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Abstract—| Designing reward functions is a challenging prob-
lem in AI and robotics. Humans usually have a difficult time
directly specifying all the desirable behaviors that a robot needs
to optimize. One common approach is to learn reward functions
from collected expert demonstrations. However, learning reward
functions from demonstrations introduces many challenges: some
methods require highly structured models, e.g. reward functions
that are linear in some predefined set of features, while others
adopt less structured reward functions that on the other hand
require tremendous amount of data. In addition, humans tend
to have a difficult time providing demonstrations on robots with
high degrees of freedom, or even quantifying reward values for
given demonstrations. To address these challenges, we present
a preference-based learning approach, where as an alterna-
tive, the human feedback is only in the form of comparisons
between trajectories. Furthermore, we do not assume highly
constrained structures on the reward function. Instead, we model
the reward function using a Gaussian Process (GP) and propose
a mathematical formulation to actively find a GP using only
human preferences. Our approach enables us to tackle both
inflexibility and data-inefficiency problems within a preference-
based learning framework. Our results in simulations and a user
study suggest that our approach can efficiently learn expressive
reward functions for robetics tasks.

I. INTRODUCTION

Planning for robots that can act in a diverse set of environ-
ments based on human preferences can be quite challenging.
It is generally infeasible for human designers to directly
program the desired behavior for the full spectrum of possible
situations. Hence, roboticists often use machine learning in
at least part of their design to discover human preferences.
One approach is to directly learn a robot policy using expert
demonstrations [1]-[4]. However, in many interactive settings,
we are interested in more generally learning a reward function
that represents how a robot should act or interact in the world.

Reward functions are powerful tools for specifying desirable
robot behaviors, e.g. how to act safely, or what styles or goals
the robot needs to follow. Unfortunately, specifying reward
functions is not an easy task for human designers [5]-[7]. Our
goal in this work is to develop a data-efficient method that
can learn expressive reward functions.

Prior work has considered using a sequence of pairwise
comparisons between trajectories as a successful technique to
learn reward functions [8]-[15]. For example, as shown in
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Fig. 1. The user is trying to teach the robot how to play a variant of mini-golf,
where the reward differs among eight targets. In preference-based learning,
instead of trying to design a reward function by hand or controlling the
robot to provide demonstrations, the user simply compares two demonstrated
trajectories on the robot. Here, £ 4 and £p demonstrate two trajectories that
correspond to hitting the ball towards the blue or green targets.

Fig. (1} the robot can demonstrate the blue and green trajec-
tories, £4 and £p, and ask the human designer to compare
the two. Preference-based reward learning can then leverage
a sequence of pairwise comparisons to accurately estimate a
reward function.

However, preference-based learning techniques are in gen-
eral not very data-efficient, as each pairwise comparison only
provides 1 bit of information, i.e., if &4 is preferred over
&p or vice versa. Therefore, active learning is commonly
employed in this framework to find the most informative or
diverse sequence of questions for efficiently converging to the
underlying reward function [12]-[14], [16]-[23].

Unfortunately, most prior active reward learning works rely



on a strong assumption about the structure of the reward
function, i.e., the reward function is a linear combination
of a set of hand-coded features. While this assumption is
commonly needed for active learning to scale, it is very
limiting because linear reward functions are not sufficiently
expressive. For example, a linear reward would require several
features for the human teacher to be able to specify every
reward configuration of targets in the task demonstrated in
Fig. (1] i.e., how targets compare to each other. The features
to this task could be, for example, distances to each and
every target. On the other hand, if the reward model was
nonlinear, one can capture all possible configurations with only
two features: speed for how far the ball will be thrown, and
angle for which direction to shoot. While neural networks or
kernel functions can provide this flexibility, these techniques
considerably increase the number of parameters needed, which
prohibits (or renders useless the advantage of) active learning
algorithms.
Our key insight is to model the reward function
using a Gaussian Process (GP) [44]. GPs are non-
parametric models that can capture nonlinearities,
allowing us to actively and efficiently learn highly
expressive reward functions.

