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NeuPart: Using Analytical Models to Drive
Energy-Efficient Partitioning of CNN Computations

on Cloud-Connected Mobile Clients
Susmita Dey Manasi, Farhana Sharmin Snigdha, and Sachin S. Sapatnekar

Abstract—Data processing on convolutional neural networks
(CNNs) places a heavy burden on energy-constrained mobile
platforms. This work optimizes energy on a mobile client by
partitioning CNN computations between in situ processing on the
client and offloaded computations in the cloud. A new analytical
CNN energy model is formulated, capturing all major compo-
nents of the in situ computation, for ASIC-based deep learning
accelerators. The model is benchmarked against measured silicon
data. The analytical framework is used to determine the optimal
energy partition point between the client and the cloud at
runtime. On standard CNN topologies, partitioned computation
is demonstrated to provide significant energy savings on the client
over fully cloud-based or fully in situ computation. For example,
at 80 Mbps effective bit rate and 0.78 W transmission power, the
optimal partition for AlexNet [SqueezeNet] saves up to 52.4%
[73.4%] energy over a fully cloud-based computation, and 27.3%
[28.8%] energy over a fully in situ computation.

Index Terms—Embedded deep learning, Energy modeling,
Hardware acceleration, Convolutional neural networks, Compu-
tation partitioning.

I. INTRODUCTION

A. Motivation

Machine learning using deep convolutional neural networks
(CNNs) constitutes a powerful approach that is capable of
processing a wide range of visual processing tasks with high
accuracy. Due to the highly energy-intensive nature of CNN
computations, today’s deep learning (DL) engines using CNNs
are largely based in the cloud [1], [2], where energy is less of
an issue than on battery-constrained mobile clients. Although
a few simple emerging applications such as facial recognition
are performed in situ on mobile processors, today’s dominant
mode is to offload DL computations from the mobile device
to the cloud. The deployment of specialized hardware accel-
erators for embedded DL to enable energy efficient execution
of CNN tasks is the next frontier.

Limited client battery life places stringent energy limita-
tions on embedded DL systems. This work focuses on a
large class of inference engine applications where battery life
considerations are paramount over performance: e.g., for a
health worker in a remote area, who uses a mobile client to
capture images processed using DL to diagnose cancer [3], a
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Fig. 1. An AlexNet computation, showing client/cloud partitioning.

farmer who takes crop photographs and uses DL to diagnose
plant diseases [4], or an unmanned aerial vehicle utilizing
DL for monitoring populations of wild birds [5]. In all these
examples, client energy is paramount for the operator in the
field and processing time is secondary, i.e., while arbitrarily
long processing times are unacceptable, somewhat slower pro-
cessing times are acceptable for these applications. Moreover,
for client-focused design, it is reasonable to assume that the
datacenter has plentiful power supply, and the focus is on
minimizing client energy rather than cloud energy. While this
paradigm may not apply to all DL applications (e.g., our
solution is not intended to be applied to applications such
as autonomous vehicles, where high-speed data processing is
important), the class of energy-critical client-side applications
without stringent latency requirements encompasses a large
corpus of embedded DL tasks that require energy optimization
at the client end.

To optimize client energy, this work employs computation
partitioning between the client and the cloud. Fig. 1 shows
an inference engine computation on AlexNet [6], a repre-
sentative CNN topology, for recognition of an image from
the camera of a mobile client. If the CNN computation is
fully offloaded to the cloud, the image from the camera is
sent to the datacenter, incurring a communication overhead
corresponding to the number of data bits in the compressed
image. Fully in situ CNN computation on the mobile client
involves no communication, but drains its battery during the
energy-intensive computation.

Computation partitioning between the client and the cloud
represents a middle ground: the computation is partially pro-
cessed in situ, up to a specific CNN layer, on the client.
The data is then transferred to the cloud to complete the
computation, after which the inference results are sent back to
the client, as necessary. We propose NeuPart, a partitioner for
DL tasks that minimizes client energy. NeuPart is based on an
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Fig. 2. (a) The cumulative computation energy up to each layer of AlexNet.
(b) Number of bits of compressed output data at each layer, to be transmitted
to the cloud.

analytical modeling framework, and analytically identifies, at
runtime, the energy-optimal partition point at which the partial
computation on the client is sent to the cloud.

Fig. 2 concretely illustrates the tradeoff between commu-
nication and computation for AlexNet. In (a), we show the
cumulative computation energy (obtained from our analytical
CNN energy model presented in Section IV) from the input
to a specific layer of the network. In (b), we show the volume
of compressed data that must be transmitted when the partial
in situ computation is transmitted to the cloud. The data
computed in internal layers of the CNN tend to have significant
sparsity (over 80%, as documented later in Fig. 10): NeuPart
leverages this sparsity to transmit only nonzero data at the
point of partition, thus limiting the communication cost.

The net energy cost for the client for a partition at the Lth

layer can be computed as:

ECost = EL + ETrans (1)

where EL is the processing energy on the client, up to the
Lth CNN layer, and ETrans is the energy required to transmit
this partially computed data from the client to the cloud. The
inference result corresponds to a trivial amount of data to
return the identified class, and involves negligible energy.

NeuPart focuses on minimizing ECost for the energy-
constrained client. For the data in Fig. 2, EL increases mono-
tonically as we move deeper into the network, but ETrans can
reduce greatly. Thus, the optimal partitioning point for ECost

here lies at an intermediate layer L.

B. Contributions of NeuPart

The specific contributions of NeuPart are twofold:
• We develop a new analytical energy model (we name

our model “CNNergy” which is the core of NeuPart) to
estimate the energy of executing CNN workload (i.e., EL)
on an ASIC-based deep learning (DL) accelerator.

• Unlike prior computation partitioning works [7]–[12],
NeuPart addresses the client/cloud partitioning problem
for specialized DL accelerators that are more energy-
efficient than CPU/GPU/FPGA-based platforms.

Today, neural networks are driving research in many fields
and customized neural hardware is possibly the most active
area in IC design research. While there exist many simulation
platforms for performance analysis for general-purpose pro-
cessors [13], memory systems [14], and NoCs [15], there is no
comparable performance simulator for ASIC implementations

of CNNs. Our model, CNNergy, is an attempt to fill that
gap. CNNergy accounts for the complexities of scheduling
computations over multidimensional data. It captures key
parameters of the hardware and maps the hardware to perform
computation on various CNN topologies. CNNergy is bench-
marked on several CNNs: AlexNet, SqueezeNet-v1.1 [16],
VGG-16 [17], and GoogleNet-v1 [18]. CNNergy is far more
detailed than prior energy models [19] and incorporates im-
plementation specific details of a DL accelerator, capturing
all major components of the in situ computation, including
the cost of arithmetic computations, memory and register
access, control, and clocking. It is important to note that, for
an ASIC-based neural accelerator platform, unlike a general-
purpose processor, the computations are highly structured
and the memory fetches are very predictable. Unlike CPUs,
there are no conditionals or speculative fetches that can alter
program flow significantly. Therefore, an analytical modeling
framework (as validated in Section V) is able to predict
the CNN energy consumption closely for the custom ASIC
platform.

CNNergy may potentially have utility beyond this work, and
has been open-sourced at https://github.com/manasiumn37/
CNNergy. For example, it provides a breakdown of the total
energy into specific components, such as data access energy
from different memory levels of a DL accelerator, data access
energy associated with each CNN data type from each level of
memory, MAC computation energy. CNNergy can also be used
to explore design phase tradeoffs such as analyzing the impact
of changing on-chip memory size on the total execution energy
of a CNN. We believe that our developed simulator (CNNergy)
will be useful to the practitioners who need an energy model
for CNNs to evaluate various design choices. The application
of data partitioning between client and cloud shows a way to
apply our energy model to a practical scenario.

