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ABSTRACT

Network anomaly detection aims to find network elements (e.g.,
nodes, edges, subgraphs) with significantly different behaviors from
the vast majority. It has a profound impact in a variety of applica-
tions ranging from finance, healthcare to social network analysis.
Due to the unbearable labeling cost, existing methods are predom-
inately developed in an unsupervised manner. Nonetheless, the
anomalies they identify may turn out to be data noises or unin-
teresting data instances due to the lack of prior knowledge on the
anomalies of interest. Hence, it is critical to investigate and develop
few-shot learning for network anomaly detection. In real-world sce-
narios, few labeled anomalies are also easy to be accessed on similar
networks from the same domain as of the target network, while
most of the existing works omit to leverage them and merely focus
on a single network. Taking advantage of this potential, in this work,
we tackle the problem of few-shot network anomaly detection by
(1) proposing a new family of graph neural networks — Graph Devi-
ation Networks (GDN) that can leverage a small number of labeled
anomalies for enforcing statistically significant deviations between
abnormal and normal nodes on a network; (2) equipping the pro-
posed GDN with a new cross-network meta-learning algorithm to
realize few-shot network anomaly detection by transferring meta-
knowledge from multiple auxiliary networks. Extensive evaluations
demonstrate the efficacy of the proposed approach on few-shot or
even one-shot network anomaly detection.

1 INTRODUCTION

Network-structured data, ranging from social networks [46] to fi-
nancial transaction networks [33], from citation networks[33] to
molecular graphs [45], has been widely used in modeling a myriad
of real-world systems. Nonetheless, real-world networks are com-
monly contaminated with a small portion of nodes, namely, anom-
alies!, whose patterns significantly deviate from the vast majority
of nodes [8]. For instance, in a citation network that represents cita-
tion relations between papers, there are some research papers with
a few spurious references (i.e., edges) which do not comply with
the content of the papers [3]; In a social network that represents
friendship of users, there may exist camouflaged users who ran-
domly follow different users, rendering properties like homophily
not applicable to this type of relationships [9]. As the existence of
even few abnormal instances could cause extremely detrimental
effects, the problem of network anomaly detection has received
much attention in industry and academy alike.

Due to the fact that labeling anomalies is highly labor-intensive
and takes specialized domain-knowledge, existing methods are pre-
dominately developed in an unsupervised manner. As a prevailing
paradigm, people try to measure the abnormality of nodes with the
reconstruction errors of autoencoder-based models [7, 20] or the

!In this paper, we primarily focus on detecting abnormal nodes.
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Figure 1: Since anomalies usually have distinct patterns, (a)
existing methods may easily fail to distinguish them from
normal nodes in the latent representation space with only
few labeled anomalies, (b) while they can be well separated
in an anomaly score space by enforcing statistically signifi-
cant deviations between abnormal and normal nodes.

residuals of matrix factorization-based methods [3, 19, 35]. How-
ever, the anomalies they identify may turn out to be data noises
or uninteresting data instances due to the lack of prior knowledge
on the anomalies of interest. A potential solution to this problem
is to leverage limited or few-shot labeled anomalies as the prior
knowledge to learn anomaly-informed models, since it is relatively
low-cost in real-world scenarios — a small set of labeled anomalies
could be either from a deployed detection system or be provided
by user feedback. In the meantime, such valuable knowledge is
usually scattered among other networks within the same domain
of the target one, which could be further exploited for distilling
supervised signal. For example, LinkedIn and Indeed have similar
social networks that represent user friendship in the job-search
domain; ACM and DBLP can be treated as citation networks that
share similar citation relations in the computer science domain.
According to previous studies [34, 50], because of the similarity of
topological structure and nodal attributes, it is feasible to transfer
valuable knowledge from source network(s) to the target network
so that the performance on the target one is elevated. As such, in
this work we propose to investigate the novel problem of few-shot
network anomaly detection under the cross-network setting.
Nonetheless, solving this under-explored problem remains non-
trivial, mainly owing to the following reasons: (1) From the micro
(intra-network) view, since we only have limited knowledge of
anomalies, it is hard to precisely characterize the abnormal patterns.
If we directly adopt existing semi-supervised [17, 38] or PU [40]
learning techniques, those methods often fall short in achieving
satisfactory results as they might still require a relatively large
percentage of positive examples [23]. To handle such incomplete
supervision challenge [48] as illustrated in Figure 1(a), instead of
focusing on abnormal nodes, how to leverage labeled anomalies as
few as possible to learn a high-level abstraction of normal patterns
is necessary to be explored; (2) From the macro (inter-network)
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view, though networks in the same domain might share similar
characteristics in general, anomalies exist in different networks
may be from very different manifolds. Previous studies on cross-
network learning [29, 30, 41, 42] mostly focus on transferring the
knowledge only from a single network, which may cause unstable
results and the risk of negative transfer. As learning from multiple
networks could provide more comprehensive knowledge about the
characteristics of anomalies, a cross-network learning algorithm
that is capable of adapting the knowledge is highly desirable.