In this work, we propose a mathematical framework for
actively fitting a GP using only pairwise comparisons between
two trajectories, which we call preference data. Leveraging
GPs, instead of linear models with hand-designed features, im-
proves the expressiveness of reward functions by incorporating
nontrivial nonlinearities. Besides, our active query generation
method enables us to still get the benefits of active learning.

We make two main contributions in this work:

o We propose a data-efficient mathematical framework for
actively regressing a GP with preference data to learn
expressive reward functions from humans.

e We demonstrate the performance of our framework
through simulated environments and user studies on a
manipulator robot playing a variant of mini-golf based
on different human preferences. Our results show our
approach can be used for reward learning in complex and
interesting settings and is more data-efficient than various
other baselines.

II. RELATED WORK

In this section, we will discuss the prior work focused on
learning reward functions from demonstration, or other sources
of data, as well as related work in Gaussian process regression
and its relation to our work.

Learning reward functions from demonstrations. Prior
work has studied learning reward functions from collected
expert demonstrations. This is commonly referred to as in-
verse reinforcement learning (IRL), where we assume human
demonstrations are based on them approximately optimizing
a reward function [24[]-[28]]. The learned reward function can
then be used by a robot to optimize its actions in the broad
range of environments.

While IRL has shown promising results in a variety of
domains, robots, especially manipulators with high degrees of
freedom, are often too difficult to manually operate [29]—[33]].
Moreover, recent studies in autonomous driving, where the
high degrees of freedom of a robot is not an issue, suggest
that people do not prefer an autonomous car to follow their
own demonstrations and instead prefer a different behavior
that tends to be more timid [34]. These indicate that one needs
to go beyond human demonstrations to properly capture the
preferred reward function.

In our framework, instead of relying on human demonstra-
tions, we learn the reward functions through the preference
queries. Therefore, our method does not require experts who
can control the system in the desirable way.

Learning reward functions from other sources of data.
In addition to demonstrations and physical corrections [35],
[36], where the robot attempts to learn the reward function
through physical human interference, learning from rankings
[10]] is another popular approach. A particular case of this is
when the rankings are only pairwise comparisons, which we
call preference queries. Previous works have investigated the
use of preference queries for reward learning. Sadigh et al.
[12] proposed an acquisition function to actively generate the
queries. Further studies extended this approach to batch-active
methods [[16]], [[17]], rankings instead of pairwise comparisons
[22]], general Markov Decision Process (MDP) settings [21]],
and settings that integrate expert demonstrations with pref-
erence queries [20]. The reward function these prior works
assume is linear with respect to some hand-coded features.
This assumption limits the model flexibility and requires very
careful feature design. Basu et al. [19] explored modeling a
multi-modal reward function, but the reward was still linear
in each mode. Furthermore, they focused only on bi-modal
distributions. Scalability to more modes remains an issue.

In this work, we do not make the linearity assumption and
instead model the reward using a GP. Our results show this
significantly improves the expressive power of the learned
reward function, and the method is still very data-efficient.

Gaussian process regression. On the machine learning side,
Gonzélez et al. [37] and Chu et al. [|38]] proposed methods for
preference-based Bayesian optimization and GP regression, re-
spectively, but they were not active. Furthermore, [37] required
to regress a GP over 2d-dimensions to model a d-dimensional
function, which causes a computational burden. More rele-
vantly, Houlsby et al. [39] presented an active method for
preference-based GP regression. However, similar to [37], the
regression was over a 2d-dimensional space where the learned
model predicts the outcome of a comparison rather than out-
putting a reward value. Jensen et al. [40]] showed how to update
a GP with preference data, but the active query generation was
not an interest. Kapoor et al. [41] developed an active learning
approach for classification with GPs. This is a specific case of
our problem, as the labels in classification are consistent, i.e.,
the labels assigned to the samples in the dataset, even if they
are incorrect, do not change during training. In our case, the



user can respond to the same preference query inconsistently
depending on their noise model. Houlsby et al. [42] and Daniel
et al. [43]] proposed active GP fitting methods for classification
and reward learning, respectively. While the latter focused on
robotics tasks, they were not preference-based. Hence, they
may be infeasible in many applications as it is difficult for
humans to assign actual reward values.

