, we omit the negative sampling
item d(a, ¢) for now, and it will be included later. O°7°%% actually
minimizes d(a, x). So, the item for (a, b, x, y) in the loss function O
will become:

O =d(b,a) +d(a,x) + d(x,y) 9)
which is optimizing an upper bound of d(b, y) because:

d(b,y) < d(b,a) + d(a,x) + d(x,y) (10)

As we can see, embedding based methods optimize over d(b, a),
d(a, x), d(x, y) for node pair (b, y). However, Eq. (8) directly opti-
mizes over d(b, y). Suppose (g, b) and (x, y) are not totally equiv-
alent nodes in G and Gy, i.e., d(b,a) > 0 and d(x,y) > 0. In the
ideal case, when embedding based methods converge, d(x,a) = 0
and there exists a very small positive number € satisfying the con-
dition that € < min{d(b, a), d(x,y)}. In this case, there exists an
arbitrary § € [0, 2¢] such that d(b, y) can converge to 8. This im-
plies that even if the loss function converges ideally, d(b, y) is not
necessarily 0, which means that even if the loss function converges
ideally, d(b, y) is not necessarily 0. Now, let us take the negative
sampling item d(a, ¢) into consideration. This item aims to make
embeddings of other nodes not linked to a away from the node a’s
embedding, which leads to the situation that even if d(y, b) # 0,
it is small enough to distinguish the right node pair (e.g., (b, y) in
Figure 4) from the wrong pair (e.g., (y, ¢1) in Figure 4). However,
the small § error will accumulate along with the length of random
walks from anchor links (e.g., a incorrectly aligned pair (z2, ¢1) in
Figure 4), especially when anchor links are sparse in the network,
which leads to a severe space disparity issue. If (a, b) are sampled in
a fixed length of random walk instead of being directly linked, the
error becomes larger. After showing that embedding based methods
are essentially relaxed versions of consistency optimization based
methods, we present a proposition about the space disparity issue:

PROPOSITION 1. An embedding based network alignment method
able to handle the space disparity issue must satisfy the following
necessary but not sufficient condition. Given two isomorphic graphs
G1 and Go and some anchor links L between them, for any node pair
(a, x) across G1 and G that should be aligned, a and x have the same
embedding with d(a, x) = 0 in the output of the model.

The correctness of Proposition 1 is straightforward. The goal of
network alignment is to make the distance between node pairs that
should be aligned equal to 0. In other words, starting from anchor
links, any small § of d(a, x) in current embedding based methods
is not allowed during the training process. However, this is not a
sufficient condition for the correctness of network alignment as
trivial solutions with meaningless node embeddings exist (e.g., 0
for all nodes). In this way, the network alignment model needs to
be capable of learning informative node embeddings.
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Anchor nodes X

Go

Figure 4: An illustrative example of error accumulation
along the path from anchor link (green diamond node). Yel-
low dash lines represent the correct alignment and grey dash
line represents the wrong alignment. Node y in G, can still
be aligned to node b in G; (yellow dash line). Node z; in G»
should be ideally aligned to node c; in G, but it is closer to
node c¢; in G; due to the accumulated error (grey dash line).

4 METHOD

In this section, we present the proposed model BRIGHT, including
BRIGHT-U for plain networks and BRIGHT-A for attributed net-
works. We start with the overview of our model, and then detail the
two proposed algorithms (BRIGHT-U and BRIGHT-A), followed by
the training process.

4.1 Overview

To address both the restrictive propagation limitation and the space
disparity issue simultaneously, the proposed BRIGHT strives to
satisfy the following requirements:

e Requirement I: It should lift the restriction of having exactly
same steps of random walks in both networks, and adjust
the way to combine anchor links” weights.

e Requirement 2: It should build a unified embedding space to
meet the condition in Proposition 1.