To address the aforementioned challenges, in this work we first
design a new GNN architecture, namely Graph Deviation Networks
(GDN), to enable network anomaly detection with limited labeled
data. Specifically, given an arbitrary network, GDN first uses a
GNN-backboned anomaly score learner to assign each node with
an anomaly score, and then defines the mean of the anomaly scores
based on a prior probability to serve as a reference score for guiding
the subsequent anomaly score learning. By leveraging a deviation
loss [23], GDN is able to enforce statistically significant deviations
of the anomaly scores of anomalies from that of normal nodes in the
anomaly score space (as shown in Figure 1(b)). To further transfer
this ability from multiple networks to the target one, we propose a
cross-network meta-learning algorithm to learn a well-generalized
initialization of GDN from multiple few-shot network anomaly
detection tasks. The seamlessly integrated framework Meta-GDN is
capable of extracting comprehensive meta-knowledge for detecting
anomalies across multiple networks, which largely alleviates the
limitations of transferring from a single network. Subsequently,
the initialization can be easily adapted to a target network via
fine-tuning with few or even one labeled anomaly, improving the
anomaly detection performance on the target network to a large
extent. To summarize, our main contributions are three-fold:

e Problem: To the best of knowledge, we are the first to investi-
gate the novel problem of few-shot network anomaly detection.
Remarkably, we propose to solve this problem by transferring
the knowledge across multiple networks.

e Algorithms: We propose a principled framework Meta-GDN,
which integrates a new family of graph neural networks (i.e.,
GDN) and cross-network meta-learning to detect anomalies
with few-shot labeled data.

e Evaluations: We perform extensive experiments to corrobo-
rate the effectiveness of our approach. The experimental results
demonstrate the superior performance of Meta-GNN over the
state-of-the-art methods on network anomaly detection.

2 RELATED WORK

In this section, we review the related work in terms of (1) network
anomaly detection; and (2) graph neural networks.

2.1 Network Anomaly Detection

Network anomaly detection methods have a specific focus on the
network structured data. Previous research mostly study the prob-
lem of anomaly detection on plain networks [2]. As network struc-
ture is the only available information modality in a plain network,
this category of anomaly detection methods try to exploit the net-
work structure information to spot anomalies from different per-
spectives [1, 44]. For instance, SCAN [44] is one of the first methods
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that target to find structural anomalies in networks. Oddball [1]
extracts egonet-based features and spots anomalous egonets that
deviate significantly from the observed patterns. In recent days,
attributed networks have been widely used to model a wide range
of complex systems due to their superior capacity for handling data
heterogeneity. In addition to the observed node-to-node interac-
tions, attributed networks also encode a rich set of features for
each node. Therefore, anomaly detection on attributed networks
has drawn increasing research attention in the community, and
various methods have been proposed [11, 22, 26]. Among them,
ConOut [22] identifies the local context for each node and per-
forms anomaly ranking within the local context. More recently,
researchers also propose to solve the problem of network anomaly
detection using graph neural networks due to its strong modeling
power. DOMINANT (7] achieves superior performance over other
shallow methods by building a deep autoencoder architecture on
top of the graph convolutional networks. Semi-GNN [38] is a semi-
supervised graph neural model which adopts hierarchical attention
to model the multi-view graph for fraud detection. GAS [18] is a
GCN-based large-scale anti-spam method for detecting spam adver-
tisements. Apart from the aforementioned methods, our approach
focus on detecting anomalies on a target network with few labels
by learning from multiple auxiliary networks.

2.2 Graph Neural Networks

Graph neural networks [5, 6, 36] have achieved groundbreaking suc-
cess in transforming the information of a graph into low-dimensional
latent representations. Originally inspired by graph spectral theory,
spectral-based graph convolutional networks (GCNs) have emerged

and demonstrated their efficacy by designing different graph con-
volutional layers. Among them, The model proposed by Kipf et

al. [15] has become the most prevailing one by using a linear filter.
In addition to spectral-based graph convolution models, spatial-
based graph neural networks that follow neighborhoods aggrega-
tion schemes also have been extensively investigated. Instead of
training individual embeddings for each node, those methods learn

a set of aggregator functions to aggregate features from a node’s local

neighborhood. GraphSAGE [13] learns an embedding function that

can be generalized to unseen nodes, which enables inductive repre-
sentation learning on network-structured data. Similarly, Graph

Attention Networks (GATs) [36] proposes to learn hidden represen-
tations by introducing a self-attention strategy when aggregating

neighborhood information of a node. Furthermore, Graph Isomor-
phism Network (GIN) [43] extends the idea of parameterizing uni-
versal multiset functions with neural networks, and is proven to

be as theoretically powerful as the Weisfeiler-Lehman (WL) graph

isomorphism test. To go beyond a single graph and transfer the

knowledge across multiple ones, more recently, researchers have ex-
plored to integrate GNNs with meta-learning techniques [34, 50, 51].
For instance, PA-GNN [34] transfers the robustness from cleaned

graphs to the target graph via meta-optimization; Meta-NA [50] is

a graph alignment model that learns a unified metric space across

multiple graphs, where one can easily link entities across different

graphs. However, those efforts cannot be applied to our problem

and we are the first to study the problem of few-shot cross-network

anomaly detection.
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Figure 2: (Left) The model architecture of Graph Deviation Networks (GDN) for network anomaly detection with limited
labeled data. (Right) The illustration of the overall framework Meta-GDN. Meta-GDN is trained across multiple auxiliary
networks and can be well adapted to the target network with few-shot labeled data. Figure best viewed in color.