In this work, we propose an active query generation method
for preference-based GP regression. While being data-efficient,
this method also does not require the humans to assign actual
reward values to the trajectories for fitting the GP.

III. PROBLEM FORMULATION

We model the environment the robot is going to operate in as
a finite-horizon deterministic MDP. We use s; € S to denote
the state and a; € A for the action (control inputs) at time .
A trajectory & € = within this MDP is a sequence that consists
of the initial position and the actions: { = (sg, ag, a1, ...,ar),
where T is the finite time horizon.

We assume a reward function over trajectories, R : = — R,
that encodes the human user’s preferences about how they
want the system to operate.

We assume the reward function R can be formulated as
R(&) = f(U(£)), where ¥ : = — R defines a set of trajectory
features, e.g. average speed and minimum distance to the
closest car in a driving trajectory. However, we emphasize that
this formulation of R enables a more general form of functions
that does not require strong assumptions — such as linearity in
the features — which is commonly put in place when learning
reward functions. We use a GP to model f, which allows us
to avoid strong assumptions about the form of f E]

Our goal is to learn this more general form of reward
functions using preference data in the form of pairwise com-
parisons. The robot will demonstrate a query () consisting
of two trajectories, £4 and {p as shown in Fig. [T] with blue
and green curves, to the user, and will ask which trajectory
they prefer. The user will respond to this query based on their
preferences. The user’s response provides useful information
about the underlying preference reward function R. Of course,
we cannot assume human responses are perfect for every
query, so we model the noise in their responses using the
commonly adopted probit model, which assumes humans
make a binary decision between the two trajectories noisily
based on the cumulative distribution function (cdf) of the
difference between the two reward values:

Plg=£8a|Q =1{8a,8B}) = P(R(§a) — R(&B) > v),

where ¢ € @ denotes the user’s choice, and v ~ N(0,202)
for some standard deviation o+/2. Therefore, equivalently:

Pla=€4] Q= {€arcn}) = @ (W) )

where ® is the cumulative distribution function of the standard
normal.

'Due to computation reasons, we assume d is small. Compared to previous
works which assume R to be linear in features, this is a very mild assumption.

Having defined the problem setting, we are now ready to
present our method for learning data-efficient and expressive
reward functions using GPs.

IV. METHODS

In this section, we first give some background information
about Gaussian Processes. We then introduce preference-based
GP regression, where we show how to update a GP with
the results of pairwise comparisons. Finally, we present our
approach to active preference query generation, where we
discuss how to find the most informative query that accelerates
the learningE] To simplify the notation, we replace ¥ () with
W, with superscripts and subscripts when needed.

A. Gaussian Processes

We start by introducing the necessary background on GPs for
our work. We refer the readers to [44] for other uses of GPs
in machine learning.

Suppose we are given a dataset ¥ = (U;)¥ |, where ¥, €
R?. We employ a probabilistic point of view for f by modeling
it using a GP, which enables us to model nonlinearities and
uncertainties well without introducing parameters. We have:

exp (—3(f — ) "K'(f — )
(2m)N/2[K|1/2 ’

where f = (f(¥;))Y,, n and K are the mean vector and the
covariance matrix of the GP distribution for the N items in
the dataset. Put it in another way, f follows a multivariate dis-
tribution. The covariance matrix depends on the used kernel.
In this work, we use a variant of radial basis function (RBF)
kernel with hyperparameter 6:

k(W3 05) = exp (—0||¥; — U, [3) — k(L;, ¥;),
k(W3 W;) = exp (—0]W; — U3 — 0] ; — ¥|3),

