An O(n®*) Time e-Approximation Algorithm for RMS Matching in
a Plane

Nathaniel Lahn*

Abstract

The 2-Wasserstein distance (or RMS distance) is a useful
measure of similarity between probability distributions with
exciting applications in machine learning. For discrete dis-
tributions, the problem of computing this distance can be
expressed in terms of finding a minimum-cost perfect match-
ing on a complete bipartite graph given by two multisets of
points A, B C R?, with |A| = |B| = n, where the ground
distance between any two points is the squared Euclidean
distance between them. Although there is a near-linear
time relative e-approximation algorithm for the case where
the ground distance is Euclidean (Sharathkumar and Agar-
wal, JACM 2020), all existing relative e-approximation al-
gorithms for the RMS distance take Q(n®/?) time. This is
primarily because, unlike Euclidean distance, squared Eu-
clidean distance is not a metric. In this paper, for the RMS
distance, we present a new e-approximation algorithm that
5/4poly{logn,1/e}) time. Our algorithm is in-
spired by a recent approach for finding a minimum-cost per-

runs in O(n

fect matching in bipartite planar graphs (Asathulla et al.,
TALG 2020). Their algorithm depends heavily on the exis-
tence of sublinear sized vertex separators as well as shortest
path data structures that require planarity. Surprisingly, we
are able to design a similar algorithm for a complete geomet-
ric graph that is far from planar and does not have any vertex
separators. Central components of our algorithm include a
quadtree-based distance that approximates the squared Eu-
clidean distance and a data structure that supports both
Hungarian search and augmentation in sublinear time.

1 Introduction

Given two sets A and B of n points in R?, let G(AU
B, A x B) be the complete bipartite graph on A, B.
A matching M is a set of vertex-disjoint edges of
G. The matching M is perfect if it has cardinality
n. For any p > 1, the cost of an edge (a,b) is

" *School of Computing and Information Sciences, Radford
University. Email: nlahn@radford.edu. This research was done
when the author was a student at Virginia Tech.

TDepartment of Computer Science, Virginia Tech. FEmail:
sharathr@vt.edu This research is supported by NSF Grant CCF-
1909171

Sharath Raghvendraf

simply ||a — b||P; here, ||a —b]|| is the Euclidean distance
between a and b. Consider the problem of computing
a perfect matching M that minimizes the sum of all its
edges’ costs, i.e., the matching with smallest w, (M) =
Y apenm lla = b|P. When p = 1, this problem is
the well-known Fuclidean bipartite matching problem.
When p = 2, the matching computed minimizes the
sum of the squared Euclidean distances of its edges and
is referred to as the RMS matching. For p = oo, the
matching computed will minimize the largest cost edge
and is referred to as the Fuclidean bottleneck matching.
For a parameter ¢ > 0 and p > 1, we say that the
matching M is an e-approximate matching if w, (M) <
(1 + e)wp(Mopr) where Mopr is a perfect matching
with the smallest cost. In this paper, we consider the
problem of computing an e-approximate RMS matching
in the plane and present a randomized O(n°/4) time!
algorithm. For the remainder of the paper, we assume
that w(M) = we(M).

When A and B are multi-sets, the cost of the RMS
matching is also known as the 2-Wasserstein distance —
a popular measure of similarity between two discrete
distributions. Wasserstein distances are very popu-
lar in machine learning applications. For instance,
2-Wasserstein distance has been used as a similarity
metric for images using color distributions [25]. A 2-
dimensional grayscale image can be represented as a dis-
crete distribution on 2-dimensional points, and Wasser-
stein distance can be used to compare the similarity be-
tween such distributions in a fashion similar to [3, 6, 8].
The 2-Wasserstein distance has also been used for 2-
dimensional shape reconstruction [7].

Wasserstein distance is also used as an objec-
tive function for generative adversarial neural networks
(GANs). GANSs are used to generate fake objects, such
as images, that look realistic [4, 13, 22|. Here, we have
a ‘real’ distribution R and a ‘fake’ distribution F. Sam-
pling m images from both F and R and computing the
Wasserstein distance between the two samples gives a
measure of how good the fake image generator imitates
real data. The matchings (or maps) corresponding to

1We use O(-) to hide poly{logn, 1/} factors in the complexity.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

the 2-Wasserstein distance are also attractive because
they permit a unique interpolation between the distri-
butions; see for instance [30].

Previous Results: For any weighted bipartite
graph with m edges and n vertices, the fundamental
Hungarian algorithm can be used to find a minimum-
cost maximum-cardinality matching in O(mn+n?logn)
time [17].2 When edge costs are positive integers upper-
bounded by a value C, the algorithm given by Gabow
and Tarjan computes a minimum-cost maximum car-
dinality matching in O(m+/nlog(nC)) time [12]. The
Gabow-Tarjan algorithm executes O(y/n) phases where
each phase executes an O(m) time search on a graph to
compute a set of augmenting paths.

In geometric settings, one can use a dynamic
weighted nearest neighbor data structure to efficiently
execute the search for an augmenting path in @(n)
time. Consequently, there are many O(n®/?) time ex-
act and approximation algorithms for computing match-
ings in geometric settings [9, 23, 27, 31|, including the
RMS matching. Improving upon the Q(n3/2) bound for
exact and approximation algorithms remains a major
open question in computational geometry. There are
no known exact geometric matching algorithms for 2-
dimensions or beyond that break the Q(n3/2) barrier.
However, there has been some progress for approxima-
tion algorithms for p = 1, which we summarize next.

For the FEuclidean bipartite matching problem,
Agarwal and Varadarajan [1] gave an O(log(1/¢)) ap-
proximation algorithm that executes in O(n'*¢) time.
Indyk [15] extended this approach to obtain a constant
approximation algorithm that runs in near-linear time.
Sharathkumar and Agarwal [26] presented a near-linear
time e-approximation algorithm for the Euclidean bi-
partite matching problem. Each of these algorithms
rely on approximating the Euclidean distance by us-
ing a “randomly shifted” quadtree. Extending this to
p > 1 seems very challenging since the expected error
introduced by the randomness grows very rapidly when
p = 2 and beyond.

When the costs satisfy metric properties, the unca-
pacitated minimum-cost flow between multiple sources
and sinks is the same as minimum-cost matching prob-
lem. Using a generalized preconditioning framework,
Sherman [29] provided an O(m!+°(1) time approxima-
tion algorithm to compute the uncapacitated minimum-
cost flow in any weighted graph G with m edges and
n vertices, where the cost between any two vertices
is the shortest path cost between them in G. Us-
ing this algorithm, one can use Euclidean spanners of
small size to obtain an O(n'*°(1)) time algorithm that

?Note that m = O(n?) in our setting.

e-approximates the Euclidean bipartite matching cost.
Khesin et al. [16] provided a more problem-specific pre-
conditioning algorithm that returns an e-approximate
Euclidean bipartite matching with an improved execu-
tion time of O(n); see also [11]. Unlike with Euclidean
costs, squared Euclidean costs do not satisfy triangle in-
equality, and the reduction to uncapacitated minimum-
cost flow as well as the use of spanners does not apply.
Therefore, these previous techniques seem to have lim-
ited applicability in the context of RMS matching.

Recently, Asathulla et al. [5] as well as Lahn and
Raghvendra [19, 20] presented algorithms that exploit
sublinear sized graph separators to obtain faster algo-
rithms for minimum-cost matching as well as maximum
cardinality matching on bipartite graphs. For instance,
for any bipartite graph with m edges and n vertices
and with a balanced vertex separator of size n®, for
1/2 < 6 < 1, Lahn and Raghvendra [20] presented a
O(mn®/(1+9)) time algorithm to compute a maximum
cardinality matching. The e-approximate bottleneck
matching problem can be reduced to finding a maxi-
mum cardinality matching in a grid-based graph. Using
the fact that a d-dimensional grid has a balanced, effi-
ciently computable vertex separator of size O(n'~1/%),
they obtain an @(nH?dd%ll) time algorithm to compute
an e-approximate bottleneck matching of two sets of d
dimensional points.

Given the wide applicability of Wasserstein dis-
tances, machine learning researchers have designed algo-
rithms that compute an approximate matching within
an additive error of en. Some of these algorithms run in
O(n2C/e) for arbitrary costs [18, 24]; recollect that C' is
the diameter of the input point set. For 2-Wasserstein
distance, such a matching can be computed in time that
is near-linear in n and C/e [2|. Some of the exact and
relative approximation algorithms [28] have informed
the design of fast methods for machine learning appli-
cations [18].

Our Results: Our main result is the following.

THEOREM 1.1. For any point sets A,B C R?, with
|A| = |B| = n, and for any parameter 0 < ¢ < 1,
an e-approzimate RMS matching can be computed in
O(n®/*poly{logn,1/e}) time with high probability.

All previous algorithms that compute an e-approximate
RMS matching take Q(n3/2) time [23, 28]. We would
like to note that the algorithm in [28] computes an
e-approximate RMS matching for two dimensions in
O(n3?poly{logn,log(1/¢)}) time. Our algorithm out-
performs the algorithm in [28] except when ¢ is ex-
tremely small, i.e., e = 1/n),

Basics of Matching: Given a matching M, an
alternating path is a path whose edges alternate between

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

edges of M and edges not in M. A vertex is free if
it is not matched in M. An augmenting path is an
alternating path that begins and ends at a free vertex.
Given an augmenting path P, it is possible to obtain a
new matching M’ < M @ P of one higher cardinality by
augmenting along P. A standard technique for finding
augmenting paths is to form a so-called residual graph
by directing the edges of the original graph based on
whether they are in the matching or not. Any path in
this directed residual graph that begins and ends at a
free vertex forms an augmenting path.

Standard algorithms for minimum-cost bipartite
matching use a primal-dual approach where in addition
to a matching M, the algorithm also maintains a set of
dual weights y(-) on the vertices. A matching M along
with a set of dual weights y(-) is feasible if, for every
edge (a,b), in the input graph:

y(a) +y(b) < c(a,b).
y(a) +y(b) = c(a,b) if (a,b) € M.

Here, c(a,b) is the cost of the edge (a,b). It can
be shown that any feasible perfect matching is also a
minimum-cost perfect matching.

The slack of any edge with respect to these feasibil-
ity conditions is given by s(a,b) = ¢(a,b) — y(a) — y(b).
A set of edges is admissible if it has a slack of zero.
The fundamental Hungarian algorithm [17] computes
a minimum-cost matching by iteratively adjusting the
dual weights and finding an augmenting path P contain-
ing zero-slack edges. Augmenting along this admissible
path does not violate feasibility. As a result, the Hun-
garian algorithm executes n iterations.

2 Overview of our Approach

Our algorithm draws insight from a recent O(n*/3)
time algorithm for computing a minimum-cost perfect
matching in bipartite planar graphs [5]. The algorithm
of [5] relies on the existence of a planar vertex separator
of size O(y/n). A complete bipartite graph is far from
planar and does not have any vertex separators. Despite
this, we are able to adapt the approach of [5] to our
setting. We begin with a summary of their algorithm.
Planar Bipartite Matching Algorithm: The
algorithm of [5] is a primal-dual algorithm that itera-
tively adjusts the dual weights of the vertices to find an
augmenting path containing zero ‘slack’ edges and then
augments the matching along this path. For a param-
eter r > 0, their algorithm conducts an O(ny/r) time
pre-processing step and computes a matching of size
n— O(n/+/r). After this, their algorithm finds the re-
maining augmenting paths in sublinear time by the use
of an r-division: An r-division divides any planar graph
into O(n/r) edge-disjoint pieces, each of size O(r), with

only O(n/+/r) many boundary vertices that are shared
between pieces. The algorithm then conducts a search
for each augmenting path as follows:

e Using an r-division of a planar bipartite graph
G(A U B, E), the algorithm constructs a compact
residual graph G with a set V of O(n/+/r) vertices
each boundary vertex of the r-division is explicitly
added to this vertex set. In addition, the compact
graph has O(r) edges per piece and O(n) edges in
total. The algorithm assigns a dual weight for every
vertex of V that satisfies a set of dual feasibility
constraints on the edges of G. Interestingly, given
dual weights on V that satisfy the compressed
feasibility conditions, one can derive dual weights
for A U B satisfying the classical dual feasibility
conditions, and vice versa. Therefore, instead of
conducting a search on G, their algorithm searches
for an augmenting path in the compact residual
graph G.

e Their algorithm builds, for each piece of G, a
data structure in O(r) time (see [10]). This data
structure stores the O(r) edges of G belonging
to the piece and using this data structure, the
algorithm conducts a primal-dual search for an
augmenting path in O(|V|) = O(n/+/r) time. Over
O(n/+/r) augmenting path searches, the total time
taken is bounded by O(n?/r).