3 PROBLEM DEFINITION

In this section, we formally define the problem of few-shot cross-
network anomaly detection. Throughout the paper, we use bold
uppercase letters for matrices (e.g., A), bold lowercase letters for
vectors (e.g., u), lowercase letters for scalars (e.g., s) and calligraphic
fonts to denote sets (e.g., V). Notably, in this work we focus on
attributed network for a more general purpose. Given an attrib-
uted network G = (V,&,X) where V is the set of nodes, i.e.,
{v1,02,...,0n}, & denotes the set of edges, i.e., {e1, ez, ..., em}. The
node attributes are represented by X = [XFIF, x;r, cee x};] € R"™4 and
x; is the attribute vector for node v;. More concretely, we represent
the attributed network as G = (A, X), where A = {0, 1}"™" is an
adjacency matrix representing the network structure. Specifically,
A;j = 1indicates that there is an edge between node v; and node
vj; otherwise, A; j = 0.

Generally speaking, few-shot cross-network anomaly detection
aims to maximally improve the detection performance on the target
network through transferring very limited supervised knowledge
of ground-truth anomalies from the auxiliary network(s). In addi-
tion to the target network G!, in this work we assume there exist
P auxiliary networks G* = {G$, Gg, el G;,} sharing the same or
similar domain with G?. For an attributed network, the set of la-
beled abnormal nodes is denoted as VL and the set of unlabeled
nodes is represented as VY. Note that V = {VL, ¥V} and in our
problem |VE|< |VY| since only few-shot labeled data is given.
As network anomaly detection is commonly formulated as a rank-
ing problem [2], we formally define the few-shot cross-network
anomaly detection problem as follows:

Problem 1. Few-shot Cross-network Anomaly Detection
Given: P auxiliary networks, i.e, G° = {G§ = (Ai, Xi), G; =
(A3, X5),....G} = (A}, X})} and a target network G' =
(A, XY), each of which contains a set of few-shot labeled anom-
alies (i.e., "VIL"VZL e fv} and (VtL).

to learn an anomaly detection model, which is capable of
leveraging the knowledge of ground-truth anomalies from the
multiple auxiliary networks, i.e., {Gﬁ, G;, e Gf,}, to detect
abnormal nodes in the target network G*. Ideally, anomalies
that are detected should have higher ranking scores than that
of the normal nodes.

Goal:

4 PROPOSED APPROACH

In this section, we introduce the details of the proposed framework
— Meta-GDN for few-shot network anomaly detection. Specifically,
Meta-GDN addresses the discussed challenges with the following
two key contributions: (1) Graph Deviation Networks (GDN), a new
family of graph neural networks that enable anomaly detection on
an arbitrary individual network with limited labeled data; and (2)
a cross-network meta-learning algorithm, which empowers GDN
to transfer meta-knowledge across multiple auxiliary networks
to enable few-shot anomaly detection on the target network. An
overview of the proposed Meta-GDN is provided in Figure 2.

4.1 Graph Deviation Networks

To enable anomaly detection on an arbitrary network with few-shot
labeled data, we first propose a new family of graph neural net-
works, called Graph Deviation Network (GDN). In essence, GDN is
composed of three key building blocks, including (1) a network en-
coder for learning node representations; (2) an abnormality valuator
for estimating the anomaly score for each node; and (3) a deviation
loss for optimizing the model with few-shot labeled anomalies. The
details are as follows:

Network Encoder. In order to learn expressive nodes represen-
tations from an input network, we first build the network encoder
module. Specifically, it is built with multiple GNN layers that encode
each node to a low-dimensional latent representation. In general,
GNN s follow the neighborhood message-passing mechanism, and
compute the node representations by aggregating features from lo-
cal neighborhoods in an iterative manner. Formally, a generic GNN
layer computes the node representations using two key functions:

hiv_ = AGGREGATEI({hﬁ-_IWj e N;U vi}),
' 1)

1 _ Iy I-1 1
h; = TRANSFORM (hi ,hNi),

where hg is the latent representation of node v; at the I-th layer and
N is the set of first-order neighboring nodes of node v;. Notably,
AGGREGATE() is an aggregation function that aggregates messages
from neighboring nodes and TRANSFORM(-) computes the new rep-
resentation of a node according to its previous-layer representation
and the aggregated messages from neighbors.
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To capture the long-range node dependencies in the network,
we stack multiple GNN layers in the network encoder. Thus, the
network encoder can be represented by:

H! = GNNY(A, X),

@)
Z = GNNL(A, HE Y,

where Z is the learned node representations from the network en-
coder. For simplicity, we use a parameterized function fg_(-) to de-
note the network encoder with L GNN layers throughout the paper.
It is worth noting that the network encoder is compatible with arbi-
trary GNN-based architecture [13, 15, 36, 39], and here we employ
Simple Graph Convolution (SGC) [39] in our implementation.