P(f|uK)= (2)

where ¥ € R¢ is an arbitrary point for which we assume
f(¥) = 0. This is important because the query responses
only depend on the relative difference between the two reward
function values at the trajectories, i.e., f(¥)+c for any ¢ € R
would have the same likelihood for a dataset as f(J). By
setting f(¥) = 0 for some arbitrary ¥ € R9, we dissolve
this ambiguity. It does not introduce an assumption because
for any function f’ and for any point ¥, one can define
f(¥) = f'(¥) — f/(¥) without loss of generality—both f
and f will encode the same preferences. Finally, this variant
of the RBF kernel is still positive semi-definite, because it is
equivalent to the covariance kernel of a GP which is initialized
with an initial data point and a standard RBF kernel prior.

B. Preference-based GP Regression

In preference-based learning, we have a dataset
v = ((\I!Z(.l),\llf)))fil, consisting of pairs of trajectories
\Ilgl),\lll@) € RY, and user responses q = (q;),, where
¢; €{0, 1} indicates whether the user preferred \IJEU or \I!Z(.Q).
Accordingly, K is now a 2N x 2N matrix, whose rows and

2We make our Python code for active query generation publicly available
at hhttps://github.com/Stanford-ILIAD/active-preference-based- gpr.
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columns correspond to \Ilg,W e {1,...,N},¥j € {1,2}.
Similarly, p is a 2N-vector. Using a Bayesian approach to
update the GP with new preference data (U, q) gives:

=Pl [, 9)P(f | v, K). 3)

Here, the first term is just the probabilistic human response
model given in Eqn. (I), and the second term is Eqn. ().
However, this posterior does not follow a GP distribution
similar to Eqn. (2)), and becomes analytically intractable [40].

Prior works have shown it is possible to perform some
approximation such that the posterior is another GP [40], [44].
The most common approximation techniques are

o Laplace approximation, where the idea is to model the
posterior as a GP such that the mode of the likelihood
is treated as the posterior mean, and a second-order
Taylor approximation around the maximum of the log-
likelihood gives the posterior covariance. This technique
is computationally very fast.

o Expectation Propagation (EP), where the idea is to ap-
proximate each factor of the product by a Gaussian. EP is
an iterative method that processes each factor iteratively
to update the distribution to minimize its KL-divergence
with the true posterior. While it is more accurate than
Laplace approximation, it is slower in practice [45].

In this paper, we use the former for its computational effi-
ciency. Hence, we now show how to compute the quantities for
Laplace approximation, i.e., posterior mean and covariance.

Finding the posterior mean. We use the mode of the posterior
as an approximation to the posterior mean:

arg;nax (log (p(q | ®,f)) +log (P(f | ¥))) 4)

Because the preference data are conditionally independent, the
first term can be written as:
N

log (P(a | @.£)) = Y log Pg; | ¥, )

i=1

N My _ ©)
:i_zllogtb<f(‘1’i )\/igf(‘l’z )>

due to Eqn. (I). Adopting a zero-mean prior for f, we can
write the second term of the optimization (@) as:

1
log (P(f | ¥)) = -5 log|K| — N log 27 — %fTK‘lf

Armed with these two expressions, we can now optimize the
log-likelihood and thus find the mode of it to approximate the
posterior mean.

Finding the posterior covariance matrix. Following [44],
and omitting the derivation details for brevity, the posterior
covariance matrix is (K~! + W)~ where W is the negative
Hessian of the log-likelihood:
9%log (P(q | ¥.f))

AfDof)

Now, we know how to approximate the posterior mean

Wi = —

and the posterior covariance for the Laplace approximation
of Eqn. (3). This allows us to model and update the reward
with preference data using a GP.

We also want to perform inference from this approximated
GP. Inference is not only useful for active query generation,
but it also enables us to compute the reward expectations and
variances given a trajectory.