Augmenting along a path reverses the direction of
its edges in the residual graph. Therefore, their al-
gorithm has to re-build the shortest path data struc-
ture for every affected piece, a piece containing at least
one edge of the augmenting path. This can be done
in O(r) time per piece. In order to reduce the num-
ber of affected pieces, an additive cost of /r is intro-
duced to every edge incident on the boundary vertices.
It is then shown that the total additive cost across all
augmenting paths found by the algorithm cannot ex-
ceed O(nlogn), implying that the number of affected
pieces is at most O((n/+/r)logn). The time taken
to re-build the data structure for the affected pieces
is O((n//r)logn) x O(r) = O(ny/r). By choosing
r = n?/3, they balance the search time with the re-build
time, leading to an O(n*/3) time algorithm.

The successful application of a compact residual
network as well as the additive cost of /7 on the edges
relies on the existence of an r-division in planar graphs.
In order to extend these techniques to the geometric
setting, we build upon ideas from another matching
algorithm, which produces an e-approximation for the
Euclidean bipartite matching problem [26]. We give a
brief overview of this algorithm next.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Approximate Euclidean Matching: The algo-
rithm of [26] introduces an e-approximation of the Eu-
clidean distance based on a quad-tree). The input is
transformed so that the optimal matching cost is O(n/¢)
and the height of the quad-tree @ is O(logn). Any edge
of the complete bipartite graph appears at the least com-
mon ancestor of its endpoints in Q. The set of edges ap-
pearing within each quadtree square is then partitioned
into poly{logn,1/c} many bundles and all edges within
the same bundle are assigned the same cost. This as-
signed cost is an upper bound on the actual Euclidean
cost. Furthermore, the authors show that, if the quad-
tree is randomly shifted, the expected cost assigned to
any edge is at most (1+4¢) times the Euclidean distance.
Using this, the authors switch to computing a matching
with respect to this new quad-tree distance.

Using the edge bundles and certain carefully pre-
computed shortest paths in the residual graph, the
algorithm of [26] stores a poly{logn, 1/e} size associated
graph at each square of the quad-tree. Their algorithm
iteratively finds a minimum-cost augmenting path P.
Note that this is not done by using a primal-dual
method, but by executing a Bellman-Ford search on
the associated graph of each square that contains at
least one point on the path P. Since each point of
P has at most O(logn) ancestors and the size of the
associated graph is poly{logn, 1/} within each square,
the total time taken to find an augmenting path can be
bounded by O(|P|). Augmenting the matching along
P requires the associated graph to be reconstructed for
the O(logn) ancestors of each of the points of P. This
again can be done using the Bellman-Ford algorithm,
resulting in a total update time of O(|P|). The total
length of all the augmenting paths computed by the
algorithm can be shown to be O(nlogn), and so the
total time taken by the algorithm is near-linear in n.

Our Algorithm: Similar to the Euclidean case, we
can transform our input so that our optimal matching
cost is O(n/e?) (see Section 3.1) and store the input
in a quadtree @ of height O(logn). For the squared
Euclidean distance, we combine the ideas from the two
algorithms of [5] and [26] in a non-trivial fashion. First,
we note that using O(poly{logn,1/e}) edge bundles
leads to an explosion in the expected distortion. In
order to keep the expected distortion small, we create
approximately O(27/2) edge bundles for a square of
side-length 2°3. This causes larger squares to have
many more bundles of edges (See Section 3). For
instance, a square of side-length n can have roughly
v/n edge bundles. A useful property of this distance

SThroughout this paper, we set the side-length of the square
to be the difference in the x-coordinate values of the the vertical
boundaries, i.e., the Euclidean length of each of its four edges.

approximation is that any edge appearing in a square
of side-length 2¢ has a quad-tree distance value roughly
between 2(2?) and O(22)). This implies that all edges
with a small quad-tree distance appear within edge
bundles of the smaller squares. Like in the Euclidean
case, we can show that our distance is an upper bound
on the squared Euclidean distance. Furthermore, if @
is a randomly shifted quad-tree, we can show that the
expected cost of our distance is at most (1 + ¢) times
the squared Euclidean distance.

In the squared Euclidean quad-tree distance, the
number of edge bundles at each square of the quad tree
is a polynomial in n. Using these bundles, we define
a sublinear sized associated graph. However, unlike
the algorithm of [26], using the Bellman-Ford search
procedure to find an augmenting path in the associated
graph will lead to an Q(n3/?) time algorithm. Instead,
we employ a primal-dual approach.

Prior to describing our algorithm and the data
structure, we note that primal-dual search procedures,
such as Hungarian search and our algorithm, find aug-
menting paths in increasing order of their “costs”. As a
result, such a search on quad-tree distances will initially
only involve edges with small quadtree distance and, as
the algorithm progresses, larger quad-tree distances get
involved. Therefore, searches can initially be localized
to smaller squares of the quad-tree and our algorithm
only needs to build the associated graphs in the smaller
squares. As the algorithm progresses, however, longer
edges participate in the augmenting paths, which forces
our algorithm to build associated graph data structures
in larger squares, increasing the time taken to conduct
a Hungarian search. We refer to these squares where
the data structure is maintained as active squares.

Now we present an overview of our algorithm and
the data structure within an active square (0* of width
2!, We partition [0* into O(2%/3) pieces using a grid
of side-length 27 = 2L2¥/3] Each piece is further recur-
sively divided into four squares. The entire hierarchical
structure is stored within a carefully defined active tree.
We build an associated graph G at each node of the
active tree. For the first level of the active tree, we
build the associated graph as follows: The vertex set
V contains O(2%/3) vertices per piece and O(27) ver-
tices in total. For pairs of vertices u,v that belong to
the same piece, we explicitly store an edge; we refer to
these edges as internal edges. There are @(2227 3) inter-
nal edges per piece and the internal edges in each piece
can be constructed in O(2%) time (see Sections 6.2-6.4).
Similar associated graphs are also constructed for every
subsequent levels of the active tree. Similar to the ap-
proximate Euclidean matching algorithm, these internal
edges of the associated graph represent certain short-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

est paths in the residual graph. Additionally, for any
pair of vertices u,v € V, we add a bridge edge between
them with a cost that is approximately the squared Eu-
clidean distance between the end-points. We do not
store the bridge edges explicitly. Instead, we build an
e-Well Separated Pair Decomposition (WSPD) of size
O(2) to store them. Therefore, the total size of the
graph is restricted to O(2%) vertices and O(24/3) edges.

Next, we define dual weights on every vertex of the
associated graph and define compressed feasibility con-
ditions that are satisfied by its edges (see Section 6.5).
Recollect that for planar graphs, compressed feasibil-
ity conditions are defined only on a single global com-
pressed residual graph. In our case, however, the resid-
ual graph is represented in a compressed fashion via a hi-
erarchical set of associated graphs defined on every node
of the active tree. It is significantly more challenging to
design compressed dual feasibility conditions that allows
for a sublinear time Hungarian search procedure on such
a hierarchical structure. Interestingly, one can use the
feasible dual weights on the associated graph vertices
to derive a set of dual weights satisfying the classical
matching feasibility conditions (see Section 6.7). Us-
ing compressed feasibility, we provide a quick way to
conduct primal-dual searches on the associated graph
resulting in a running time of O(2%/3) per search (see
Section 6.8.3). We show that the number of primal-dual
searches on the associated graph of any active square
with side-length 27 is only O(n/2) (see Section 5.1).
Therefore, the total time spent for all searches within
active squares of side-length 2% is O(n2/3).

Suppose the primal-dual search at [0* returns an
admissible augmenting path. The algorithm then aug-
ments the matching along this path. Augmentation
forces the algorithm to rebuild the set of internal edges
within every affected piece of the associated graph at (7%,
i.e., pieces that contain at least one edge of P. In order
to reduce the number of such updates, similar to [5],
we assign an additive cost of roughly 512:: to every
bridge edge of the associated graph. We argue that this
additional error does not increase the optimal matching
cost by more than a multiplicative factor of e.

To bound the time taken to rebuild the internal
edges, like [5], we show that the total additive cost
of the edges on the augmenting paths, computed over
the entire algorithm, is O(n) (see Section 5.1). Each
bridge edge of the associated graph G has an error of
at least 512;23 Therefore, the number of times such
edges participate across all augmenting paths is only
@(22%) As a result, the total number of rebuilds of
internal edges, for pieces of all active squares of side-
length 2%, across the entire algorithm, is @(n/in/3).
Rebuilding the internal edges of one piece takes @(2i)

time (see Section 6.6). Therefore, the total time spent
rebuilding pieces is O(n2¥/3), matching the total time
taken for all searches on the associated graph for layer
1 active squares.

As the algorithm progresses, larger squares become
active. When the side-length of the active square is
approximately n3/4, the time taken to execute a single
search on the associated graph becomes Q(n). At this
point, we show that there are only O(n'/*) free vertices
remaining. Each remaining free vertex can be matched
by conducting an efficient Hungarian search on the
original points in O(n), taking O(n®/4) time in total.
The total time spent on searches and rebuilds on active
squares with side-length at most 2(3/4)legan — p3/4
using our data structure is O(n2(1/910827) = O(p5/4),
giving a total running time of @(n5/4).

Comparison with [19]: Following the work of
Asathulla et al. [5], using the same framework, Lahn
and Raghvendra presented a faster O(n%/5) algorithm
to compute a minimum-cost perfect matching in planar
graphs. Their main idea was to carefully compute mul-
tiple augmenting paths in one scan of the graph, lead-
ing to a faster convergence to the optimal matching.
We would like to note that any augmenting path found
in our algorithm is localized within an active square.
Therefore, our algorithm identifies one augmenting path
in a single access to an active square and many augment-
ing paths in a single access to the entire graph (span-
ning all the active squares). Unlike for planar graphs,
employing the approach of Lahn and Raghvendra [19]
in our setting does not lead to any additional advantage
in terms of the convergence to a perfect matching.

Extensions and Open Problems: Achieving a
near-linear execution time in the two-dimensional case
and o(n?/?) time algorithms for d-dimensions remain
important open questions. Our approach can achieve
this goal provided we overcome the following difficulty:
Currently, Hungarian search runs in time linear in the
number of internal edges. In planar graphs, although
the compressed residual graph has n edges, one can use
a shortest-path data structure by Fakcharoenphol and
Rao [10] to execute each Hungarian search in O(|V]) =
O(n?/3) time. Design of a similar data structure that
conducts Hungarian search on associated graph in time
O(|V]) will lead to a near-linear time e-approximation
algorithm for RMS matching in two-dimensions and an
0(n3/?) time algorithm in higher dimensions.

Organization: The remainder of the paper is or-
ganized as follows: In Section 3 we describe the details
of our distance function while highlighting differences
from the distance function of [26]. In Section 4 we in-
troduce a quad-tree based dual-feasibility condition that
incorporates an additional additive cost on each edge.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

In Section 5, we give a detailed description of the algo-
rithm, along with its analysis. The algorithm descrip-
tion assumes the existence of a data structure built on
active squares. This data structure includes the com-
pressed feasible matching as well as several procedures,
such as the sublinear time Hungarian search and aug-
ment that operate on a compressed feasible matching,
and is described in detail in Section 6. Due to page
limitations, many proofs have been omitted from this
version. Ommitted proofs can be found in the full ver-
sion of the paper [21].