Abnormality Valuator. Afterwards, the learned node representa-
tions from the network encoder will be passed to the abnormality
valuator fg_(-) for further estimating the abnormality of each node.
Specifically, the abnormality valuator is built with two feed-forward
layers that transform the intermediate node representations to
scalar anomaly scores:

0; = ReLU(Wsz; + by),
®3)

si = usToi + by,
where s; is the anomaly score of node v; and o; is the intermediate
output. Wy and u; are the learnable weight matrix and weight
vector, respectively. bs and b, are corresponding bias terms.
To be more concrete, the whole GDN model fy(-) can be formally
represented as:
fo(A, X) = fo.(fo. (A, X)), 4)
which directly maps the input network to scalar anomaly scores,
and can be trained in an end-to-end fashion.

Deviation Loss. In essence, the objective of GDN is to distinguish
normal and abnormal nodes according to the computed anomaly
scores with few-shot labels. Here we propose to adopt the deviation
loss [23] to enforce the model to assign large anomaly scores to
those nodes whose characteristics significantly deviate from normal
nodes. To guide the model learning, we first define a reference score
(i.e., ur) as the mean value of the anomaly scores of a set of randomly
selected normal nodes. It serves as the reference to quantify how
much the scores of anomalies deviate from those of normal nodes.

According to previous studies [16, 23], Gaussian distribution is
commonly a robust choice to fit the abnormality scores for a wide
range of datasets. Based on this assumption, we first sample a set
of k anomaly scores from the Gaussian prior distribution, i.e., R =
{ri,72,...,rx} ~ N(, 6®), each of which denotes the abnormality
of a random normal node. The reference score is computed as the
mean value of all the sampled scores:

1 k
ﬂr:EZrb (5)
i=1

With the reference score pir, the deviation between the anomaly
score of node v; and the reference score can be defined in the form
of standard score: o
dev(oy) = 17, ©)

Or
where o} is the standard deviation of the set of sampled anomaly
scores R = {ri1,...,r¢}. Then the final objective function can be

Anon.

derived from the contrastive loss [12] by replacing the distance
function with the deviation in Eq. (6):

L =(1-1y;) - |dev(v;)|+y; - max(0, m — dev(v;)), 7)

where y; is the ground-truth label of input node v;. If node v; is
an abnormal node, y; = 1, otherwise, y; = 0. Note that m is a
confidence margin which defines a radius around the deviation.

By minimizing the above loss function, GDN will push the anom-
aly scores of normal nodes as close as possible to y while enforcing
a large positive deviation of at least m between p, and the anom-
aly scores of abnormal nodes. This way GDN is able to learn a
high-level abstraction of normal patterns with substantially less
labeled anomalies, and empowers the node representation learning
to discriminate normal nodes from the rare anomalies. Accordingly,
a large anomaly score will be assigned to a node if its pattern sig-
nificantly deviates from the learned abstraction of normal patterns.

Our preliminary results show that GDN is not sensitive to the
choices of ;1 and o as long as o is not too large. Specifically, we set
4 =0and o = 1in our experiments, which helps GDN to achieve
stable detection performance on different datasets. It is also worth
mentioning that, as we cannot access the labels of normal nodes,
we simply consider the unlabeled node in V'V as normal. Note that
this way the remaining unlabeled anomalies and all the normal
nodes will be treated as normal, thus contamination is introduced
to the training set (i.e., the ratio of unlabeled anomalies to the
total unlabeled training data V). Remarkably, GDN performs
very well by using this simple strategy and is robust to different
contamination levels. The effect of different contamination levels
to model performance is evaluated in Sec. 5.4.

4.2 Cross-network Meta-learning

Having the proposed Graph Deviation Networks (GDN), we are able
to effectively detect anomalies on an arbitrary network with limited
labeled data. When auxiliary networks from the same domain of
the target network are available, how to transfer such valuable
knowledge is the key to enable few-shot anomaly detection on
the target network. Despite its feasibility, the performance would
be rather limited if we directly borrow the idea of existing cross-
network learning methods. The main reason is that those methods
merely focus on transferring the knowledge from only a single
network [29, 30, 41, 42], which may cause negative transfer due to
the divergent characteristics of anomalies on different networks.
To this end, we turn to exploit multiple auxiliary networks to distill
comprehensive knowledge of anomalies.

As an effective paradigm for extracting and transferring knowl-
edge, meta-learning has recently received increasing research atten-
tion because of the broad applications in a variety of high-impact
domains [27, 37]. In essence, the goal of meta-learning is to train a
model on a variety of learning tasks, such that the learned model
is capable of effectively adapting to new tasks with very few or
even one labeled data [14]. In particular, Finn et al. [10] propose
a model-agnostic meta-learning algorithm to explicitly learn the
model parameters such that the model can achieve good generaliza-
tion to a new task through a small number of gradient steps with
limited labeled data. Inspired by this work, we propose to learn a
meta-model (i.e., Meta-GDN) as the initialization of GDN from mul-
tiple auxiliary networks, which possesses the generalization ability
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to effectively identify anomalous nodes on a new target network.
Specifically, Meta-GDN extracts meta-knowledge of ground-truth
anomalies from different few-shot network anomaly detection tasks
on auxiliary networks during the training phase, and will be further
fine-tuned for the new task on the target network, such that the
model can make fast and effective adaptation.

