
2

A Faster Algorithm for Minimum-cost Bipartite Perfect

Matching in Planar Graphs

MUDABIR KABIR ASATHULLA, Virginia Tech, USA

SANJEEV KHANNA, University of Pennsylvania, USA

NATHANIEL LAHN and SHARATH RAGHVENDRA, Virginia Tech, USA

Given a weighted planar bipartite graph G (A ∪ B,E) where each edge has an integer edge cost, we give an

Õ (n4/3 lognC) time algorithm to compute minimum-cost perfect matching; hereC is the maximum edge cost

in the graph. The previous best-known planarity exploiting algorithm has a running time of O (n3/2 logn)
and is achieved by using planar separators (Lipton and Tarjan ’80).

Our algorithm is based on the bit-scaling paradigm (Gabow and Tarjan ’89). For each scale, our algorithm

first executes O (n1/3) iterations of Gabow and Tarjan’s algorithm in O (n4/3) time leaving only O (n2/3) ver-

tices unmatched. Next, it constructs a compressed residual graphH withO (n2/3) vertices andO (n) edges. This

is achieved by using an r -division of the planar graph G with r = n2/3. For each partition of the r -division,

there is an edge between two vertices of H if and only if they are connected by a directed path inside the par-

tition. Using existing efficient shortest-path data structures, the remaining O (n2/3) vertices are matched by

iteratively computing a minimum-cost augmenting path, each taking Õ (n2/3) time. Augmentation changes

the residual graph, so the algorithm updates the compressed representation for each partition affected by the

change in Õ (n2/3) time. We bound the total number of affected partitions over all the augmenting paths by

O (n2/3 logn). Therefore, the total time taken by the algorithm is Õ (n4/3).

CCS Concepts: • Mathematics of computing → Combinatorial algorithms; Matchings and factors;

Graph algorithms; Paths and connectivity problems;

Additional Key Words and Phrases: Minimum-cost matching, primal-dual, scaling algorithms

ACM Reference format:

Mudabir Kabir Asathulla, Sanjeev Khanna, Nathaniel Lahn, and Sharath Raghvendra. 2019. A Faster Algo-

rithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs. ACM Trans. Algorithms 16, 1, Article 2

(November 2019), 30 pages.

https://doi.org/10.1145/3365006

1 INTRODUCTION

Consider a bipartite graphG (A ∪ B,E) where |A| = |B | = n, the edge set E ⊆ A × B and every edge
(a,b) ∈ E has an integer cost specified by c(a,b). A matching M ⊆ E is any set of vertex-disjoint
edges, and we represent its cost by c(M) =

∑
(a,b)∈M c(a,b). M is a perfect matching if |M | = n.

A minimum-cost perfect matching is a perfect matching with the smallest cost. In this article, we

This work is supported in part by National Science Foundation grants CCF-1464276, CCF-1909171, and CCF-1617851.

Authors’ addresses: M. K. Asathulla, N. Lahn, and S. Raghvendra, Virginia Tech, 114 McBryde Hall, 225 Stanger Street,

Blacksburg, VA 24060; emails: {mudabir, lahnn, sharathr}@vt.edu; S. Khanna, Dept. of Computer & Information Science,

University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104; email: sanjeev@cis.upenn.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1549-6325/2019/11-ART2 $15.00

https://doi.org/10.1145/3365006

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

https://doi.org/10.1145/3365006
mailto:permissions@acm.org
https://doi.org/10.1145/3365006

2:2 M. K. Asathulla et al.

consider the problem of computing a minimum-cost perfect matching in a planar bipartite graph.

There are two previous algorithms for this problem that run in Õ (n3/2)1 time. The first algorithm
by Lipton and Tarjan [14] is a divide-and-conquer algorithm based on the well-known planar
separator theorem, whereas the second approach by Gabow and Tarjan is based on the bit-scaling

paradigm [7]. In this article, we combine these two approaches to yield an improved Õ (n4/3) time
algorithm for computing a minimum-cost perfect matching in bipartite planar graphs.

Maximum-Cardinality Matching: For the problem of computing a maximum cardinality match-
ing in unweighted graphs with n vertices andm edges, Ford and Fulkerson [6] presented an algo-
rithm that iteratively computes n augmenting paths, each of which takesO (m) time, leading to an
O (mn) time algorithm. Hopcroft and Karp [9] presented an algorithm with an improved execution
time of O (m

√
n). Their algorithm iteratively computes a maximal set of vertex-disjoint shortest

augmenting paths in O (m) time and converges to an optimal matching in O (
√
n) iterations. Com-

puting a perfect matching in bipartite graphs is a special case of multiple-source multiple-sink
maximum flow problem where each source produces and each sink consumes exactly one unit of
commodity. For arbitrary graphs, one can easily reduce a multiple-source multiple-sink maximum
flow problem to a single-source single sink case by introducing an artificial source and an artificial
sink vertex and connecting them to all sources and sinks. For planar graphs, however, this reduc-
tion may not preserve planarity, and therefore the algorithms for the multiple-source multiple-sink
problem in planar graphs are distinctly different from the single-source single-sink problem.

In unweighted planar graphs, there is extensive work on computing flows in planar graphs with
multiple sources and sinks. For the case where it is known how much of commodity is produced
and consumed at each source and sink, there is an algorithm to compute a valid flow that runs
in O (n log2 n/ log logn) time [15]. Computing perfect matching in bipartite graphs is a special
case and, therefore, this algorithm also applies to computing perfect matching in planar bipartite
graphs. After considerable effort on many special cases, an O (n log3 n) time algorithm for the
problem of computing maximum flow in planar graphs with multiple sources and multiple sinks
was designed [2]. This algorithm can also be applied to compute maximum cardinality matching
in bipartite planar graphs.

It is also possible to compute maximum matchings in arbitrary graphs (not necessarily bipartite)
using Gaussian elimination [16]. This randomized algorithm runs inO (nω) time; hereω is the best-
known exponent for the matrix multiplication problem. For planar graphs, Mucha and Sankowski
improved and obtained an O (nω/2) time randomized algorithm for this problem [17].

Minimum-cost Matching: In weighted graphs with n vertices andm edges, the well-known Hun-
garian method computes a minimum-cost maximum cardinality matching in O (mn) time [13].
Gabow and Tarjan designed a cost-scaling method to compute a minimum-cost perfect match-
ing in O (m

√
n lognC) time, where C is the largest cost on any edge of the graph [7]. Using a

standard reduction, they showed that their algorithm can also be used to compute minimum-cost
maximum cardinality matching. This reduction, however, does not preserve planarity. Ramshaw
and Tarjan [18] extend the scaling approach to compute minimum-cost imperfect matching for
bipartite graphs where the two sets are of different cardinalities. The running time of their algo-
rithm isO (m

√
n lognC). Sankowski extended the Gaussian elimination-based approach to compute

weighted matchings in arbitrary graphs in O (nωC) time [19]. In Reference [3], Cohen et al. give

an Õ (m10/7) algorithm for computing minimum-cost maximum flow on bipartite graphs with unit
capacities. This algorithm can be used to find a minimum-cost perfect matching on a bipartite

planar graph in Õ (n10/7) time.

1Õ (·) ignores the log factors that may appear in the running time.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:3

For weighted planar graphs, Lipton and Tarjan [14] use planar separators to design an algorithm
that computes a minimum-cost maximum cardinality matching inO (n3/2 logn) time; see also Ref-
erence [4]. All planarity exploiting algorithms to compute maximum flow use a relation between
maximum flow in a planar graph and shortest paths in its dual graph. It is not clear how to extend
this relation to computation of minimum-cost flows. Therefore, despite significant progress in the
design of faster planarity exploiting algorithms for the maximum cardinality bipartite matching
problem, there has not been any improvement in algorithms for the weighted version of this prob-
lem. We are not aware of any faster planarity exploiting algorithms for computing minimum-cost
perfect matching.

Computing a perfect matching in planar bipartite graphs is also an important intermediate step
in solving the two-dimensional Euclidean bipartite matching problem. Here, as input, we are given
two sets of n points in a plane. An edge between two points has a cost equal to the Euclidean dis-
tance. In this problem, we wish to compute a minimum-cost perfect matching of the two point sets.
Under the assumption that points have bounded integer coordinates, Sharathkumar [20] presented
a reduction of the Euclidean bipartite matching problem to the problem of computing minimum-
cost perfect matching in a planar bipartite graph. For an arbitrary small constant δ > 0, this reduc-

tion takes Õ (n3/2+δ) time. The minimum-cost matching is then computed by simply using Lipton
and Tarjan’s O (n3/2 logn) time algorithm.

Our Result and Approach: In this article, we use the scaling paradigm to design a new planarity
exploiting algorithm that computes minimum-cost perfect matching in planar bipartite graphs.
Our algorithm runs in O (n4/3 log2 n lognC) time whereC is the largest cost edge in the graph.2 In
comparison, the previous algorithm by Lipton and Tarjan runs in O (n3/2 logn) time.

Both the Hungarian algorithm and the Gabow-Tarjan algorithm iteratively compute a minimum
cost augmenting path and augment the matching along this path. To obtain a speed-up, Gabow
and Tarjan observed that for graphs where the edges have positive integers as edge costs, and
the optimal matching has a cost of O (n), one can integrate several properties of the Hopcroft-
Karp algorithm with the Hungarian algorithm. To do this, they introduce an additive error of 1
on every edge that is not in the matching and iteratively compute the minimum-cost augmenting
path. The error of +1 on every non-matching edge results in longer paths having a larger cost. As
a consequence, their algorithm would pick many short (both in cost and length) augmenting paths
in each iteration. This is similar to how the Hopcroft-Karp algorithm behaves in the unweighted
setting. As a result, they obtain a running time that is similar to the running time of Hopcroft
and Karp’s algorithm, i.e., O (m

√
n lognC). Using the scaling paradigm, they guarantee that the

cost of the optimal matching on each scale is O (n) while also eliminating any error in cost that is
introduced due to the +1 that was added to the edge costs.

In our algorithm, we build an r -division of the planar graph that breaks the graph into O (n/r)
pieces each of O (r) size. In addition, each piece has only O (

√
r) vertices that also participate in

other pieces (such vertices are called boundary vertices). Therefore, in total, there are O (n/
√
r)

boundary vertices.
Similar to Gabow and Tarjan’s algorithm, we use a scaling approach where each scale corre-

sponds to a bit in the edge costs. The computation proceeds over O (lognC) scales. In each scale,
our algorithm iteratively computes minimum-cost augmenting paths. We speed-up the Gabow-

Tarjan O (n3/2) computation time per scale to Õ (n4/3) time as follows:

2The algorithm will be presented for nonnegative edge costs. If there are negative edge costs, then a constant can be added

to the weight of every edge to make them nonnegative.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:4 M. K. Asathulla et al.

• Within each scale, we first execute the Gabow-Tarjan algorithm for O (
√
r) iterations to

match all but O (n/
√
r) vertices. This takes O (n

√
r) time.

• We introduce an additive error of +�
√
r� on every edge that is not in the matching and is

incident on a boundary vertex. We show that doing so does not asymptotically increase the
total error in the cost of the matching. Using the scaling paradigm, we can eliminate this
error to obtain the optimal matching (see Section 3).

• Next, we compress the residual graph into a weighted and directed multigraph H with the
O (n/

√
r) boundary and free (unmatched) vertices as the vertex set. There is an edge between

two boundary vertices if and only if they are connected by a directed path in one of the
pieces of the r -division. This compressed residual graph H has O (n/

√
r) vertices and O (n)

edges (see Section 4).
• The shortest path between two free vertices in H can be used to compute the minimum-

cost augmenting path. Using efficient data structures and an efficient implementation of
Dijkstra’s algorithm by Fakcharoenphol and Rao (described in References [5], [10], and
[11]), we compute the minimum-cost augmenting path in H in time O ((n/

√
r) log r logn).

Therefore, the total time taken to compute the remaining O (n/
√
r) augmenting paths is

O ((n2/r) log r logn) (see Section 4.3).
• After we augment the matching, the residual graph changes and so does its compressed

representationH . For every piece of the r -division that the augmenting path passes through,
we recompute its edges in H . Each such affected piece can be updated in O (r log r) time.
Although every augmenting path can potentially pass through all the O (n/r) pieces, we
prove that, throughout the course of the algorithm, the total number of pieces that the
augmenting paths touch is O ((n/

√
r) logn) (see Lemma 5.11), and, therefore, the total time

taken to recompute edges of these pieces is only O (n
√
r log r logn).

• Together, the total time taken by the algorithm for computation over a single scale is
O ((n2/r) log r logn + n

√
r log r logn), which is O (n4/3 log2 n) when r = n2/3. By summing

up over all scales, we obtain a running time of O (n4/3 log2 n lognC).

Organization: The remainder of the article is organized as follows: In Section 2, we present back-
ground on the matching algorithms that serve as building blocks for our approach. In Section 3, we
describe our scaling algorithm. In Section 4, we present our algorithm for each scale. In Section 5,
we prove the correctness and efficiency of our algorithm.