The framework of BRIGHT is shown in Figure 5. The key idea
of BRIGHT is to treat the anchor links as the landmarks in the
alignment task. Correspondingly, the one-hot vectors of these an-
chor links form the bases of some space that captures the proximity
by RWR. Each dimension of initial embeddings is computed by
the RWR scores w.r.t an anchor link instead of the local neighbor
structure [3, 16]. The initial embeddings represent the relative po-
sitions of all nodes in the entire network. Followed by the shared
modules, the proposed methods meet the condition in Propostion 1
as we will show in subsection 4.2. For Requirement 1, the restart
process in RWR relieves the exact ¢ step limitation by conducting
separate RWRs in two networks and the shared linear layer in
BRIGHT-U can adjust weights of scores from different anchor links
for combination.
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4.2 BRIGHT-U

For plain network alignment, only Aj, Az and the anchor links
set L are given. First, we aim to avoid the restrictive propagation
limitation. At the same time, we want to build a unified embedding
space for both two networks to be aligned to address the space
disparity issue. The key intuition is that, the set of anchor links
L provides the landmarks for all nodes in both networks. Relative
positions based on anchor links can form a unified space for all
nodes, regardless which network they belong to. According to the
analysis in section 3, the previous consistency optimization based
methods are random walk from anchor links with the exactly same
steps. Therefore, we use random walk with restart to measure the
relative position between nodes and anchor links. The separate
RWRs in two networks help avoid the same step restriction and
bring more flexibility to the random walk process, which is more
robust than other distance measurements like shortest path distance.
Given an anchor link [ € £ (we use [; and I3 to denote the same [ in
G1 and G2), the RWR score vector rj, of size n1 X 1 can be obtained
as:

r, = (1- HWiry, + fey, (11)

where Wy = (D_lAl)T is the row normalized matrix of Ay, f is
the restart probability and e;, is one-hot vector with e; (I;) = 1 and
all other entries are 0. The final r;, can be solved as:

r;, = - (1-HW1) ey, (12)

Here we give an intuitive explanation on why this process satis-
fies the condition in Proposition 1. Given two isomorphic graphs
G and Gz and (a, x) as a ground-truth aligned node pair across Gi
and G», the relative position of node a to anchor link /; is r; (a)
and the relative position of node x to anchor link I is 1, (x). In
Eq. (12), the item (I— (1— 8)W )" is similar to (I-aW)~! in Eq. (2).
It represents all normalized paths from the anchor link to a node.
Since (a, x) is a ground-truth aligned node pair in two isomorphic
graphs and (I1, I2) is anchor link (also a ground-truth aligned node
pair). So, all paths from /; to a are same as those from I to x. As a
result, ry, (a) = 1y, (x), which satisfies the condition in Proposition 1.
After getting all RWR vectors for G; and G2, we build two RWR
score matrices Ry of size n; X |.£| and Ry of size ny X |L|. Then,
we normalize R; and Ry w.r.t. each row as WR e Rm*ILl and
WR2 € R"™¥I£l whose value in each position represents the rela-
tive position of a node to an anchor link.

To address the limitation that scores from different anchor links
are simply added together with equal weights in the consistency
optimization based methods, BRIGHT-U uses a shared linear layer
to adjust the weights of scores from different anchor links and to
keep node embeddings of G1 and Gz in the same embedding space
during the training:

E; = ERWR = LINEAR(Wg,) (13)
where EfWR € R™*k denotes the final embedding matrix of G
and k is a fixed dimension. By utilizing RWR and a shared linear
layer, BRIGHT-U successfully leverages node embeddings of two
networks in the unified space and relaxes the restrictive propagation
limitation.
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Figure 5: Framework of BRIGHT . G; has 10 nodes, G2 has 9 nodes and 5 anchor links exist between G; and G,. The dimension

of node attributes and node embeddings are both 4.

4.3 BRIGHT-A

For attributed network alignment task, as shown in Figure 5, we
add a shared two-layer graph convolution network (GCN) module
to capture the attribute information. GCN embedding matrices Xf
, Xg will be concatenated with EIEWR , E§WR and pass through a
shared linear combination layer to obtain final embedding matrices

E; and E;. The first layer and second layer of GCN for Gi:
Xi = o(A1X W) (14)
X? = o(A1X]W?) (15)

1 1
where Al = DI_EAl DIE, o is the activation function, W! and W?
are parameter matrices of the first and second layers of GCN. Then,
X% and the RWR embedding matrix from EfWR will be concate-
nated and fed into a combination layer:

E; = COMBINE([ERWR||x%)) (16)

The final embedding matrices E; and E; are still in a unified em-
bedding space because all modules involved in the training process
are shared for G and G» with same parameters.