3 Our Distance Function

3.1 Initial Input Transformation For the pur-
poses of describing both the distance function and our
algorithm, we assume that the point sets A and B sat-
isfy certain properties. We can transform any point sets
A’ B' C R? containing n points, to point sets A and B
with n points such that each point of A’ (resp. B’) maps
to a unique point of A (resp. B) and: (A1) Every point
in AU B has non-negative integer coordinates bounded
by A = n®® | (A2) no pair of points a,b where a € A
and b € B are co-located, i.e., |la — b|| > 1, (A3) the
optimal matching of A and B has a cost of at most
O(n/e?), and (A4) any e-approximate matching of A
and B corresponds to an 3e-approximate matching of A’
and B’. The details of this transformation are described
in the full version of the paper [21], but we present
an overview: First, we obtain an n®-approximation
of the optimal matching in linear-time [1]. We fur-
ther refine this estimate by making O(logn) guesses
of the optimal cost, and at least one guess gives a 2-
approximation. By executing our algorithm O(logn)
times, one for each guess, at least one algorithm will
have a 2-approximation of the optimal matching cost.
Using this refined estimate, we rescale the points such
that the optimal cost becomes O(n/e?). Finally, round-
ing the resulting points to integers, such that no point
of A is co-located with a point of B, does not contribute
too much error. As a result, in the rest of the paper, we
assume that properties (Al)—(A4) hold. Next, we de-
fine a quad-tree based distance that approximates the
squared Euclidean distances between points.

3.2 Randomly Shifted Quadtree Decomposi-
tion Similar to [26], we define our distance function
based on a randomly-shifted quadtree. Without loss of
generality, assume A is a power of 2. First, we pick a
pair of integers (z,y) each independently and uniformly
at random from the interval [0, A]. We define a square
G = [0,2A)2 — (z,y) that contains all points of AU B.
This square will form the root node of our quadtree,
and each internal node of the tree is subdivided into 4

equal-sized squares to form its children in the tree.

Specifically, for § = log,(2A) and a constant
c1 > 0, we construct a quadtree @ of height § +
2log(log(A)/e)+c1 = O(logn) (from (Al)). The layers
of @ can be seen as a sequence of grids (Gs, ..., Go, ...,
G _210g(log(A)/e)—c,)- The grid G; is associated with
squares with side-length 2' and the grid of leaf nodes
G _210g(log(A)/e)—c, 1S associated with cells of width
1/221eglog(A)/e)+e1 - Although, cells of grid Gy contain
at most one point (or possibly multiple copies of the
same point) and can be considered leaf nodes of the
quadtree, it is notationally convenient to allow for us to
define grids G; for all i > —21log(log(A)/e) —¢1 and con-
sider their cells to be part of the quadtree. Specifically,
the additional levels help facilitate a cleaner definition of
subcells (see Section 3.2.1). We say that a square [has
a level i if O is a cell in grid G;. For any two cells [0 and
O, let £oyin (O, 0) (resp. Lmax(0,0)) be the minimum
(resp. maximum) distance between the boundaries of
O and [, i.e., the minimum distance between any two
points v and v where u is on the boundary of (0 and v is
on the boundary of [0'. Next, we describe how any cell
of this quadtree that has a level greater than or equal
to 0 can be divided into subcells, a concept essential to
describe our distance function.

3.2.1 Division of a Cell Into Subcells For any
grid G; with ¢ > 0, we define the minimum subcell
size to be u; = 2li/2]=2log logéA_cl, where ¢; > 0
is the constant from the construction of the quad-
tree. Each cell 0 € G; is subdivided into a set of
subcells, with each subcell having width at least u;.
In [26], the minimum subcell size p; was much larger,
being roughly 2¢—©Uos “22) For them subcells using a
uniform grid of side-length u; was sufficient, resulting
in O((2!/u;)?) = poly{logn,1/e} subcells. However,
for squared Euclidean distances, much smaller subcells
are required, and using a uniform grid would result
in (2%) subcells, which is too large for our purposes.
Instead, we replace the uniform grid of subcells with
an exponential grid of subcells, reducing the number
of subcells to O(27/p;) = O(2¥/2). We describe this
process of forming the exponential grid next. For a
visual example of the exponential grid, see Figure 1.
For any cell OJ of @ with a level ¢+ > 0, let U1, y, O3
and [y be its four children. We define subcells of any
cell [J as the leaf nodes of another quadtree Q with [J
as its root and its four children recursively sub-divided
in Qg as follows. Let u < [;, we recursively divide
u into four cells until: (a) The side-length of w is the
minimum subcell size p;, or (b) the side-length of u is
at most (£/144)fmin (01, w). Similarly, we decompose
Uls, 3 and [y into subcells as well. Note that every

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

cell of the quadtree QX is also a cell in the quadtree @
and the leaves of Qo (the subcells of O) will satisfy (a)
or (b). We denote the subcells of O by G[J]. Note that,
for any subcell u € G[O] where u is a descendant of [y,
the side-length of w is larger than the minimum subcell
size if and only if £y (0, w) is sufficiently large. i.e.,
as we move away from the boundary of [y, the subcell
size becomes larger. Using this, in Lemma 3.1, we show
that the total number of subcells for any cell O € G;
is O(u;). The argument can be seen intuitively from
the fact that the outermost ring of subcells along the
boundary of [J; has size (’j(ui). Furthermore, subcells
increase in size as we move towards the center of [y,
implying that their count decreases geometrically.

LEMMA 3.1. For any cell UJ of Q with level i, the total
number of subcells is O(u;).

For some edge (a,b) € A x B, let O be the least
common ancestor of ¢ and b in Q. For each O € G,
we say that the edge (a,b) appears at level i. From
(A2), all edges of A x B appear at or above level
1. The quadtree distance between a and b defined
in [26] is given by the distance between the subcells
¢, and & of G[O] that contain a and b respectively.
Therefore, the set of edges that appear at layer i can
be represented using pairs of subcells from the set
Ugreq, GIT']. However, the use of all pairs of subcells is
prohibitively expensive. We further reduce the number
of pairs of subcells by grouping them into a Well-
Separated Pair Decomposition which we describe next.

3.2.2 Well-Separated Pair Decompositions In
this section, we extend Well-Separated Pair Decomposi-
tion (WSPD) that is commonly defined for points to ap-
proximate distances between pairs of subcells. A Well-
Separated Pair Decomposition (WSPD) is a commonly
used tool that, given a set P of n points, compactly ap-
proximate all O(n?) distances between points of P by
using a sparse set W of only O(n) well-separated pairs.
Each pair (S,T) € W consists of two subsets S,T C P
of points. For any pair of points (u,v) € P x P, there
is a unique pair (S,T) € W such that (u,v) € S x T.
For each pair (5,T), an arbitrary pair of representatives
s € S and t € T can be chosen, and the distance be-
tween any pair (s',t') € S x T can be approximated
using the distance between the representatives s and t.
This approximation will be of good quality so long as
the pair (5,T) is well-separated, meaning the distance
between any pair of points within S or within T is suffi-
ciently small compared to the distance between any pair
of points between S and T

For any parameter ¢ > 0, using the construc-
tion algorithm of [14], it is possible to build in

(a) (b)

Figure 1: (a) A division of O into subcells. (b) Examples
of a few possible WSPD pairs of W. Every pair of
subcells in different children of [J would be represented
by some pair.

O(npoly{logn,1/e}) time a WSPD of the edges of Ax B
where the costs of the edges belonging to any pair in the
decomposition are within a factor of (14¢) of each other.
Furthermore, if the ratio of the largest edge to smallest
edge cost is bounded by n®™) | then it can be shown that
every point participates in only poly{logn,1/e} pairs.
Such a WSPD can be used to execute a single Hungarian
search in near-linear time in the number of points. How-
ever, in order to execute a Hungarian search in sublinear
time, we must build a WSPD on the sublinear number of
subcells instead of the original points. Luckily, the algo-
rithm of [14] can be applied in a straightforward fashion
to generate a WSPD on subcells. Next, we describe the
properties of our WSPD on subcells.

For any level i cell O of @, consider two subsets
of subcells, S C G[O] and T C G[O]. We define
linax (S, T) = maxeeserer bmax(§,€'). We say that S
and T are e-well separated if, for every pair of subcells
feSand ¢ eT,

lnax (S, T) < (1 +¢/12)lnax (&, 5/)

For each cell O let [Jy,0,003 and 4 be its four
children. We precompute a WSPD Wg = {(S1,T1),
ooy (Sy, 1)}, where S; C G[O], T; € G[O] and S;, T; are
e-well separated. Furthermore, for every pair of subcells
(&1,€2) € G[O] x G[O] (resp.(§2, 1) € G[] x G[O])
where & and & are in two different children of [,
there is a unique ordered pair in (X,Y) € Wgo (resp.
(Y,X) € Wg) such that §&; € X and & € Y. We
denote the ordered pair (X,Y) € W that the pair of
sub-cells (£1,&2) maps to as (Sg,,T¢,). For notational
convenience, we prefer that the pairs within the WSPD
are ordered. Such an e-WSPD can be constructed
by executing a standard quadtree based construction
algorithm presented in [14]. This algorithm uses the
subtree of @) rooted at 0 to build the WSPD. Since

(3.1)

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

we are interested in & and & that are contained inside
two different children of 0, we can trivially modify the
algorithm of [14] to guarantee that every pair (S;,T;)
in the WSPD is such that the subcells of S; and the
subcells of T; are contained in two different children
of 0. See Figure 1 for examples of WSPD pairs in
Wo. Finally, the algorithm of [14] naturally generates
unordered pairs. To ensure that every pair of subcells
is covered by an ordered pair in the WSPD, for every
pair (X,Y) € W generated by the algorithm, we add
(Y, X) to Wg.

3.2.3 Distance Function Given the definitions of
subcells and the WSPDs, we can finally define the
distance function. For p,q € AU B, let O be the least
common ancestor of p and ¢ in @ and let ¢ be the level
of 0. We denote the level of the edge (p,q) to be the
level of the least common ancestor of its end points, i.e.,
the level of O. For some edge (p, q) with least common
ancestor 0, let &, and &, be subcells from G[O] that
contain p and ¢ respectively. Note that £, and &, are
contained inside two different children of [J. There is a
unique ordered representative pair (¥, ¥,) € W with
& € Uy, and & € W,. We set the distance between p
and ¢ to be

dQ(p7 Q) = (émax(\ppv \Ijq))2'

From the properties of our WSPD, if the unique repre-
sentative pair of (p, ¢) is (X,Y"), then the representative
pair for (¢, p) will be (Y, X), implying that our distance
dg(-,-) is symmetric. For any subset £ C A x B of
edges, we define its cost by do(E) = >, 1yep do(a,b).
Since p € p,q € §; and &, € V), &, € ¥, we have
(3.2)

IIP—QI|2 < (zmaX(fpagq))Z < (ernaX(‘ijv\IJq))2 = dQ(pa q)-

Furthermore, it can be shown that if @ is a randomly
shifted quad-tree, any optimal matching Mgopr with
respect to the original squared Euclidean costs satisfies

D

(a,b)eEMopT

(3.3) Eldg(Mopr)l < (1+¢)- Ip —all®.

Additional Notations: Next, we define addi-
tional notations that will be helpful in describing our
data structure in Section 6. Any point p € AU B is con-
tained inside one cell of each of the grids G; in Q). Let
O = O, be the cell of G; that contains p. Let SPD e GO
be the subcell that contains p. As a property of the
WSPD construction algorithm, the decomposition W5
ensures EPD participates in (7)(1) WSPD pairs of Wg. Let
this set be denoted by Ni(p). Every edge of level i in-
cident on p is represented by exactly one pair in N%(p).