Inference. Given two points \I/fkl), \Ilg) € R?, we want to be
able to compute the expected mean rewards p, and also the
covariance matrix between those two points K., both of which
will be useful for active query generation. These are given by:

=B L | 9,q,0" 0P| <k TKE )

where k. ;; = k(W W;) is a 2 x 2N matrix, and
K, = Ko — ki (ILy + WK) ' Wk, (6)

where Ko;; = k \Ilgf),\Ilgf)) is a 2 x 2 matrix, Iy is the
2N x 2N identity matrix.

Equipped with all these tools which enable us to ap-
proximate the posterior distribution with a GP and perform
inference over it, we are now ready to present our contributions
on the active query generation.

C. Active Query Synthesis for Reward Learning

While we now know how to learn the reward function f
using only pairwise comparisons, this endeavor can require
tremendous amount of data, because each query will give
at most 1 bit of information. Furthermore, we can expect a
decreasing trend in the information gain as we learn the reward
function. Therefore, it is important to select the queries for
the human such that each query gives as much information as
possible. For linear reward models, previous work has shown
that this can be done by maximizing the mutual information,
which also makes the queries easy for the user [[18]]. Extending
this formulation to the reward functions modeled with a GP
is not trivial, because one needs to sample from the GP many
times for each trajectory, whereas a linear reward form allows
the reward prediction after sampling the linear weight terms
only once.

Hence, for the active query generation, our goal is to
perform information gain maximization with GPs.

Problem 1. Formally, we want to solve the following problem:
v w® = argmax I(fiq| ¥, ¥, q),
MORTE)
where I is the mutual information and q is the response to the
query U = (U W), This optimization is equivalent to

argmax (H(q |V, ®,q) —E;opfjo,q [H(g| ¥, f)]),
T w2
(7

where H is the information entropy.

This optimization can be interpreted as follows: On one
hand, maximizing the first entropy term H(q | ¥, ¥, q)
encourages fast convergence by maximizing the uncertainty of
the outcome of every query for the learned GP model. On the



other hand, minimizing the second entropy term H(q | ¥, f)
encourages the ease of responding to the queries by the user
meaning the user should be certain about their choices.

We defer the full derivation of (7) to the appendix, but here
we give an easy-to-implement formulation of the optimization.
Denoting the posterior mean of f(¥()), which is obtained
using Eqn. (§), with 19, the objective function can be written
as

p — 2

" <<I> (\/202 + g(B), q,(z))>> —m(¥) (8)
where

g(IW, §@) —var (f(\I/(l))> + Var (f(\p(?)))
—2Cov (f(¥), f(2?)),

whose terms can be computed using Eqn. (6)); & is the binary
entropy function, i.e.,

h(p) = —plogy(p) — (1 — p)logy(1 — p),

and

(1)7 (2)\2
7In(2)o? exp (_wln(2)(52+2;z‘1’(3)7‘1’(2)))

VrIn(2)o? + 2¢g(vW, W)

Synthesizing queries that maximize this objective will give
us very informative data points for preference-based GP re-
gression and improve data-efficiency.

Previously, Biyik ef al. have shown for the linear re-
ward models that using an information gain based formulation
accelerates the learning whereas volume removal based meth-
ods (such as [12]) rely on local optima and can produce trivial
queries that compare the exact same trajectory and so gives no
information. In the following, we show our formulation also
does not suffer from this trivial query problem.

m (V) =

Remark 1. The trivial query ¥ = {U) U does not
maximize our acquisition function given in (8), and is in fact
a global minimizer.
Proof: For the query W = {04 WA} we rewrite (8) as
pu — (A

" <<I> (\/202 —i—g(\Il(A)’\I;(A)))) -m (V) =1-m(¥)

where Var (f(TA))) = Cov (f(TW), f(T@)), and so
g(UA ¥y =0, and

. _ m1n(2)o? exp (— ﬂln(z)(f:;:jz;l(ﬁ;z;)i\p(A))) _
VT In(2)o? + 2g(UA), W)

which makes the objective value 0. Since the information gain

has to be nonnegative, this completes the proof that the trivial

query is a global minimizer of the objective. ]

V. SIMULATION EXPERIMENTS

In this section, we present our experiments in two simulation
domains to demonstrate how (i) GP rewards improve expres-
siveness over linear reward functions, and (ii) active query

Tosser

Fig. 2. Sample trajectories are shown for the two simulation environments. In
Driver, another car is cutting in front of the ego vehicle. In Tosser, the robot
must hit the dropping capsule such that it will fall into one of the baskets.