We define each learning task as performing few-shot anomaly
detection on an individual network, whose objective is to enforce
large anomaly scores to be assigned to anomalies as defined in
Eq. (7). Let 7; denote the few-shot network anomaly detection task
constructed from network G}, then we have P learning tasks in each
epoch. We consider a GDN model represented by a parameterized
function fy with parameters 6. Given P tasks, the optimization
algorithm first adapts the initial model parameters 6 to 6; for each
learning task 7; independently. Specifically, the updated parameter
6/ is computed using Lg; on a batch of training data sampled
from (Vl.L and (Vl.U in G§. Formally, the parameter update with one
gradient step can be expressed as:

0] = 0 — aVg Ly (fo). ®)

where a controls the meta-learning rate. Note that Eq. (8) only
includes one-step gradient update, while it is straightforward to
extend to multiple gradient updates [10].

The model parameters are trained by optimizing for the best
performance of fp with respect to @ across all learning tasks. More
concretely, the meta-objective function is defined as follows:

P P
min > Lrfe) = min 2 L5 fo-ave £ (fa): )
i=1 i=1

By optimizing the objective of GDN, the updated model param-
eter can preserve the capability of detecting anomalies on each
network. Since the meta-optimization is performed over parame-
ters @ with the objective computed using the updated parameters
(i.e., 8)) for all tasks, correspondingly, the model parameters are
optimized such that one or a small number of gradient steps on the
target task (network) will produce maximal effectiveness.

Formally, we leverage stochastic gradient descent (SGD) to up-
date the model parameters 6 across all tasks, such that the model
parameters 0 are updated as follows:

P
0 — 60— Vo > Ly(fo) (10)
i=1

where f is the meta step size. The full algorithm is summarized
in Algorithm 1. Specifically, for each batch, we randomly sample
the same number of nodes from unlabeled data (i.e., VY) and la-
beled anomalies (i.e., 4% ) to represent normal and abnormal nodes,
respectively (Step-4).

5 EXPERIMENTS

In this section, we perform empirical evaluations to demonstrate
the effectiveness of the proposed framework. Specifically, we aim
to answer the following research questions:

¢ RQ1. How effective is the proposed approach Meta-GDN for
detecting anomalies on the target network with few-shot or
even one-shot labeled data?
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Algorithm 1 The learning algorithm for few-shot anomaly detec-
tion via cross-network meta-learning

Input: (1) P auxiliary networks, i.e, G° = {G] = (A}, X]),G] =
(A3, X3).....G} = (AL Xp)h (2) a target network G' =
(Af,X%); (3) sets of few-shot labeled anomalies and unlabeled
nodes for each network (i.e., {(VL,(VlU}, e {(VL,(V}EJ} and
{(VL,(V[U}); (4) training epochs E, batch size b, and meta-
learning hyper-parameters «, 5.

Output: Anomaly scores of nodes in (VtU.

1: Initialize parameters 6;
2: while e < E do
3 for each network G (task 7;) do

4 Randomly sample % nodes from (Vl.L and % from ’Vl.U
to comprise the batch B;;

5 Evaluate Vg L7:(fg) using B; and £(-) in Eq. (7);

6: Compute adapted parameters 6" with gradient descent
using Eq. (8), 0] « 0 — aVo Ly (fo);

7 Sample a new batch B; for the meta-update;

8: end for

9 Update 0 — 6 — fVg 37 | L7(fy) using {B]} and £L()
according to Eq. (7);
10: end while
11: Fine-tune 6 on target network G? with {VL, (VtU};
12: Compute anomaly scores for nodes in VY

¢ RQ2. How much will the performance of Meta-GDN change by
providing different numbers of auxiliary networks or different
anomaly contamination levels?

e RQ3. How does each component of Meta-GDN (i.e., graph
deviation networks or cross-network meta-learning) contribute
to the final detection performance?

5.1 Experimental Setup

Evaluation Datasets. In the experiment, we adopt three real-
world datasets, which are publicly available and have been widely
used in previous research [13, 15, 24, 28]. Table 1 summarizes the
statistics of each dataset. The detailed description is as follows:

e Yelp [24] is collected from Yelp.com and contains reviews for
restaurants in several states of the U.S., where the restaurants
are organized by ZIP codes. The reviewers are classified into
two classes, abnormal (reviewers with only filtered reviews)
and normal (reviewers with no filtered reviews) according to
the Yelp anti-fraud filtering algorithm. We select restaurants
in the same location according to ZIP codes to construct each
network, where nodes represent reviewers and there is a link be-
tween two reviewers if they have reviewed the same restaurant.
We apply the bag-of-words model [47] on top of the textual
contents to obtain the attributes of each node.