Since there are O(logn) levels, every edge incident on p
is represented by O(1) WSPD pairs. We refer to these
WSPD pairs as N*(p) = |J; N*(p). We can have a sim-
ilar set of definitions for a subcell ¢ instead of a point p.
Consider any cell O € G; and a subcell £ € G[O]. Using
a similar argument, we conclude that all edges of level i
incident on any vertex of (AU B) N ¢ are uniquely rep-
resented by O(1) WSPD pairs denoted by N%(£). Fur-
thermore, all edges of level > i are uniquely represented

by N*(€) = U,; N7(€). Note that |N*(€)| = O(1),

4 Dual Feasibility Conditions

In this section, we introduce a new set of feasibility
conditions based on the randomly shifted quadtree.
These feasibility conditions will allow our algorithm to
find minimum-cost augmenting paths more efficiently.
In order to describe this distance function, we partition
the edges into a set of local edges and a set of non-local
as described next. A similar definition of local and non-
local edges was used in [26].

Local and Non-Local Edges: We say that any
two matching edges (a,b) € M and (a/,b') € M
belong to the same equivalence class if and only if
they have the same least common ancestor [J and their
ordered representative pairs in W are the same, i.e.,
(\I/a,\llb) = (\Ifa/,\pb/). Let Xy = {Ml, ...,Mh} be the
resulting partition of matching edges into classes. For
each My for 1 < k < h, let Ay = U(aj,bj)eMk a; and
By = U(aj,bj)eMk b;. The set {Aq, ..., Ap} partitions the
matched vertices of A and {Bj,..., By} partitions the
matched vertices of B. We say an edge (a,b) € Ax Bis
local if (a,b) € Ay X By, for some 1 < k < h. Otherwise,
(a,b) is non-local. We refer to the local edges (both
non-matching and matching) of Ay x By as class k.

Next, we define a set of feasibility conditions based
on the randomly-shifted quadtree. For a matching M
in the graph, G(AU B, A x B), we assign a dual weight
y(v) for every v € AUB. Recall that y; is the minimum
subcell size at level ¢ in the quadtree. For any edge (a, b)
of level 7, let pgp = pi. A matching M and set of dual
weights y(-) are Q-feasible if for every edge (a,b),

(44) y(a) +y(b) < dg(a,b) + pgy-
(4.5) y(a) +y(b) =dgla,b) if (a,b) is a local edge.

A Q-feasible perfect matching is a Q-optimal match-
ing. Let Mopr be the optimal RMS matching in
G(AU B, A x B). Similar to the Gabow-Tarjan [12]
and Asathulla et al. [5] algorithms, the addition of an
additive error of p2, for non-local edges distorts the cost
of non-local edges of Mopr by ugb. However, it can be
shown that this additional error for any non-local edge
(a,b) of the optimal matching is, in expectation, less

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

k.

< <3 ~
”

N o

() (b)

Figure 2: (a) A set of local edges between a WSPD
pair of cells. Solid edges are in the matching, and
dashed edges are not. (b) A local non-matching edge
from v € B to v € A implies the existence of a
length 3 alternating path P = (u, v/, v’,v) with net-cost

P(P) = do(u,v).

than ¢||a — b]|?/2 due to the random shift. This is be-
cause short edges of the optimal matching have a small
probability of appearing at higher levels of the quadtree.
By combining this argument with properties of the dis-
tance function, we can show the following lemma:

LEMMA 4.1. For A,B C R?, let Mopr be the optimal
RMS matching. For a parameter € > 0, given a
randomly shifted quadtree Q) and the distance dg(-,-),
let M be any Q-optimal matching. Then,

Elw(M)] < (1+¢/2) > Ja—0|*

(a,b)eMopT

From Lemma 4.1, it follows that any Q-optimal match-
ing is, in expectation, an e-approximate RMS match-
ing. Therefore, it suffices to design an efficient algo-
rithm for computing a Q-optimal matching. By execut-
ing such an algorithm O(logn) times, we can obtain an
e-approximate RMS matching with high probability.

5 Algorithm

Matching Preliminaries: For any matching M,
an alternating path (rvesp. alternating cycle) with
respect to M is one which alternates between edges of
M and edges not in M. A vertex is free if it is not the
endpoint of any edge of M and matched otherwise. We
use A (resp. Br) to denote the set of free vertices of A
(resp. B). An augmenting path P is an alternating path
between two free vertices. The matching M’ = M & P
has one higher cardinality than M. An alternating path
P is called compact if the largest contiguous set of local
edges of P has size at most 3 (see Figure 2). Throughout
this paper, we use the notation a,a’ and a; for1 < j <n
to denote points in A and b,b" and bj for 1 < j < nto
denote points in B.

For any non-local edge (a,b), we define its slack as
s(a,b) = dg(a,b) + 2, — y(a) — y(b), i.e., how far the
feasibility constraint (4.4) for (u,v) is from holding with
equality. For all local edges the slack s(a, b) is defined to
be 0. Note that, for a Q-feasible matching, the slack on
any edge is non-negative. We say any edge is admissible
with respect to a set of dual weights if it has zero slack.
The admissible graph is simply the subgraph induced
by the set of zero-slack edges. Note that all local edges
are also admissible.

As is common, we define the residual graph G,
of a matching M by assigning directions to edges of
the graph G. For any edge (a,b) € A x B, we direct
(a,b) from a to b if (a,b) € M and from b to a
otherwise. For any (-feasible matching, we construct
a weighted residual graph G), where the edges of the
graph are identical to Gy and each edge (a,b) has a
weight equal to s(a,b). Any directed path in Gy is
alternating, and any directed path in Gp; that starts
with a free vertex of By and ends at a free vertex of Ap
is an augmenting path. Our algorithm will maintain
a Q-feasible matching M and set of dual weights y(-).
Initially M = (), and we set y(v) < 0 for every vertex
v € AU B; clearly, this initial dual assignment is Q-
feasible. Like the Hungarian algorithm, our algorithm
will iteratively conduct a Hungarian search to find an
augmenting path consisting only of admissible edges.
Then the algorithm augments the matching along this
path. This process repeats until a (Q-optimal matching
is found. Conducting a Hungarian search on the
entire graph is prohibitively expensive. Therefore, we
introduce a data structure that conducts Hungarian
search and augment operations by implicitly modifying
the dual weights in sublinear time.

First, our algorithm executes in [3logn/4| phases,
starting with phase 0. At the end of the execution of
these phases, it produces a matching that has O(n'/4)
free vertices. Finally, the algorithm matches the remain-
ing free vertices one at a time by conducting a Hungar-
ian search to find an augmenting path and then aug-
menting the matching along this path.

At the start of any phase i > 1, we are given a Q-
feasible matching M along with a set of dual weights
such that every free vertex b € B has a dual weight of
p? ;. At the end of phase i, the dual weight of any free
vertex b € Bp in our (-feasible matching increases to
w3

The data structure is used only during the exe-
cution of phases. After the [3logn/4] phases have
been executed, the algorithm will conduct explicit Hun-
garian searches and augmentations. For any phase
i < [3logn/4], we describe the data structure D;. This
data structure supports two global operations:

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

e BUILD : This operation takes as input a @)-feasible
matching M and a set of dual weights y(-) such
that for every free vertex v € Bp, the dual weight
y(v) = p?_;. Given M,y(-), the procedure builds
the data structure.

e GENERATEDUALS : At any time in phase i, the exe-
cution of this procedure will return the matching M
stored by the data structure along with a set of dual
weights y(-) such that M, y(-) is Q-feasible. We
denote this matching as the associated Q-feasible
matching.

The total time taken by both of these operations is
bounded by @(nu?/3).

The data structure does not explicitly maintain a
set of Q-feasible dual weights at all times because up-
dating all the dual weights after each Hungarian search
could take Q(n) time. Instead it maintains a smaller
set of ‘up-to-date’ dual weights, and updates other dual
weights in a ‘lazy’ fashion. While a similar strategy was
used in [5], applying the same strategy in our case re-
quires the design of a new set of compressed feasibility
conditions that are significantly more complex than the
ones used in [5]. An example of just one such com-
plexity is the fact that our compressed feasibility relate
vertices, edges, and dual weights defined across all levels
of the quadtree, while the compressed feasibility condi-
tions in [5] do not require multiple ‘levels’.

A set of up-to-date @Q-feasible dual weights for all
vertices could be recovered after any Hungarian search
or augmentation by simply executing GENERATEDU-
ALS. However, doing so is too expensive. Instead, the
algorithm only executes GENERATEDUALS once at the
end of every phase. Nonetheless, the GENERATEDUALS
procedure guarantees the existence of a Q-feasible dual
assignment for the matching M. We use this associ-
ated @Q-feasible matching to describe the other opera-
tions supported by the data structure.

During phase i, we say that a cell O € G; is active
if 0N Br # (. The edges that go between active
cells have a cost of at least p? and do not become
admissible during phase i because the dual weights of
all vertices of B are at most y? whereas the points of
A have a non-positive dual weight. Therefore edges
between active cells need not be considered during any
Hungarian searches or augmentations of phase i. As a
result, each Hungarian search and augmentation can be
conducted completely within a single active cell.

During any phase ¢ and for any active cell 0" € G,
our data structure supports the following operations:

e HUNGARIANSEARCH : This procedure conducts a
Hungarian search. At the end of the search, either

(a) (b) (c) ()

Figure 3: (a) The active cells of the current layer. Each
full active cell (bold) has descendants in its active tree.
(b) The pieces of a full active cell. (c) Each full piece
has 4 descendants in the active tree. (d) Each branch
of the active tree terminates with a sparse leaf cell.

the dual weight of every free vertex b € Bp N [J*
with respect to the associated Q-feasible matching
has risen to u?, or the search returns an augmenting
path P inside [J* such that P is both admissible
and compact with respect to the associated Q-
feasible matching.

e AUGMENT : This procedure augments the match-
ing along an augmenting path P returned by HUN-
GARIANSEARCH and updates the data structure to
reflect the new matching.

We postpone the implementation details of the four op-
erations supported by this data structure until Section
6. In order to describe the execution time of these pro-
cedures, we define active trees next.

Active Tree: We say a cell O at level ¢ in the
quadtree Q is sparse if [(AUB)NO| < p? or if O € Gy.
Otherwise, O is full. For each active cell O* during
phase i, we maintain an active tree denoted by 7«. The
active tree 7« is rooted at [J* and contains a subset of
the nodes in the subtree of (0* in (). If OJ* is sparse,
then 0" is also a leaf node and the active tree contains
only one node. Otherwise, if OO is full, let all cells of
G'2i/3) that partition (0" be the children of [J* in the
active tree. We refer to every child of [J* in the active
tree as a piece of [J*. For each piece [J of 0%, if OJ
is sparse, then [0 will become a leaf node of the active
tree. Otherwise, if [is full, then [J is an internal node
of the active tree, and the four children of O in Q are
also contained in the active tree. We recursively apply
this process to construct the active tree for each of the
four children; each full child is decomposed into its four
children in Q. Every leaf node of 7« is a sparse cell
and every internal node is a full cell.

Consider any augmenting path P computed inside
an active cell 0* during phase i. Let A(P) be the set of
all cells of the active tree, excluding [J*, that contain at
least one vertex of P. We call such cells the affected
cells of P. Let A;(P) be the set of level j affected
cells of P. Then the time taken for a single execution
of the HUNGARIANSEARCH procedure that returns an

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

augmenting path P is O(;/* + 120 |A;(P)|13) (see
Section 6.8.3), and the time taken for an execution of
the AUGMENT procedure on an augmenting path P is
@(Z}iézﬂ \A;(P)|u?) (see Section 6.8.4).

Using these operations, we now present our algo-
rithm for any phase 0 < i < [3logn/4]. At the start
of phase 7 > 1, the dual weight of every vertex in Bp is
equal to p?_;. We mark all active cells as unprocessed.
The algorithm for phase ¢ conducts the following steps.

e Build the data structure D using the BUILD proce-
dure.

e While there is an unprocessed active cell (I,

— Execute the HUNGARIANSEARCH procedure
on [J*.

— If HUNGARIANSEARCH returned an augment-
ing path P, then execute AUGMENT on P.