4.4 BRIGHT Model Training

When optimizing the model, We use the marginal ranking loss,
which was originated in the entity linking community [30]. With
E; and E;, we have

1 1
Ji= g l;ﬁ A > max{0,y +d(h,lp) - d(lw}  (17)

i ueUli

where L is the anchor link set, y is the margin parameter, i €
{1, 2} is to discriminate two networks, I; and I are corresponding
anchor nodes for anchor link [/ in G; and G», Uy, is the negative
pair sampling set for node [; , u € U}, is the negative sample pair

in G3—; for l; in G;. For example, if i = 1, it means that Uj, is the
negative pair sampling set from G,. We use L1 norm as d(-, -)—
the distance of node embeddings. Specially, our negative sampling
strategy is sort-then-select. To improve the quality of negative
sampling and the alignment performance, we sample nodes in G
with closest embeddings to the anchor node [;’s embedding in G as
Uj, in the next epoch. If n; is too large, a bi-level negative sampling
strategy can be adopted. We first randomly sample a fixed number
of negative nodes and then use the same sort-then-select strategy
to conduct the second level negative sampling. The final loss for
BRIGHT is:

T=N+ (18)

After BRIGHT converges, we compute the value S(x, a) in alignment
matrix S as follows:

S(x, a) = e~ 4x-@) (19)

where d(x, a) is the L1 norm distance between node a in G; and
node x in G».

4.5 Time Complexity
The running time of BRIGHT can be split into three parts:

e Each iteration of RWR (Eq. (11)) has the time complexity
O(m;| L]), where m; is the edge number of G; and L is the
anchor link set.

e The negative sampling process in G; includes calculating
embedding distance and finding |U;| negative samples with
smallest distances for anchor link I. Its time complexity is
O(|Llknj+n;| L]||U|), where k is the node embedding dimen-
sion, n; is the number of nodes in G; and Uj is the negative
sample set for anchor link [ € L.
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e For one linear layer or one GCN layer, we only consider
the forward propagation same as other deep learning meth-
ods [11]. The time complexities for network G; are O(n;| L|k)
and O(m;dyk) respectively, where dy is the input node fea-
ture dimension.

5 EXPERIMENT

We apply the proposed BRIGHT to network alignment task under
different circumstances. We evaluate it in the following aspects:

e Q1. How effective is our proposed model BRIGHT in both
plain network alignment task and attributed network align-
ment task?

e Q2. To what extent does our model benefit from the RWR
embedding module?

e Q3.1In the plain network alignment scenario, when the num-
ber of anchor links decreases quickly, how can BRIGHT-U
avoid the space disparity issue and maintain a relatively high
performance compared to other embedding based methods?

e Q4. How can BRIGHT be extended to the unsupervised sce-
nario by generating candidate anchor links for the model?

5.1 Experimental Setup

5.1.1 Dataset description. Our method is evaluated mainly on five
datasets and four scenarios,which are distinguished by task cate-
gories. The datasets statics are summarized in Table 2 and the brief
description of each dataset is presented as following:

Table 2: Datasets Summary.

Categories | Networks | # of Nodes | # of Edges | # of Attributes
Foursquare 5,313 54,233 —
Plain Twitter 5,120 130,575 —
Networks ACM 9,916 44,808 —
DBLP 9,872 39,561 —
ACM(A) 9,916 44,308 17
Attributed | DBLP(A) 9,872 39,561 17
Networks Cora-1 2,708 5,806 1,433
Cora-2 2,708 4,547 1,433

o Foursquare: A location-based online social network. The orig-
inal dataset is collected by [33]. Nodes represent 5,313 users
and edges represent 54,233 follower/followee relationships.
This dataset is used in plain network alignment task with
Twitter dataset.

o Twitter: A popular microblogging social network, which is
also collected by [33]. Nodes are 5,120 users and edges are
130,575 follower/followee relationships.

e DBLP: A dataset collected in 2016 [26] and it contains 3,272,991
papers with a list of authors and venues. It is transformed
from the original paper citation network into a co-authorship

network, which contains 9,872 authors and 39,561 co-authorships.