PubMed [28] is a citation network where nodes represent sci-
entific articles related to diabetes and edges are citations rela-
tions. Node attribute is represented by a TF/IDF weighted word
vector from a dictionary which consists of 500 unique words.
We randomly partition the large network into non-overlapping
sub-networks of similar size.
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Table 1: Statistics of evaluation datasets. r; denotes the ratio
of labeled anomalies to the total anomalies and r; is the ratio
of labeled anomalies to the total number of nodes.

Datasets Yelp PubMed Reddit
# nodes (avg.) 4,872 3,675 15, 860
# edges (avg.) 43,728 8,895 136,781
# features 10, 000 500 602

# anomalies (avg.) 223 201 796
r1 (avg.) 4.48%  4.97%  1.26%
ry (avg.) 0.21%  0.27%  0.063%

e Reddit [13] is collected from an online discussion forum where
nodes represent threads and an edge exits between two threads
if they are commented by the same user. The node attributes
are constructed using averaged word embedding vectors of the
threads. Similarly, we extract non-overlapping sub-networks
from the original large network for our experiments.

Note that except the Yelp dataset, we are not able to access
ground-truth anomalies for PubMed and Reddit. Thus we refer to
two anomaly injection methods [8, 32] to inject a combined set
of anomalies (i.e., structural anomalies and contextual anomalies)
by perturbing the topological structure and node attributes of the
original network, respectively. To inject structural anomalies, we
adopt the approach used by [8] to generate a set of small cliques
since small clique is a typical abnormal substructure in which a
small set of nodes are much more closely linked to each other
than average [31]. Accordingly, we randomly select ¢ nodes (i.e.,
clique size) in the network and then make these nodes fully linked
to each other. By repeating this process K times (i.e., K cliques),
we can obtain K X ¢ structural anomalies. In our experiment, we
set the clique size ¢ to 15. In addition, we leverage the method
introduced by [32] to generate contextual anomalies. Specifically,
we first randomly select a node i and then randomly sample another
50 nodes from the network. We choose the node j whose attributes
have the largest Euclidean distance from node i among the 50
nodes. The attributes of node i (i.e., x;) will then be replaced with
the attributes of node j (i.e., x;). Note that we inject structural and
contextual anomalies with the same quantity and the total number
of injected anomalies is around 5% of the network size.

Comparison Methods. We compare our proposed Meta-GDN
framework and its base model GDN with two categories of anomaly
detection methods, including (1) feature-based methods (i.e., LOF,
Autoencoder and DeepSAD) where only the node attributes are
considered, and (2) network-based methods (i.e., SCAN, ConOut,
Radar, DOMINANT, and SemiGNN) where both topological infor-
mation and node attributes are involved. Details of these compared
baseline methods are as follows:

e LOF [4] is a feature-based approach which detects outliers at
the contextual level.

e Autoencoder [49] is a feature-based unsupervised deep au-
toencoder model which introduces an anomaly regularizing
penalty based upon L1 or L2 norms.

Anon.

e DeepSAD [25] is a state-of-the-art deep learning approach for
general semi-supervised anomaly detection. In our experiment,
we leverage the node attribute as the input feature.

e SCAN [44] is an efficient algorithm for detecting network
anomalies based on a structural similarity measure.

e ConOut [26] identifies network anomalies according to the
corresponding subgraph and the relevant subset of attributes
in the local context.

e Radar [19] is an unsupervised method that detects anomalies
on attributed network by characterizing the residuals of at-
tribute information and its coherence with network structure.

e DOMINANT [7] is a GCN-based autoencoder framework which
computes anomaly scores using the reconstruction errors from
both network structure and node attributes.

e SemiGNN [38] is a semi-supervised GNN model, which lever-
ages the hierarchical attention mechanism to better correlate
different neighbors and different views.

Evaluation Metrics. In this paper, we use the following metrics
to have a comprehensive evaluation of the performance of different
anomaly detection methods:

e AUC-ROC is widely used in previous anomaly detection re-
search [7, 19]. Area under curve (AUC) is interpreted as the
probability that a randomly chosen anomaly receives a higher
score than a randomly chosen normal object.

e AUC-PR is the area under the curve of precision against recall
at different thresholds, and it only evaluates the performance on
the positive class (i.e., abnormal objects). AUC-PR is computed
as the average precision as defined in [21] and is used as the
evaluation metric in [23].

o Precision@K is defined as the proportion of true anomalies
in a ranked list of K objects. We obtain the ranking list in
descending order according to the anomaly scores that are
computed from a specific anomaly detection algorithm.

Implementation Details. Regarding the proposed GDN model,
we use Simple Graph Convolution [39] to build the network encoder
with degree K = 2 (two layers). As shown in Eq. (3), the abnormality
valuator employs a two-layer neural network with one hidden layer
of 512 units followed by an output layer of 1 unit. The confidence
margin (i.e., m) in Eq. (7) is set as 5 and the reference score (i.e., yi)
is computed using Eq. (5) from k = 5, 000 scores that are sampled
from a Gaussian prior distribution, i.e., N(0, 1). Unless otherwise
specified, we set the total number of networks as 5 (4 auxiliary
networks and 1 target network), and for each one we have access
to 10 labeled abnormal nodes that are randomly selected from the
set of labeled anomalies (VL) in every run of the experiment.