— If either Bp N0O* = § (i.e., O is no longer
active) or the dual weight of every vertex of
Bp NO* is p?, then mark 0* as processed.

e Use GENERATEDUALS to obtain the associated Q-
feasible matching M and the dual weights y(-).

After the execution of all [3logn/4] phases, we match
the remaining free vertices one at a time by iteratively
executing Hungarian search to find an augmenting path
and augmenting the matching M along the path. Unlike
during the phases, each Hungarian search is global and
executed on Gy without use of the data structure. We
describe the details of this global Hungarian search next.

Hungarian Search: We add a source vertex s to
the graph G}, and connect s to each vertex b € Bp
with a cost 0 edge. Then, we execute a Dijkstra search
in the resulting graph, starting from s. For any point
u € AU B, let d,, be the shortest path distance from s
to u as computed by Dijkstra’s algorithm. We define as
value d as,

d = min dy.
feEAR

Next, for every v € AU B with d, < d, we perform
the following dual adjustment. If u € B, we set y(u) <
y(u)+d—dy, and if u € A, we set y(u) < y(u) —d+d,.
Using a straightforward and standard argument, it is
easy to show that this dual adjustment maintains Q-
feasibility. Furthermore, after the Hungarian search,
G contains an augmenting path P consisting solely of
admissible edges.

When implemented naively, the Hungarian search
could take Q(n?) time. However, we recall that each
vertex of Gy is part of only (7)(1) WSPD pairs. All
edges (u,v) with the same representative WSPD pair

have the same value of dg(u,v) as well as the same
value of p2,. Using this fact, Dijkstra’s algorithm can
efficiently find the next edge to add to the shortest path
tree in amortized O(1) time per addition. As a result, a
single Hungarian search can be executed in @(n) time.

Augment: Let P be an admissible augmenting
path found by the Hungarian search procedure. We
describe how to augment M along P while maintain-
ing Q-feasibility. First, we set M «+ M & P. This
causes some non-local edges (potentially both matching
and non-matching) to become local. We must adjust
the dual weights along P to ensure that every newly in-
troduced local edge (u,v) satisfies the Q-feasibility con-
straint y(u) + y(v) = dg(u,v). Let (a,b) € Ay x By be
an edge of P that is local and in class k edge after aug-
mentation, but was non-local prior to augmentation. If
there are no other class k local edges after augmenta-
tion that were also local prior to augmentation, we set
y(a) < y(a)—p2,. Otherwise, there must be at least one
local edge (@, ') in class k after augmentation that was
local prior to augmentation, and we set y(a) + y(a)
and y(b) < y(¥).

Invariants: During the execution of the phases,
the algorithm guarantees the following invariants:

(I1) The associated matching M, y(-) is Q-feasible.

(I12) The dual weight y(b) of every vertex b € B is non-
negative. Furthermore, in phase ¢ > 1, the dual
weight of every free vertex b € B is pu?_; < y(b) <
p2. The dual weight of every vertex a € A is non-
positive and for every free vertex a € Ap, y(a) = 0.

Since each step of the algorithm is a call to the data
structure D;, it suffices to show that D; maintains these
invariants. We do this in Section 6.

After the execution of the phases, the algorithm
switches to conducting explicit Hungarian searches. Us-
ing a standard argument, it is easy to show that the
dual updates of these Hungarian searches maintain Q-
feasibility. However, the dual adjustments during aug-
mentations are non-standard due to a careful handling
of local edges. The following lemma establishes that
the augmentation process continues to maintain Q-
feasibility. Therefore, at the end of the algorithm, we
produce a Q-optimal matching as desired.

LEMMA 5.1. Let P be an admissible path with respect
to a Q-feasible matching M and set of dual weights
y(-). Let M',y'(-) be the matching and set of dual
weights after augmenting along P. Then M',y'(-) are
Q-feasible.

5.1 Analysis of the Algorithm In this section,
we bound the time taken by the algorithm under

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

the assumption that the data structure works as de-
scribed. We begin by defining notations that will be
used throughout the analysis. Let P = (Py,..., P;) be
the t augmenting paths computed during the [3logn/4]
phases of the algorithm. Let My be the initial empty
matching and, for any k > 1, let M} be the matching
obtained after augmenting the matching Mj_; along
Py, ie., My = My_1 & Py. For any augmenting path P
with respect to some matching M, let N(P) be the set
of non-local edges of P. The following Lemma estab-
lishes important properties of the algorithm during the
[3logn/4] phases of the algorithm.

LEMMA 5.2. The algorithm maintains the following
properties during the [3logn/4] phases:

(i) The total number of free vertices remaining at the
end of phase i is O(n/u?), and,

(it) 22:1 Z(a,b)eN(Pk) fioy = @(”)

Using Lemma 5.2, we can bound the efficiency of
the algorithm. First, we bound the total time taken af-
ter the [3logn/4] phases have been executed. After the
last phase is executed, p? = Q(n*/*/poly{logn,1/c}).
From Lemma 5.2, there are only O(n'/*) unmatched
vertices remaining. Using the WSPD, each of these un-
matched vertices are matched in O(n) time. Therefore,
the time taken for these phases is O(n%/4).

Next, we bound the time taken by the [3logn/4]
phases of the algorithm. For any such phase i, we exe-
cute the BUILD procedure to create the data structure
D;. At the end of phase i, we execute the GENERATED-
UALS procedure to generate a QQ-feasible matching. Both
of these operations take @(n,u?/‘g) time during phase i.

Next, we bound the time taken by AUGMENT, which
takes @(Z]Lizégj |A(P)|u?) time when executed on an
augmenting path P. Therefore, to bound the total time
taken by AUGMENT, we will bound the total number of
level j edges over all augmenting paths computed during
phases of the algorithm. From Lemma 5.2, we have

> Y u,=0Mm)

1<k<t (u,v)EN(Py)

(5.6)

Each non-local edge (u,v) of level j contributes
Qpz,) = Qu3) towards the RHS of equation (5.6).

As a result, there can be at most O(n/ uf) such edges
in all augmenting paths computed during the phases of
the algorithm.

Recall that two matching edges (a;,b;) and (ag, by)
are in the same class if they share the least common an-
cestor [J and their representative pair (¥,,, ¥;,) € W
is the same as (VU,,,¥p,). Consider any augmenting
path P, and consider any maximal sub-path S with

) AN <

........ N | v

- I's v
(b)

Figure 4: (a) A local path S of length 3 between the
cells ¥ and ¥’. Although S does not contain any non-
local edges, augmentation will reduce the number of
matching edges between the two cells by 1. (b) The
number of matching edges between the cells ¥ and ¥’
can only increase when a local path containing at least
one non-local edge between ¥ and ¥’ participates in an
augmenting path.

the property that all its matching edges (resp. non-
matching edges) belong to the same class with repre-
sentative pair (U, ¥’) (resp. (¥, ¥)). We will call any
such path a local path. Intuitively, all matching edges of
S will belong to the same class and, upon augmentation,
the non-matching edges of S will all enter the matching
and belong to the same class. We say that S is a level
j local path if all edges of S appear at level j. For any
augmenting path P, let L;(P) be the set of level j local
paths of P. It is easy to see that either: (1) S contains
at least one non-local edge or (2) the first and the last
edge of S are matching edges. In case (2), the number of
matching edges that have (¥, U’) as their representative
pair decreases by 1 after augmenting along P. Further-
more, new matching edges with representative (¥, 0’)
can only be created through an occurrence of case (1).
Therefore, each occurrence of case (2) can be taxed on
an occurrence of case (1). Combining this observation
with the bound on the number of non-local edges gives:

Y ILi(P)l = O(n/3).

1<k<t

(5.7)

From the fact that each Py is compact, there are at
most 6|L;(Pg)| + 1 cells in A;(P;). From Lemma
5.2, there are O(n/ p?) augmenting paths found during
phase i. Combining these observations with (5.7) gives

the following for any level j,

Y APl = Ol (n/iif + n/u3)) = Olnpy).
k=1

When summing over all levels that contain affected
pieces, the top level [2i/3] dominates, which bounds

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

the total time for AUGMENT during phase i as,
[2i/3]

> Y BN = O,

k=1 j=0

(5.8)

Finally, we bound the time taken by the HUNGARI-
ANSEARCH procedure during phase i. From Lemma 5.2,
the number of unmatched vertices remaining at the be-
ginning of phase i is O(n/u?). This value also bounds
the number of active cells during phase i. Therefore, the
number of calls to HUNGARIANSEARCH during phase
i is O(n/u?). Each execution of HUNGARIANSEARCH
during phase i takes @(uf/g + Z]L-Q:iégj |A;(P)|p?) time.
Summing over all paths computed during phase ¢ and
applying (5.8) gives a total time of @(nu?/?’) for the
HUNGARIANSEARCH procedure during phase i. Com-
bining the times taken by all data structure procedures
during phase i gives a total time of @(n,u?/ %). The time
taken for the last phase [3logn/4—1] dominates, taking
a total of O(n®/*) time.

6 Data Structure

6.1 Preliminaries To simplify the presentation of
the data structure, we introduce additional notations
and also present an auxiliary property that will be useful

in proving the correctness of the data structure.
We define the adjusted cost of an edge ®(a,b) as

®(a,b) = dg(a,b) + u2,
®(a,b) = dg (a,b)

if (a,b) is non-local.

otherwise.

For any edge (a,b) of G, we define its net-cost ¢(a,b)
as follows. If (a,b) is non-matching edge, its net-cost
is ¢(a,b) = ®(a,b). Otherwise, (a,b) if the edge is
in the matching, we define ¢(a,b) = —®(a,b). For
any set of edges S, we define its net-cost as ¢(S) =
Z(a,b)EM ¢(a7 b)

Recall that Q-feasibility is defined with respect to
the graph G(A U B, A x B). Also, the dual updates
performed during the algorithm ensure that each point
b € B is assigned a non-negative dual weight y(b)
and each point ¢ € A is assigned a non-positive dual
weight y(a). For simplicity in exposition, we use this
observation to restate the Q-feasibility constraints with
respect to the residual graph Gp;. A matching M and a
set of dual assignments y(-) is Q-feasible if for any edge
(u,v) of the residual graph Gy, directed from u to v,

ly(u)| = [y(v)| < é(u,v),
ly(u)| = ly(v)| = ¢(u,v) if (u,v) is local.

For any non-local edge (u,v), we define its slack as
s(u,v) = o(u,v) — |y(uw)| + |y(v)|, i.e., how far the

U, v
U, v

feasibility constraint for (u,v) is from being violated.
Note that the slack on any edge is non-negative with
local edges having a slack of zero. We say any edge
is admissible with respect to a set of dual weights if it
has a slack of zero. The admissible graph is simply the
subgraph induced by the set of zero-slack edges. The
advantage of redefining @-feasibility conditions in this
fashion is that it extends to any directed path in G,; as
presented in the following lemma.

LEMMA 6.1. Let M,y(-) be a Q-feasible matching and
set of dual weights maintained by the algorithm. Let P
be any alternating path with respect to M starting at a
vertex u and ending at a vertexr v. Then,

ly(w) = ly)[+ > s(u,0) = (P).

(u',v")eP

For any phase i, we define our data structure for
each active cell (0¥ € G;. The data structure is based
on the active tree Tg-. We define a sublinear in n sized
associated graph AGn for each cell O of T«. This graph
will help us compactly store the dual weights and help
conduct the Hungarian Search, find augmenting paths
and augment the matching along the path.

For any cell O, let Ao = AnO and Bo = BN0QO.
For any set of cells X, we denote Ax = gy A0
and Bx = Jgcx Bo. For any cell O let Mp be the
set of edges of M that have both endpoints contained
in [, and let Gy be the vertex-induced subgraph of
(AgUBp) on Gyy. For simplicity in notation we use G
to denote Gy .

Recall that a cell O € G| is sparse if [AnUBQ| < ,u?
or [€ Gy and full otherwise. For any cell O of T+, our
data structure constructs an associated graph AGH. If
O is sparse, the associated graph AGH is simply given
by Gn. In the following, we define the associated graph
for any full cell.