With ACM dataset, this dataset is used in both plain network
alignment task and attributed network alignment task. With
the numbers of papers published by an author in 17 venues
functioning as attributes, we denote this dataset in the at-
tributed network alignment task as DBLP(A).
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o ACM: A dataset also collected in 2016 [26]. It contains 2,381,688
papers with authors and their corresponding venues. It is
transformed into a co-authorship network with 9,916 au-
thors and 44,808 co-authorships. Similar to the DBLP dataset,
we denote the attributed version dataset as ACM(A).

e Cora: A citation network where nodes represent documents
and edges represent the citations among documents. Each
node has a bag-of-words binary feature vector [31].

With these datasets, we construct four scenarios of network align-
ment distinguished by network categories: $1-S2 are plain network
alignment task and $3-$4 are attributed network alignment task.

e S1. DBLP vs. ACM 6,325 common authors exist across two
co-author networks, which are used as the ground-truth. §1
aims to find author correspondences across ACM and DBLP.

e S2. Foursquare vs. Twitter There exist 1,609 common users

which are used as the ground-truth. In this scenario, we try

to align users in social networks.

$3. DBLP(A) vs. ACM(A) This is attributed network align-

ment task for $1. Node attributes are given in this scenario.

e $4. Cora-1 vs. Cora-2 This is an attributed network align-
ment task. Two noisy permutation networks-Cora-1 and
Cora-2 are generated from the cora citation network. We
first insert 10% edges into Cora-1 and remove 15% edges
from Cora-2. Then, we add 10% noises into node attribute
matrices of Cora-1and Cora-2 separately. The goal is to align
corresponding papers.

In S1-S4, we use 20% of the ground-truth as the training data and
test on the rest of the ground-truth.

5.1.2 Baselines. We use six recent methods as baselines. Since
some methods do not use attribute information and are specially
designed for plain network alignment task, we divide baselines into
two groups for the sake of fairness. The plain network alignment
baseline group includes (1) IONE [16]; (2) CrossMNA [3]; and (3)
FINAL-P [34]. The attributed network alignment baseline group
includes the remaining three methods:(1) REGAL [8]; (2) FINAL-N
[34]; and (3) NetTrans [35]. All baselines are run with their official
code. Detailed descriptions of baselines are as the following:

For the plain network alignment task:

o IONE: IONE formulates the edges in the network as follower-
ship and followee-ship. IONE preserves the proximity of
users with a similar set of followers or followees in the em-
bedding space. In addition, it uses anchor link as a constraint
to optimize the embedding.

CrossMNA: CrossMNA conducts embeddings by minimizing
the sum of graph reconstructive loss of different networks
and uses a linear transformation between nodes across net-
works to perform alignment.

FINAL-P: FINAL-P uses the neighborhood topology con-
sistency to optimize the alignment matrix. It is a typical
consistency optimization based network alignment method.

For the attributed network alignment task:

e REGAL: REGAL is an unsupervised method to capture the
structure similarity between networks based on cross-network
matrix factorization. REGAL applies to both attributed and
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Table 3: Performance on Plain and Attributed Network Alignment (Higher is better).