The paper is organized as follows. Section II discusses prior
approaches to computational partitioning and highlights the
differences of NeuPart as compared to the prior works. In
Section III, fundamental background on CNN computation is
provided, and the general framework of CNNergy for CNN
energy estimation on custom ASIC-based DL accelerators is
outlined. Next, Sections IV presents the detailed modeling of
CNNergy and is followed by Section V, which validates the
model in several ways, including against silicon data. Sec-
tion VI presents the models for the estimation of transmission
energy as well as inference delay. A method for performing
the NeuPart client/cloud partitioning at runtime is discussed
in Section VII. Finally, in Section VIII, the evaluations of
the client/cloud partitioning using NeuPart is presented under
various communication environments for widely used CNN
topologies. The paper concludes in Section IX.

II. RELATED WORK

Computational partitioning has previously been used in the
general context of distributed processing [20]. A few prior
works [7]–[12] have utilized computation partitioning in the
context of mobile DL. In [7], tasks are offloaded to a server
from nearby IoT devices for best server utilization, but no



3

attempt is made to minimize edge device energy. In [8] and [9],
partitioning is used to optimize overall delay or throughput for
delay critical DNN applications (e.g., self-driving cars [8]).
Another work, [10], uses partitioning between the client and
local server (in contrast to centralized cloud) where along with
the inference data, the client also needs to upload the partial
DNN model (i.e., DNN weights) to the local server every
time it makes an inference request. Therefore, the optimization
goals and the target platforms of these works are very different
from NeuPart.

The work in [11] uses limited application-specific profiling
data to schedule computation partitioning. Another profiling-
based scheme [12] uses client-specific profiling data to form
a regression-based computation partitioning model for each
device. A limitation of profiling-based approaches is that they
require profiling data for each mobile device or each DL
application, which implies that a large number of profiling
measurements are required for real life deployment. More-
over, profiling-based methods require the hardware to already
be deployed and cannot support design-phase optimizations.
Furthermore, all these prior approaches use a CPU/GPU-based
platform for the execution of DL workloads.

In contrast with prior methods, NeuPart works with spe-
cialized DL accelerators, which are orders of magnitude
more energy-efficient as compared to the general-purpose
machines [1], [21], [22], for client/cloud partitioning. NeuPart
specifically leverages the highly structured nature of compu-
tations on CNN accelerators, and shows that an analytical
model predicts the client energy accurately (as demonstrated
in Section V). The analytical framework used in the NeuPart
CNNergy incorporates implementation-specific details that are
not modeled in prior works. For example, the work in Neu-
rosurgeon [12] uses (a) uncompressed raw image to transmit
at the input, which is not typical: in a real system, images
are compressed before transmission to reduce the communi-
cation overhead; (b) unequal bit width (i.e., 32-bit data for
the intermediate layers while 8-bit data for the input layer;
and (c) ignores any data sparsity at the intermediate CNN
layers. Consequently, these cause the partitioning decision
by Neurosurgeon to be either client-only or cloud-only in
most cases. In contrast, in addition to using a specialized DL
accelerator, NeuPart fully leverages the inherent computation-
communication tradeoff of CNNs by exploiting their key
properties and shows that (Fig. 13 in Section VIII) there is a
wide space where an intermediate partitioning point can offer
significant energy savings as compared to the client-only or
cloud-only approaches.

III. COMPUTATIONS ON CNN HARDWARE

A. Fundamentals of CNNs

The computational layers in CNNs can be categorized into
three types: convolution (Conv), fully connected (FC), and
pooling (Pool). The computation in a CNN is typically dom-
inated by the Conv layers. In each layer, the computation
involves three types of data:
• ifmap, the input feature map
• filter, the filter weights, and
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Fig. 3. Illustration of ifmap, filter, and ofmap in a Conv layer.

TABLE I
PARAMETERS FOR A CNN LAYER SHAPE.

Parameters Description
R/S Height/width of a filter
H/W Padded height/width of an ifmap
E/G Height/width of an ofmap
C #of channels in an ifmap and filter

F
#of 3D filters in a layer
#of channels in an ofmap

U Convolution stride

• psum, the intermediate partial sums.
Table I summarizes the parameters associated with a convo-

lution layer. As shown in Fig. 3, for a Conv layer, filter and
ifmap are both 3D data types consisting of multiple 2D planes
(channels). Both the ifmap and filter have the same number
of channels, C, while H � R and W � S.

During the convolution, an element-wise multiplication be-
tween the filter and the green 3D region of the ifmap in Fig. 3
is followed by the accumulation of all products (i.e., psums),
and results in one element shown by the green box in the
output feature map (ofmap). Each channel (R×S × 1) of the
filter slides through its corresponding channel (W × H × 1)
of the ifmap with a stride (U ), repeating similar multiply-
accumulate (MAC) operations to produce a full 2D plane
(E × G × 1) of the ofmap. A nonlinear activation function
(e.g., a rectified linear unit, ReLU) is applied after each layer,
introducing sparsity (i.e., zeros) at the intermediate layers,
which can be leveraged to reduce computation.

The above operation is repeated for all F filters to produce
F 2D planes for the ofmap, i.e., the number of channels in
the ofmap equals the number of 3D filters in that layer. Due
to the nature of the convolution operation, there is ample
opportunity for data reuse in a Conv layer. FC layers are
similar to Conv layers but are smaller in size, and produce a
1D ofmap. Computations in the Pool layers serve to reduce
dimensionality of the ofmaps produced from the Conv layers
by storing the maximum/average value over a window of the
ofmap.

B. Executing CNN Computations on a Custom ASIC

1) Architectural Features of CNN Hardware Accelerators:
Since the inference task of a CNN comprises a very structured
and fixed set of computations (i.e., MAC, nonlinear activation,
pooling, and data access for the MAC operands), specialized
hardware accelerators are very suitable for their execution.
Various dedicated accelerators have been proposed in the
literature for the efficient processing of CNNs [1], [22]–[26].
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Fig. 4. General framework of the analytical CNN energy model (CNNergy).

The architecture in Google TPU [1] consists of a 2D array of
parallel MAC computation units, a large on-chip buffer for the
storage of ifmap and psum data, additional local storage inside
the MAC computation core for the filter data, and finally, off-
chip memory to store all the feature maps and filters together.
Similarly, along with an array of parallel processing elements,
the architectures in [22], [24]–[26] use a separate on-chip
SRAM to store a chuck of filter, ifmap, and psum data, and
an external DRAM to completely store all the ifmap/ofmap
and filter data. In [22], [23], local storage is used inside
each processing element while allowing data communication
between processing elements to facilitate better reuse of data.
Additionally, [23], [25], [26] exploit the inherent data sparsity
in the internal layers of CNN to save computation energy.

It is evident that the key architectural features of these
accelerators are fundamentally similar: an array of processing
elements to perform neural computation in parallel, multiple
levels of memory for fast data access, and greater data reuse.
We utilize these key architectural features of ASIC hardware
to develop the general framework of CNNergy.

2) General Framework of CNNergy: We develop CNNergy
to estimate the energy dissipation in a CNN hardware accel-
erator. The general framework of CNNergy is illustrated in
Fig. 4. We use CNNergy to determine the in situ computation
energy (EL in (1)), accounting for scheduling and computation
overheads.

One of the largest contributors to energy is the cost of data
access from memory. Thus, data reuse is critical for energy-
efficient execution of CNN computations to reduce unnec-
essary high-energy memory accesses, particularly the ifmap
and filter weights, and is used in [1], [22], [23], [25], [26].
This may involve, for example, ifmap and filter weight reuse
across convolution windows; ifmap reuse across filters, and
reduction of psum terms across channels. Given the accelerator
memory hierarchy, number of parallel processing elements,
and CNN layer shape, Block 1 of Fig. 4 is an automated
scheme for scheduling MAC computations while maximizing
data reuse. The detailed methodology for obtaining these
scheduling parameters is presented in Section IV-C.

Depending on the scheduling parameters, the subvolume of
the ifmap to be processed at a time is determined. Block 2
then computes the corresponding energy for the MAC op-
erations and associated data accesses. The computation in
Block 2 is repeated to process the entire data volume in

a layer, as detailed in Section IV-D.
The framework of CNNergy is general and its principles

apply to a large class of CNN accelerators. However, to vali-
date the framework, we demonstrate it on a specific platform,
Eyeriss [23], for which ample performance data is available,
including silicon measurements. Eyeriss has an array of J×K
processing elements (PEs), each with:
• a multiply-accumulate (MAC) computation unit.
• register files (RFs) for filter, ifmap, and psum data.