Driver

generation improves data-efficiency over random querying.

A. Simulation Environments
To validate our framework on robotics tasks, we used two
simulation environments: a 2D Driver simulation and
a MuJoCo environment to simulate a 7osser robot that
tries to throw an object into a basket [16]. We show visuals
from these environments with sample trajectories in Fig. 2] For
example in Driver, the user is asked whether they would move
forward or backward in the given scenario. While the users
would have a common response to this query, some questions
may differ among the users. For instance in Tosser, the query
asks the user whether to throw the ball into the green basket or
to drop it instead. Depending on the users’ preferences about
the green basket, different users may have different responses.

In these two environments, we use the following simple
features for the function ¥ similar to [16]:

o Driver: Distance to the other car, speed, heading angle,

distance to the closest lane center.
e Tosser: The maximum horizontal range, and the number
of capsule flips.

In contrast to what the previous work reported, here we do not
need to fine-tune the feature parameters to learn the reward
functions because GPs can effectively capture nonlinearities.

Simulated Human Model. We simulated human responses
with an underlying true reward function f with some Gaussian
noise, in accordance with Eqn. (I). We modeled f as either a
degree-of-two polynomial or a linear function. In both cases,
we selected the parameters of f as i.i.d. random samples
from the standard normal distribution. We repeated each
simulation experiment 5 times with varying underlying true
reward functions.

B. Baselines
For our analyses, we compared three methods:

e RANDOMGP: The reward is modeled using a Gaussian
Process. The two distinct trajectories selected in each
training query are sampled from a training dataset uni-
formly at random.

e ACTIVELINEAR: The reward is modeled as a linear
combination of features, and the active query generation
method of selects the most informative comparison
queries at every step of training.
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Fig. 4. Features of 1000 Tosser trajectories are visualized in two-dimensional
plane (gray). Poisson disk sampling allows us to obtain a diverse set of
20 samples (orange), whereas sampling uniformly at random yields mostly
uninteresting trajectories (blue).

e ACTIVEGP: The reward is modeled as a Gaussian Pro-
cess. We will use our active query generation method
to generate the most informative comparison queries to
efficiently learn the reward function.

We generated a training dataset of trajectories with uni-
formly randomly selected actions. At every iteration of AC-
TIVEGP and ACTIVELINEAR, we computed the expected
information gain of each possible query from this dataset to
select the most informative query. This approach decreases the
computation time compared to solving a continuous optimiza-
tion over all possible trajectories as it was done by [12], [20].

C. Evaluation

We compare GP reward with linear reward in terms of ex-
pressiveness (ACTIVEGP vs. ACTIVELINEAR), and compare
active query generation with random querying baseline in

terms of data-efficiency (ACTIVEGP vs. RANDOMGP).

Test Set Generation. For both analyses on the expressiveness
and data-efficiency, we also generated test sets of trajectories
from the same distribution as the training set. However, it
would not be fair to use the test set as is. Obtained with
uniformly random action sequences, the majority of the train-
ing set is uninteresting trajectories, e.g. the ego car moves
slightly forward and backward (similar to a random walk)
in Driver, or the robot does not hit the capsule in Zosser.
Using the test set without further modifications would mean
we give more importance to these uninteresting behaviors as
they form the majority in the datasets. Obviously, this is not
the case. We want to learn the reward function everywhere in
the dynamically feasible region with equal importance.