6.2 Vertices of the Associated Graph We define
an associated graph for an arbitrary cell in the active
tree To«. For any cell O in the active tree, let D(0O)
denote the children of . We extend our definition
to subcells as well. For any subcell £ € G[O], let
O’ € D(O) be the cell that contains €. Let D(&) =
{¢']¢ €G] and ¢ C €},

If O is a full cell, for each of its children [I’, suppose
[V is of level j. We cluster Aq,UBp, into O(u;) clusters.
We cluster points in such a way that all edges going
between any two clusters X and Y, where X and Y are
clusters for two different children (' and 00" of [J, have
the same net-cost. We create one vertex in Vg for every
cluster of [0’ and repeat this for every child [’ of CJ. The
clusters created here are similar to that in [26]. Recall

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

TTTTTTTTITRR
LI TIN

I A
T
T
IR
T T
T T
T
LT
I A
T
IERA N
I
T

|
AT

(a) (b)

Figure 5: Internal and boundary clusters of a subcell
¢ within the child OO0 of 0. (a) All vertices matched
within [are part of an internal cluster. (b) All ver-
tices matched outside of [’ are divided into boundary
clusters based on WSPD pairs at higher levels.

that two matching edges (a;,b;) and (ay,by) are in the
same class if they share the least common ancestor [J
and their representative pair (U,,, U,,) € Wg is the
same as (U, , U,). For any matched point a; (resp.
b;), we refer to b; (resp. a;) as its partner point. For
any &£ € G['], we partition A¢ and Be into three types
of clusters.

o Free clusters: All free points of Ag (resp.
belong to a single cluster

AF = Apng,

Be)

Bf =Bpn¢.

e Internal clusters: All points of A¢ (resp. B¢) whose
partner point is also inside (I’ belong to a single
cluster

Aé = {ai S Ag | (ai,bi) e M,b; € BD’},
Bé’ = {bl S Bg | (ai,bi) e M,a; € AD’}'

e Boundary clusters: Recollect that O’ € G;. All
points of A¢ (resp. Bg) whose partner points are
outside [I' are partitioned into boundary clusters.
Two such vertices belong to the same boundary
cluster if the matching edges incident on them
belong to the same class. Note that all such
matching edges have level at least j and are incident
on at least one vertex of A¢ U Be. Any such
matching edges are captured by one of O(1) many
WSPD pairs given by the set N*(£). Since there is
at most one class per WSPD pair, there are at most
(5(1) many boundary clusters per subcell. More
specifically, for every (Uq,Us) € N*(£), we create
a cluster,

Agphq}g) = {ai S Ag | (ai,bi) e M, b; € B‘I’z}a
BE\PM‘IJQ) = {b, S B§ | (ai,bi) e M, a; € Aqlz}

For every cell ' and any subcell & € G[['], there are
a total of O(1) clusters. Therefore, the total number of
clusters at [V is O(p). Let X be the set of clusters at
O that are generated from its child [’. The cluster set
at O is simply Vo = UD’GD(D) Xogr. We use Apg (resp.
Bo) to denote the vertices of type A (resp. type B) in
Vo, Vo= An U Bo.

Next, we partition the clusters in X/ into two
subsets called the entry and ezit clusters respectively,

X, = {BE, AL B | ¢ e G[Y),

(W1, ¥2) € N*(9)},
XL, = {Af, BE, A e o),
(\Ifl,\IJQ) € N* 5)}

We also denote all the clusters at OJ from ' € D(O)
that contains points of A and B as Ay and B,
respectively; Xgr = Ay UBpy.

We next describe the significance of entry and exit
clusters. For any directed path II in G-, let T be a
maximal connected sub-path of II that lies inside [I.
Suppose T contains at least one edge. For the two
endpoints p, ¢ of T, we refer to p as entry and ¢ as exit
point if 7 is directed from p to q. Then, it was shown
in [26] that the entry point lies in an entry cluster and
exit point lies in an exit cluster.

6.3 Relating Parent-Child Clusters Let [be any
node in 7g-. Note that all internal nodes of the active
tree except the root have four children. For any cell OJ
of an active tree T«, clusters are defined with respect
to the subcells of its children. For any cell O of 7o,
including the root, let £ be a subcell of ' € D(0J) and
let OO be a cell of level i. Then, we get the following
relationship between clusters of [0 and [7'.

F r F F
Ag = U A§’7 Bg = U Bgl,
§eD(e) §eD(e)
Agpl’\lh) U Aé‘/l’1,‘112)7v(\1117 \IJQ) S N*<£)a
§eD(s)
B = | B (0, W) € N¥(€),
geD(e)
VA
AL = | @buc | Aty
¢eD(e) (w9 EN' ()
v,
Bl = |J sLuc | BI).
§eD(e) (¥ 9N (€)

For any cluster X defined at a full cell [J, we use the
notation D(X) to denote all the clusters at the children
that combine to form X. Note that if X is a cluster
generated at a subcell & of a leaf (i.e., sparse) cell

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

' € D(O) of T, then we set D(X) to be all the points
that are contained in X. The following lemma whose
proof is straightforward states the property of the above
hierarchical clustering scheme.

LEMMA 6.2. For any cell O € Q, let Oy,0y be two of
its children. Let X € Xg, andY € Xp,. Then the net-
costs of all edges in X XY are the same in Gpy and all
such edges are oriented in the same direction — either

all are oriented from B to A or all of them are oriented
from A to B.

6.4 Edges of the Associated Graph Given a full
cell O, we already defined the vertex set Vg for the
associated graph. We have the following types of edges
in the edge set £ of the associated graph.

e Internal Edges: For any child [0’ of O, we add edges
from X to Y provided X € XE, is an entry cluster

of I and Y € XE, is an exit cluster of [J'.

e Bridge Edges: For any children O # O0” of O, for
any two clusters X and Y where X € X and
Y € Xgw, suppose X € B and Y € Ap,. We add
an edge directed from Y to X (resp. X toY) if, for
every edge (z,y) € X XY, (z,y) is a local (resp.
non-local) edge. We continue to refer to such edges
of the associated graph as local (resp. non-local)
edges.

Bridge Edge Costs: Note that for any local
bridge edge from cluster X to Y there is at least one
matching edge say (z,y) € X x Y. We set the cost of
(X,Y), denoted by ¢(X,Y) to ¢(z,y). For a non-local
bridge edge (X,Y), every edge (z,y) € (X xY) has
the same net-cost, which defines the net-cost of (X,Y),
ie, ¢(X,Y) = ¢(z,y). Next, we describe the cost of an
internal edge.

Internal Edge Costs: For any child (I’ of J, and
any internal edge (X,Y) € (XiD x X1) in En, we define
its projection P(X,Y). If [0’ is sparse, then P(X,Y) is
a minimum net-cost path in G/ from any x € X to any
y € Y. Otherwise, I’ is full, and the projection P(X,Y)
is a minimum net-cost path through AGH, from any
X’ € D(X) to any Y/ € D(Y). In either case, the net-
cost of (X,Y) is equal to the net-cost of its projection;
ie, ¢o(X,Y) = ¢(P(X,Y)). The following lemma,
which follows from a simple induction on the recursive
definition of projection, states that any internal edge
(X,Y) € (XE, X XTD,) corresponds to a minimum net-
cost path from X to Y in Gy

LEMMA 6.3. For any u,v € O let II,, , o be a min-
imum net-cost alternating path in G from u to

L

JAA 11

I
I
T T
I
I
EEEELE N
EEEEEE N
NN

~ |8
\

Figure 6: Examples of edges of E. Internal edges
(solid) represent shortest paths between clusters within
a child of OJ. Bridge edges (dashed) are between clusters
in two different children of .

v. For any internal edge (X,Y) € (XE,XE), con-
sider (z,y) = argming ,nexxy @Iy o). Then

¢(X7 Y) = (rb(Hu,v,D)-

6.5 Compressed Feasibility Consider any active
cell 0" of the quadtree and the active tree 7+ rooted at
O0*. Consider an assignment of dual weights y(-) to the
vertices of V4 for all cells O € T-. We say that M-
along with these dual weights are compressed feasible if
for every cell O in 7.

(C1) For every edge directed from X to Y in AGQ,

(X)) = ly(Y)] < ¢(X,Y),
ly(X)| —y(Y)| = (X,Y) if (X,Y) is local
with respect to M.

(C2) If O is full, then for each exit cluster X € XE, for
any X' € D(X), [y(X")| < [y(X)].

If O is sparse, then we are at a leaf node of the active tree
and only condition (C1) applies. Condition (C1) implies
that Mg and y(-) are Q-feasible when O is sparse.

We define slack of any edge (bridge or internal)
directed from X to Y, denoted by s(X,Y), as ¢(X,Y) —
ly(X)| + |y(Y)]. From (C1), it follows that the slack of
any edge is non-negative. We define a slack-weighted
associated graph, denoted by AG[, to be identical to
the associated graph AGH, but where the weight of any
edge (X,Y) is its slack s(X,Y).

We introduce two procedures, namely SYNC and
CONSTRUCT. Both these procedures will be used to sup-
port BUILD, GENERATEDUALS, HUNGARIANSEARCH
and AUGMENT operations.

6.6 CoNSTRUCT Procedure In this section, we
present the CONSTRUCT procedure, which will be used

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

to compute the internal edges of an associated graph.
CONSTRUCT accepts a cell (', such that OO0’ # O*
and AGH: has already been computed, along with dual
weights y(-) for all vertices of V.. It assumes that
Mpy, y(-) satisfy the compressed feasibility conditions.
Let OO be the parent of [’ in 7g-. The procedure
computes the internal edges of XE, X XE, in AGh. It
also assigns dual weights to the vertices of Vg that
correspond to clusters generated for the subcells of (1.

We describe the process for building the internal
edges going out of each cluster X € XE/. We add
an additional vertex s to AGH, and add an edge from
s to each cluster X’ € D(X) with a cost equal to
ly(X")]. After creating this augmented associated graph,
we simply execute Dijkstra’s algorithm from s to find
the shortest path distance from s to every node in V.
Let d, denote the shortest path distance from s to v in
the augmented associated graph. For each exit cluster
Y € XE,, we create an internal edge from X to Y in
AGn and set its cost to be miny ¢ pey)(dyr — |y(Y")]).
We repeat this procedure for each entry cluster.

This completes the description how to construct
the internal edges of AGH in [0'. We next assign
dual weights to each cluster X € X as follows: If
X is an entry cluster, let X' = argminycp(x) [y(Y)|.
Otherwise, X is an exit cluster, and we let X’ =
argmaxy ¢ p(x) |[Y(Y)[- In either case, we set y(X) <
y(X'). Next, we show that the CONSTRUCT procedure
correctly assigns the net-cost of edges in XE, X XE,.

LEMMA 6.4. Let X € XE, and 'Y € XTD, be a pair of
clusters of O that form an internal edge (X,Y) € EQ.
Then the CONSTRUCT procedure ensures that $(X,Y) =

P(P(X,Y))).

In the following Lemma, we argue that the internal
edges of [’ in AGh are feasible after CONSTRUCT is
called on [I'.

LEMMA 6.5. After CONSTRUCT is called on a cell OV
with parent O, then, for every internal edge (X,Y) €

xb, x Xl of By, we have, |y(X)| — [y(¥)| < 6(X,).

Efficiency of CONSTRUCT: Next, we bound the
time taken for a single call to CONSTRUCT on a cell
O € To-. Assume that [0 appears at level j. The
CONSTRUCT procedure executes a Dijkstra search from
each of the [Xg| = O(y;) clusters of 0. If O is full, then
each Dijkstra search takes O(|Eg|) = O(|Vo|?) = @(MJQ)
time. If 0O is sparse, then each Dijkstra search can
be executed efficiently in O(|Xg| + |Ag U Bg|) time
using the fact that the edges of Gy outgoing from any
vertex v belong to only O(1) different WPSD pairs; the
same technique was used for the Hungarian search in
Section 5. Since O is sparse, |Ag U Bg| < u?, and each

Dijkstra search takes (’j(u?) time. The CONSTRUCT
procedure executes |XE| = O(u;) Dijkstra searches, and
each Dijkstra search takes (’)(M?) time, so the total time

taken by CONSTRUCT is @(u?) for any cell of level j.
This gives the following Lemma.