We define fs, Is, and Ps as the maximum number of bw-bit
filter, ifmap, and psum elements that can be stored in a PE.

The accelerator consists of four levels of memory: DRAM,
global SRAM buffer (GLB), inter-PE RF access, and local
RF within a PE. During the computations of a layer, filters
are loaded from DRAM to the RF. In the GLB, storage is
allocated for psum and ifmap. After loading data from DRAM,
ifmaps are stored into the GLB to be reused from the RF
level. The irreducible psums navigate through GLB and RF as
needed. After complete processing of a 3D ifmap, the ofmaps
are written back to DRAM.

IV. ANALYTICAL CNN ENERGY MODEL

We formulate an analytical model (CNNergy) for the CNN
processing energy (used in (1)), EL, up to the Lth layer, as

EL =
∑L

i=1ELayer(i) (2)

where ELayer(i) is the energy required to process layer i of
the CNN. To keep the notation compact, we drop the index
“(i)” in the remainder of this section. We can write ELayer

as:

ELayer = EComp + ECntrl + EData (3)

where EComp is the energy to compute MAC operations
associated with the ith layer, ECntrl represents the energy
associated with the control and clocking circuitry in the
accelerator, and EData is the memory data access energy,

EData = EonChip−data + EDRAM (4)

i.e., the sum of data access energy from on-chip memory (from
GLB, Inter-PE, and RF), and from the off-chip DRAM.

The computation of these energy components, particularly
the data access energy, is complicated by their dependence
on the data reuse pattern in the CNN. In the following
subsections, we develop a heuristic for optimal data reuse and
describe the methodology in our CNNergy for estimating these
energy components.

Specifically, in Section IV-A, we conceptually demonstrate
how CNNergy processes the 3D data volume by dividing
it into multiple subvolumes. We also define the parameters
to schedule the CNN computation in this section. Next,
in Section IV-B, we describe the dataflow to distribute the
convolution operation in the PE array and identify the degrees
of freedom to map the computation in the hardware. In
Section IV-C, we present our automated mapping scheme
to compute the computation scheduling parameters for any
given CNN layer. Finally, using the scheduling parameters,
we present the steps to compute energy for each component
of (3) in Section IV-D.
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Fig. 5. A simplified schematic illustrating how CNNergy processes an ifmap
(for one 3D filter).

A. Conceptual Illustration of CNNergy

Fig. 5 illustrates how the 3D ifmap is processed by con-
volving one 3D filter with ifmap to obtain one 2D channel of
ofmap; this is repeated over all filters to obtain all channels of
ofmap. Due to the large volume of data in a CNN layer and
the limited availability of on-chip storage (register files and
SRAM), the data is divided into smaller subvolumes, each of
which is processed by the PE array in one pass to generate
psums, where the capacity of the PE array and local storage
determine the amount of data that can be processed in a pass.

All psums are accumulated to produce the final ofmap entry;
if only a subset of psums are accumultated, then the generated
psums are said to be irreducible. The pink region of size Xi×
yi × zi shows the ifmap volume that is covered in one pass,
while the green region shows the volume that is covered in
multiple passes before a write-back to DRAM.

As shown in the figure (for reasons provided in Sec-
tion IV-C), consecutive passes first process the ifmap in the
X-direction, and then the Y -direction, and finally, the Z-
direction. After a pass, irreducible psums are written back
to GLB, to be later consolidated with the remainder of the
computation to build ofmap entries. After processing the full
Z-direction (i.e., all the channels of a filter and ifmap) the
green ofmap region of size Xo×Yo is formed and then written
back to DRAM. The same process is then repeated until the
full volume of ifmap/ofmap is covered.

Fig. 5 is a simplified illustration that shows the processing
of one 3D ifmap using one 3D filter. Depending on the
amount of available register file storage in the PE array, a
convolution operation using fi ≥ 1 filters can be performed in
a pass. Furthermore, subvolumes from multiple images (i.e.,
N ifmaps) can be processed together, depending on the SRAM
storage capacity.

Due to the high cost of data fetches, it is important to
optimize the pattern of fetch operations from the DRAM,
GLB, and register file by reusing the fetched data. The level of
reuse is determined by the parameters fi, zi, yi, yo, Xi, Xo, Yi,
Yo, and N . Hence, the efficiency of the computation is based
on the choice of these parameters. The mapping approach
that determines these parameters, in a way that attempts to
minimize data movement, is described in Section IV-C.

B. Dataflow Illustration in the PE array

In this section we describe how the convolution operations
are distributed in the 2D PE array of size J ×K. We use the
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Fig. 6. (a) The X , Y , Z directions. (b)–(e) Example showing the convolution
operation in the PEs (adapted from [27]).

row-stationary scheme to manage the dataflow for convolution
operations in the PE array as it is shown to offer higher energy-
efficiency than other alternatives [27], [28].

1) Processing the ifmap in sets – Concept: We explain the
row-stationary dataflow with a simplified example shown in
Fig. 6, where a single channel of the filter and ifmap are
processed (i.e., zi = 1). Fig. 6(b) shows a basic computation
where a 4× 4 filter (green region) is multiplied with the part
of the ifmap that it is overlaid on, shown by the dark blue
region. Based on the row-stationary scheme for the distributed
computation, these four rows of the ifmap are processed in
four successive PEs within a column of the PE array. Each PE
performs an element-wise multiplication of the ifmap row and
the filter row to create a psum. The four psums generated are
transmitted to the uppermost PEs and accumulated to generate
their psum (dark orange).

Extending this operation to a full convolution implies that
the ifmap slides under the filter in the negative X-direction
with a stride of U , while keeping the filter stationary: for
U = 1, two strides are required to cover the ifmap in the
X-direction. In our example, for each stride, each of the four
PEs performs the element-wise multiplication between one
filter row and one ifmap row, producing one 1D row of psum,
which is then accumulated to produce the first row of psum,
as illustrated in Fig. 6(c).

Thus, the four dark blue rows in Fig. 6(c) are processed by
four PEs (one per row) in a column of the PE array. The reuse
of the filter avoids memory overheads due to repeated fetches
from other levels of memory. To compute psums associated
with other rows of the ofmap, a subarray of 12 PEs (4 rows
× 3 columns) processes the ifmap under a Y -direction ifmap
stride. The ifmap regions thus processed are shown by the
dark regions of Fig. 6(d),(e).

We define the amount of processing performed in R rows,
across all K columns of the PE array, as a set. For a 4 × 3
PE array, a set coresponds to the processing in Fig. 6(c)–(e).

In the general context of the J×K PE array, a set is formed
from R × K PEs. Therefore, the number of sets which can
fit in the full PE array (i.e., the number of sets in a pass) is
given by:

SPass =

⌊
J ×K
R×K

⌋
=

⌊
J

R

⌋
, (5)

i.e., SPass is the ratio of the PE array height to the filter height.
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2) Processing the ifmap in sets – Realistic scenario: We
now generalize the previously simplified assumptions in the
example to consider typical parameter ranges. We also move
from the assumption of zi = 1, to a more typical zi > 1.

First, the filter height can often be less than the size of the
PE array. When R < J , the remaining PE array rows can
process more filter channels simultaneously, in multiple sets.

Second, typical RF sizes in each PE are large enough to
operate on more than one 1D row. Under this scenario, within
each set, a group of 2D filter planes is processed. There are
several degrees of freedom in mapping computations to the
PE array. When several 1D rows are processed in a PE, the
alternatives for choosing this group of 1D rows include:

(i) choosing filter/ifmap rows from different channels of the
same 3D filter/ifmap;

(ii) choosing filter rows from different 3D filters;
(iii) combining (i) and (ii), where some rows come from the

channels of the same 3D filter and some rows come from
the channels under different 3D filters.