2 BACKGROUND

Preliminaries on Matching: Given a matching M on this bipartite graph, an alternating path (or
cycle) is a simple path (respectively, cycle) whose edges alternate between those in M and those
not in M . We refer to any vertex that is not matched in M as a free vertex. An augmenting path P
is an alternating path between two free vertices. We can augment M by one edge along P if we
remove the edges of P ∩M from M and add P \M to M . After augmenting, the new matching is
given by M ← M ⊕ P , where ⊕ is the symmetric difference operator. For a matching M , we define
a directed graph called the residual graphGM (A ∪ B,EM). We represent a directed edge from a to b

as
−→
ab. For every edge (a,b) ∈ E ∩M , we have an edge

−→
ab in EM and for every edge (a,b) ∈ E \M ,

there is an edge
−→
ba in EM . Note thatG andGM have the same vertex set and edge set with the edges

ofGM directed depending on their membership in the matching M . For simplicity in presentation,
we treat the vertex set and the edge set ofG andGM as identical. So, for example, a matching M in

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:5

the graph G is also a matching in the graph GM . It is easy to see that a path
−→
P in GM is a directed

path if and only if this path is an alternating path in G.
Our work uses ideas from two fundamental algorithms—namely, the Hungarian algorithm and

the Gabow-Tarjan algorithm—to compute a minimum-cost matching in any bipartite graph. Both
these algorithms are similar in style to our algorithm. Next, we present a high-level overview of
these algorithms. In the Hungarian algorithm, for every vertex v of the graph G, we maintain a
dual weight y (v). A feasible matching consists of a matching M and a set of dual weights y (·) on
the vertex set such that for every edge between u ∈ B and v ∈ A, we have

y (u) + y (v) ≤ c(u,v), (1)

y (u) + y (v) = c(u,v) for (u,v) ∈ M . (2)

For the Hungarian algorithm, we define the net-cost of an augmenting path P as follows:

ϕ (P) =
∑

(a,b)∈P\M
c(a,b) −

∑

(a,b)∈P∩M

c(a,b).

We can also interpret the net-cost of a path as the increase in the cost of the matching due to
augmenting it along P , i.e., ϕ (P) = c(M ⊕ P) − c(M). We can extend the definition of net-cost to
alternating paths and cycles in a straightforward way.

At the start of the algorithm M = ∅. In each iteration, the Hungarian algorithm computes a
minimum net-cost augmenting path P and updates M to M ⊕ P . The algorithm terminates when
we have a perfect matching. During the course of the algorithm, it maintains the invariant that
there are no alternating cycles with negative net-cost.

It can be shown that any perfect matching M with a set of dual weightsy (·) is a min-cost perfect
matching if and only if there is no negative net-cost alternating cycle with respect to M,y (·) inG.
Any perfect matching M that satisfies the feasibility conditions (1) and (2) has this property. Thus,
it is sufficient for the Hungarian algorithm to find a feasible perfect matching.

To find the minimum net-cost augmenting path, the Hungarian algorithm uses a simple Dijkstra-
type search procedure called the Hungarian Search. At any stage of the algorithm, the matching
M and the set of dual weights y (·) satisfy the following invariants:

(i) M and the set of dual weights y (·) form a feasible matching.
(ii) For every vertex b ∈ B, y (b) ≥ 0, and if b is a free vertex, then the dual weight y (b) =

maxv ∈B y (v). We refer to this dual weight of any free vertex of B as ymax .
(iii) For every vertex a ∈ A, y (a) ≤ 0, and if a is a free vertex, then its dual weight y (a) = 0.

The Hungarian search computes the minimum net-cost path as follows: For any edge (u,v),
let c(u,v) − y (u) − y (v) be the slack of (u,v). By feasibility condition (1), the slack of any edge is
non-negative. Consider a directed graph G ′

M
, which is the same as the residual graph GM except

the cost associated with each edge is equal to its slack. It can be shown that the minimum weight
directed path in G ′

M
corresponds to the minimum net-cost augmenting path in G. Since the slack

on every edge is non-negative, the graph G ′
M

does not have any negative cost edges. Therefore,
we can simply use (a slight variant of) Dijkstra’s algorithm to compute the minimum net-cost
augmenting path. After this, the dual weights are updated in such a way that the invariants are
satisfied (see Reference [13] for details). The Hungarian algorithm computes n augmenting paths,
each of which can be computed by Hungarian search inO (m) time. Therefore, the total time taken
is O (mn).

As in the Hungarian algorithm, the Gabow-Tarjan algorithm also maintains a dual weight for
every vertex ofG. A 1-feasible matching consists of a matching M and set of dual weightsy (·) such

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:6 M. K. Asathulla et al.

that for every edge between u ∈ A and v ∈ B, we have

y (u) + y (v) ≤ c(u,v) + 1, (3)

y (u) + y (v) = c(u,v) for (u,v) ∈ M . (4)

A 1-optimal matching is a perfect matching that is 1-feasible. The following lemma relates 1-
optimal matchings to optimal matchings:

Lemma 2.1. [7] For a bipartite graph G (A ∪ B,E) with an integer edge cost function c, let M be a

1-optimal matching and MOpt be the optimal matching. Then, c(M) ≤ c(MOpt) + n.

For every (a,b) ∈ E, suppose we redefine the edge weight to be c∗ (a,b) = (n + 1)c(a,b). This
uniform scaling of edge costs preserves the set of optimal matchings. Lemma 2.1 implies that a 1-
optimal matching of vertices inA,B with edge weights c∗ (·, ·) corresponds to an optimal matching
with the original edge weights c(·, ·). We now describe the Gabow-Tarjan algorithm for finding a
1-optimal matching, which is based on a bit-scaling approach.

The Gabow-Tarjan algorithm consists of scales. For any edge (u,v), let b1,b2 . . .b� be the binary
representation of c∗ (u,v). In the ith scale, the cost of an edge, ci (u,v), corresponds to the most
significant i bits of c∗ (u,v). Each scale of the Gabow-Tarjan algorithm takes as input a bipartite
graph onA,B,with a cost function ci (·, ·), and a set of dual weightsy (v) for every vertexv ∈ A ∪ B
and returns a 1-optimal matching. We transfer the dual weights from scale i to scale i + 1 by simply
setting, for any vertex v ∈ A ∪ B, y (v) ← 2y (v) − 1. Therefore, at the beginning of scale i + 1, the
slack si+1 (u,v) = ci+1 (u,v) − y (u) − y (v) on the edges of the 1-optimal matching of scale i will be
positive and at most 3. Hence, the cost of an optimal matching with respect to the slack is upper
bounded by O (n).

For a given scale i , we refer to an edge (u,v) � M as admissible if y (u) + y (v) = ci (u,v) + 1.
An admissible graph is the union of the set of admissible edges and edges in M . The algorithm
will iteratively find a maximal set P of vertex-disjoint augmenting paths in the admissible graph
by doing a depth first search. Then the matching is augmented along every path P ∈ P in the
admissible graph. The dual weights are then adjusted to ensure that the new matching edges satisfy
1-feasibility condition (4). After this, it can be shown that the resulting admissible graph does not
have any augmenting paths. The algorithm invokes the Hungarian search procedure, which adjusts
the dual weights so more edges become admissible until it finds an augmenting path of admissible
edges.

Using the fact that in each iteration Hungarian search increases the dual weight of every free
vertex by at least one, Gabow and Tarjan show that their algorithm iterates only O (

√
n) times,

and that the total length of all the augmenting paths found is O (n logn). Since each iteration runs
in O (m) time, the computation time for a single scale is O (m

√
n), and summed over all O (lognC)

scales, the total time taken is O (m
√
n lognC).

r -division of a Planar Graph: We introduce the notion of an r -division of a planar graph that we
use in our algorithm.

Definition 2.2. An r -division of any planar graph G (V ,E), denoted by R (G), is a set
{R1 (V1,E1), . . . ,Rl (Vl ,El)} of l = O (n/r) edge-induced subgraphs ofG, with Ej = {(a,b) | (a,b) ∈
E,a,b ∈ Vj },

⋃
j Ej = E, and

⋃
j Vj = V . We call each such subgraph a partition. Here, each edge is

contained in at least one partition. A vertex that has incident edges from two or more partitions is
called a boundary vertex. All other vertices are called internal vertices. For any partition Rj , let Kj

denote its set of boundary vertices. Specifically, the r -division R (G) has the following properties:

• For every partition Rj , |Vj | ≤ r and |Kj | = O (
√
r). There are O (n/r) partitions. Let k be a

constant such that
∑l

j=1 |Kj | ≤ kn/
√
r .

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:7

Fig. 1. Transforming any bipartite graph to a constant degree graph.

• Every partition Rj contains O (1) faces that are not faces of a planar embedding of G (also
called holes).

Klein et al. [12] give an algorithm for constructing such an r -division inO (n) time. Given a value
of r , we use the same r -division during the course of the algorithm.

For construction of the r -division and the subsequent use of data structures for planar graphs,
it is convenient to assume that the input graph has a constant maximum degree. Biedl [1] showed
how any planar bipartite graph can be transformed into another planar bipartite graph such that
the degree of every vertex is at most 3 and the matching is “preserved.” For the sake of comple-
tion, we present this transformation in the context of weighted bipartite graphs. First, we provide

a transformation of G to graph G̃, which reduces the maximum degree in G̃ by 1 (provided the
maximum degree is at least 4). Repeatedly applying this transformation, we obtain a graph where
every vertex has a degree of at most 3. We describe this transformation next. Take any vertexv ∈ G
with a degree at least 4 and consider two vertices x and y such that (v,x) and (v,y) appear next to
each other in the clockwise ordering of all edges incident on v . Suppose v ∈ B (a symmetric con-
struction also works when v ∈ A). We add two new vertices a,b and add edges (v,a), (a,b), (b,x),
and (b,y) with costs c(v,a) = 0, c(a,b) = 0, c(b,x) = c(v,x), and c(b,y) = c(v,y). (See Figure 1).
This transformation reduces the degree ofv by 1 and preserves planarity. Using a straightforward

proof from Reference [1], it can be shown that all optimal matchings in G and G̃ have the same

cost and an optimal matching in G can be retrieved from any optimal matching in G̃.

Convention for Notation: Throughout this article, we assume G is a planar bipartite graph with
A ∪ B as the vertex set and E as the set of edges. Given a matching M , we refer to its residual graph
by GM . Note that the vertex and edge sets of G and GM are identical (except for the directions)
and a matching, alternating path or an alternating cycle in G is also a matching, directed path or
a directed cycle in GM . So, if there is any subset P of edges in G, we will also use P to denote the
same subset of edges in GM ; the directions of these edges are determined by whether or not an
edge is in M . We will define a net-cost for an alternating path (or cycle) P in our algorithm and
denote it by ϕ (P). Any directed path or cycle in GM will inherit its net-cost from G. Throughout
the article, for any weighted and directed graph K , we will use the notation K ′ to be the graph
identical to K where the cost of any directed edge in the graph is replaced by its slack. Recall that
an r -division R (G) partitions the edges ofG. SinceG,GM , andG ′

M
have the same underlying set of

edges, R (G) can be seen as an r -division of GM and G ′
M

as well. Therefore, we use R (G),R (GM),
and R (G ′

M
) to denote the same r -division.

In the following, we present a scaling algorithm to compute minimum-cost matching in pla-
nar graphs. Our algorithm is similar in some ways to the Gabow-Tarjan algorithm. However, by
using a compressed residual graph, we achieve a faster execution time of O (n4/3 log2 n lognC) in
computing the optimal matching.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:8 M. K. Asathulla et al.

3 OUR SCALING ALGORITHM

We next introduce a notion of feasibility that is based on an r -division of a planar graph. We assume
that we are given an r -division, R (G) = {R1 (V1,E1), . . . ,Rl (Vl ,El)} with l = O (n/r). Recall that
we denote the set of boundary vertices of Rj by Kj . For every vertex v ∈ A ∪ B, we define a 0/1
indicator variable iv to be 1 if and only if v is a boundary vertex with respect to R (G). For any
edge (u,v) ∈ E, we define a value δuv to be max{1, iu �

√
r�, iv �

√
r�}. For any edge induced sub-

graphG∗ (V ∗,E∗) ofG (A ∪ B,E) and the r -division R (G), we say that a matching M ⊆ E∗ and a set
of dual weights y (·) on the vertices of V ∗ are R−feasible if the following conditions are satisfied:

y (u) + y (v) ≤ c(u,v) + δuv for (u,v) ∈ E∗, (5)

y (u) + y (v) = c(u,v) for (u,v) ∈ M . (6)

An R-optimal matching is a perfect matching that is R-feasible. In our algorithm, for the graph
G (A ∪ B,E) and the r -division R (G), we would like to compute an R-optimal matching M along
with its dual weightsy (·). Note that R-feasible matching is defined for any edge induced subgraph
ofG. In this article, the only induced subgraphs that we consider are partitions from the r -division
{R1, . . . ,Rl }. Our algorithm will maintain an R-feasible matching for each partition. Throughout
this article, we will fix the r -division in the definition ofR-feasibility to beR (G). For anyR-feasible
matching, when obvious from the context, we will not explicitly mention the induced sub-graph
for which it is defined.

The following lemma bounds the cost of an R-optimal matching on G:

Lemma 3.1. For a planar bipartite graphG (A ∪ B,E) with a positive integer edge cost function c, let

M be an R-optimal matching and MOpt be some optimal matching. Then, c(M) ≤ c(MOpt) + (k + 1)n
where k is a constant in definition (2.2).