Plain Task DBLP vs. ACM Foursquare vs. Twitter
Metrics Hit@1 Hit@l0 Hit@30 MRR | Hit@l Hit@10 Hit@30 MRR
CrossMNA 7.90%  62.53%  79.48%  23.42% | 0.00%  3.26% 12.03%  1.48%
IONE 3091% 74.25%  84.11%  46.26% | 4.50% 16.69% 27.80% 8.56%
FINAL-P 19.49% 68.75%  81.23%  35.00% | 4.97% 22.22% 32.25% 10.31%
BRIGHT-U 40.45% 81.26%  84.13%  53.85% | 6.37%  25.24%  33.54%  13.04%
Attributed Task DBLP(A) vs. ACM(A) Cora-1 vs. Cora-2

Metrics Hit@1 Hit@l0 Hit@30 MRR | Hit@l Hit@10 Hit@30 MRR
REGAL 36.26% 60.36%  69.51%  44.92% | 45.66% 60.90%  69.21%  51.11%
FINAL-N 38.18% 79.74%  89.07% 52.15% | 86.29% 91.32% 91.37% 88.70%
NetTrans 11.84% 84.11%  94.53%  30.11% | 27.56% 90.95% 97.51%  49.67%
BRIGHT-A 45.26% 86.76%  92.17%  59.87% | 83.85% 99.08%  99.68%  90.41%

plain network alignment. Here, we apply it to the attributed
network task.

o FINAL-N: FINAL-N is the attributed version of FINAL-P,
which relies on both topology consistency and node/edge
attribute consistency to optimize the objective function.

e NetTrans: NetTrans is a GCN based embedding method,
which solves the attributed network alignment task from the
network transformation view.

5.1.3  Metrics. In the experiment, we adopt two metrics commonly
used in the literature to evaluate performance of different methods.
The first is Hit@K: given a testing node a from G, if the corre-
sponding node x from G» is among the top-K most similar list of all
nodes in G returned by the algorithm, we treat x as a hit. Hit@K
for the test set is the sum of hits divided by the size of test set. The
second metrics is Mean Reciprocal Rank (MRR) in entity linking
community [24].

5.1.4 Implementation details. Adam [10] optimizer is used with
a learning rate 0.0001 to train the model. The dimension of node
embeddings in all methods is set as 128. The epoch number for
BRIGHT is 250, the size of negative sample set for each anchor link
in the training set is 500 and the margin parameter y is 10. For all
baselines, hyper-parameters are set as default in their official code
except the dimension of node embeddings for a fair comparison.
All the code of BRIGHT is implemented by Pytorch-Geometrics
tool [6] and run on a Nvidia GTX 1080-Ti.

5.2 Performance on plain and Attributed
Network Alignment

In this subsection, we compare BRIGHT with baselines in scenarios
8$1-S4. The results of these methods are presented in Table 3. We
give separate discussions on plain network alignment and attributed
network alignment.

5.2.1  Plain network alignment task. In plain tasks (§1-$2), BRIGHT-
U is compared with three baselines: CrossMNA, IONE and FINAL-
P, the results of which are shown in the upper part of Table 3.
For DBLP vs. ACM, embedding based method IONE has the best
performance among baselines and BRIGHT-U has a 10% improve-
ment in Hit@1 and a 7.5% improvement in MRR over IONE. For

Foursquare vs. Twitter, consistency optimization based method
FINAL-P is the best baseline and BRIGHT-U has an up to 3% im-
provement in both Hit@30 and MRR compared to it. According
to Table 2, Foursquare vs. Twitter is denser than DBLP vs. ACM,
which may cause node embeddings in IONE difficult to be distin-
guished. However, BRIGHT-U still outperforms all three baselines
in all Hit@Ks and MRR for both two scenarios.

5.2.2 Attributed network alignment task. In attributed tasks ($3-
$4), first, we can see that with the help of node attributes, FINAL-N
has improved FINAL-P’s performance by 8% in Hit@30 and by 19%
in Hit@1 on DBLP(A) vs. ACM(A). For this scenario, BRIGHT-A
outperforms FINAL-N by 7% in Hit@1, Hit@10 and MRR. NetTrans
has better performance in Hit@10 and Hit@30 than the remaining
two baselines. While NetTrans beats BRIGHT-A in Hit@30 by 2%,
BRIGHT-A has an advantage about 30% in Hit@1 and MRR over
NetTrans. For the scenario Cora-1 vs. Cora-2, BRIGHT-A achieves
near 100% (99.08% and 99.68%) in Hit@10 and Hit@30. In addition,
we can observe that all four methods perform well in this scenario.
Notice that Cora-2 is a noisy permutation of Cora-1 and the two
networks share the similar distributions. The alignment task of
such kind of networks (i.e., one network is noisy permutation of
the other) is easier than that of networks from different sources.