Hence, we adopted Poisson disk sampling to get a di-
verse set of trajectories from the test set. Poisson disk sampling
makes sure the difference between trajectoriesﬂ is above some
threshold by rejecting the samples that violate this constraint.
A small example set of samples is compared to uniformly
random samples in Fig. [] for the Tosser environment.

After obtaining the diverse test set, we stored the true
(noiseless) response of the simulated user for each possible
query in this set. For the analysis on expressiveness, we
computed the accuracy and the log-likelihood of the true
responses under the reward functions that are learned with N
actively chosen queries (up to N = 200). For data-efficiency
analysis, we again used the true human responses to the
queries in the diverse test set (only from the polynomial reward
functions) to calculate the accuracy and the log-likelihood
under the learned reward functions.

3We used Lo distance between the feature vectors.
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when the true underlying reward function is linear. (b) Expressiveness results when the true underlying reward function is a degree-of-two polynomial. (c)
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Expressiveness. Figs. B(a,b) and [5(a,b) show the results of
expressiveness simulations. When the true reward is polyno-
mial, the linear model results in very high variance in both
accuracy and likelihood, because its performance relies on how
good a linear function can explain the true nonlinear reward.
In this case, the GP model captures nonlinearities better than
the linear model and provides better learning (Figs. [3(b) and
Blb)). When the true reward function is linear in features,
a linear model naturally learns faster. However, as shown in
Figs. B[a) and [5(a), even in that case, GP model can achieve
linear model’s performance. To further improve the reward
model, one can consider an approach to combine the linear
and GP models by keeping a belief distribution over whether
the true reward is linear or not, and actively querying the user
according to this belief. We leave this extension as future work.

Data-Efficiency. We then evaluated how our active query gen-
eration helps with data-efficiency. Figs. [3{(c) and [5c) compare
ACTIVEGP and RANDOMGTP for the simulation environments.
It can be seen that active querying significantly accelerates
learning over random querying. It should be noted that the
number of samples taken via Poisson disk sampling matters:
While choosing a very small number will increase the variance
in the results, choosing a very large number will make random
querying seem like it performs comparable to (or even better
than) the active querying as the test set will mostly consist
of uninteresting trajectories, which are also abundant in the
training set, as we stated earlier.

VI. USER STUDIES

A. Experiment Setup
We also compare our method ACTIVEGP with ACTIVELIN-
EAR and RANDOMGP on a user study with a Fetch mobile

(b) Poly. True Reward (c) Poly. True Reward

Accuracies and average log-likelihoods for test set queries are shown for the Tosser environment (mean=std over 5 runs). (a) Expressiveness results

Fig. 6. Top view of the eight targets in the variant of mini-golf user study.
The users assign distinct scores from 2 to 9 to the targets. The figure shows
an example of this ranking. While the robot is capable of hitting the ball into
the entire shaded region, the maximizers of a linear reward always lie near the
corners of the shaded region in blue. Therefore, while the GP reward model
can query the user with better trajectories (e.g. the green trajectory), the linear
model only explores the boundaries (e.g. the blue trajectory that throws the
ball outside of this region). Crosses show where the ball hits the ground.

manipulator robot [49)). In this study, the human subjects teach
the Fetch robot how to play a variant of mini golf where
the robot can achieve different scores by hitting the ball to
different targets (see Fig.[T]and Fig.[f]for the set up). However,
these scores are only known to the human. In fact, the robot
does not even know the locations of the targets, and it tries
to learn the reward as a function of its control inputs. Fixing
some of the joints, we let the robot vary only its shot speed
and angle, which are also the features of the reward function.

This experiment setting is interesting because a linear re-
ward function can only encode whether the robot must hit the
ball to the right or to the left, or whether it must hit with high
or low speed. It cannot particularly encourage (or discourage)
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(a) Prediction accuracy results (mean+tse). Each trained with 15 queries, ACTIVEGP achieves significantly higher prediction accuracy than both

ACTIVELINEAR and RANDOMGP (p < 0.05). (b) User ratings on the final robot performance (meantse). ACTIVEGP accomplishes the task significantly

better than both ACTIVELINEAR and RANDOMGP (p < 0.05).

hitting with a modest angle and/or speed. Therefore, as we
show in Fig. (6] the targets that are around the middle region
cannot be the maximizers of a linear reward function.