Proof. Since M , y (·) is R-optimal, we have that

c(M) =
∑

u ∈A∪B

y (u). (7)

From condition (5), every edge (u,v) ∈ MOpt will satisfy y (u) + y (v) ≤ c(u,v) + δuv . Since MOpt

is a perfect matching, we have
∑

u ∈A∪B

y (u) =
∑

(u,v)∈MOpt

(y (u) + y (v)) (8)

≤ c(MOpt) +
∑

(u,v)∈MOpt

δuv .

There are at most kn/
√
r boundary vertices, and so there are at most kn/

√
r edges (u,v) in MOpt

such that δuv = �
√
r�. For the other n − kn/

√
r edges (u,v) of MOpt, δuv = 1. Therefore,

∑

(u,v)∈MOpt

δuv ≤
kn
√
r

(
√
r + 1) + n − kn

√
r
= (k + 1)n. (9)

Combining Equations (7) and (8) with (9), we get

c(M) =
∑

u ∈A∪B

y (u) ≤ c(MOpt) + (k + 1)n. �

As in the Gabow-Tarjan algorithm, for every edge (a,b) ∈ E, we redefine its weight to be
c∗ (a,b) = (k + 1) (n + 1)c(a,b). Since this uniform scaling of edge costs preserves the set of op-
timal matchings, Lemma 3.1 implies that an R-optimal matching of the vertices of A,B with edge
weights c∗ (·, ·) corresponds to an optimal matching with the original edge costs c(·, ·).

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:9

Our algorithm also consists of scales. For any edge (u,v), let b1,b2 . . .b� be the binary represen-
tation of c∗ (u,v). In the ith scale, the cost of an edge, ci (u,v), corresponds to the most significant
i bits of c∗ (u,v). Each scale of our algorithm takes as input a planar bipartite graph on A,B, with
a cost function ci (·, ·), and a set of dual weights y (v) for every vertex v ∈ A ∪ B, and returns an
R-optimal matching. We transfer the dual weights from scale i to scale i + 1 by simply setting, for
any vertex v ∈ A ∪ B, y (v) ← 2y (v) −max{1, iv �

√
r�}. As in the Gabow-Tarjan algorithm, the op-

timal matching does not change if we replace the cost of each edge with its slack. Therefore, at the
beginning of scale i + 1, we set the edge cost to be its slack si+1 (u,v) = ci+1 (u,v) − y (u) − y (v). For
any edge (u,v) of the R-optimal matching Mi from the previous scale i , the slack will be positive
and at most 3 if both u and v are internal vertices, 2 + �

√
r� if either u or v is a boundary vertex

and the other is an internal vertex, and 1 + 2�
√
r� if both u and v are boundary vertices. Since

there are at most kn/
√
r boundary nodes, the cost of the optimal matching with slack costs is at

most (k + 2)n. Therefore, at the start of each scale, the cost of every edge is a positive integer and
the cost of the optimal matching is O (n). In the next section, we describe an algorithm for each
scale. This algorithm takes a graph with positive integer edge costs, an optimal matching with
cost O (n), and computes an R-optimal matching in O (n4/3 log2 n) time. After O (log(nC)) scales,
the R-optimal matching returned by our algorithm will also be an optimal matching.

4 ALGORITHM FOR EACH SCALE

Our algorithm takes a planar bipartite graph G (A ∪ B,E) with positive integer cost of c(u,v) for
every edge (u,v) such that the optimal matching has a cost no more than (k + 2)n. It has two
steps. The first step of the algorithm will simply execute O (

√
r) iterations of the Gabow-Tarjan

algorithm. At the end of this step, our algorithm will have computed a 1-feasible matching M with
at most O (n/

√
r) free vertices. Additionally, from the properties of the Gabow-Tarjan algorithm,

for every free vertex a ∈ A, y (a) = 0, and for every free vertex b ∈ B, y (b) = maxb′ ∈B y (b ′). Since
every 1-feasible matching also satisfies conditions (5) and (6), M is also an R-feasible matching.
Therefore, at the end of the first step, we have the following:

Lemma 4.1. At the end of the first step of our algorithm, the matching M and the dual weights y (·)
form an R-feasible matching for the graphG, the number of free vertices with respect to M is at most

O (n/
√
r), for every free vertex a ∈ A, y (a) = 0, and for every free vertex b ∈ B, y (b) = maxb′ ∈B y (b ′).

For our algorithm, we will define the net-cost of an augmenting path P , denoted by ϕ (P), by

ϕ (P) =
∑

(u,v)∈P\M
(c(u,v) + δuv) −

∑

(u,v)∈P∩M

c(u,v).

This definition also extends to alternating paths and alternating cycles in a straightforward way.
We also define an edge (u,v) as an admissible edge if (u,v) ∈ M or if (u,v) � M and,

y (u) + y (v) = c(u,v) + δuv .

As in the Hungarian and Gabow-Tarjan algorithms, in the second step of our algorithm, we will
iteratively compute an augmenting path of admissible edges and augment the matching along this
path. The augmenting path computed by our algorithm can also be seen as a minimum net-cost
augmenting path.

We define the slack of an edge (u,v) ∈ M , s (u,v) = 0, and (u,v) ∈ E \M to be s (u,v) =
c(u,v) + δuv − y (u) − y (v). From the R-feasibility conditions (5) and (6), it follows that the slack
s (u,v) ≥ 0.

We can easily compute the minimum net-cost augmenting path by conducting a Hungarian
search. The search procedure will modify the dual weights of all the vertices in G and find an

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:10 M. K. Asathulla et al.

augmenting path of admissible edges. Unfortunately, this search may require us to visit and update
the dual weights of all the n vertices of the graph requiring O (n) time, which is too slow for our
purpose. To speed this up, we use a compressed representation H of the residual graph GM . In
this representation, we only maintain the boundary vertices of the r -division and connect two
boundary vertices u andv with a directed edge if and only if there is a directed path from u tov in
some partition Rj . We assign a weight to (u,v) that is equal to the net-cost of a minimum net-cost

path from u to v in Rj . Such a compressed representation H of the residual graph has O (n/
√
r)

vertices andO (n) edges. These edges can be computed inO (r log r) time per partition with a total
computation time of O (n logn). Also, any directed path P in H can be projected to an augmenting
path inG by simply replacing each edge of P with the minimum net-cost directed path ofGM that
it represents.

To compute the minimum net-cost augmenting path, we show that it is sufficient to apply Hun-
garian search on H , which can be done in O ((n/

√
r) log r logn) time. However, as stated earlier,

this search may affect the dual weights of all the n vertices. We avoid updating all the dual weights
each search by introducing the notion of a planar-feasible matching. In a planar-feasible matching,
we will maintain a separate set of dual weights for each partition and another set of dual weights
for all the vertices of H ; a similar strategy was used in Reference [10]. Using the dual weights of
H , we find the minimum net-cost augmenting path P and augment the matching along its pro-

jection
−→
P on GM . This augmentation changes the residual graph and, therefore, its compressed

representation H as well. We will then update the dual weights and the edges of every partition of

the compressed residual graph that contains at least one edge of
−→
P . Note that the dual weights of

the vertices in other partitions may be affected as well. However, we will update them only when
an augmenting path contains its edges. We show that the edges of a single partition of the com-
pressed residual graph can be updated in O (r log r) time. The total time taken by the algorithm,
therefore, is O ((n/

√
r) log r logn) to compute an augmenting path P and O (|P |r log r) to update

the dual weights and the edges of H . Therefore, the remaining O (n/
√
r) augmenting paths can be

computed in O ((n2/r) log r logn + r log r
∑

i |P |) time where
∑

i |P | is the sum of the lengths of all
these O (n/

√
r) augmenting paths. Interestingly, we show that the sum of the lengths of the aug-

menting paths is bounded by O ((n/
√
r) logn). This bounds the running time of our algorithm by

O ((n2/r + n
√
r) log r logn) or O (n4/3 log2 n) when r = n2/3.

Handling Edges in Multiple Partitions: Recollect that every edge of G belongs to one or more
partitions of the r -division R (G). However, for purposes of efficiency, we would like to assign
every edge to a unique partition. To accomplish this, we use an idea from Reference [10] and
convertG into a multigraph. For any edge (u,v), suppose (u,v) participates in t distinct partitions
of the r -division R (G). We add t copies of (u,v) inG, one for each partition it belongs to. However,
we assign only one of these t copies a cost of c(u,v) and all other copies are assigned a cost of∞.
The r -division R (G) can be seen as an edge-disjoint partition of the multigraph G. Note that any
edge with a cost of∞ will never participate in any augmenting path or any matching maintained
by the algorithm and, therefore, is cosmetic in nature. However, we need these edges to ensure
that the number of holes in the planar embedding remains O (1). From here on, we present our
algorithm by assuming that the edge (u,v) belongs to a unique partition, the one that contains the
copy of (u,v) with its original cost.

In the following, we will define the compressed residual graph and formally introduce planar-
feasible matchings. After that, we will show that we can quickly convert any R-feasible matching
to a planar-feasible matching and vice versa. Finally, we will present the second step of our algo-
rithm that computes an R-optimal matching.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:11

Compressed Residual Graph H : We now describe the compressed residual graph H , which will
guide the execution of each iteration of the second step of our algorithm. For a matching M , let
GM denote the (directed) residual graph with respect to M . Let R (GM) = R (G) be the r -division
ofGM as given by Definition 2.2. Let AF and BF denote the set of free vertices (not matched by M)
of A and B, respectively. Our compressed graph H will be a weighted multi-graph whose vertex set
is VH and the edge set is EH is defined next.

We define the vertex set V H
j and the edge set EH

j for a single partition Rj of the r -division.

The vertex set VH and the edge set EH is simply the union of all the edges and vertices over
all partitions. For every partition Rj , V

H
j contains the boundary vertices Kj . Also, if there is at

least one internal vertex of A (respectively, B) that is free (unmatched), i.e., (Vj \Kj) ∩AF � ∅
(respectively, (Vj \Kj) ∩ BF � ∅), then we create a special vertex aj (respectively, bj) to represent

all vertices in this set inV H
j . We call these two additional vertices for Rj the free internal vertices of

Rj . We setV H
j = Kj ∪ {aj ,bj }, AH

j = (Kj ∩A) ∪ {aj }, and BH
j = (Kj ∩ B) ∪ {bj }. The free vertices

of Rj are represented by BF
j = (BF ∩Kj) ∪ {bj } and AF

j = (AF ∩Kj) ∪ {aj }. The vertex set VH of

H is thus given by VH =
⋃l

j=1V
H
j , BH =

⋃l
j=1 B

H
j , and AH =

⋃l
j=1 A

H
j . The free vertices of H are

given by AF
H
=
⋃l

j=1 A
F
j and BF

H
=
⋃l

j=1 B
F
j .

Next, we define the set of edges EH
j for each partition Rj . For any u,v ∈ V H

j (u � v) there is an

edge from u to v if

(1) u,v ∈ Kj , i.e., u and v are boundary vertices and there is a directed path
−→
P from u to v in

GM that only passes through the edges of Rj . Let
−→
P u,v, j be a minimum net-cost path from

u to v in Rj . We denote this type of edge as a boundary-to-boundary edge.

(2) u = bj ,v ∈ Kj , and there is a directed path
−→
P inGM from some free vertex in BF ∩ (Vj \Kj)

to v that only passes through the edges of Rj . Let
−→
P u,v, j be a minimum net-cost path from

u to v in Rj .

(3) u ∈ Kj , v = aj , and there is a directed path
−→
P in GM from u to some free vertex in AF ∩

(Vj \Kj) that only passes through the edges of Rj . Let
−→
P u,v, j be a minimum net-cost path

from u to v in Rj .

(4) u = bj and v = aj are free vertices and there is a directed path
−→
P in GM from some vertex

in the set BF ∩ (Vj \Kj) to a vertex in the set AF ∩ (Vj \Kj) that only passes through the

edges in Rj . Let
−→
P u,v, j be a minimum net-cost path from u to v in Rj .

We set the weight of (u,v) to beϕ (
−→
P u,v, j). We also refer to this edge (u,v) as an edge of partition

Rj and denote the set of all edges of partitionRj as EH
j . The set of edges ofH is simply EH =

⋃
j E

H
j .

Note that H is a multi-graph, as there can be directed path from u tov in multiple partitions of the
r -division. This completes the description of the compressed residual graph H . See Figure 2 for an
example of the construction of H for a partition.

Planar Feasibility: Next, we will define a planar-feasible matching. First, we decompose the edges
of the matching based on the partition of the r -division they belong to. We denote asMj the edges of

M that belong to partitionRj .M =
⋃l

j=1 Mj . For each partitionRj , we maintain a dual weightyj (v)
for every vertex in v ∈ Vj . These dual weights yj (·) along with Mj form an R-feasible matching.
Additionally, we also store a dual weight ỹ (v) for every v ∈ VH . We say that the dual weights ỹ (·)
are H -feasible if they satisfy the following conditions: For each partition Rj , and for every directed

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:12 M. K. Asathulla et al.

Fig. 2. (a) A partition Rj . The squares represent vertices of B and the circles represent vertices of A. Free

vertices are filled in. (b) The boundary-to-boundary edges of H for Rj . (c) The edges from bj to Kj . (d) The

edges from Kj to aj . (e) There is a single edge from bj to aj .

edge (u,v) ∈ EH
j ,

ỹ (u) + ỹ (v) ≤ ϕ (
−→
P u,v, j) if (u,v) ∈ (BH

j ×AH
j)

−ỹ (u) − ỹ (v) ≤ ϕ (
−→
P u,v, j) if (u,v) ∈ (AH

j × BH
j)

ỹ (u) − ỹ (v) ≤ ϕ (
−→
P u,v, j) if (u,v) ∈ (BH

j × BH
j)

−ỹ (u) + ỹ (v) ≤ ϕ (
−→
P u,v, j) if (u,v) ∈ (AH

j ×AH
j).