5.3 Ablation Study for BRIGHT

Table 4: Ablation Study for BRIGHT-U.

plain Task DBLP vs. ACM | Foursquare vs. Twitter
Metrics Hit@10 MRR | Hit@10 MRR
BRIGHT-U(SPD) | 75.75%  48.78% 6.06% 3.07%
BRIGHT-U 81.26%  53.85% | 25.24% 13.04%

The proposed model BRIGHT is nimble. That is, the core for
BRIGHT-U is RWR and BRIGHT-A only adds a GCN module based
on BRIGHT-U. For BRIGHT-U, we replace RWR with the shortest
path distance. From Table 4, we can observe that BRIGHT-U with
RWR outperforms the shortest path distance version-BRIGHT-U
(SPD) in both $1-52, especially in $2 with an up to 20% improvement
in Hit@10. The reason is that RWR is more robust than shortest
path distance in dense networks.
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Table 5: Ablation Study for BRIGHT-A.

Attributed Task DBLP(A) vs. ACM(A) | Cora-1 vs. Cora-2
Metrics Hit@10 MRR Hit@10  MRR
BRIGHT-A(-RWR) 79.43% 51.61% 99.08% 90.12%
BRIGHT-A(-RWR:3500) | 84.31% 58.01% 99.08% 90.12%
BRIGHT-A 86.76% 59.87% 99.08% 90.41%

For BRIGHT-A, we delete the BRIGHT-U/RWR (upper part in
Figure 5). As shown in Table 5, BRIGHT-A (-RWR) has almost
same performance with BRIGHT-A in Cora-1 vs. Cora-2 scenario,
where two networks are the noisy permutation of each other and
node attributes contribute most to the alignment process. For sce-
nario ACM(A)-DBLP(A), BRIGHT-A (-RWR) can not converge in
the same epoch number (250) as BRIGHT-A. So, we extend the
epoch number to 3500 for BRIGHT-A (-RWR) as BRIGHT-A (-
RWR:3500). As shown in Table 5, BRIGHT-A outperforms BRIGHT-
A (-RWR:3500) by 2% in Hit@10 and MRR. In BRIGHT-A, node
attributes play an important role and RWR helps it to converge
faster.

5.4 Plain Network Alignment with Small
Training Ratio

In general, the difficulty of network alignment task increases with
less provided input information. For example, the plain network
alignment task is more difficult than attributed network alignment
task. Therefore, given two plain networks from different sources,
if the number of anchor links decreases sharply, the difficulty of
alignment will increase. In addition, embedding based methods will
suffer from the severe space disparity issue with very few anchor
links. In this subsection, we make the anchor links number de-
creases quickly by setting the training ratio from 0.2 to 0.025 ([0.025,
0.05, 0.1, 0.2]). As shown in Figure 6 and Figure 7, comparing to
consistency optimization based method FINAL-P, the performances
of two embedding based alogorithms (i.e., IONE and CrossMNA)
decline quickly when the training ratio decreases, which demon-
strates the severe space disparity issue they are faced with. However,
even with a very small training ratio setting (0.025), BRIGHT-U
still maintains a relatively high performance, which indicates that
BRIGHT-U successfully mitigates the space disparity issue .

~e— BRIGHT-U
—— IONE
0.307 —a— CrossMNA
= FINAL-P

010
—e— BRIGHT.U
—— I0NE
—4— CrossMNA 0.05
e FINALP

0025 0050 0075 0100 0125 0150 0175 0200 0025 0050 0075 0100 0125 0150 0175 0200
Training ratio Training ratio

(a) Hit@30 with small training ratio on S$1(b) Hit@30 with small training ratio on $2.

Figure 6: Hit@30 with small training ratio on plain network
alignment task.
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(a) MRR with small training ratio on $1. (b) MRR with small training ratio on $2.