For model training, the proposed GDN and Meta-GDN are trained
with 1000 epochs, with batch size 16 in each epoch, and a 5-step gra-
dient update is leveraged to compute 6’ in the meta-optimization
process. The network-level learning rate « is 0.01 and the meta-
level learning rate f = 0.001. Fine-tuning is performed on the
target network where the corresponding nodes are split into 40%
for fine-tuning, 20% for validation, and 40% for testing. For all the
comparison methods, we select the hyper-parameters with the best
performance on the validation set and report the results on the test
data of the target network for a fair comparison. Particularly, for
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Table 2: Performance comparison results (10-shot) w.r.t. AUC-ROC and AUC-PR on three datasets.

‘ ‘ Yelp PubMed Reddit
Methods || AUC-ROC AUC-PR | AUC-ROC AUC-PR AUC-ROC AUC-PR
LOF 0.375+£0.011  0.042 +£0.004 | 0.575+0.007 0.187 £0.016 | 0.518 =0.015 0.071 = 0.006
Autoencoder 0.365 +£0.013  0.041 £0.008 | 0.584 +0.018 0.236 +£0.005 | 0.722+0.012  0.347 = 0.007
DeepSAD 0.460 +0.008  0.062 +0.005 | 0.528 +0.008 0.115+0.004 | 0.503 +0.010 0.066 + 0.005
SCAN 0.397 £0.011  0.046 +£0.005 | 0.421 +0.016 0.048 £ 0.005 | 0.298 +0.009  0.048 + 0.002
ConOut 0.402 +£0.015 0.041 +£0.005 | 0.511 +£0.019 0.093 +0.012 | 0.551+0.008 0.085 =+ 0.007
Radar 0.415+0.012  0.045 +0.007 | 0.573 +£0.013 0.244 +0.011 | 0.721 +0.008 0.281 % 0.007
DOMINANT 0.578 £0.018  0.109 £0.003 | 0.636 +0.021 0.337 +£0.013 | 0.735+0.013  0.357 = 0.009
SemiGNN 0.497 £0.004  0.058 +£0.003 | 0.523 +0.008 0.065 + 0.006 | 0.610 +0.007 0.134 + 0.003
GDN (ours) 0.678 £0.015 0.132 +£0.009 | 0.736 +£0.012 0.438 +£0.012 | 0.811+0.015 0.379 +0.011
Meta-GDN (ours) || 0.724 +£0.012 0.175+0.011 | 0.761 + 0.014 0.485+0.010 | 0.842 +0.011 0.395 + 0.009
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Figure 3: Performance comparison results (10-shot) w.r.t. Precision@K on three datasets. Figure best viewed in color.

all the network-based methods, the whole network structure and
node attributes are accessible during training.

5.2 Effectiveness Results (RQ1)

Overall Comparison. In the experiments, we evaluate the perfor-
mance of the proposed framework Meta-GDN along with its base
model GDN by comparing with the included baseline methods. We
first present the evaluation results (10-shot) w.r.t. AUC-ROC and
AUC-PR in Table 2 and the results w.r.t. Precision@K are visual-
ized in Figure 3. Accordingly, we have the following observations,
including: (1) in terms of AUC-ROC and AUC-PR, our approach
Meta-GDN outperforms all the other compared methods by a sig-
nificant margin. Meanwhile, the results w.r.t. Precision@K again
demonstrate that Meta-GDN can better rank abnormal nodes on
higher positions than other methods by estimating accurate anom-
aly scores; (2) unsupervised methods (e.g., DOMINANT, Radar) are
not able to leverage supervised knowledge of labeled anomalies and
therefore have limited performance. Semi-supervised methods (e.g.,
DeepSAD, SemiGNN) also fail to deliver satisfactory results. The
possible explanation is that DeepSAD cannot model network infor-
mation and SemiGNN requires a relatively large number of labeled
data and multi-view data, which make them less effective in our
evaluation; and (3) compared to the base model GDN, Meta-GDN is
capable of extracting comprehensive meta-knowledge across multi-
ple auxiliary networks by virtue of the cross-network meta-learning

algorithm, which further enhances the detection performance on
the target network.

Few-shot Evaluation. In order to verify the effectiveness of Meta-
GDN in few-shot as well as one-shot network anomaly detection,
we evaluate the performance of Meta-GDN with different numbers
of labeled anomalies on the target network (i.e., 1-shot, 3-shot, 5-
shot and 10-shot). Note that we respectively set the batch size b to
2,4, 8, and 16 to ensure that there is no duplication of labeled anom-
alies exist in a sampled training batch. Also, we keep the number
of labeled anomalies on auxiliary networks as 10. Table 3 sum-
marizes the AUC-ROC/AUC-PR performance of Meta-GDN under
different few-shot settings. By comparing the results in Table 2 and
Table 3, we can see that even with only one labeled anomaly on the
target network (i.e., 1-shot), Meta-GDN can still achieve good per-
formance and significantly outperforms all the baseline methods. In
the meantime, we can clearly observe that the performance of Meta-
GDN increases with the growth of the number of labeled anomalies,
which demonstrates that Meta-GDN can be better fine-tuned on
the target network with more labeled examples.