As in the Gabow-Tarjan algorithm,

(a) For every vertex v ∈ AH , ỹ (v) ≤ 0 and for every free vertex v ∈ AF
H

, ỹ (v) = 0,

(b) For every vertex v ∈ BH , ỹ (v) ≥ 0 and for every free vertex v ∈ BF
H

, ỹ (v) = ymax , where
ymax = maxv ∈AH∪BH

ỹ (v).

Using (a) and (b), we can restate the H -feasibility conditions more compactly as

|ỹ (u) | − |ỹ (v) | ≤ ϕ (
−→
P u,v, j). (10)

For a planar bipartite graph G, and an r -division R (G), we say that a matching M , a set of dual
weights yj (·) for the vertices of each partition Rj , and a set of dual weights ỹ (·) for the vertices
VH , form a planar-feasible matching if in addition to (a) and (b), the following three conditions are
satisfied:

(c) For every partitionRj , the matchingMj and dual weightsyj (·) form anR-feasible matching,
(d) The dual weights ỹ (·) are H -feasible,
(e) For each partition Rj and anyv ∈ Kj , |ỹ (v) | ≥ |yj (v) |. For every vertex a ∈ (Vj \Kj) ∩AF

(respectively, b ∈ (Vj \Kj) ∩ BF), |yj (a) | = 0 (respectively, yj (b) ≤ ymax).

Note that a boundary vertex has many different dual weights assigned to it, one for each of the
partitions it belongs to. During the course of our algorithm, the magnitudes of the dual weights
of vertices in H may increase. As we do not immediately update the dual weights of all vertices
in G, for some partitions Rj the dual weights yj (·) may not reflect the updated dual weights. This
condition is captured by (e). We refer to any perfect matching that is also a planar-feasible matching

as a planar optimal matching. For any edge (u,v) ∈ EH
j , let the slack sH (u,v) = ϕ (

−→
P u,v, j) − |ỹ (u) | +

|ỹ (v) |. Following our convention, we set H ′ to be a graph identical to H with the weight of every
edge replaced by its slack.

At the end of the first step of our algorithm, we have a matchingM and a set of dual weights that
form an R-feasible matching. In Section 4.1, we describe how we can compute a planar-feasible

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:13

matching from this R-feasible matching M,y (·). At the end of each scale, our algorithm produces a
planar optimal matching. In Section 4.2, we describe how to compute an R-optimal matching from
this planar optimal matching. Using some of the procedures introduced in Sections 4.1 and 4.2, we
describe the second step of our algorithm in Section 4.3.

4.1 Computing a Planar Feasible Matching from an R-feasible Matching

At the end of the first step, we have an R-feasible matching M,y (·) that also satisfies y (u) = 0
for all u ∈ AF and y (v) = ymax for all v ∈ BF . In this section, we will present an algorithm to
compute a planar-feasible matching from this R-feasible matching M and its set of dual weights
y (·). For every vertex v ∈ A ∪ B, and for every partition Rj such that v ∈ Vj , we set yj (v) = y (v).
For every boundary vertexv ∈ K, we set ỹ (v) = y (v). We also set, for every partition Rj , ỹ (aj) = 0
and ỹ (bj) = ymax . Note that, from Lemma 4.1, conditions (a)–(c) and (e) are trivially satisfied. The
next lemma shows that dual weights ỹ (·) satisfy H -feasibility and, therefore, (d) holds.

Lemma 4.2. Consider a matching Mj and a set of dual weights y (·) for a partition Rj such that

Mj ,y (·) is R-feasible. Suppose the dual weights of all vertices of A inVj are non-positive and the dual

weights of all vertices of B inVj are non-negative. For any two vertices u,v ∈ Vj , let the directed path
−→
P u,v, j be a minimum net-cost alternating path from u to v in the residual graph of Rj . Then,

|y (u) | − |y (v) | ≤ ϕ (
−→
P u,v, j). (11)

Furthermore,

ϕ (
−→
P u,v, j) − |y (u) | + |y (v) | =

∑

(a,b)∈−→P u,v, j

s (a,b). (12)

Proof. Let P =
−→
P u,v, j . Asu andv can belong to eitherA or B, we need to consider four possible

cases. We will provide a proof for the case where u ∈ B andv ∈ A. An identical argument will also
hold for the other three cases.

From the definition of net-cost, we have

ϕ (P) =
∑

(a,b)∈P\M
(c(a,b) + δab) −

∑

(a,b)∈P∩M

c(a,b)

=
∑

(a,b)∈P\M
(c(a,b) + δab) −

∑

(a,b)∈P∩M

(y (a) + y (b)).

Since u ∈ B and v ∈ A, both the first and the last edge of P are not in the matching M . Therefore,
we can write the above equation as:

ϕ (P) =
∑

(a,b)∈P\M
(c(a,b)+ δab− y (a)− y (b))+ y (u)+ y (v)

= y (u) + y (v) +
∑

(a,b)∈P\M
s (a,b)

=
∑

(a,b)∈P\M
s (a,b) + |y (u) | − |y (v) |.

The last equality holds from the fact that dual weight of u is non-negative and the dual weight
of v is non-positive. �

Using a similar argument, we can extend Lemma 4.2 to the entire graph leading to the following:

Lemma 4.3. Consider a matching M and a set of dual weights y (·) on the vertices of G (A ∪ B,E)
such thatM,y (·) isR-feasible. Suppose all vertices ofA have a non-positive dual weight and all vertices

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:14 M. K. Asathulla et al.

of B have a non-negative dual weight. For any two vertices u,v ∈ A ∪ B, let the directed path
−→
P u,v be

a minimum net-cost path from u to v in GM . Then,

|y (u) | − |y (v) | ≤ ϕ (
−→
P u,v).

Furthermore,

ϕ (
−→
P u,v) − |y (u) | + |y (v) | =

∑

(a,b)∈−→P u,v

s (a,b).

Using the following lemma, we will provide an efficient procedure called Construct to compute
all the edges of the compressed residual graph H . After that, we describe the data structures in
which we store these edges.

Lemma 4.4. Let R′j be a directed graph identical to the directed graph Rj except that the cost of an

edge (a,b) is the slack s (a,b). Then, for a partition Rj and any two vertices u,v in Vj , the minimum

net-cost directed path
−→
P u,v, j from u to v in Rj is also the minimum-cost directed path between u and

v in R′j . Furthermore, we can derive ϕ (
−→
P u,v, j) from the dual weights y (u), y (v) and the cost of the

shortest path in R′j .

Proof. We highlight our argument for the case where u ∈ B andv ∈ A; the argument for every
other case is identical.

For any directed path P betweenu andv , sinceu ∈ B andv ∈ A and, from the proof of Lemma 4.2,
we know that

ϕ (P) =
∑

(a,b)∈P\M
s (a,b) + y (u) + y (v). (13)

This is true for every path P from u tov . Furthermore, the dual weights y (u) and y (v) in the above
equation are the same for any path P . Therefore, we conclude that the minimum net-cost path will
also be the minimum-cost path betweenu andv in R′j . Let P∗ be this minimum net-cost path. Since

P∗ also satisfies Equation (13), the sum of the slacks of the edges on the path P∗ along with y (u)
and y (v) will give us the minimum net-cost between u and v . �

For the rest of the algorithm, we define the slack on any directed edge (u,v) ∈ EH
j to be

ϕ (
−→
P u,v, j) − |ỹ (u) | + |ỹ (v) |. From Lemma 4.4, it follows that slack of the edge (u,v) is non-negative

and exactly equal to
∑

(a,b)∈−→P u,v, j
s (a,b), provided that the first vertex û of

−→
P u,v, j has yj (û) = ỹ (u)

and the last vertex v̂ of
−→
P u,v, j hasyj (v̂) = ỹ (v). Following our convention, we useH ′ to denote the

compressed residual graph with the same edge set as H but with the edge weights being replaced
with their slacks.

Our initial choice of ỹ (·) is H -feasible. To assist in the execution of the second step of our algo-
rithm, we explicitly compute the edges of H and store them and their slacks in a data structure.
This data structure will assist us in the fast execution of Dijkstra’s algorithm on H ′.

Using Lemma 4.4 the Construct procedure will, for any partition Rj of the r -division of GM ,

compute the edges of EH
j in O (r log r) time.

The Construct Procedure: This procedure takes a partition Rj of GM as input and constructs

the edges of EH
j . We assume the matching Mj and the dual weights yj (·) are R-feasible. Let R′j

be a graph identical to Rj , where each edge has a cost equal to its slack as defined by the current

dual assignment yj (·). We note that all edges in R′j are non-negative. Since the dual assignment is

feasible with respect to Mj , we know by Lemma 4.4 that the path of minimum net-cost between

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:15

two vertices is also the path of minimum total slack in R′j . Therefore, it is sufficient to compute

the shortest path lengths in R′j and use Equation (12) to compute the net-cost of the minimum

net-cost path in constant time. We will describe how to compute the shortest paths in R′j .
Recollect that there are four types of edges in EH

j . We first explain how to compute the boundary-

to-boundary edges (u,v) ∈ EH
j ; that is, (u,v) ∈ Kj ×Kj . We construct a multiple-source shortest

paths data structure described in Reference [11] on R′j in O (|Vj | log |Vj |) = O (r log r) time. This

structure can answer the following query in O (log |Vj |) = O (log r) time: Given any vertex s in Vj ,
and a vertex t on a distinguished face of R′j , what is the shortest s to t distance in R′j ? Using this,

we can obtain the boundary-to-boundary edges of Rj by simply querying this data structure and
using Equation (12). We note that the boundary vertices may be located at O (1) different holes;
for each such hole H , we build a multiple source shortest paths data structure with H as the
distinguished face. By querying this data structure, we can obtain all the boundary-to-boundary
edges from vertices ofH to the boundary vertices not inH . Since there are a constant number of
holes that contain all the boundary vertices of each partition, this will not increase the asymptotic
complexity. To compute the other edges of EH

j , we execute Dijkstra’s algorithm three times. Let

R′′j be a graph where every edge of R′j is reversed. The first execution of Dijkstra’s algorithm is

on R′j starting from the vertices of BF ∩ (Vj \Kj) to all vertices of Kj . For any vertex v ∈ Kj ,

since the dual weight of every vertex BF ∩ (Vj \Kj) is the same, the cost ϕ (
−→
P bj ,v, j) can be simply

computed using Lemma 4.4. Similarly, the second execution of Dijkstra’s algorithm is onR′′j where

we find distance to every vertex v ∈ Kj from some AF ∩ (Vj \Kj) and compute ϕ (
−→
P v,aj , j). The

final edge from bj to aj can be computed by simply executing Dijkstra’s algorithm starting from
the vertices of BF ∩ (Vj \Kj) and compute the shortest path cost to any point in AF ∩ (Vj \Kj).
Since the dual weights of every free vertex of BF ∩ (Vj \Kj) is identical, and the dual weights of

every free vertices of AF ∩ (Vj \Kj) is 0, using Lemma 4.4, we can obtain the weight ϕ (
−→
P bj ,aj , j).

Together, these three executions of Dijkstra’s algorithm will compute the remaining edges of EH
j .

The total time taken to compute all the edges of EH
j is O (r log r).

Monge Property of the Boundary-to-boundary Edge Costs: We say that any matrix M satisfies the
Monge property if for any i < i ′ and j < j ′, Mi, j +Mi′, j′ ≤ Mi, j′ +Mi′, j . Multiple previous results
described how to decompose the boundary-to-boundary edge costs of a partition Rj into matrices
with the Monge property [5, 10, 15]. We will briefly provide the intuition for any partition Rj

where there are no holes; see Reference [10] for a detailed description on how cases involving
holes are handled. Suppose all the boundary vertices Kj are on the infinite face. We can partition
the boundary-to-boundary edges into ordered bipartite groups. The first two groups are simply
formed by dividing any clockwise ordering of all the boundary vertices into two equal parts (we
refer to the first half as the left side and the second half as the right side). Now, we create a group
containing all edges going from a vertex in the left side to a vertex in the right side. We also
create another group to represent all the edges going from a vertex in the right side to the left
side. To capture the edges that go between two vertices of the left (respectively, right) side, we
simply recursively divide the left (respectively, right) partition into two sets of equal sizes and
again capture all the edges that go between them. Note that any boundary vertex participates in
at most O (log r) groups within a partition. Also, if we represent the edge-costs of any bipartite
group as a matrix, then this matrix satisfies the Monge property.

Preprocessing the boundary-to-boundary edges: For the sake of our algorithm, it is useful to build
a data structure to store the boundary-to-boundary edges and their slacks in the ordered bipartite

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:16 M. K. Asathulla et al.