Across sets in the PE array, similar mapping choices are
available. Different groups of filter planes (i.e., channels) are
processed in different sets. These groups of planes can be
chosen either from the same 3D filter, or from different 3D
filters, or from a combination of both.

Thus, there is a wide space of mapping choices for perform-
ing the CNN computation in the PE array.

3) Data reuse: Due to the high cost of data accesses from
the next memory level, it is critical to reuse data as often
as possible to achieve energy efficiency. Specifically, after
fetching data from a higher access-cost memory level, data
reuse refers to the use of that data element in multiple MAC
operations. For example, after fetching a data element from
GLB to RF, if that data is used across r MAC operations,
then the data is reused r times with respect to the GLB level.

We now examine the data reuse pattern within the PE array.
Within each PE column, an ifmap plane is being processed
along the X-direction, and multiple PE columns process the
ifmap plane along the Y -direction. Two instances of data reuse
in the PE array are:
(1) In each set, the same ifmap row is processed along the
PEs in a diagonal of the set. This can be seen in the example
set in Fig. 6(c)-(e), where the third row of the ifmap plane
is common in the PEs in r3c1 in (c), r2c2 in (d), and r1c3
in (e), where ricj refers to the PE in row i and column j.
(2) The same filter row is processed in the PEs in a row: in
Fig. 6(c)-(e), the first row of the filter plane is common to all
PEs in all three columns of row 1.

Thus, data reuse can be enabled by broadcasting the same
ifmap data (for instance (1)) and the same filter data (for
instance (2)) to multiple PEs for MAC operations after they are
fetched from a higher memory level (e.g., DRAM or GLB).

C. Obtaining Computation Scheduling Parameters

As seen in Section IV-B, depending on the specific CNN
and its layer structure, there is a wide space of choices for
computations to be mapped to the PE array. The mapping
of filter and ifmap parameters to the PE array varies with

TABLE II
LIST OF PARAMETERS FOR COMPUTATION SCHEDULING AND

ACCELERATOR HARDWARE CONSTRAINTS.

Notation Description
Computation Scheduling Parameters

fi #of filters processed in a pass
zi #of ifmap/filter channels processed in a pass

yi (yo) Height of ifmap (ofmap) processed in a pass
Xi (Xo) Width of ifmap (ofmap) processed in a pass

Yi (Yo) Height of ifmap (ofmap) processed before a
write back to DRAM

N #of ifmap from different images processed together
Accelerator Hardware Parameters

fs Size of RF storage for filter in one PE
Is Size of RF storage for ifmap in one PE
Ps Size of RF storage for psum in one PE
J Height of the PE array (#of rows)
K Width of the PE array (#of columns)
|GLB| Size of GLB storage
bw bit width of each data element

the CNN and with each layer of a CNN. This mapping is
a critical issue in ensuring low energy, and therefore, in this
work, we develop an automated mapping scheme for any CNN
topology. The scheme computes the parameters for scheduling
computations. The parameters are described in Section IV-A
and summarized in Table II. The table also includes the
parameters for the accelerator hardware constraints.

For general CNNs, for each layer, we develop a mapping
strategy that follows predefined rules to determine the com-
putation scheduling. The goal of scheduling is to attempt to
minimize the movement of three types of data (i.e., ifmap,
psum, and filter), since data movement incurs large energy
overheads. In each pass, the mapping strategy uses the fol-
lowing priority rules:
(i) We process the maximum possible channels of an ifmap to
reduce the number of psum terms that must move back and
forth with the next level of memory.
(ii) We prioritize filter reuse, psum reduction over ifmap reuse.

The rationale for Rules (i) and (ii) is that since a very
large number of psums are generated in each layer, psum
reduction is the most important factor for energy, particularly
because transferring psums to the next pass involves expensive
transactions with the next level of memory. This in turn implies
that filter weights must remain stationary for maximal filter
reuse. Criterion (ii) lowers the number of irreducible psums:
if the filter is changed and ifmap is kept fixed, the generated
psums are not reducible.

In processing the ifmap, proceeding along the X- and Y -
directions enables the possibility of filter reuse as the filter
is kept stationary in the RF while the ifmap is moved. In
contrast, if passes were to proceed along the Z-direction, filter
reuse would not be possible since new filter channels must
be loaded from the DRAM for the convolution with ifmap.
Therefore, the Z-direction is the last to be processed. In terms
of filter reuse, the X- and Y -directions are equivalent, and we
arbitrarily prioritize the X-direction over the Y -direction.

We use the notion of a set and a pass (Section IV-B) in the
flow graph to devise the choice of scheduling parameters:

1) Computing yi and yo: The value of yo = min(K,E)
and is limited by the number of columns, K, in the PE array.
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The corresponding value of yi is found using the relation

yo = (yi −R)/U + 1 (6)

2) Computing zi and fi: The number of channels of each
ifmap in a pass is computed as

zi = CSet × SPass, (7)

where CSet is the number of channels per set, and SPass is
the number of sets per pass (given by (5)). Recall that the first
priority rule of CNNergy is to process the largest possible
number of ifmap channels at a time. Therefore, to compute
CSet, we find the number of filter rows that can fit into an
ifmap RF, i.e., CSet = bIs/Sc.

To enable per-channel convolution, the filter RF of a PE
must be loaded with the same number of channels as Is from
a single filter. The remainder of the dedicated filter RF storage
can be used to load channels from different filters so that one
ifmap can be convolved with multiple filters resulting in ifmap
reuse. Thus, after maximizing the number of channels of an
ifmap/filter to be processed in a pass, the remaining fs storage
can be used to enable ifmap reuse. Therefore, the number of
filters processed in a pass is

fi = bfs/Isc (8)

3) Computing Xi, Xo, Yi, Yo, N : During a pass, the ifmap
corresponds to the pink region in Fig. 5, and over multiple
passes, the entire green volume of the ifmap in the figure is
processed before a writeback to DRAM.

We first compute |ifmap| and |psum|, the storage require-
ments of ifmap and psum, respectively, during the computa-
tion. The pink region has dimension Xi × yi × zi and over
several passes it creates, for each of the fi filters, a set of
psums for the Xo × Yo region of the ofmap that are not fully
reduced (i.e., they await the results of more passes). Therefore,

|ifmap| = bw(Xi × yi × zi) (9)
|psum| = bw(Xo × Yo × fi) (10)

where bw corresponds to the bit width for ifmap and psum.
Next, we determine how many ifmap passes can be pro-

cessed for a limited GLB size, |GLB|. This is the number, N ,
of pink regions that can fit within the GLB, i.e.,

N =

⌊
|GLB|

|ifmap|+ |psum|

⌋
(11)

To compute Xi, we first set it to the full ifmap width, W ,
and we set Yo to the full ofmap height, E, to obtain N . If
N = 0, i.e., |ifmap| + |psum| > |GLB|, then Xi and Yo are
reduced until the data fits into the GLB and N ≥ 1.

From the values of Xi and Yo computed above, we can
determine Xo and Yi using the relations

Xo =
Xi − S
U

+ 1 ; Yo =
Yi −R
U

+ 1 (12)

Fig. 7 shows the flow graph that summarizes how the pa-
rameters for scheduling the CNN computation are computed.
The module takes the CNN layer shape (Table I) and the
accelerator hardware parameters (Table II) as inputs. Based
on our automated mapping strategy, the module outputs the
computation scheduling parameters (Table II).

Compute !", !$, %", &"
Use eq. (6), (7), (8)

CNN
layer shape

Accelerator hardware constraints
(&', (', )', *, +, |GLB|, ,-)

Compute initial .", .$, /", /$
Set ." = 1, /$ = 2, & use eq. (12)

Compute |ifmap|
Use eq. (9)

|ifmap| > |GLB| ?

No

." = ."/2, 
Use eq. (12) to update .$

Yes

|ifmap| + |psum|> |GLB| ?

No

Yes

Compute 5
Use eq. (11)

Computation scheduling parameters
(&", %", !" , !$ , ." , .$ , /" , /$ , 5)

Compute |psum|
Use eq. (10)

/$ = /$/2, 
Use eq. (12) to update /"

Fig. 7. Flow graph to obtain the computation scheduling parameters.