5.3 Sensitivity & Robustness Analysis (RQ2)

In this section, we further analyze the sensitivity and robustness of
the proposed framework Meta-GDN. By providing different num-
bers of auxiliary networks during training, the model sensitivity
results w.r.t. AUC-ROC are presented in Figure 4(a). Specifically,
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Table 3: Few-shot performance evaluation of Meta-GDN w.r.t. AUC-ROC and AUC-PR.
Yelp PubMed Reddit
Setting H AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR
1-shot 0.702 £ 0.008 0.159 £ 0.015 | 0.742 +£0.012 0.462 +0.013 | 0.821 +£0.013 0.380 + 0.011
3-shot 0.709 £ 0.006 0.164 = 0.010 | 0.748 +£0.008 0.468 = 0.008 | 0.828 +0.012 0.386 + 0.007
5-shot 0.717 £0.013 0.169 = 0.007 | 0.753 £ 0.011 0.474 = 0.005 | 0.834 +£ 0.009 0.389 + 0.008
10-shot 0.724 £ 0.012 0.175+0.011 | 0.761 +£0.014 0.485+0.010 | 0.842 +£0.011 0.395 + 0.009
we can clearly find that (1) as the number of auxiliary networks 0.9 O — oo
GDN~
increases, Meta-GDN achieves constantly stronger performance on g GDN 50 E SD? on
. eta-
all the three datasets. It shows that more auxiliary networks can 0.8) mE Meta-GDN 20
provide better meta-knowledge during the training process, which S %
is consistent with our intuition; (2) Meta-GDN can still achieve §-o 7 H 30
relatively good performance when training with a small number o g20
of auxiliary networks (e.g., p = 2), which demonstrates the strong ‘ 10
capability of its base model GDN. For example, on Yelp dataset, 05 o
) Yelp PubMed Reddit Yelp PubMed Reddit

the performance barely drops 0.033 if we change the number of
auxiliary networks from p = 6 to p = 2.

As discussed in Sec. 4.1, we treat all the sampled nodes from unla-
beled data as normal for computing the deviation loss. This simple
strategy introduces anomaly contamination in the unlabeled train-
ing data. Due to the fact that r. is a small number in practice, our
approach can work very well in a wide range of real-world datasets.
To further investigate the robustness of Meta-GDN w.r.t. different
contamination levels . (i.e., the proportion of anomalies in the
unlabeled training data), we report the evaluation results of Meta-
GDN, GDN and the semi-supervised baseline method SemiGNN in
Figure 4(b). As shown in the figure, though the performance of all
the methods decreases with increasing contamination levels, both
Meta-GDN and GDN are remarkably robust and can consistently
outperform SemiGNN to a large extent.

0.9 1.0
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0.9 GDN
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Figure 4: (a) Sensitivity analysis of Meta-GDN w.r.t. different
number of auxiliary networks; (b) Model robustness study
w.r.t. AUC-ROC with different contamination levels.

5.4 Ablation Study (RQ3)

Moreover, we conduct an ablation study to better examine the con-
tribution of each key component in the proposed framework. In
addition to Meta-GDN and its base model GDN, we include an-
other variant GDN™ that excludes the network encoder and cross-
network meta-learning in Meta-GDN. We present the results of

Dataset

(@)

Dataset

(b)

Figure 5: (a) AUC-ROC results of Meta-GDN and its variants;
(b) Precision@ 100 results of Meta-GDN and its variants.

AUC-ROC and Precision@100 in Figure 5(a) and Figure 5(b), re-
spectively. The corresponding observations are two-fold: (1) by
incorporating GNN-based network encoder, GDN largely outper-
forms GDN™ in anomaly detection on the target network. For ex-
ample, GDN achieves 8.1% performance improvement over GDN™
on PubMed in terms of precision@100. The main reason is that the
GNN-based network encoder is able to extract topological informa-
tion of nodes and to learn highly expressive node representations;
and (2) the complete framework Meta-GDN performs consistently
better than the base model GDN on all the three datasets. For in-
stance, Meta-GDN improves AUC-ROC by 5.75% over GDN on
Yelp dataset, which verifies the effectiveness of the proposed cross-
network meta-learning algorithm for extracting and transferring
meta-knowledge across multiple auxiliary networks.

6 CONCLUSION

In this paper, we make the first investigation on the problem of
few-shot cross-network anomaly detection. To tackle this problem,
we first design a novel GNN architecture, GDN, which is capa-
ble of leveraging limited labeled anomalies to enforce statistically
significant deviations between abnormal and normal nodes on an
individual network. To further utilize the knowledge from auxiliary
networks and enable few-shot anomaly detection on the target net-
work, we propose a cross-network meta-learning approach, Meta-
GDN, which is able to extract comprehensive meta-knowledge from
multiple auxiliary networks in the same domain of the target net-
work. Through extensive experimental evaluations, we demonstrate
the superiority of Meta-GDN over the state-of-the-art methods. For
future work, we would like to (1) reduce the dependence on auxil-
iary networks; and (2) improve the model interpretation to achieve
more reliable anomaly detection results.
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