Fig. 3. (a) A division of the boundary vertices of a partition into O (logn) bipartite groups. (b) Let d (u,v) be

the shortest path distance within the partition from u to v . The shortest path from vi to v ′j and the shortest

path from v ′i to vj must cross at a vertex x . (c) The Monge property within a bipartite group. Mi, j +Mi′, j′ ≤
Mi′, j +Mi, j′ .

groups described above. For each ordered bipartite group, we have a cost matrixM. For any edge

(u,v) ∈ EH
j that participates in the bipartite group, we store its cost, i.e., ϕ (

−→
P u,v, j), in the cost

matrix. Note that the slack, ϕ (
−→
P u,v, j) − |y (u) | + |y (v) | of any edge can be computed in O (1) time

given its cost and the dual weights of its end vertices. Thus, we can implicitly represent a matrix
M′ based onM with slacks as costs. As shown in Reference [5], shortest path distances in planar
graphs between vertices of the ordered bipartite groups satisfy the Monge-property (see Figure 3).
From Lemma 4.2, the slack on any edge (u,v) ∈ EH

j is the length of the shortest path from u to

v in R′j , meaning M′ also satisfies the Monge property. In the Construct procedure, we build

the Monge matrix range-minimum data structure (described in Reference [10]) on the slack matrix
M′ in time O (

√
x logx) where x is the number of vertices in the bipartite group. For any vertex

v on the left, and any interval of nodes on the right, this data structure can answer the query,
what is the minimum edge from v to a vertex in the interval within the group? The Monge matrix
range-minimum data structure in conjunction with the bipartite groups can be used to execute
Dijkstra’s algorithm on H ′ quickly, which helps us compute a minimum net-cost augmenting path
in H efficiently.

Lemma 4.5. Given an R feasible matching Mj , yj (·), the Construct procedure builds the edges

of EH
j in O (r log r) time. In addition, it stores the boundary-to-boundary edges in ordered bipartite

groups in O (r log r) time where the edge cost matrix for each group satisfies the Monge property. It

also builds a Monge-matrix range minimum data structure on the slacks of the boundary-to-boundary

edges of EH
j for every bipartite group of Rj in O (

√
r log2 r) time.

Corollary 4.6. Let M , y (·) be the R-feasible matching computed at the end of the first step of our

algorithm. Given M , y (·), we can use the Construct procedure to compute the graph H inO (n log r)
time.

Using these data structures, one can compute shortest path between a vertex b ∈ BF
H

to a vertex

a ∈ AF
H

in H ′ using the following algorithm nearly identical to the one presented in Reference [10]

inO ((n/
√
r) log r logn) time. The algorithm also computes the distance cv to a vertexv ∈ VH from

an arbitrary vertex of BF
H

.

• In the first step, the algorithm finds the distance from bj to every boundary vertex of Kj

within R′j . The minimum net-cost paths have corresponding edges explicitly pre-computed

in H , and their slacks can each be computed in O (1) time. For each boundary vertex v , we

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:17

set cv = minRj ∈R, (bj ,v)∈EH
j
sH (bj ,v) as the initial shortest-path distance estimate from a free

vertex. This takes O (
√
r) per partition and a total of O (n/

√
r) time for the entire graph H ′.

• In the second step, the algorithm executes an implementation of Dijkstra’s algorithm given
by Fakcharoenphol and Rao [5], which uses the bipartite groups and range-minimum query
data structures. Dijkstra’s algorithm uses the initial distance estimates cv for each vertex
v ∈ K. The algorithm updates the value cv to reflect the minimum distance from any free
vertex of B to v . Fakcharoenphol and Rao have shown how to execute such a procedure
in O ((n/

√
r) log r logn) time3 by efficiently computing the next edge to add to the shortest

path tree. For a description of their algorithm, see the appendix of Reference [10].
• In the third step, we set the shortest path distance to every free internal vertex aj as

caj
= minRj ∈R, (u,aj)∈EH

j
cu + sH (u,aj). As in step one, the net-costs of such paths are pre-

computed in H , and the slacks can be computed in O (1) time.
• Letα be the vertexa ∈ AF

H
with minimum ca . We return the path toα inH ′. We can compute

this path from the shortest path tree in O (n/
√
r) time.

Therefore, we obtain the following lemma:

Lemma 4.7. Given the edges of H stored in ordered bipartite groups along with a Monge-matrix

range minimum data structure built on the slack matrix for each group, one can compute the shortest

path (in terms of slack) between any free vertex of BF
H

to any free vertex ofAF
H

inO ((n/
√
r) log r logn)

time.

4.2 Computing an R-feasible Matching from a Planar Feasible Matching

Recollect that an R-feasible matching was obtained at the end of the first step of our algorithm. In
the previous section, we described how we can compute a planar-feasible matching from this R-
feasible matching. The second step of our algorithm will compute a planar optimal matching from
this planar-feasible matching. At the end of each scale, however, we desire an R-optimal matching.
In this section, we describe how to convert any planar optimal matching to anR-optimal matching
in O (n log r) time. In fact, we will show that any planar-feasible matching can be converted into
an R-feasible matching.

To assist with the presentation, for certain vertices of G, we define their representative in H as
follows: For any vertex v ∈ Kj ∪ (Vj ∩ (AF ∪ BF)), if v ∈ Kj , then the representative v ′ in H will

be the same boundary vertex inV H
j , and ifv is a free internal vertex of A (respectively, B), then its

representative v ′ in H will be aj (respectively, bj).
In a planar-feasible matching, any boundary vertex or free internal vertex can have multiple dual

weights, one corresponding to each of the partitions it belongs to. In addition, its representative in
H also has a dual weight. We introduce a synchronization procedure (called Sync) that will take a
planar-feasible matching along with a partition Rj and update the dual weights yj (·) so the new
dual weightsyj (·) and the matchingMj = M ∩ Ej continue to beR-feasible and for every boundary
vertex and free internal vertex v ∈ Kj , yj (v) = ỹ (v ′) where v ′ is the representative of v in H . We
can convert a planar-feasible matching into an R-feasible matching by repeatedly invoking this
procedure for every partition.

The Sync procedure is implemented as follows:

• Recollect that the graph R′j is a graph identical to Rj with slacks as the edge costs. First,

temporarily add a new source vertex s to R′j . Let Bin denote all vertices of B ∩Vj that

are matched inside Rj and let Ain be the matches of vertices in Bin . For any vertex

3A recent result by Reference [8] improves this time by a factor of log log n.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:18 M. K. Asathulla et al.

v ∈ Kj ∪ (Vj ∩ (AF ∪ BF)), if v � Bin , we add a directed edge from s to v . Otherwise, if
v ∈ Bin , then letu ∈ Ain be its match inMj . We add a directed edge from s tou. Consider any

v ∈ Kj ∪ (Vj ∩ (AF ∪ BF)) and its representative v ′ ∈ V H
j . For any such boundary or free

internal vertex v , let κv = |ỹ (v ′) | − |yj (v) |, and let κ = maxv ∈Kj∪(Vj∩(AF∪BF)) κv . If v � Bin ,
then set the weight of the newly added edge from s to v to κ − κv . Otherwise, if v ∈ Bin ,
then set the weight of the edge from s tou to κ − κv . This new graph has only non-negative
edge costs.

• Execute Dijkstra’s algorithm on this graph beginning from the source vertex s . Let �v be
the length of the shortest path from s to v as computed by this execution of Dijkstra’s
algorithm. For each vertex v ∈ Vj , if �v ≥ κ, then do not change its dual weight. Otherwise,
if v ∈ B ∩Vj , then set the new dual weight to be yj (v) ← yj (v) + κ − �v and if v ∈ A ∩Vj ,
then set its new dual weight to be yj (v) ← yj (v) − κ + �v .

This completes the description of the Sync procedure. The Sync procedure executes Dijkstra’s
algorithm on R′j with an additional vertex s and updates the dual weights of all the O (r) vertices.

The total time taken for this is O (r log r). To prove the correctness of this procedure, we have to
show the following:

(1) For any vertex v ∈ Kj ∪ (Vj ∩ (AF ∪ BF)) and its representative v ′ ∈ V H
j , the dual weight

after the execution of Sync procedure, ỹ (v ′) is equal to yj (v).
(2) The new dual weights yj (·) along with the matching Mj form an R-feasible matching.

Lemma 4.8. At the end of the Sync procedure, both (1) and (2) hold.

Proof. Let us denote the dual weights before and after applying the Sync procedure as y ′j (·)
and yj (·), respectively. Consider anyv ∈ Kj ∪ (Vj ∩ (AF ∪ BF)). Recall the definition of the repre-
sentative of v in H . Either (i) v � Bin or (ii) v ∈ Bin .

In case (i), letv ′ be the representative ofv inH . We will show that the shortest path from s tov in
R′j is the edge (s,v). Given this, ifv ∈ A, �v = κ − y ′j (v) + ỹ (v ′) andyj (v) = y ′j (v) − κ + �v = ỹ (v ′).
Similarly, ifv ∈ B, �v = κ + y

′
j (v) − ỹ (v ′) andyj (v) = y ′j (v) + κ − �v = ỹ (v), as desired. Therefore,

for case (i), it suffices to show that the shortest path from s to v is the edge (s,v); we show this
next. For the sake of contradiction, let the shortest path from s to v be strictly less than the cost
of the edge (s,v). Let P be this shortest path from s to v and let v̂ be the first vertex that appears
on P after s . By construction, v̂ ∈ Kj ∪ (Vj ∩ (AF ∪ BF)) and let v̂ ′ be the representative of v̂ in H .
Let P ′ be the sub-path of P with the vertex s removed, i.e., P ′ is a path from v̂ to v . By the optimal
substructure property of shortest paths, P ′ has to be the smallest slack path from v̂ to v in R′j .
We know that the cost of P in R′j is (κ − |ỹ (v̂ ′) | + |y ′j (v̂) |) +∑(a,b)∈P ′ s (a,b). Since the cost of P is

smaller than the cost of the edge from s to v , we have

κ− |ỹ (v ′) |+ |y ′j (v) |> κ−|ỹ (v̂ ′) | + |y ′j (v̂) |+
∑

(a,b)∈P ′

s (a,b),

|ỹ (v̂ ′) | − |ỹ (v̂) |> |y ′j (v ′) | − |y ′j (v) | +
∑

(a,b)∈P ′

s (a,b) = ϕ (P ′).

The last statement follows from the fact that P ′ is the minimum slack path fromv ′ tov and since the
matching Mj and dual weights y ′j (·) form an R-feasible matching. The above inequality, |ỹ (v̂ ′) | −
|ỹ (v̂) | > ϕ (P ′), contradicts the H -feasibility condition.

In case (ii), let u ∈ Ain be the match of v and let v ′ be the representative of v in H . Using a
proof similar to case (i), one can show that the shortest path from s to v is the path 〈s,u,v〉. Since
(u,v) is an edge in the matching Mj , (u,v) has a cost of 0 in R′j . So, the shortest path cost from

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:19

s to v is equal to the cost of the edge (s,u), i.e., �u = κ − y ′j (v) + ỹ (v ′) and the new dual weight

yj (v) = y ′j (v) − κ + �v = ỹ (v ′). Thus, we have shown that at the end of Sync procedure, (1) holds.

To prove (2), we need to show that the matching Mj along with the new dual weights yj (·) are
R-feasible. We show this for the two cases (i) (a,b) ∈ Mj and (ii) (a,b) ∈ Ej \Mj separately. For
case (i), from R-feasibility of Mj and y ′j (·), y ′j (a) + y ′j (b) = c(a,b). We note that by construction

of R′j (that includes s) b has exactly one incoming edge from a to b. From R-feasibility, the slack

on the edge from a to b edge is 0. Therefore, �a = �b . So, the dual weights as updated by the Sync
procedure satisfy

yj (a) + yj (b) = y ′j (a) − κ + �a + y ′j (b) + κ − �b = c(a,b),

implying that (a,b) satisfies condition (6).
For case (ii), the edge (a,b) is not in the matching Mj , and, therefore, the edge is directed from

b to a. Consider if a ∈ Kj ∪ ((Vj \Kj) ∩ (AF ∪ BF)). The shortest path cost from s to a satisfies
�a ≤ �b + s (a,b); otherwise, there would be a shorter path to a through b. Since Mj and y ′j (·) are

R-feasible, we have y ′j (a) + y ′j (b) + s (a,b) = c(a,b) + δab . Therefore, the dual weights as updated

by the Sync procedure satisfy

yj (a) + yj (b) = y ′j (a) − κ + �a + y ′j (b) + κ − �b
= y ′j (a) + y ′j (b) + �a − �b
≤ y ′j (a) + y ′j (b) + s (a,b)

= c(a,b) + δab ,

implying that every non-matching edge (a,b) satisfies the R-feasibility condition (5).
Therefore, the matching Mj and the new dual weights yj (·) are R-feasible completing the proof

of (2). �

Given the correctness of the Sync procedure, we can convert a planar-feasible matching into an
R-feasible matching by simply applying the Sync procedure to all the partitions. This will guar-
antee that the dual weight of any vertex v ∈ A ∪ B is the same across all partitions it participates
in and also equal to the dual weight of its representative in H if one exists. Let y (v) be this dual
weight. Every edge (u,v) of the graphG belongs to some partition in the r -division R (G) and so it
must be R-feasible. Therefore, the matchingM along with the dual weightsy (·) form an R-feasible
matching. Also note that every free vertex v ∈ AF will have a dual weight y (v) = 0 and every free
vertex v ∈ BF will have a dual weight y (v) = ymax . This follows from (1), and the fact that the
input to Sync is a planar-feasible matching.

Lemma 4.9. Given a planar-feasible matching M , we can convert it into an R-feasible matching

M with a set of dual weights y (·) in O (n log r) time. Furthermore, for every a ∈ AF , y (a) = 0 and for

every b ∈ BF , y (b) = ymax .