4) Exception Rules: The mapping method handles excep-
tions:
• If Yo < yo, some PE columns will remain unused. This is

avoided by setting Yo = yo. If the new |ifmap|+|psum| >
|GLB|, fi is reduced so that the data fits into the GLB.

• If C < zi, all channels are processed in a pass while
increasing fi, as there is more room in the PE array to
process more filters. The cases F < fi, Ps < fi proceed
by reducing fi.

• All Conv layers whose filter has the dimension R =
S = 1 (e.g., inside the inception modules of GoogleNet,
or the fire modules of SqueezeNet) are handled under a
fixed exception rule that uses a reduced zi, and suitably
increased fi.

The exceptions are triggered only for a few CNN layers (i.e.,
layers having relatively few channels or filters).

D. Energy (ELayer) Computation

In the previous section, we have determined the subvolume
of ifmap and filter data to be processed in a pass. From the
scheduling parameters we can also compute the number of
passes before a writeback of ofmap to DRAM. Therefore,
we have determined the schedule of computations to generate
all channels of ofmap. We now estimate each component of
ELayer in (3). The steps for this energy computation are
summarized in Algorithm 1, which takes as input the com-
putation scheduling parameters, CNN layer shape parameters,
and technology-dependent parameters that specify the energy
per operation (Table III), and outputs ELayer.

1) Computing EData, EComp: We begin by computing the
subvolume of data loaded in each pass (Lines 1–5). In Fig 5,
IPass is illustrated as the pink ifmap region which is processed
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Algorithm 1 Algorithm for Energy Computation.
INPUT: Computation scheduling parameters: fi, zi, yi, yo, Xi, Xo, Yi, Yo, N
(defined in Table II);
CNN layer shape parameters: R, S, H , W , E, G, C, F (defined in Table I);
Technology parameters for energy per operation (specified in Table III)
OUTPUT: Energy to process a CNN layer, ELayer

STEPS:
1: Determine the subvolume from each ifmap (Xi × yi × zi) and from each filter

(R× S × zi) processed in one pass.
2: Determine the number of psums (Xo × yo) generated during a pass from each 3D

filter and each image.
3: Compute IPass, # of ifmap elements accessed in one pass from DRAM and GLB,

using (13)
4: Compute PPass, # of psum elements to read (write) from (to) GLB during one

pass, using (14)
5: Compute FPass, # of filter elements to load from DRAM for one pass, using (15)
6: Compute # of passes before a writeback of ofmap to DRAM ( Yo

yo
× C

zi
passes along

Y and Z-directions)
7: Compute EDXiYizi

, data access energy to process a subvolume of ifmap over
which filter data is reused, using (16)

8: Repeat Step 7 to compute EDXoYo
, data access energy to produce and perform

DRAM write of Xo × Yo region of each ofmap channel over fi filters and N
images, using (17)

9: Repeat Step 8 to compute EData, total data access energy, using (18)
10: Compute EComp using (19)
11: Compute ECntrl using (20)
12: Compute ELayer , using (3)

in one pass for an image, and PPass is the number of psum
entries associated with the orange ofmap region for a single
filter and single image. The filter data is reused across (Yo/yo)
passes, and we denote the number of filter elements loaded for
these passes by FPass. Thus, for fi filters and N images,

IPass = N × (Xi × yi × zi) (13)
PPass = N × (Xo × yo)× fi (14)
FPass = fi × (R× S × zi) (15)

To compute energy, we first determine EDXiYizi
, the data

access energy required to process Xi×Yi×zi volume of each
ifmap over fi filters and N images. In each pass, a volume
IPass of the ifmap is brought from the DRAM to the GLB for
data access; PPass psums move between GLB and RF; and
RF-level data accesses (RFMAC) occur for the four operands
associated with each MAC operation in a pass. Therefore, the
corresponding energy can be computed as:

EDXiYizi
=

[
eDRAM (IPass) + eGLB(IPass) + eGLB(PPass)

+eRF (RFMAC)

]
×
Yo

yo
+ eDRAM (FPass) (16)

Here, eO() denotes the energy associated with operation O,
and each energy component can be computed by multiplying
the energy per operation by the number of operations. Since
filter data is reused across (Yo/yo) passes, all components
in (16), except the energy associated with filter access, are
multiplied by this factor. Each psum is written once and read
once, and eGLB(PPass) accounts for both operations.

Next, all C channels of ifmap (i.e., the entire green ifmap
region in Fig. 5) are processed to form the green Xo × Yo
region of each ofmap channel, and this data is written back
to DRAM. To this end, we compute EDXoYo

, the data access
energy to produce Xo × Yo fraction of each ofmap channel
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Fig. 8. (a) H-tree style clock distribution network. (b) Percent slew of the
clock vs. load capacitance driven by each stage of a clock buffer.

over fi filters and N images, by repeating the operations in
(16) to cover all the channels:

EDXoYo
=

(
EDXiYizi

× C

zi

)
+ eDRAM (ofmap) (17)

Finally, the computation in (17) is repeated to produce the
entire G×E volume of the ofmap over all F filters. Therefore,
the total energy for data access is

EData = EDXoYo
× G

Xo
× E

Yo
× F

fi
(18)

Here, the multipliers (G/Xo), (E/Yo), and (F/fi) represent
the number of iterations of this procedure to cover the entire
ofmap. These steps are summarized in Lines 6–9 of Algo-
rithm 1. Finally, the computation energy of the Conv layer is
computed by:

EComp = N × (R · S · C)× (E ·G · F )× ẽMAC (19)

where ẽMAC is the energy per MAC operation, and it is
multiplied by the number of MACs required for a CNN layer.

2) Sparsity: The analytical model exploits sparsity in the
data (i.e., zeros in ifmap/ofmap) at internal layers of a CNN.
Except the input ifmap to the first Conv layer of a CNN,
all data communication with the DRAM (i.e., ifmap read or
ofmap write) is performed in run-length compressed (RLC)
format [23]. In addition, for a zero-valued ifmap, the MAC
computation as well as the associated filter and psum read
(write) from (to) RF level is skipped to reduce energy.

3) Computing ECntrl: The control overheard includes the
clock power, overheads for control circuitry for the PE array,
network-on-chip to manage data delivery, I/O pads, etc. Of
these, the clock power is a major contributor (documented
as ∼33%–45% in [23]), and other components are relatively
modest. The total control energy, ECntrl, is modeled as:

ECntrl = Pclk × latency × Tclk + Eother−Cntrl (20)

where Pclk is the clock power, latency is the number of
cycles required to process a single layer, and Tclk is the clock
period; Eother−Cntrl is the control energy from components
other than the clock network. We adopt similar strategy as
in CACTI [14] and ORION [15] to model the power of the
clock network. For a supply voltage of VDD, the clock power
is computed as:

Pclk = Cclk × (VDD)2/Tclk + Lclk (21)
Cclk = Ctotal−wire + Ctotal−buff + Ctotal−PEreg + CSRAM (22)
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Fig. 9. Energy validation of CNNergy: (a) AlexNet without ECntrl (b) AlexNet with ECntrl model (c) GoogleNet-v1.

where Lclk is leakage in the clock network. The switching
capacitance, Cclk, includes the capacitances of the global clock
buffers, wires, clocked registers in the PEs, and clocked SRAM
(GLB) components. We now provide details of how each
component of Cclk is determined. We distribute the clock as
a 4-level H-tree shown in Fig. 8(a) where after every two
levels the wire length reduces by a factor of 2. The total wire
capacitance of the H-tree, Ctotal−wire, is given by:

Ctotal−wire =

[
DC

2
+
(DC

2
×2

)
+
(DC

4
×4

)
+
(DC

4
×8

)]
×Cw/l (23)

where DC is the chip dimension and Cw/l is the per unit-
length capacitance of the wire. The capacitance due to clock
buffer, Ctotal−buff , is computed as:

Ctotal−buff = Nbuff × Cbuff (24)