Figure 7: MRR with small training ratio on plain network
alignment task.

5.5 Study on Unsupervised Attributed Network
Alignment

Both BRIGHT-U and BRIGHT-A are designed for semi-supervised
network alignment task. We further extend BRIGHT to the unsuper-
vised network alignment task in this subsection. In particular, we
use the attribute similarity to generate candidate anchor links and
feed these candidate anchor links into BRIGHT-A. The detail of this
step is as follows. After calculating attribute similarity, we select the
most similar k pairs of node across networks (k = 0.1 min{n, nz})
where ny, ny are sizes of two networks. We compares BRIGHT-A
with two baselines, including REGAL and FINAL. The former is an
unsupervised method, and the latter provides a specific way to op-
erate in the unsupervised setting. As shown in Figure 8, BRIGHT-A
outperforms unsupervised FINAL and REGAL in both Hit@30 and
MRR.

1.0 mmm FINALN
REGAL
= BRIGHT-A

081 mmm BRIGHT-A

ACM(A)-DBLP(A) Coral-Cora2 ACM(A)-DBLP(A) Coral-Cora2

Dataset Dataset

(a) Hit@30 (b) MRR

Figure 8: Performance on unsupervised attributed network
alignment task.

6 RELATED WORKS

6.1 Network Representation Learning

Network embedding is applied in many applications like category
characterization [37] or temporal prediction [17]. DeepWalk [21]
is the first to use random walk to conduct representation learning
in graph. Node2vec [7] introduces an interpolation strategy when
performing random walks. LINE [25] takes both the first order and
the second order proximity into consideration. SPARC [37] is a For
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heterogeneous networks, Graph Neural Network (GNN) has been
studied, which can integrate attribute information in the learning
process. According to different aggregation methods, GNN includes
Graph Convolution Network [11], Graph Attention Network [29],
and many more. Personalized Pagerank [1] is utilized in GNN [12]
to sample better nodes to aggregate information. PGNN [32] is
designed for discriminating nodes with same structure in different
positions by randomly selecting some nodes as anchors. All of the
above network representation learning methods primarily focus
on a single network and directly adopting them in the network
alignment task bring the space disparity issue.

6.2 Network Alignment

Network alignment is applied in many domains such as database

schema matching [19], bioinformatics [9, 15, 18, 22] and computer

vision [4]. Network alignment was initially formulated as Koopmans-
Beckmann’s quadratic assignment problem [13]. Based on the con-
sistency assumption that one network is noisy permutation of the

other, topological graph alignment is treated as graph matching

problem in [28]. With attribute information, FINAL [34] uses at-
tribute and structure consistency to formulate the network assign-
ment problem as a convex quadratic optimization problem, which

is generalized to high order in [16, 20]. REGAL [8] is a matrix fac-
torization method by building cross-network similarity matrix. As

network representation learning has become popular, [33] proposes

anetwork embedding based method which uses anchor link as regu-
larization. With the assistance of following relationship, IONE [16]

is specially designed for social network alignment. CrossMNA [3]

handles the alignment between a set of networks, where the space

disparity issues is handled by a linear transformation to transform

the embeddings from different networks. For attributed network

alignment, Origin [36] uses the non-rigid point-set registration.
ADMIRING [38] is an adversarial method. NetTrans [35] leverages

graph convolutional network for the alignment task from the net-
work transformation view.

7 CONCLUSION

In this paper, we study network alignment problem. We focus two
categories of methods and reveal two main limitations, including
(1) the restrictive propagation limitation; and (2) the space disparity
issue behind embedding based methods. We further bridge them by
showing that embedding based methods are essentially the relaxed
version of the consistency optimization based methods. Based on
the analysis, we propose an embedding based family of network
alignment algorithms named BRIGHT, including BRIGHT-U for
plain network alignment and BRIGHT-A for attributed network
alignment. Extensive experiments demonstrate that BRIGHT-U can
outperform the state-of-the-arts by an up to 10% improvement in
Hit@10 and BRIGHT-A can align the Cora network and its noisy
permutation near perfectly.
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