4.3 Second Step of the Algorithm

In this section, given a planar-feasible matching with O (n/
√
r) free vertices, we show how to

compute a planar optimal matching in O ((n2/r + n
√
r) log r logn) time. Our algorithm will then

convert the planar optimal matching into an R-optimal matching in timeO (n log r), by Lemma 4.9.
The second step of our algorithm will consist of multiple phases. In each phase, the size of the
matching will increase by one while maintaining planar feasibility. Recall that H ′ is the graph
identical to H with slacks as the edge cost. We will execute the following during each phase:

(i) Compute the shortest path distance cv , to every v ∈ VH from some free vertex of BF
H

using Lemma 4.7. Let α = arg minv ∈AF
H

cv and let P be this shortest path to α .

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:20 M. K. Asathulla et al.

(ii) Let T be the set of vertices v ∈ VH such that cv ≤ cα . For every vertex v ∈ T ∩ BH , we
increase the dual weight ỹ (v) ← ỹ (v) + cα − cv , and for every vertex v ∈ T ∩AH , we
decrease the dual weight ỹ (v) ← ỹ (v) − cα + cv . Note that in either case, this results in
an increase in the magnitude of ỹ (v).

(iii) Execute the Augment procedure (described below). This procedure will augment the
matching while maintaining planar feasibility.

(iv) (i)–(iii) will change ỹ (·) and, therefore, also the slack on the edges of H ′. Thus, the al-
gorithm rebuilds the Monge matrix range minimum data structure for every partition
in R (G). By using Lemma 4.5, this can be done in O (

√
r log2 r) time per partition and

O ((n/
√
r) log2 r) time in total.

Step 2(i) and Step 2(ii) modify the dual weight of vertices in H . Lemma 5.1 shows that this modi-
fication does not violate H -feasibility. In Lemma 5.2, we show that, after execution of Step 2(ii) the
edges of P will have zero slack with respect to ỹ (·). Next, we will describe the details of Augment
procedure.

Augment Procedure: After executing Step 2(ii), we have a path P in H and a set of H -feasible
dual weights ỹ (·) such that all edges in P have zero slack. Now, we need to use P to augment the
matching. Let b be the first vertex of P and let a be the last vertex of P . For any edge (u,v) on the
path P , if (u,v) is an edge of EH

j , then we refer to Rj as an affected partition. Let A be the set of

all such affected partitions. We execute the following operations during the Augment procedure:

(a) Call the Sync procedure on every affected partition Rj ∈ A. This procedure will update
the dual weights yj (·).

(b) For any edge (u,v) ∈ P , suppose (u,v) is an edge in EH
j . Project (u,v) to obtain the path

−→
P u,v, j . This can be done by executing a BFS on the admissible graph of the partition

Rj . Combine all the projections and obtain an augmenting path
−→
P of admissible edges in

the residual graph GM . Next, augment the matching M along
−→
P . Augmenting the match-

ing will change the residual graph of every affected partition Rj ∈ A. Lemma 5.3 shows

that
−→
P u,v, j consists of admissible edges with respect to Mj , yj (·) after the call to Sync.

Lemma 5.4 shows that
−→
P is a simple path, i.e., it has no self-intersections.

(c) For any vertexv ∈ A ∩ −→P , letu be the vertex to whichv is matched after the augmentation.
Setyj (v) ← yj (v) − δuv for all partitionsRj ∈ A that containv . Ifv ∈ AH ∩ P andv � aj′ ,
then set ỹ (v) ← ỹ (v) − δuv . Lemma 5.5 shows that after this operation, for every affected
partition Rj , the matching Mj and yj (·) is R-feasible. Lemma 5.6 shows that after this
operation, ỹ (·) continues being H -feasible.

(d) Call the Construct procedure on every affected partition Rj to rebuild the edges ofH for
each affected partition. Due to the augmentation, there may be several new edges added
to H and several other edges whose costs have changed. We refer to the set E of these
edges as the affected edges of H .

5 ANALYSIS OF THE ALGORITHM

5.1 Correctness

In this section, we show that the matching the algorithm maintains is planar-feasible at the end
of each phase of the second step. We also show that the augmenting path computed in each phase
is a simple path. Since there are only O (n/

√
r) unmatched vertices after the first step of the algo-

rithm, it will conductO (n/
√
r) phases, where each phase increases the size of the matching by one.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:21

Therefore, after O (n/
√
r) phases, we will have a planar optimal matching. By Lemma 4.9, a planar

optimal matching can generate an R-optimal matching by use of the Sync procedure.

Overview of the Correctness Proof: To prove that the matching generated at the end of each phase
is planar-feasible, we must show conditions (a)–(e) of planar feasibility are satisfied. Lemma 5.8
shows that conditions (a) and (b) of planar feasibility hold at the end of every phase. Condition
(c) requires R-feasibility of every partition at the end of each phase. We show, in Lemma 5.5, that
condition (c) holds. To show that condition (d) holds, we have to establish that the dual weights ỹ (·)
are H -feasible at the end of each phase. In each phase, Step 2(i), Step 2(ii), and the Augment pro-
cedure modify the dual weights ỹ (·) of H . Lemma 5.1 will show that the modifications by Step 2(i)
and Step 2(ii) do not violate H -feasibility. In Lemma 5.6, we show that the Augment procedure
does not violate the H -feasibility and condition (d) holds. Finally, we establish that condition (e)
holds at the end of each phase in Lemma 5.7. Together, these lemmas prove that we maintain a
planar-feasible matching at the end of each phase.

Also, Lemma 5.4 and Lemma 5.2 show that the augmenting path computed by the algorithm in
each phase does not have any self-intersections.

Lemma 5.1. Let us assume the dual weights ỹ (·) are H -feasible prior to an execution of Step 2(ii).

After executing Step 2(ii), ỹ (·) remains H -feasible.

Proof. We show that after the execution of Step 2(ii), for every directed edge (u,v) in EH
j ,

|ỹ (u) | − |ỹ (v) | ≤ ϕ (
−→
P u,v, j). (14)

Let ỹ0 (·) be the dual weights prior to executing Step 2(ii). Initially, we have that,

|ỹ0 (u) | − |ỹ0 (v) | + sH (u,v) = ϕ (
−→
P u,v, j).

Additionally, Step 2(i) produces a distance assignment c such that for the directed edge (u,v),

cu + sH (u,v) ≥ cv . (15)

Recall that for any vertex v ∈ VH , cv is the minimum distance in H ′ to v from some vertex of BF
H

.

Let α be the vertex v ∈ AF
H

with minimum cv . Let T be the set of vertices v for which cv ≤ cα . We
consider four cases:

(1) u ∈ T, v ∈ T. We increase the magnitude of ỹ (u) by cα − cu and increase the magnitude of
ỹ (v) by cα − cv . Thus, we have,

|ỹ (u) | − |ỹ (v) | ≤ (|ỹ0 (u) | + cα − cu) − ((|ỹ0 (v) | + cα − cv) (16)

≤ (|ỹ0 (u) | − |ỹ0 (v) |) + (cv − cu).

Combining inequality (15) with inequality (16) yields,

|ỹ (u) | − |ỹ (v) | ≤ |ỹ0 (u) | − |ỹ0 (v) | + sH (u,v)

= ϕ (
−→
P u,v, j),

and inequality (14) holds.
(2) u ∈ T, v � T. |ỹ (u) | = |ỹ0 (u) | + cα − cu and |ỹ (v) | = |ỹ0 (v) |. Since v � T, cα < cv , and,

therefore, cα − cu < cv − cu . From inequality (15), we have that cv − cu ≤ sH (u,v). There-
fore,

|ỹ (u) | − |ỹ (v) | < |ỹ0 (u) | − |ỹ0 (v) | + sH (u,v)

= ϕ (
−→
P u,v, j),

and inequality (14) holds.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:22 M. K. Asathulla et al.

(3) u � T, v ∈ T. In this case, |ỹ (u) | = |ỹ0 (u) | and |ỹ (v) | ≥ |ỹ0 (v) |. Therefore,

|ỹ (u) | − |ỹ (v) | ≤ |ỹ0 (u) | − |ỹ0 (v) | + sH (u,v)

= ϕ (
−→
P u,v, j),

and inequality (14) holds.
(4) u � T, v � T. In this case, ỹ (u) = ỹ0 (u) and ỹ (v) = ỹ0 (v). Therefore, inequality (14)

holds. �

Lemma 5.2. Let P be the path found in H during Step 2(i). Then after Step 2(ii), all edges in P have

zero slack.

Proof. We show that for any edge (u,v) ∈ P ,

|ỹ (u) | − |ỹ (v) | = ϕ (
−→
P u,v, j).

Since (u,v) is part of the shortest path, it must be true that cu + sH (u,v) = cv . We increase the
magnitude of ỹ (u) by cα − cu and we increase the magnitude of ỹ (v) by cα − cv . Thus, |ỹ (u) | −
|ỹ (v) | increased by sH (u,v). Since the matching Mj is R-feasible, by Lemma 4.2, prior to Step 2(ii),

we have |ỹ (u) | − |ỹ (v) | + sH (u,v) = ϕ (
−→
P u,v, j). Therefore, after Step 2(ii), we have |ỹ (u) | − |ỹ (v) | =

ϕ (
−→
P u,v, j). �

The following lemma shows that the edges of an augmenting path are admissible prior to aug-
mentation:

Lemma 5.3. After the execution of the Sync procedure on all partitions in A, for every partition

Rj ∈ A, any edge (u,v) ∈ −→P ∩ Ej is admissible with respect to Mj ,yj (·). Here
−→
P is the augmenting

path computed in part (b) of the Augment procedure.

Proof. Let P be the path found in H in Step 2(i). By Lemma 5.2, all edges in P have zero slack
with respect to the dual weights in H . In part (a), we call the Sync procedure on every Rj ∈ A,
which, by Lemma 4.8, creates a matching Mj and dual weights yj (·) that are both feasible and
synchronized with the weights ỹ (·) in H . Since the dual weights of H did not change during the
Sync procedure, for any edge (u,v) ∈ EH

j , (u,v) still has zero slack, i.e., |ỹ (u) | − |ỹ (v) | = |yj (u) | −
|yj (v) | = ϕ (

−→
P u,v, j). So, by Lemma 4.2, the sum of slacks on all edges of

−→
P u,v, j , for every (u,v) ∈

P , must be zero. Since slacks are non-negative, every edge in
−→
P u,v, j must have zero slack and,

therefore, be admissible. �

By our construction of H , any path through H maps to a path in GM . The augmenting path

P found in H is a simple path, but it is conceivable that the corresponding projection
−→
P is not.

However, the following lemma shows that
−→
P is in fact a simple path:

Lemma 5.4. Let P be a path found in H during Step 2(i) of the algorithm and let
−→
P be the projection

of P onto GM (computed in part (b) of the Augment procedure). Then,
−→
P is a simple path, i.e.,

−→
P has

no self-intersections.

Proof. We show that our algorithm never introduces a cycle of admissible edges in GM . Since

the path
−→
P chosen by our algorithm consists only of admissible edges,

−→
P is a simple path.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:23

The first step of our algorithm executes O (
√
r) iterations of the Gabow-Tarjan algorithm. The

Gabow-Tarjan algorithm never creates any cycle of admissible edges [7, Lemma 2.3]. Therefore, af-
ter the first step of our algorithm, the algorithm has a 1-feasible matching M and dual weights y (·)
with no cycle of admissible edges. The admissibility conditions for a 1-feasible matching are dif-
ferent from the admissibility conditions for an R-feasible matching. However, given any 1-feasible
matching, an edge that is not admissible is also not admissible as defined for R-feasibility. There-
fore, there is no cycle of admissible edges with respect to the R-feasible matching M and y (·). The
algorithm converts this R-feasible matching into a planar-feasible matching and constructs the
compressed residual graph H . At the start, H will not have any cycle consisting only of zero slack
edges, simply because the projection of any such cycle would form a cycle of admissible edges in
the residual graph GM .

Note that during any phase of the algorithm, if the path
−→
P computed contains a cycle

−→
C of

admissible edges (in GM), then either (1)
−→
C contains edges of only one partition or (2)

−→
C contains

edges from more than one partition. We present our proof for case (2). The proof for case (1) uses

similar arguments but is significantly simpler. In case (2), the boundary vertices on
−→
C partition the

cycle into paths where each path is between two successive boundary nodes. We can construct a

cycle C in H by replacing this path between two successive boundary nodes in the cycle
−→
C with

a directed edge of H between them. Before augmentation along
−→
P , due to execution of the Sync

procedure, the dual weight y (v) of any boundary vertex and ỹ (v ′) of its representativev ′ in H are

the same. Since all the edges of
−→
C are admissible, from Lemma 4.2, the slack on the edges of C is

zero. Therefore, to show that case (2) does not occur, it suffices to show that during the course of
the algorithm, H does not have any cycle consisting of only zero slack edges.

As already claimed, after the first step of the algorithm, H does not contain any cycle of zero
slack edges. The dual weights of H change in either step 2(ii) or in the Augment procedure. We
will argue that neither of these steps will create a cycle consisting only of zero slack edges.