Here, Nbuff is the number of total buffers in the H-tree and
Cbuff is the input gate capacitance of a single clock buffer.
In our implementation, we chose the size and number of the
clock buffers to maintain a slew rate within 10% of Tclk. The
Ctotal−PEreg component of (22) represents the capacitance
due to the clocked registers in the processing elements (PEs)
of the accelerator and is given by:

Ctotal−PEreg = (J ×K)×NFF × CFF (25)

Here, (J × K) is the PE array size, NFF is the number
of 1-bit flip-flop per PE while CFF denotes the clocked
capacitance from a single flip-flop. The clocked capacitance
from the SRAM memory, CSRAM , consists of the following
components:

CSRAM = Cdecod+CARW−reg+CBL−pre+CSA−pre (26)

Here, Cdecod denotes the clocked capacitance from the de-
coder circuitry which comes from the synchronization of the
word-line with the clock. CARW−reg is the capacitance from
the clocked registers (i.e., address, read, and write registers)
and computed by counting the number of flip-flops in these
registers. The clocked capacitance to pre-charge the bit-lines,
CBL−pre, is estimated from the number of total columns in
the SRAM array. The pre-charge of each sense amplifier also
needs to be synchronized with the clock, and the associated

capacitance, CSA−pre, is estimated from the number of to-
tal sense amplifiers in the SRAM array. Finally, we model
Eother−Cntrl component of (20) as 15% of ELayer excluding
EDRAM , similar to data from the literature.

TABLE III
TECHNOLOGY PARAMETERS USED FOR CNNERGY.

16-bit MAC, Memory access, 65nm [28]
ẽMAC , RF Inter-PE GLB DRAM

45nm [29] access, access, access, access,
ẽRF ẽIPE ẽGLB ẽDRAM

Energy 0.95 pJ 1.69 pJ 3.39 pJ 10.17 pJ 338.82 pJ

V. VALIDATION OF CNNERGY

We validate CNNergy against limited published data for
AlexNet and GoogleNet-v1:
(i) EyMap, the Eyeriss energy model, utilizing the mapping
parameters provided in [23]. This data only provides parame-
ters for the five convolution layers of AlexNet.
(ii) EyTool, Eyeriss’s energy estimation tool [30], excludes
ECntrl and supports AlexNet and GoogleNet-v1 only.
(iii) EyChip, measured data from 65nm silicon [23] (AlexNet
Conv layers only, excludes EDRAM ).
Note that our CNNergy exceeds the capability of these:
• CNNergy is suitable for customized energy access (i.e.,

any intermediate CNN energy component is obtainable).
• CNNergy can find energy for various accelerator param-

eters.
• CNNergy can analyze a vast range of CNN topologies

and general CNN accelerators, not just Eyeriss.
To enable a direct comparison with Eyeriss, 16-bit fixed

point arithmetic precision is used to represent feature maps
and filter weights. The technology parameters are listed in
Table III. The available process data is from 45nm and 65nm

nodes, and we use the factor s = 65
45 ×

(
VDD,65nm

VDD,45nm

)2
to scale

45nm data for direct comparison with measured 65nm silicon.
For the control energy, we model capacitances using the pa-

rameters from the NCSU 45nm process design kit (PDK) [31],
the capacitive components in (22)-(26) are extracted to es-
timate Cclk. Fig. 8(b) shows the percent slew of the clock
as we increase the load capacitance to a single clock buffer
(MOSFET sizing of the buffer: length, L = 50nm; width,
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WNMOS = 3L and WPMOS = 6L). From this plot, the maxi-
mum load capacitance to each clock buffer (37 fF) is calculated
to maintain a maximum of 10% slew rate and the buffers in
the H-tree are placed accordingly. The results are scaled to
65nm node by the scaling factor s. The resultant clock power
is computed by (21), and the latency for each layer in (20)
is inferred as #of MAC per layer

Throughput , where the numerator is a
property of the CNN topology and the denominator is obtained
from [23].

Fig. 9(a) compares the energy obtained from CNNergy,
EyTool, and EyMap to process an input image for AlexNet.
As stated earlier, EyTool excludes ECntrl; accordingly, our
comparison also omits ECntrl. The numbers match closely.

Fig. 9(b) shows the energy results for AlexNet including the
ECntrl component in (3) for both CNNergy and EyMap and
compares the results with EyChip which represents practical
energy consumption from a fabricated chip. The EyTool data
that neglects ECntrl is significantly off from the more accurate
data for CNNergy, EyMap, and EyChip, particularly in the
Conv layers. Due to unavailability of reported data, the bars
in Fig. 9(b) only show the Conv layer energy for EyMap
and EyChip. Note that EyChip does not include the EDRAM

component of (4).
Fig. 9(c) compares the energy from CNNergy with the

EyTool energy for GoogleNet-v1. Note that the only available
hardware data for GoogLeNet-v1 is from EyTool, which does
not report control energy: this number matches the non-ECntrl

component of CNNergy closely. As expected, the energy is
higher when ECntrl is included.

VI. TRANSMISSION ENERGY AND DELAY COMPUTATION

A. Transmission Energy (ETrans) Estimation

The transmission energy, ETrans, is a function of the available
data bandwidth, which may vary depending on the environ-
ment that the mobile client device is in. Similar to the prior
works on offloading computation to the cloud [12], [20], [32]
we use the following model to estimate the energy required to
transmit data bits from the mobile client to the cloud.

ETrans = PTx ×
DRLC

Be
(27)

where PTx is the transmission power of the client, Be is the
effective transmission bit rate, and DRLC is the number of
encoded data bits to be transmitted. The time required to
transmit the data bits is determined by the bit rate. Similar
to [33], the transmission power is assumed to be constant
during the course of transmission after the wireless connection
has been established as well as a simple fading environment
is assumed. During data transmission, typically, there is an
overhead due to error correction scheme. An error correction
code (ECC) effectively reduces the data bandwidth. If k%
of the actual data is designated for the the ECC bits, then
the effective transmission bit rate for actual data (i.e., DRLC

in (27)) is given by:

Be =
B

1 + (k/100)
(28)

where B is the available transmission bit rate. For the highly
sparse data at internal layers of a CNN, run-length com-
pression (RLC) encoding is used to reduce the transmission
overhead. The number of transmitted RLC encoded data bits,
DRLC , is:

DRLC = Draw × (1− Sparsity)× (1 + δ) (29)

Here, Draw is the number of output data bits at each layer
including zero elements, Sparsity is the fraction of zero ele-
ments in the respective data volume, and δ is the average RLC
encoding overhead for each bit associated with the nonzero
elements in the raw data (i.e., to encode each bit of a nonzero
data element, on average, (1 + δ) bits are required). Using
4-bit RLC encoding (i.e., to encode information about the
number of zeros between nonzero elements) for 8-bit data (for
evaluations in Section VIII), and 5-bit RLC encoding for 16-
bit data (during Eyeriss validation in Section V), δ is 3/5 and
1/3, respectively (note that this overhead only applies to the
few nonzeros in a very sparse data).

B. Inference Delay (tdelay) Estimation

Although our framework aims to optimize client energy, we
also evaluate the total time required to complete an inference
(tdelay) in the client+cloud. For a computation partitioned at
the Lth layer, the inference delay is modeled as:

tdelay =
∑L

i=1 tclient(i) + tTrans +
∑|L|

i=L+1 tcloud(i) (30)

where tclient(i) [tcloud(i)] denote the ith layer latency at the
client [cloud], |L| is the number of layers in the CNN, and
tTrans = DRLC/Be is the time required for data transmission
at the Lth layer. The latency for each layer is computed as in
Section V where the Throughput comes from the client and
cloud platforms.

VII. RUNTIME PARTITIONING BY NEUPART

In this section, we discuss how NeuPart is used during runtime
for partitioning CNN workloads between a mobile client and
the cloud. Fig. 10 shows the average (µ) and standard deviation
(σ) of data sparsity at various CNN layers over ∼10,000
ImageNet validation images for AlexNet, SqueezeNet-v1.1,
GoogleNet-v1, and VGG-16. For all four networks, the stan-
dard deviation of sparsity at all layers is an order of magnitude
smaller than the average. However, at the input layer, when
the image is transmitted in standard JPEG compressed format,
the sparsity of the JPEG compressed image, Sparsity-In, shows
significant variation (documented in Fig. 12), implying that the
transmit energy can vary significantly.