B. Subjects and Procedure

We recruited 10 users (6 males, 4 females) with an age range
from 19 to 28. Each user first assigned their distinct scores
(from 2 to 9) to the eight targets. The robot then queried them
with 50 pairwise comparison questions: 15 for ACTIVEGP,
15 for ACTIVELINEAR, 15 for RANDOMGP and 5 queries
generated uniformly at random to create a test set. We shuffled
the order of queries to avoid any bias. We used the reward
models, each of which is learned with 15 queries, to predict
the user responses in the test set. The prediction score on the
test set provides an accuracy metric.

In addition to the accuracy, we assessed whether the robot
could successfully learn how to perform a good shot. For
this, after the subjects responded to 50 queries, the robot
demonstrated 3 more trajectories each of which correspond to
the optimal trajectory of one method, the trajectory that max-
imizes the learned reward function. Again, the order of these
trajectories was shuffled. After watching each demonstration,
the subjects assigned a score to the shot from a 9-point Likert
scale (1-very bad, 9-very good).

C. Results and Discussion
We provide a video that gives an overview of user studies and
their results at https://youtu.be/SLSO21Bj9Mw.

Fig. [7(a) shows the prediction accuracy values on the
test sets collected from the subjects (averaged over the sub-
jects). By modeling the reward using a GP and querying
the users with the most informative questions, ACTIVEGP
achieves significantly higher prediction accuracy (0.74 40.04,
mean=+se) compared to both ACTIVELINEAR (0.62£0.07) and
RANDOMGP (0.62 £ 0.06) with p < 0.05 (Wilcoxon signed
rank test). The results from this user study are aligned with
our simulation user studies.

In reward learning, it is crucial to validate whether the
learned reward function can encode the desired behavior or
not. Fig. [/(b) shows the user ratings to the trajectories that
the robot showed after learning the user preferences via 3

different methods. ACTIVEGP obtains significantly higher
scores (6.9 + 0.6) than both ACTIVELINEAR (3.4 + 0.7) and
RANDOMGP (5.1 + 0.7) with p < 0.05. While ACTIVE-
LINEAR occasionally achieves high scores when the users’
preferred target is near the edge, it generally fails to produce
the desired behavior due to its low expressive power.

VII. CONCLUSION

Summary. We developed an active preference-based GP re-
gression technique for reward learning. Our work tackles the
lack of expressiveness of reward functions, data-inefficiency,
and the incapability to demonstrate or quantify trajectories.
Our results in simulations and user studies suggest our method
is more successful in expressiveness and data-efficiency com-
pared to the baselines.

Limitations and Future Work. We developed our methods
only for pairwise comparisons. While extending them to learn-
ing from rankings is not mathematically very complicated,
its data-efficiency compared to pairwise comparisons needs
thorough analysis. Similarly, one could easily incorporate
options to denote user uncertainty, which was shown to
ease the process for humans [I8]. GP regression becomes
computationally heavy when the domain is high-dimensional
(when d is large). This is a limitation of our work due to
the use of GPs, and can be alleviated through efficient rank-
one GP update approximations. Finally, although our methods
ease the feature design, there still needs to be a design
stage—it is often unrealistic to hope ¥(¢) = & will work,
due to high dimensionality of =. Further research is warranted
to simultaneously learn both the reward function f and the
feature function W.
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VIII. APPENDIX

A. Active Query Generation Derivation
Let X be the posterior covariance matrix between f(¥()) and f(¥(?)). And let
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Throughout the derivation, all integrals are calculated over R, but we drop it to simplify the notation. We write the first entropy
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We next make the derivation for the second entropy term. To simplify the notation, we let 0/ = ﬂnT(z), o' = o+ % and
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