Using a proof by contradiction, we show that step 2(ii) cannot create a zero slack cycle in H . For
the sake of contradiction, consider some phase of the algorithm such that a cycleC ′ has a non-zero
slack at the start of the phase but has only zero slack edges at the end of the phase. In step 2(i), we
compute shortest distance from vertices of BH

F
to every vertex in H , including all vertices onC ′. If

all the vertices ofC ′ have the same shortest path distance, then the change in the magnitude of the
dual weights of all these vertices will be the same and, therefore, the slack on every edge remains
the same, implying that not all the edges of C ′ are zero slack at the end of Step 2(ii). Therefore,
we can assume that at least one vertex on the cycle C ′ has a distance that is different from other
vertices onC ′. Note that when the shortest path distances to vertices ofC ′ are different, then there
will be at least one edge of the cycleC ′ from a vertexu to a vertexv such that the shortest distance
to u as computed by step 2(i) is greater than the shortest distance to v . In this case, the magnitude
of the dual weight of v changes by a larger value than the magnitude of the dual weight of u and,
therefore, the slack on the edge (u,v) strictly increases. This implies thatC ′ will have at least one
edge with a non-zero slack at the end of Step 2(ii). So, step 2(ii) will not introduce a cycle that
consists only of zero slack edges in H .

The Augment procedure may introduce new edges and change the costs of some edges inH . We
divide this set of affected edges E into two groups. Edges of the first group are affected edges that
are directed from some vertex u ∈ AH ∩ P to v (P is the path found by Step 2(i)). The remaining
edges in the affected set are of the second type. As we show in Lemma 5.6, all edges of the first
type have a slack of at least zero, and edges of the second type will have a slack of at least 1. So,
these affected edges of the second group do not create a cycle of zero slack edges in H . For any

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:24 M. K. Asathulla et al.

affected edge (u,v) in the first group, we show that every incoming edge tou has a slack of at least
1. This is because, after augmenting the matching, we increase the magnitude of the dual weight
of u (equivalently, since u ∈ AH , reducing the dual weight of u), we guarantee that all edges of
the residual graph that enter u have a slack of at least 1. So, although an affected edge of type 2
(u,v) can have zero slack in H , since all incoming edges to u in H have a slack of at least 1, it
cannot participate in a cycle containing only zero slack edges. Therefore, at the end of this phase,
there is no cycle in H containing only zero slack edges, leading to a contradiction. Hence, case

(2) will never occur. Since both (1) and (2) cannot occur, the path
−→
P will not contain any cycle of

admissible edges, i.e.,
−→
P is a simple path. �

We note that the matchings Mj and the dual weights yj (·) only change during Step 2(iii) of the
algorithm; that is, during Augment. The following lemma argues that the Augment procedure
does not violate R-feasibility in any Rj for which Mj or yj (·) was modified. Therefore, planar
feasibility condition (c) is satisfied.

Lemma 5.5. After the Augment procedure, for any affected partition Rj , the matching Mj and the

dual weights yj (·) form an R-feasible matching.

Proof. Let
−→
P be the augmenting path that the algorithm augments along. By Lemma 5.3, the

Sync procedure produces an R-feasible Mj , yj (·) for every affected partition where the edges of
−→
P are admissible. We will show that the edges of

−→
P are feasible after augmentation.

After augmentation, for any v ∈ A ∩ −→P , let u be the vertex to which v is matched. Then, we
reduce yj (v) by δuv for each Rj ∈ A. First consider any edge (u,v) � Mj . Prior to augmentation,
(u,v) was an admissible edge in the matching, so yj (u) + yj (v) = c (u,v). The reduction of the
dual weight of v only decreases the sum yj (u) + yj (v), meaning the feasibility condition in (5)
is satisfied. However, we must still show that condition (6) is satisfied for all edges (u,v) ∈ Mj .
Consider an edge (u,v) ∈ Mj . We know that (u,v) was admissible prior to augmentation from
Lemma 5.3. Lety ′j (·) be the dual weights prior to augmentation. Theny ′j (u) + y ′j (v) = c (u,v) + δuv ,

since (u,v) was not in the matching prior to augmentation. yj (u) = y ′j (u) and yj (v) = y ′j (v) − δuv .

Therefore, yj (u) + yj (v) = c (u,v) and Mj ,yj (·) form an R-feasible matching. �

From Lemma 5.1, we have that ỹ (·) is H -feasible after Step 2(ii). The Augment procedure, how-
ever, modifies the dual weights ỹ (·), may add new edges to H , and may edit the cost of some of the
old edges. Let E be the set of affected edges that are either newly added or whose cost has changed.
The following lemma establishes that, despite the changes to H , the dual weights ỹ (·) remain H -
feasible after Augment, meaning requirement (d) of planar-feasibility is satisfied. Furthermore,
every affected edge of E whose tail is not in AH has a slack of at least 1.

Lemma 5.6. After the Augment procedure, the dual assignment ỹ (·) is H -feasible. Let E be the

edges that were either newly added to H or whose cost changed after Augment. We claim that every

edge (u,v) ∈ E directed from u to v in H has sH (u,v) ≥ 0 and if u � AH , then sH (u,v) ≥ 1.

Proof. We address H -feasibility separately for H -edges of each piece Rj . There are two cases:

(i) Rj � A and (ii) Rj ∈ A. First consider case (i). Then no edge (u,v) ∈ EH
j has experienced a

change in net-cost, since the augmenting path did not pass through Rj . However, it is possible
that the dual weight ỹ (u) or ỹ (v) changed. Specifically, step (c) of Augment increases the magni-
tude of ỹ (x) for any vertex of x ∈ AH along the augmenting path. Consider if u ∈ AH . Then the

first edge of
−→
P u,v, j must be a matching edge that was along the augmenting path, and Rj would

be an affected piece, contradicting the assumption of case (i). Therefore, we can assume that ỹ (u)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:25

remains constant. It is possible that the magnitude of ỹ (v) increases. However, this will only in-
crease sH (u,v). Therefore, we can conclude that H -feasibility is maintained for case (i).

Next, we address case (ii). Since Rj ∈ A, the Sync procedure was invoked on Rj . By Lemma 4.8,
this means for any vertexx ∈ Vj and its representative vertexx ′,yj (x) = ỹ (x ′). Step (c) of Augment
modifies the dual weights yj (x) and ỹ (x ′) by the same amounts, except if x ′ = aj . However, if x ′ =
aj , then x was the last vertex of the augmenting path; x is now matched, meaning x is no longer
represented by aj . Therefore, for all vertices x ∈ Vj with representative vertex x ′, yj (x) = ỹ (x ′)
after Augment.

Consider any edge (u,v) ∈ EH
j . By Lemma 5.5, the matching after Augment is R-feasible, and

we can invoke Equation (12) of Lemma 4.2. Specifically, since ỹ (u) = yj (u) and ỹ (v) = yj (v), we
get that

sH (u,v) = ϕ (
−→
P u,v, j) − |ỹ (u) | + |ỹ (v) | =

∑

(a,b)∈−→P u,v, j

s (a,b).

Since yj (·),Mj is R-feasible, each edge of Ej has non-negative slack. Therefore, sH (u,v) is also

non-negative, and H -feasibility holds for all edges of EH
j . This completes case (ii).

We next argue the properties on the edges of E hold. Trivially, since H -feasibility holds,
sH (u,v) ≥ 0 for any (u,v) ∈ E. However, it remains to show that sH (u,v) ≥ 1 for any (u,v) ∈ E
such that u � AH . Let

−→
P u,v, j (respectively,

−→
P ′u,v, j) be the shortest path from u to v in Rj prior to

(respectively, after) augmentation. There are two cases: (1)
−→
P ′u,v, j does not share an edge with the

augmenting path and (2)
−→
P ′u,v, j does share an edge with the augmenting path.

Consider case (1). Since
−→
P ′u,v, j does not share an edge with the augmenting path, it also ex-

isted prior to augmentation. Therefore, ϕ (
−→
P u,v, j) ≤ ϕ (

−→
P ′u,v, j). Since (u,v) ∈ E, by definition,

ϕ (
−→
P u,v, j) � ϕ (

−→
P ′u,v, j). Therefore, ϕ (

−→
P u,v, j) < ϕ (

−→
P ′u,v, j). The dual weights ỹ (u) and ỹ (v) did not

change, because step (c) of Augment only changes dual weights along the augmenting path,

and, by our assumption for case (1),
−→
P ′u,v, j has no vertices on the augmenting path. Therefore,

ϕ (
−→
P u,v, j) − |ỹ (u) | + |ỹ (v) | < ϕ (

−→
P ′u,v, j) − |ỹ (u) | + |ỹ (v) | and sH (u,v) only increased as a result of

the augmentation. Since H -feasibility held prior to augmentation, sH (u,v) must be at least 1 after
augmentation. This completes case (1).

Next, consider case (2).
−→
P ′u,v, j must intersect the augmenting path at some edge, implying there

is some vertex x ∈ A on
−→
P ′u,v, j that was also on the augmenting path. Since we assume u � A,

u � x , and there must be at least one edge (x ′,x) ∈ −→P ′u,v, j from some x ′ ∈ B to x . s (x ′,x) ≥ 0 prior

to step (c) of Augment. Step (c) of Augment decreases y (x) by at least 1, because x was a vertex
ofA on the augmenting path. Since x ′ ∈ B, y (x ′) does not change from step (c) of Augment. Thus,
the slack on (x ′,x) (a non-matching edge) strictly increases, and s (x ′,x) ≥ 1. Since all other edges

of
−→
P ′u,v, j have non-negative slack, we conclude that sH (u,v) ≥ 1, completing case (2). �

The following lemma shows that requirement (e) for planar feasibility is satisfied:

Lemma 5.7. Assuming we begin the phase with a planar-feasible matching, at the end of that

phase, for each vertex v ∈ VH and for every partition Rj such that v ∈ Kj , |ỹ (v) | ≥ |yj (v) | for all j.
Furthermore, if v = aj (respectively, v = bj), then for every vertex v ′ ∈ (Vj \Kj) ∩AF (respectively,

v ′ ∈ (Vj \Kj) ∩ BF)), yj (v ′) = 0 (respectively, yj (v ′) ≤ |ỹ (bj) |).
Proof. Step 2(ii) only increases the magnitude of dual weights or leaves them unchanged.

This follows from the fact that for a vertex v ∈ BH , ỹ (v) increases by cα − cv only if cα − cv ≥ 0.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:26 M. K. Asathulla et al.

Similarly, for a vertexv ∈ AH , ỹ (v) decreases by cα − cv only if cα − cv ≥ 0. Since we assume that
the matching at the beginning of the phase is planar-feasible, any ỹ (v) for v ∈ BH is non-negative
and any ỹ (v) for v ∈ AH is non-positive. Therefore, the magnitudes of ỹ (·) only increase during
Step 2(ii), and the claims hold after Step 2(ii).

Step (a) of the Augment procedure calls Sync on the affected partitions. The properties of Sync
ensure that the claims are satisfied after step (a). Finally, in step (c) of Augment, for some vertices
v ∈ A, we lower the value of yj (v), increasing its magnitude. However, if v ∈ Kj , then the magni-
tude of ỹ (v) increases by the same amount as yj (v). There are no free vertices v ∈ AF along the
path after augmentation. Therefore, the claims hold true at the end of a phase. �

The following lemma guarantees that planar feasibility conditions (a) and (b) are satisfied:

Lemma 5.8. Assuming we are given a planar-feasible matching at the beginning of a phase,

then at the end of that phase, every vertex v ∈ AH has a non-positive dual weight ỹ (v) and for

each free (internal or boundary) vertex v of AH , ỹ (v) = 0. Every vertex v ∈ BH has a non-negative

dual weight ỹ (v) and for each free (internal or boundary) vertex v of BH , ỹ (v) = ymax , where

ymax = maxv ∈AH∪BH
ỹ (v).

Proof. As discussed in the proof of Lemma 5.7, the operations we apply do not decrease the
magnitude of ỹ (·). That is, for every v ∈ BH , ỹ (v) only increases, and for every v ∈ AH , ỹ (v)
only decreases. It remains to prove the properties of ỹ (·) for free vertices. For any vertex v ∈ AF

H
,

Step 2(ii) does not change ỹ (v). This follows from the fact that if v ∈ AF
H

and we have cv > cα ,
then ỹ (v) is unchanged. Otherwise the magnitude of ỹ (v) increases by cα − cv , which is 0, since
α is a vertex in AF

H
with minimum distance. For any vertex v ∈ BF

H
, cv = 0. All distance values c

are non-negative, so cα − cv is maximum over all vertices of VH . The dual weights of all free ver-
tices of BH increase by the same amount and continue being the largest among all ỹ (·). Therefore,
the claim holds true after Step 2(ii). The Augment procedure reduces the dual weights of vertices
in P ∩AH after augmenting along P . However, P has no free vertices after augmentation. There-
fore, at the end of a phase, for every v ∈ AF , ỹ (v) remains 0 and for every v ∈ BF , ỹ (v) remains
maximum over all ỹ (·). �

Combining lemmas (5.5), (5.6), (5.7), and (5.8) yields the following lemma:

Lemma 5.9. The matching at the end of each phase of the algorithm is a planar-feasible matching.

Lemma 5.9 guarantees that at the end of each scale, we have a planar-feasible matching. We
can convert a planar-feasible matching to an R-feasible matching in time O (n log r) by calling the
Sync procedure on every partition.