Therefore, a significant observation is that for all the inter-
mediate layers, Sparsity is primarily a feature of the network
and not the input data, and can be precomputed offline as a
standard value, independent of the input image. This implies
that DRLC , which depends on Sparsity, can be computed
offline for all the intermediate layers without incurring any
optimality loss on the partitioning decision. Only for the input
layer it is necessary to compute DRLC during runtime. The
runtime optimization algorithm is therefore very simple and
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Fig. 10. Average (µ) and standard deviation (σ) of Sparsity over ∼10,000
images for AlexNet, SqueezeNet-v1.1, GoogleNet-v1, and VGG-16.

Algorithm 2 Algorithm for Runtime Optimal Partitioning.
INPUT: E ∈ R|L|: Cumulative CNN energy vector;
DRLC ∈ R|L|: RLC encoded data bits for various layers;
B: Available transmission bit rate; PTx: Transmission power;
k: Percent overhead for ECC bits
OUTPUT: Optimal partition layer, Lopt

METHOD:
1: Obtain JPEG compressed image sparsity, Sparsity-In
2: Update RLC data size for input layer, D1

RLC using Sparsity-In and (29)
3: Compute Be = B

1+(k/100)

4: Compute EL
Trans = PTx ×

DL
RLC
Be

, L ∈ {1, 2, · · · |L|}
5: Compute EL

Cost = EL + EL
Trans, L ∈ {1, 2, · · · |L|}

6: Obtain Lopt = argmin(ECost)
7: return Lopt

summarized in Algorithm 2 (for notational convenience we use
superscript/subscript L to indicate Lth layer in this algorithm).

The cumulative CNN energy vector (E) up to each Lth

layer of a CNN (i.e., EL =
∑L

i=1ELayer(i)) depends on
the network topology and, therefore, precomputed offline by
CNNergy. Likewise, DRLC for layer 2 to |L| is precharac-
terized using the average Sparsity value associated with each
CNN layer. During runtime, for an input image with JPEG-
compressed sparsity Sparsity-In, DRLC for layer 1 (i.e., input
layer) is computed (Line 2). Finally, at runtime, with a user
specified transmission bit rate B, percent ECC overhead k, and
transmission power PTx

, ECost is obtained for all the layers,
and the layer that minimizes ECost is selected as the optimal
partition point, Lopt (Lines 4–7).

Note that both B and PTx are user-specified parameters in
the runtime optimization algorithm. Therefore, depending on
the communication environment (i.e., signal strength, quality
of the link, amount of contention from other users, variable
bandwidth), a user can provide the available bit rate. Besides,
depending on a specific device, the user can provide the
transmission power corresponding to that device and obtain
the partitioning decision based on the provided B and PTx

parameters at runtime.
Overhead of Runtime Optimization: The computation of
Algorithm 2 requires only (|L| + 1) multiplications, |L| + 2
divisions, (|L| + 2) additions, and |L| comparison operations
(Lines 2–6), where |L| is the number of layers in the CNN
topology. For standard CNNs, |L| is a very small number (e.g.,
for AlexNet, GoogleNet-v1, SqueezeNet-v1.1, and VGG-16,
|L| lies between 12 and 22). This makes NeuPart computation-

ally very cheap to find the optimal partition layer at runtime.
Moreover, as compared to the energy required to perform the
core CNN computations and data transmission, the overheard
of running Algorithm 2 is virtually zero.

Note that the inference result returned from the cloud
computation corresponds to a trivial amount of data (i.e., only
one number associated with the identified class) which is, for
example, 5 orders of magnitude lower than the number of data
bits to transmit at the P2 layer of AlexNet (already very low,
see Fig. 2(b)). Therefore, the cost of receiving the result makes
no perceptible difference in the partitioning decision.

VIII. RESULTS

A. In Situ/Cloud Partition

We now evaluate the computational partitioning scheme, using
the models in Sections IV and VI. Similar to the state-of-the-
art [1], [34], we use 8-bit inference for our evaluation. The
energy parameters from Table III are quadratically scaled for
multiplication and linearly scaled for addition and memory
access to obtain 8-bit energy parameters. We compare the
results of partitioning with
• FCC: fully cloud-based computation
• FISC: fully in situ computation on the client
The energy cost (ECost) in (1) for each layer of a CNN

is analyzed under various communication environments for
the mobile cloud-connected client. Prior works in the litera-
ture [35]–[37] report the measured average power of various
smartphones during the uplink activity of wireless network
(documented in Table IV). In our work, for the transmission
power (PTx) in (27), we use representative numbers from
Table IV and thus evaluate the computational partitioning
scheme considering specific scenarios that correspond to spe-
cific mobile platforms. The transmit power for an on-chip
transmitter is independent of the transmission data rate [33],
and the numbers in Table IV do not vary with the data
rate. We present analysis using the effective bit rate (Be)
as a variable parameter to evaluate the benefit from the
computation partitioning scheme as the available bandwidth
changes. For all plots: (i) “In” is the input layer (i.e, the input
image data); (ii) layers starting with “C”, “P”, and “FC” denote
Conv, Pool, and FC layer, respectively; (iii) layers starting with
“Fs” and “Fe” denote squeeze and expand layer, respectively,
inside a fire module of SqueezeNet-v1.1.

TABLE IV
MEASURED AVERAGE POWER OF SMARTPHONES DURING WIRELESS

NETWORK UPLINK ACTIVITY.

Wireless network WLAN 3G 4G LTE

Google Nexus One [35] – 0.45 W –
LG Nexus 4 [36] 0. 78 W 0.71 W –
Samsung Galaxy S3 [36] 0.85 W 1.13 W 1.13 W
BlackBerry Z10 [36] 1.14 W 1.03 W 1.22 W
Samsung Galaxy Note 3 [36] 1.28 W 0.75 W 2.3 W
Nokia N900 [37] 1.1 W 1.0 W –

At the In layer, before transmission, the image is JPEG-
compressed with a quality level of Q = 90 (a lower Q provides
greater compression but the worsened image induces CNN
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Fig. 11. Energy cost (ECost) at various layers for (a) AlexNet, (b)
SqueezeNet-v1.1. (In both figures, points above 10 mJ are omitted for better
visibility.)
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Fig. 12. Distribution of images with respect to Sparsity-In.

accuracy degradation). The energy overhead associated with
JPEG compression [38] is incorporated in ECost for the In
layer but is negligible.

For an input image, Fig. 11(a) shows the energy cost
associated with each layer of AlexNet at 100 Mbps effective
bit rate (Be) and 1.14 W transmission power (PTx) which
corresponds to the BlackBerry Z10 platform. The minimum
ECost occurs at an intermediate layer, P2, of AlexNet which
is 39.65% energy efficient than the In layer (FCC) and 22.7%
energy efficient than the last layer (FISC). It is now clear
that offloading data at an intermediate layer is more energy-
efficient for the client than FCC or FISC. Using the same
smartphone platform, Fig. 11(b) shows a similar result with an
intermediate optimal partitioning layer for SqueezeNet-v1.1.
Here, the Fs6 layer is optimal with an energy efficiency of
66.9% and 25.8% as compared to FCC and FISC, respectively.

The cost of FCC is image-dependent, and varies with the
sparsity, Sparsity-In, of the compressed JPEG image, which
alters the transmission cost to the cloud. Fig. 12 shows that
the ∼5500 test images in the ImageNet database show large
variations in Sparsity-In. We divide this distribution into four
quartiles, delimited at points Q1, Q2, and Q3.

For representative images whose sparsity corresponds to Q1,
Q2, and Q3, Fig. 13 shows the energy savings on the client
at the optimal partition of AlexNet, as compared to FCC (left
axis) and FISC (right axis). For various effective bit rates (Be),
the plots correspond to two different PTx of 0.78 W and 1.28
W, corresponding to the specifications of LG Nexus 4 and
Samsung Galaxy Note 3, respectively, in Table IV.