LEMMA 6.6. Any execution of CONSTRUCT on a cell
O of layer j takes (’)(,ug?) time. Furthermore, if O is

sparse, the time taken can be bounded by O(u;(u; +
|[Aol + |Bol)).

6.7 SyYNC Procedure For an active cell 0 and a
compressed feasible matching Mg« along with a set of
dual weights y(+), the SYNC procedure takes the updated
dual weights on clusters of Xg at any non-root cell
O € 7o« and uses them to update the dual weights of
V4 such that the matching continues to be compressed
feasible, and,

(T1) For any entry cluster X € XE, and for any
X' € D(X), [y(X')| = [y(X).

(T2) For any free or boundary cluster X € Xp, and for
any X' € D(X), y(X') = y(X).

The SyYNC procedure consists of executing the fol-
lowing algorithm for each entry cluster X € XE: We
create a new vertex s and add an edge from s to each
vertex X' € D(X). We assign a weight |y(X’)| to the
edge from s to X’. Then, we execute Dijkstra’s al-
gorithm starting from s. Let d, be the shortest path
distance from s to v as computed by Dijkstra’s algo-
rithm. For any vertex v with d, < |y(X)|, if v € Bg we
update the dual weight to y(v) + y(v) + |y(X)| — d,.
Otherwise, v € Ap, and we update the dual weight
y(v) + y(v) — |y(X)| + dy. Note that in both cases the
magnitude of the dual weight increases by |y(X)| — d,.
The dual weight of every other vertex with d, > |y(X)|
does not change. This completes the description of the
algorithm initiated with respect to X.

Note that for any cluster X’ € D(X) if |y(X')| >
|y(X)|, then the procedure will only further increase the
magnitude of y(X’) and so, (T1) holds. If, on the other
hand, |y(X")| < |y(X)], then the length of the edge from
s to X' is |y(X')|, and so the shortest path distance
dx: < |y(X’)| < |y(X)|]. The magnitude of the dual
weight of X’ increases by |y(X)|—dx: > |y(X)|—|y(X")]
implying that the new magnitude of y(X’) is at least the
magnitude of y(X). Therefore (T1) holds for any entry
cluster.

After we execute this for all entry clusters, we
perform the following dual adjustment: For any X €
X, and for any X’ € D(X), we will explicitly update
the dual weight y(X’) to match y(X). Therefore, (T2)
holds after the execution of SYNC.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

To prove the correctness of SYNC one can show
that the updated dual weights satisfy the compressed
feasibility conditions. Additionally, Lemma 6.7 shows
that applying SYNC to compressed edges with zero slack
will lead to a path containing admissible edges; see [21]
for a proof.

LEMMA 6.7. Let 0 be a level i cell. For any internal
edge (X,Y) € XE X XTD in the associated graph AGz
of the parent O of O, suppose s(X,Y) is 0. We can
recursively apply SYNC on all internal edges of P(X,Y)
to obtain its projection 11, , o with u € X andv € Y.
This projection will be an admissible path. For every
vertex p in IL,, , o, let P(p) be all the clusters for cells
of level i or lower that contain the point p. Then, for
every v' € P(p), y(v') = y(p).

Efficiency Analysis of SyNcC: Next, we bound
the time taken for a single call to SYNC executed
on a cell O that updates the dual weights of V.
The argument is nearly identical to that used for
CoONSTRUCT. Assume that [J appears at level j. The
SYNC procedure executes a Dijkstra search once from
each of the O(u;) entry clusters of Xg. If [is full, then
cach Dijkstra search takes time O(|Eg|) = O(|Vp|?) =
@(u?) time. If OJ is sparse, then each Dijkstra search
can be executed efficiently in O(|Xg|+|AgUBg|) time.
Since O is sparse, |[Ag U Bg| < ,u?, and each Dijkstra

search takes O(p?) time. This gives the following:

LEMMA 6.8. Any ezecution of SYNC on a cell O of
layer j takes (’)(M?) time. Furthermore, if O is sparse,

the time taken can be bounded by O(u;(u; + |An| +
|Bal))-

6.8 Data Structure Operations For any phase 1,
we present the implementation of the four operations
supported by the data structure using the SYNC and
CONSTRUCT procedures. Before we describe the oper-
ations, we will state an additional property that the
compressed feasible matching maintained by the data
structure satisfies. In any phase i > 1, suppose that
Mg, y(-) is a compressed feasible matching with the
additional condition being satisfied:

(J) For each vertex b € Bg«, y(b) > 0, and for each
a € Ag-, y(a) < 0. Furthermore, let ymax =
max,cpn. Y(v). For every free vertex b € Bp-,
Y(0) = Ymax and p? | < ymax < pi. For every
free cluster a € Ag-, y(a) = 0.

As we show in Section 6.8.2, a compressed feasible
matching that satisfies (J) can be converted to an
associated -feasible matching that satisfies (I1) and
(I2). Therefore, it suffices to maintain (J) during the
execution of our algorithm.

6.8.1 BuILD Operation As input, the BUILD oper-
ation takes a @)-feasible matching Mg+ and set of dual
weights y(-) on the vertices of Ag« U Bg«. We execute
the CONSTRUCT procedure on every non-root cell [J of
T« in the order of their level in @, processing lower lay-
ers first. This ensures that, when CONSTRUCT is called
on [, the associated graph AGn has already been com-
puted, along with the dual weights for vertices of V.
After CONSTRUCT is called on all pieces of [J*, the result
is an associated graph AGH for every full cell O € T«
and dual weights y(-) for all vertices of Uner, Vo. It
can be argued that this set of dual weights is compressed
feasible with respect to Mg«. Furthermore, upon ap-
plying the BUILD procedure on any (Q-feasible match-
ing that satisfies (I1) and (I2), the resulting compressed
feasible matching will satisfy (J); see [21] for a proof.

Execution Time for BuiLD: We show that the
time taken by BUILD during phase i is @(nu?/?’). During
BuiLp, CONSTRUCT is called on all non-root cells of
To- for each full active cell O*. We assign each non-
root cell O € 7o« to one of four categories: (a) O is
full. (b) O is sparse and the parent of O in 7o~ is a
full cell that is not the root [0*. (c) O is sparse, its
parent in 70« is the root 0%, and |Ag U Bg| < ,u?/3.
(d) O is sparse, its parent in 7o« is the root 0%, and
|Ao U Bgl| > ,u?/3. We separately bound the total time
taken for a single CONSTRUCT call on every cell in each
of the four categories, over all active cells for phase i,
showing that the time taken is @(nu?/?’).

First, we bound the time taken by cells of category
(a). We bound the the time for a CONSTRUCT call on all
full cells in some grid G;. Since these full cells together
contain at most n points, the total number of full cells
in G; is bounded by O(n/u?). A CONSTRUCT call on a

full cell O € G; takes @(ﬂ?) time. Therefore, the total

time taken for all full cells of G; is O(ny;). During
phase i, CONSTRUCT is only called on cells of G; where
J < [2i/3]. The time taken by G|s;/3) dominates,
taking @(nu?/g) time. This completes the bound on
cells in category (a).

Next, we bound the time taken for category (b). If
a sparse cell O of level j in an active tree has a non-root
parent (0" in level j+ 1, then its parent [’ must fall into
category (a). The time taken for a call to CONSTRUCT
on O is @(ug’) = @(M?H), which can be taxed on the
time taken to execute CONSTRUCT on the parent [1'.
Specifically, since each non-root cell [’ in the active
tree has at most 4 children in the active tree, the time
taken for a CONSTRUCT call on all sparse children of [0
is @(M?H), which is also the bound on the time taken
for CONSTRUCT on [/ itself. Therefore, the total time
taken by category (b) is bounded by the time taken by

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

(a), and is @(nuf/?’).

Now we bound the time for category (c). All cells
of category (c) are pieces of some active tree, so we
begin by bounding the total number of pieces over all
active cells. Since these cells together contain at most
n points, the number of full active cells during phase
i is O(n/u?). Each such active cell (0* has its pieces
in grid G|2;/3). Since 0" has diameter @(uf) and each
piece of O0* has diameter Q(uf%/gJ /poly{logn,1/e}) =

Qu;"” fpoly{logn, 1/c}), O has O((uf'")?) = Ou;"*)
pieces. Summing over all phase i active full cells gives
a total of (’N)(n/,u?/g) pieces. The time taken by a

single CONSTRUCT call on one of these pieces [is
Op12i/3) [AnUBD|+155)) = O *| ApUBa|+11°).
/ 3, we can rewrite the

time taken for a single CONSTRUCT call as @(uf/g).

However, since |Ag U Bg| < u?

Summing over all @(n/u?/s) pieces of category (c) gives
a total time of @(n,u?/?’) as desired.

Finally, we bound the time taken for category (d).
The time taken for a single CONSTRUCT call on a cell O
of category (d) is O(|Ag U BD|/,L12/3 + ,u?/?’).
since |Ag U Bg| > u?/g, the first term dominates, and
we can rewrite the time taken by CONSTRUCT on [J
as O(|Ag U BD|;¢?/3). Summing over all such cells of

category (d) gives a total time of @(n,u?/g).

However,

6.8.2 GENERATEDUALS Operation The GENER-
ATEDUALS procedure simply consists of recursively call-
ing the SYNC procedure on all non-root cells of %,
processing cells closest to the root of 7o« first. This
process generates a set of dual weights y(-) for the ver-
tices of Ag+ U Bg«. It can be shown that after execut-
ing this GENERATEDUALS procedure, Mo+, y(-) are Q-
feasible, meaning (I1) and (I2) hold. Since CONSTRUCT
and SYNC have the same time bounds from Lemmas 6.6
and 6.8, the time taken by GENERATEDUALS can be
bounded by the time taken by BUILD.

6.8.3 HUNGARIANSEARCH Operation This pro-
cedure takes a compressed feasible matching Mp-, y(-)
that also satisfies (J) as input. It then conducts a search
identical to Hungarian search on the associated graph
of [0*. The search procedure adjusts the dual weights
of the vertices of Vg« so that we have a path consist-
ing of admissible edges. Once an admissible path is
found in AGQ-«, the procedure projects this path to find
an augmenting path of admissible edges in G- by re-
cursively applying the SYNC procedure. We describe
the details of the procedure in two parts. First, we
describe the dual adjustments conducted by the HUN-
GARIANSEARCH, and then we describe how the proce-

dure projects the path. We show that (J) continues to
hold after the execution of HUNGARIANSEARCH.

Dual Adjustments: Recall that Ag- (resp. Bo-«)
denotes the set of vertices of type A (resp. type B)
in Vo-. Let Ap (resp. Bp) be the set of free vertex
clusters of A= (resp. Bp-). We add a vertex s to the
graph AGQ. and add an edge from s to every free cluster
of Br. The weight associated with this edge is 0. We
set lpax = H7 — maxxepy. ¥(X). We then execute a
Dijkstra’s search to compute the shortest path distance
from s to every vertex in Vg«. For any v € Vx| let £, be
the shortest path distance from s. Let £ = minxe ., £x.
If ¢ > lhax, we set £ = l.x and continue. For every
vertex v € Vo« with £, < £, we update the dual weight
as follows. If v € B, we increase the dual weight
y(v) + y(v) + € — £,. Otherwise, if v € Ag+, we reduce
the dual weight y(v) < y(v) — € + £,. This completes
the description of the dual weight changes. These dual
adjustments will make some of the edges on the shortest
path tree have a slack of zero. If £ = f,.x, the dual
weight of every free cluster of type B would be updated
to pu? and we return without finding an augmenting
path. Otherwise, the dual adjustments will maintain
compressed feasibility and create an admissible path
P from a free cluster Z € Bp to a free cluster Z’
of Ar inside the associated graph AGm-. Using a
relatively straight-forward argument, one can show that
these dual adjustments do not violate the compressed
feasibility conditions.