5.2 Efficiency

Step 1 of our algorithm for each scale requires time O (n
√
r), since it executes O (

√
r) iterations of

the Gabow-Tarjan algorithm, with each iteration takingO (n). This results inO (n/
√
r) free vertices

remaining.
In Step 2, our algorithm increases the size of the matching by 1 each iteration and, therefore,

executes O (n/
√
r) iterations. Step 2(i) takes O ((n/

√
r) log r logn) time. Step 2(ii) takes O (n/

√
r)

time, since ỹ (v) could be changed for each v ∈ VH . In Step 2(iv), we recompute all of the interval-
min search data structures, taking O ((n/

√
r) log r logn) time. Therefore, over O (n/

√
r) iterations,

the total time for Step 2(i), Step 2(ii), Step 2(iv) isO ((n2/r) log r logn). It remains to bound the time
taken by Step 2(iii), i.e., the Augment procedure.

Let Pi be the path in H computed in Step 2(i) during the ith phase (i.e., the phase of the second
step of the algorithm that produces the ith augmenting path). During Augment, Sync is called

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:27

on all affected partitions. This takes O (r log r) time per partition. Next, P is projected to yield an

augmenting path
−→
P in GM . This requires a BFS search for each projected edge of P , each search

takingO (r) time. Then, the Augment procedure augments the edges of
−→
P and adjusts dual weights

along
−→
P . This takes time proportional to |−→P |, which is at most O (r) for each affected partition.

Finally, we call Construct on all the affected partitions, taking timeO (r log r) per partition. Thus,

the total time taken by the Augment procedure isO (Δr log r) where Δ =
∑O (n/

√
r)

i=1 |Pi | is the total
length of all augmenting paths found in H by Step 2(i) during the entire second step. Lemma 5.11
bounds the total length of all paths in H , i.e., Δ = O ((n/

√
r) logn). Therefore, over all theO (n/

√
r)

phases, the total time taken by the Augment procedure is O (n
√
r log r logn).

Setting r = n2/3 yields a total complexity of O (n4/3 log2 n) for each scale. Our algorithm exe-
cutes O (lognC) scales, where C is the largest edge cost of the original graph. Therefore, the total
complexity is O (n4/3 log2 n lognC).

The following lemma shows that we compute the minimum net-cost augmenting path in G,
which is useful for bounding Δ:

Lemma 5.10. The augmenting path computed in each phase is a minimum net-cost augmenting

path.

Proof. Let
−→
P be the augmenting path found in GM . By Lemma 5.3, any edge (u,v) ∈ −→P ∩ Ej is

admissible with respect to the matching Mj and the dual weights yj (·). Since the Sync procedure
has already been executed for partitions inA, we can invoke the Sync procedure on the remaining
partitions that are not inA to obtain an R-feasible matching M , y (·) onG by Lemma 4.9. The dual

weightsyj (·) for allRj ∈ A are unchanged and, therefore, the edges of
−→
P would remain admissible

with respect to the matching M , y (·). This means the total slack along
−→
P is 0 with respect to M .

Since the matching M is feasible, all edges must have non-negative slack, and
−→
P is a minimum

slack directed path in G ′
M

. By Lemma 4.3, we have for any path from u to v in GM ,

ϕ (
−→
P u,v) − |y (u) | + |y (v) | =

∑

(a,b)∈−→P u,v

s (a,b).

We maintain that for a vertex v ∈ BF
H

, ỹ (v) = ymax and for a vertex v ∈ AF
H

, ỹ (v) = 0. Therefore,
by the properties of the Sync procedure, for any vertex v ∈ BF , y (v) = ymax , and for any vertex
v ∈ AF , y (v) = 0. Since all free vertices of B (respectively, A) have the same dual weight, a zero
slack augmenting path with respect to M and y (·) is also an augmenting path of minimum net-
cost. �

The following lemma bounds the total length of all the augmenting paths computed by our
algorithm. Gabow and Tarjan assign an error of 1 on every non-matching edge and show that the
total error on all the augmenting paths generated by their algorithm isO (n logn). We use a similar
proof strategy and show that the total error of all augmenting paths generated by our algorithm
is also O (n logn). However, in our case, we assigned a cost of �

√
r� for every edge incident on a

boundary vertex. So, the number of such edges and, therefore, the number of boundary vertices
on the augmenting paths, can be no more than O (n√

r
logn), leading to a bound on their lengths

in H .

Lemma 5.11. Let Pi be the ith path in H computed by the second step of our algorithm, and let

Mi be the matching just before computing Pi . Let t be the number of phases of the second step of our

algorithm. Recall t = O (n/
√
r). Then, Δ =

∑t
i=1 |Pi | = O ((n/

√
r) logn).

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

2:28 M. K. Asathulla et al.

Proof. We first show that
t∑

i=1

ϕ (Pi) = O (n logn). (17)

Consider Mi ⊕ MOpt where MOpt is some minimum cost perfect matching. Mi ⊕ MOpt forms
alternating paths and cycles. Let the set Si consist of all the augmenting paths in Mi ⊕ MOpt. Then
|Si | = t − i + 1. We will now show that∑

P ∈Si

ϕ (P) ≤ (2k + 3)n. (18)

By definition of net cost, given that all edge costs are non-negative, we have:
∑

P ∈Si

ϕ (P) ≤
∑

P ∈Si

∑

(u,v)∈MOpt∩P

(c(u,v) + δuv).

Since all edge costs are non-negative, the edges in MOpt that are also in some P ∈ Si must have a
total cost at most c(MOpt). Thus,

∑

P ∈Si

ϕ (P) ≤ ��
�

∑

P ∈Si

∑

(u,v)∈MOpt∩P

δuv
��
�
+ (k + 2)n. (19)

By Lemma 3.1, we have
∑

(u,v)∈MOpt

δuv ≤ (k + 1)n,

∑

P ∈Si

∑

(u,v)∈MOpt∩P

δuv ≤ (k + 1)n. (20)

Combining inequalities (19) and (20) yields
∑

P ∈Si

ϕ (P) ≤ (2k + 3)n.

Since |Si | = t − i + 1, we can say that the average net-cost of the paths in Si is at most (2k +
3)n/(t − i + 1). Our algorithm finds the minimum net-cost path available, by Lemma 5.10, which
is at most the average net cost path in S . Therefore, we have

t∑

i=1

ϕ (Pi) ≤
t∑

i=1

((2k + 3)n/(t − i + 1)).

The denominator of the right side forms a harmonic series. Therefore,

t∑

i=1

ϕ (Pi) = O (n logn).

Let Mstart be the matching computed after the first step of the algorithm and let M be the final
perfect matching computed by the second step of our algorithm. By definition of the net-cost, from
Lemma 3.1 and the fact that c(M) ≥ 0, we have that

t∑

i=1

ϕ (Pi) = c(M) − c(Mstart) +
∑

Pi

∑

(u,v)∈Pi \Mi

δuv

≥ −c(Mstart) +
t∑

i=1

∑

(u,v)∈Pi \Mi

δuv .

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs 2:29

Mstart is guaranteed to have a cost less than c(MOpt) + n = O (n) by the properties of the Gabow-
Tarjan algorithm. Therefore,

t∑

i=1

∑

(u,v)∈Pi \Mi

δuv = O (n logn).

For any (u,v) � Mi where u ∈ Kj or v ∈ Kj , we have that δuv = �
√
r�. This means that among

all augmenting paths computed in G, there can only be O ((n/
√
r) logn) boundary vertices used.

The length of any path in H is at most the number of boundary vertices along the path plus 1,
and there are t = O (n/

√
r) augmenting paths computed during the second step of the algorithm.

Therefore,
t∑

i=1

|Pi | = O ((n/
√
r) logn). �

REFERENCES

[1] Therese Biedl. 2001. Linear reductions of maximum matching. In Proceedings of the 12th ACM-SIAM Symposium on

Discrete Algorithms (SODA’01). SIAM, 825–826.

[2] Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-Nilsen. 2017. Multiple-source

multiple-sink maximum flow in directed planar graphs in near-linear time. SIAM J. Comput. 46, 4 (2017), 1280–1303.

DOI:https://doi.org/10.1137/15M1042929.

[3] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. 2017. Negative-weight shortest paths

and unit capacity minimum cost flow in Õ (m10/7 logW) time. In Proceedings of the 28th ACM-SIAM Symposium on

Discrete Algorithms (SODA’17). SIAM, 752–771. DOI:https://doi.org/10.1137/1.9781611974782.48

[4] Sabine Cornelsen, Andreas Karrenbauer, and Shujun Li. 2012. Leveling the grid. In Proceedings of the Workshop on Al-

gorithm Engineering and Experimentation (ALENEX’12). SIAM, 45–54. DOI:https://doi.org/10.1137/1.9781611972924.4

[5] Jittat Fakcharoenphol and Satish Rao. 2006. Planar graphs, negative weight edges, shortest paths, and near linear

time. J. Comput. Syst. Sci. 72, 5 (2006), 868–889. DOI:https://doi.org/10.1016/j.jcss.2005.05.007

[6] L. R. Ford and D. R. Fulkerson. 1957. A simple algorithm for finding maximal network flows and an application to the

Hitchcock problem. Canadian J. Math. 9 (1957), 210–218. DOI:https://doi.org/10.4153/CJM-1957-024-0

[7] H. N. Gabow and R. E. Tarjan. 1989. Faster scaling algorithms for network problems. SIAM J. Comput. 18 (Oct. 1989),

1013–1036. Issue 5. DOI:https://doi.org/10.1137/0218069

[8] Pawel Gawrychowski and Adam Karczmarz. 2018. Improved bounds for shortest paths in dense distance graphs. In

Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP’18), Vol. 107.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 61:1–61:15. DOI:https://doi.org/10.4230/

LIPIcs.ICALP.2018.61

[9] J. Hopcroft and R. Karp. 1973. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 4

(1973), 225–231. DOI:https://doi.org/10.1137/0202019

[10] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. 2017. Submatrix maximum queries in Monge matrices

and partial Monge matrices, and their applications. ACM Trans. Alg. 13, 2 (2017), 26. DOI:https://doi.org/10.1145/

3039873

[11] Philip Klein. 2005. Multiple-source shortest paths in planar graphs. In Proceedings of the 16th ACM-SIAM Symposium

on Discrete Algorithms (SODA’05). SIAM, 146–155.

[12] Philip N. Klein, Shay Mozes, and Christian Sommer. 2013. Structured recursive separator decompositions for planar

graphs in linear time. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC’13). ACM, 505–514.

DOI:https://doi.org/10.1145/2488608.2488672

[13] Harold Kuhn. 1956. Variants of the Hungarian method for assignment problems. Nav. Res. Log. 3, 4 (1956), 253–258.

[14] Richard J. Lipton and Robert Endre Tarjan. 1980. Applications of a planar separator theorem. SIAM J. Comput. 9, 3

(1980), 615–627. DOI:https://doi.org/10.1137/0209046

[15] Shay Mozes and Christian Wulff-Nilsen. 2010. Shortest paths in planar graphs with real lengths in

O (n log2 n/(log log n)). In Proceedings of the European Symposium on Algorithms (ESA’10). Springer, Berlin, 206–217.

DOI:https://doi.org/10.1007/978-3-642-15781-3_18

[16] Marcin Mucha and Piotr Sankowski. 2004. Maximum matchings via Gaussian elimination. In Proceedings of the 45th

IEEE Symposium on Foundations of Computer Science (FOCS’04). IEEE, 248–255. DOI:https://doi.org/10.1109/FOCS.

2004.40

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

https://doi.org/10.1137/15M1042929
https://doi.org/10.1137/1.9781611974782.48
https://doi.org/10.1137/1.9781611972924.4
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.4153/CJM-1957-024-0
https://doi.org/10.1137/0218069
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.1137/0202019
https://doi.org/10.1145/3039873
https://doi.org/10.1145/3039873
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1137/0209046
https://doi.org/10.1007/978-3-642-15781-3_18
https://doi.org/10.1109/FOCS.2004.40
https://doi.org/10.1109/FOCS.2004.40

2:30 M. K. Asathulla et al.

[17] Marcin Mucha and Piotr Sankowski. 2006. Maximum matchings in planar graphs via Gaussian elimination. Algorith-

mica 45, 1 (2006), 3–20. DOI:https://doi.org/10.1007/s00453-005-1187-5

[18] L. Ramshaw and R. E. Tarjan. 2012. A weight-scaling algorithm for min-cost imperfect matchings in bipartite graphs.

In Proceedings of the 53rd IEEE Symposium on Foundations of Computer Science (FOCS’12). IEEE, 581–590. DOI:
https://doi.org/10.1109/FOCS.2012.9.

[19] Piotr Sankowski. 2009. Maximum weight bipartite matching in matrix multiplication time. Theor. Comput. Sci. 410

(2009), 4480–4488. Issue 44. DOI:https://doi.org/10.1016/j.tcs.2009.07.028

[20] R. Sharathkumar. 2013. A sub-quadratic algorithm for bipartite matching of planar points with bounded integer

coordinates. In Proceedings of the 29th Symposium on Computational Geometry (SOCG’13). Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 9–16. DOI:https://doi.org/10.1145/2462356.2480283

Received March 2018; revised August 2019; accepted September 2019

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 2. Publication date: November 2019.

https://doi.org/10.1007/s00453-005-1187-5
https://doi.org/10.1109/FOCS.2012.9
https://doi.org/10.1016/j.tcs.2009.07.028
https://doi.org/10.1145/2462356.2480283