In Fig. 13, a 0% savings with respect to FCC [FISC]
indicates the region where the In [output] layer is optimal
implying that FCC [FISC] is the most energy-efficient choice.
Figs. 13(a) and 13(b) show that for a wide range of communi-

cation environments, the optimal layer is an intermediate layer
and provides significant energy savings as compared to both
FCC and FISC. However, this also depends on image sparsity:
a higher value of Sparsity-In makes FCC more competitive or
even optimal, especially for images in quartile IV (Fig. 13(c)).
However, for many images in the I-III quartiles, there is a large
space where offloading neural computation at the intermediate
optimal layer is energy-optimal.

The effect of change in PTx can also be seen from the plots
in Fig. 13. With a higher value of PTx (the dotted curves),
data transmission requires more energy. Therefore, the region
for which an intermediate partitioning offers energy savings
(i.e., the region between energy savings of 0% with respect to
FCC and 0% with respect to FISC) exhibits a right shift, along
with a reduction in the savings with respect to FISC. However,
the region also becomes wider since with a higher PTx, FCC
becomes less competitive. With the highest PTx settings from
Table IV (i.e., 2.3 W), it turns out that intermediate optimal
partitioning offers limited savings with respect to FISC for a
lower bit rate and from a higher bit rate (i.e., > 100 Mbps)
the savings starts to become considerable. Similar trends are
seen for SqueezeNet-v1.1 where the ranges of Be for which
an intermediate layer is optimal are even larger than AlexNet
with higher energy savings.

The optimum partition is often, but not always, at an
intermediate point for all CNNs. For example, for GoogleNet-
v1, a very deep CNN, in many cases either FCC or FISC is
energy-optimal, due to the large amount of computation as
well as the comparatively higher data dimension associated
with its intermediate layers. However, for smaller Sparsity-
In values (i.e., images which do not compress well), the
optimum can indeed occur at an intermediate layer, implying
energy savings by the client/cloud partitioning. For VGG-
16, the optimal solution is FCC, rather than partial on-board
computation or FISC. This is not surprising: VGG-16 incurs
high computation cost and has large data volume in the deeper
layers, resulting in high energy for client side processing.

TABLE V
ENERGY SAVINGS AT OPTIMAL LAYER FOR DIFFERENT CNN TOPOLOGIES
(Be = 80MBPS; PTx = 0.78W FOR ALEXNET AND SQUEEZENET-V1.1,

1.28W FOR GOOGLENET-V1).

Average percent energy savings with respect to
FCC FISC

CNN Quartile
I II III IV

AlexNet 52.4% 40.1% 25.7% 4.1% 27.3%
SqueezeNet 73.4% 66.5% 58.4% 38.4% 28.8%
GoogleNet 21.4% 3.5% 0.0% 0.0% 10.6%

Under a fixed transmission power (corresponding to the
platforms of LG Nexus 4 and Samsung Galaxy Note 3) and bit
rate, Table V reports the average energy savings at the optimal
layer as compared to FCC and FISC for all the images lying
in Quartiles I–IV, specified in Fig. 12. Note that the savings
with respect to FISC do not depend on Sparsity-In. The shaded
regions in Table V indicate the regions where energy saving
is obtained by the client/cloud partitioning. For AlexNet,
the optimum occurs at an intermediate layer mostly for the
images in Quartiles I–III while providing up to 52.4% average
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Fig. 13. Percentage energy savings of the client device under different communication environment for AlexNet at (a) Sparsity-In = 51.99% (Q1) (b)
Sparsity-In = 60.80% (Median, Q2) (c) Sparsity-In = 69.09% (Q3).
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Fig. 14. Evaluations on AlexNet: (a) Inference delay (tdelay) with respect to FCC and FISC while partitioned at energy-optimal intermediate layers. (b)
Energy cost with variation in effective bit rate (Be) when partitioned at P1, P2, and P3 layers. (c) Total AlexNet energy vs. GLB size.

energy savings. For SqueezeNet-v1.1, in all four quartiles,
most images show an optimum at an intermediate layer and
provide up to 73.4% average energy savings on the client.
Evaluation of Inference Delay: To evaluate the inference
delay (tdelay), we use GoogleTPU [1], a widely deployed
DNN accelerator in datacenters, as the cloud platform, with
tcloud in (30) use Throughput = 92 TeraOps/s. At the median
Sparsity-In value (Q2), Fig. 14(a) compares the tdelay of
energy-optimal partitioning of AlexNet with FCC and FISC for
various effective bit rate. The delay of FISC does not depend
on communication environment and exhibits a constant value
whereas the delay of FCC reduces with higher bit rate. The
range of Be for which an intermediate layer becomes energy-
optimal is extracted using Q2 (Fig. 13(b)). The blue curve
in Fig. 14(a) shows the inference delay when partitioned at
those energy-optimal intermediate layers. At 49 Mbps and 136
Mbps the curve shows a step reduction in delay since at these
points the optimal layer shifts from P3 to P2 and from P2 to
P1, respectively. It is evident from the figure that in terms of
inference delay, energy-optimal intermediate layers are either
better than FCC (lower bit-rate) or closely follow FCC (higher
bit-rate) and most cases are better than FISC.
Impact of Variations in B: We have analyzed the impact of
changes in the available bandwidth B (e.g., due to network
crowding) on the optimal partition point. For an image with
Sparsity-In of Q2 and 0.78 W PTx, Fig. 14(b) shows the
energy cost of AlexNet when partitioned at P1, P2, and
P3 layers (the candidate layers for an intermediate optimal
partitioning). It shows that the energy valley is very flat with

respect to bit rate when the minimum ECost shifts from P3
to P2 and from P2 to P1 layer (the green vertical lines).
Therefore, changes in bit rate negligibly change energy gains
from computational partitioning. For example, in Fig. 14(b),
layer P3 is optimal for Be = 17− 48 Mbps, P2 is optimal for
Be = 49− 135 Mbps, and P1 is optimal for Be = 136− 164
Mbps. However, if Be changes from 130 to 145 Mbps, even
though the optimal layer changes from P2 to P1, the energy
for partitioning at P2 instead of P1 is virtually the same.

B. Design Space Exploration Using CNNergy

We show how our analytical CNN energy model (CNNergy)
in Section IV can be used to perform design space exploration
of the CNN hardware accelerator. For the 8-bit inference on
an AlexNet workload, Fig 14(c) shows the total energy as a
function of the global SRAM buffer (GLB) size. The GLB
energy vs. size trend was extracted using CACTI [39].

When the GLB size is low, data reuse becomes difficult
since the GLB can only hold a small chunk of ifmap and
psum at a time. This leads to much higher total energy. As the
GLB size is increased, data reuse improved until it saturates.
Beyond a point, the energy increases due to higher GLB access
cost. The minimum energy occurs at a size of 88kB. However,
a good engineering solution is 32kB because it saves 63.6%
memory cost over the optimum, with only a 2% optimality
loss. Our CNNergy supports similar design space exploration
for other accelerator parameters as well.
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IX. CONCLUSION

In order to best utilize the battery-limited resources of a
cloud-connected mobile client, this paper presents an energy-
optimal DL scheme that uses partial in situ execution on the
mobile platform, followed by data transmission to the cloud.
An accurate analytical model for CNN energy (CNNergy)
has been developed by incorporating implementation-specific
details of a DL accelerator architecture. To estimate the energy
for any CNN topology on this accelerator, an automated
computation scheduling scheme is developed, and it is shown
to match the performance of the layer-wise ad hoc scheduling
approach of prior work [23]. The analytical framework is
used to predict the energy-optimal partition point for mobile
client at runtime, while executing CNN workloads, with an
efficient algorithm. The in situ/cloud partitioning scheme is
also evaluated under various communication scenarios. The
evaluation results demonstrate that there exists a wide com-
munication space for AlexNet and SqueezeNet where energy-
optimal partitioning can provide remarkable energy savings on
the client.
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