Projecting an Augmenting Path: The dual ad-
justment ensures that there is some admissible augment-
ing path P in AG-. We create an augmenting admissi-
ble augmenting path in G« from some free vertex b € Z
to a € Z' as follows: For any internal edge (U,V) in P,
we can recursively use SYNC (Lemma 6.7) to retrieve
an admissible path II,/ ,» - where v’ € U and v" € V.
We make v’ (resp. v) the representative of U (resp. V)
and denote it by r(U) (resp. 7(V)). For every vertex Y’
on the path P that does not have a representative, we
choose an arbitrary vertex p € Y as its representative,
p =r(Y). Note that P cannot have any vertex with two
internal edges incident on it. Next, for any bridge edge
(z,y) in P, we show how to connect their representa-
tives. Suppose the bridge edge (x,y) is non-local edge.
Then, we connect () and r(y) directly by a non-local
edge in Go«. Otherwise, suppose (z,y) is a local bridge
edge. In this case, if r(z) is matched to r(y), we sim-
ply add the matching edge between them. Otherwise,
if r(x) is matched to z’ and r(y) is matched to 3/, the
edges (r(x),z'), («/,y') and (v, r(y)) are all local and
admissible. We add them the three edges in this order
to connect r(x) to r(y). The resulting path obtained is
a compact admissible path from a free vertex in Bp to

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

a free vertex in Ap as desired.

Note that the input compressed feasible matching
satisfied (J) and the dual weight of every free cluster
v in B« IS Ymax. The dual adjustments conducted by
the HUNGARIANSEARCH procedure will not decrease the
dual weights of any vertex v € Bp+ and will not in-
crease the dual weight of any vertex v € Ag-. Further-
more, each dual adjustment conducted by the HUNGAR-
IANSEARCH procedure increases the dual weight of all
free clusters of B« by ¢ which is the largest increase
among all clusters. Therefore, the new dual weight of
free clusters is ymax + £ which is the largest among all
vertices of Bo«. Finally, by definition, every free ver-
tex cluster v of Ag- has £, > ¢ and, therefore, y(v)
remains 0. In conclusion, after the execution of HUN-
GARIANSEARCH procedure (J) continues to hold. It can
also be shown that the projected augmenting path is
simple; for a proof, see the full version of the paper [21].

Efficiency of HUNGARIANSEARCH: Next, we
bound the time taken by the HUNGARIANSEARCH pro-
cedure. First, we bound the time taken for the Dijkstra
search over AG(. during some phase i. The root cell [J*
has a diameter of O(u?), and each of its pieces have a

(’N)(,u?/ %). Therefore, there are
@(M?/g)) pieces of [0*. Each piece con-

diameter of @(Mfm/sj) =
O((u? /")) =

tains O(ui/) vertices in Vg« and (7)(/1?/3) internal edges
in Eg«. The number of bridge edges in Eg« could be
much higher, but we observe that, by using the WSPD,
the bridge edges incident on every vertex of Vg can be
divided into only O(1) groups where the edges of each
group have the same net-cost and direction. A similar
technique is used for the Hungarian search described in
Section 5. Therefore, the Dijkstra search over AG'-
can be executed in time near-linear in the number of
internal edges and vertices of AG'«, i.e., @(u?/?’) time.

After executing the Dijkstra search over AG'H-,
the HUNGARIANSEARCH procedure executes the SYNC
procedure to produce an admissible augmenting path
P in Gps. During this process, SYNC only needs to be
executed once per affected cell O € A(P). From Lemma
6.8, each execution of SYNC on a cell of level j takes
@(u?) time. Recall that SYNC is not called on any cell
with level higher than [2¢/3], i.e., the level of the pieces
of (*. Therefore, the total time taken by the executions
of the SYNC procedure can be expressed as:

L20/3)

o2 M

)13,

Combining this with the time taken by the Dijkstra
search gives the following bound on the time taken by

the HUNGARIANSEARCH procedure:
[2i/3]

O + Z 1A (P

)|13).

6.8.4 AUGMENT Operation The AUGMENT proce-
dure accepts an admissible augmenting path P in Gj;.
It then augments M along P, and updates the data
structure accordingly. To augment M along P, we set
M + M @ P and perform very similar dual weight
changes to those described in Section 5. For any edge
(a,b) that was non-local prior to augmentation and be-
came local after augmentation, let (0 be the least com-
mon ancestor of a¢ and b in Q. If there is a local bridge
edge (X,Y) € Ep prior to augmentation such that a
enters X and b enters Y through augmentation, we sim-
ply set y(a) < y(X) and y(b) < y(Y). Otherwise, if no
such local edge existed, we set y(a) < y(a) —u2,. Using
similar arguments to those given in Section 5, it can be
shown that this dual weight assignment only decreases
the dual weights of y(a) and y(b).

After augmenting along P, the data structure must
perform updates to account for the changes to the
matching. Recall that the set A(P) of affected cells
contains all non-root cells of 7= that contain at least
one vertex of P. To update the data structure, the
procedure executes the CONSTRUCT procedure on all
cells of A(P), processing cells at lower layers of Q) first.

Efficiency of AUGMENT: To bound the effi-
ciency of the AUGMENT procedure, we consider the most
expensive portion, which is the time taken for the calls
to the CONSTRUCT procedure on all affected pieces.
Consider an execution of AUGMENT that produced an
augmenting path P. Recall that, from Lemma 6.6, the
time taken for a single call to CONSTRUCT on a cell
of level j is @(,u;)’), which matches the time taken for
the calls to the SYNC procedure during the execution of
HUNGARIANSEARCH that generated P. Using an identi-
cal argument, we can conclude that the total time taken
by AUGMENT is:

L20/3)

o2 AP

It can be shown that the AUGMENT procedure will not
violate compressed feasibility; see the full version [21].

) d).

References

[1] P. K. Agarwal and K. R. Varadarajan, A near-linear
constant-factor approximation for Euclidean bipartite
matching?, Proc. 20th Annual ACM Symposium on
Computational Geometry, 2004, pp. 247-252.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2]

3l

4]

(5]

[6]

(7]

18]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Altschuler, F. Bach, A. Rudi, and J. Weed, Approx-
imating the Quadratic Transportation Metric in Near-
Linear Time, arXiv preprint arXiv:1810.10046, (2018).
J. Altschuler, J. Weed, and P. Rigollet, Near-linear
time approximation algorithms for optimal transport
via sinkhorn iteration, Proc. Advances in Neural Infor-
mation Processing Systems 30, 2017, pp. 1964-1974.
M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein
generative adversarial networks, Proc. 34th Interna-
tional Conference on Machine Learning, 2017, pp. 214—
223.

M. K. Asathulla, S. Khanna, N. Lahn, and S. Raghven-
dra, A faster algorithm for minimum-cost bipartite
perfect matching in planar graphs, ACM Trans. Al-
gorithms, 16 (2020), 2:1-2:30.

M. Cuturi, Sinkhorn distances: Lightspeed computa-
tion of optimal transport, Proc. Advances in Neural
Information Processing Systems 26, 2013, pp. 2292—
2300.

F. De Goes, D. Cohen-Steiner, P. Alliez, and M. Des-
brun, An optimal transport approach to robust recon-
struction and simplification of 2D shapes, Computer
Graphics Forum, Vol. 30, Wiley Online Library, 2011,
pp. 1593-1602.

P. Dvurechensky, A. Gasnikov, and A. Kroshnin, Com-
putational optimal transport: Complexity by acceler-
ated gradient descent is better than by sinkhorn’s algo-
rithm, Proc. 35th International Conference on Machine
Learning, 2018, pp. 1367-1376.

A. Efrat, A. Itai, and M. J. Katz, Geometry helps in
bottleneck matching and related problems, Algorith-
mica, 31 (2001), 1-28.

J. Fakcharoenphol and S. Rao, Planar graphs, negative
weight edges, shortest paths, and near linear time,
Journal of Computer and System Sciences, 72 (2006),
868—-889.

K. Fox and J. Lu, A near-linear time approximation
scheme for geometric transportation with arbitrary
supplies and spread, Proc. 86th Annual Symposium on
Computational Geometry, 2020, pp. 45:1-45:18.

H. N. Gabow and R. Tarjan, Faster scaling algorithms
for network problems, SIAM J. Comput., 18 (1989),
1013-1036.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,
and A. C. Courville, Improved training of wasserstein
GANSs, Proc. Advances in Neural Information Process-
ing Systems 30, 2017, pp. 5767-5777.

S. Har-Peled, Geometric approximation algorithms,
American Mathematical Soc., 2011.

P. Indyk, A near linear time constant factor approxima-
tion for Euclidean bichromatic matching (cost), Proc.
18th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2007, pp. 39-42.

A. B. Khesin, A. Nikolov, and D. Paramonov, Pre-
conditioning for the geometric transportation problem,
Proc. 35th Annual Symposium on Computational Ge-
ometry, 2019, pp. 15:1-15:14.

H. Kuhn, Variants of the hungarian method for as-

[18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

signment problems, Naval Research Logistics, 3 (1956),
253-258.

N. Lahn, D. Mulchandani, and S. Raghvendra, A graph
theoretic additive approximation of optimal transport,
Proc. Advances in Neural Information Processing Sys-
tems 32, 2019, pp. 13813-13823.

N. Lahn and S. Raghvendra, A faster algorithm for
minimum-cost bipartite matching in minor free graphs,
Proc. 80th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2019, pp. 569-588.

N. Lahn and S. Raghvendra, A weighted approach to
the maximum cardinality bipartite matching problem
with applications in geometric settings, Proc. 35th
Annual Symposium on Computational Geometry, 2019,
pp. 48:1-48:13.

N. Lahn and S. Raghvendra, An O(n®*) time e-
approximation algorithm for RMS matching in a plane,
arXiv preprint arXiv:2007.07720, (2020).

H. Liu, X. Gu, and D. Samaras, Wasserstein gan with
quadratic transport cost, Proc. IEEE International
Conference on Computer Vision, 2019, pp. 4832—4841.
J. M. Phillips and P. K. Agarwal, On bipartite match-
ing under the RMS distance, Proc. 18th Annual Cana-
dian Conference on Computational Geometry, 2006,
pp. 143-146.

K. Quanrud, Approximating optimal transport with
linear programs, Proc. 2nd SIAM Symposium on Sim-
plicity in Algorithms, 2019, pp. 6:1-6:9.

J. Rabin and G. Peyré, Wasserstein regularization
of imaging problem, Proc. 18th IEEE International
Conference on Image Processing, 2011, pp. 1541-1544.
S. Raghvendra and P. K. Agarwal, A near-linear
time e-approximation algorithm for geometric bipartite
matching, J. ACM, 67 (2020), 18:1-18:19.

R. Sharathkumar, A sub-quadratic algorithm for bi-
partite matching of planar points with bounded inte-
ger coordinates, Proc. 29th Annual ACM Symposium
on Computational Geometry, 2013, pp. 9-16.

R. Sharathkumar and P. K. Agarwal, Algorithms for
transportation problem in geometric settings, Proc.
23rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2012, pp. 306-317.

J. Sherman, Generalized preconditioning and undi-
rected minimum-cost flow, Proc. 28th Annual ACM-

SIAM Symposium on Discrete Algorithms, 2017,
pp. 772-780.
J. Solomon, F. De Goes, G. Peyré, M. Cuturi,

A. Butscher, A. Nguyen, T. Du, and L. Guibas, Convo-
lutional wasserstein distances: Efficient optimal trans-
portation on geometric domains, ACM Transactions on
Graphics, 34 (2015), 66.

K. R. Varadarajan, A divide-and-conquer algorithm
for min-cost perfect matching in the plane, Proc. 39th
Annual IEEE Symposium on Foundations of Computer
Science, 1998, pp. 320-331.

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

