
Journal of Computational Geometry jocg.org

A WEIGHTED APPROACH TO THE MAXIMUM CARDINALITY
BIPARTITE MATCHING PROBLEM WITH APPLICATIONS IN
GEOMETRIC SETTINGS

Nathaniel Lahn∗, Sharath Raghvendra†.

Abstract.

We present a weighted approach to compute a maximum cardinality matching in an
arbitrary bipartite graph. Our main result is a new algorithm that takes as input a weighted
bipartite graph G(A ∪ B,E) with edge weights of 0 or 1. Let w ≤ n be an upper bound
on the weight of any matching in G. Consider the subgraph induced by all the edges of G
with a weight 0. Suppose every connected component in this subgraph has O(r) vertices
and O(mr/n) edges. We present an algorithm to compute a maximum cardinality matching
in G in Õ(m(

√
w +
√
r + wr

n)) time.1

When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm
will be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m

√
n)

time. However, if we can carefully assign weights of 0 and 1 on its edges such that both w
and r are sub-linear in n and wr = O(nγ) for γ < 3/2, then we can compute a maximum
cardinality matching in o(m

√
n) time. Using our algorithm, we obtain a new Õ(n4/3/ε3)

time algorithm to compute an ε-approximate bottleneck matching of A,B ⊂ R2 and a
1

εO(d)n
1+ d−1

2d−1 poly log n time algorithm for computing an ε-approximate bottleneck matching
in d-dimensions. All previous algorithms take Ω(n3/2) time.

Our algorithm also applies to any graph G(A∪B,E) that has an easily computable
balanced vertex separator of size |V ′|δ, for every subgraph G′(V ′, E′) where δ ∈ [1/2, 1). By
applying our algorithm, we can compute a maximum matching in Õ(mn

δ
1+δ) time improving

upon the O(m
√
n) time taken by the HK-Algorithm.

1 Introduction

We consider the classical matching problem in an arbitrary unweighted bipartite graph
G(A ∪ B,E) with |A| = |B| = n and E ⊆ A × B. A matching M ⊆ E is a set of vertex-
disjoint edges. We refer to a largest cardinality matching M in G as a maximum matching.
A maximum matching is perfect if |M | = n. Now suppose the graph is weighted and every
edge (a, b) ∈ E has a weight specified by c(a, b). The weight of any subset of edges E′ ⊆ E is
given by

∑
(a,b)∈E c(a, b). A minimum-weight maximum matching is a maximum matching

∗Radford University, nlahn@radford.edu.
†Virginia Tech, sharathr@vt.edu. This research is supported by NSF Grant CCF 1909171.
1We use Õ to suppress poly-logarithmic terms.

http://jocg.org/

Journal of Computational Geometry jocg.org

with the smallest weight. In this paper, we present an algorithm to compute a maximum
matching faster by carefully assigning weights of 0 and 1 to the edges of G.

Maximum matching in graphs: In an arbitrary bipartite graph with n vertices and m
edges, Ford and Fulkerson’s algorithm [7] iteratively computes, in each phase, an augment-
ing path inO(m) time, leading to a maximum cardinality matching inO(mn) time. Hopcroft
and Karp’s algorithm (HK-Algorithm) [12] reduces the number of phases from n toO(

√
n) by

computing a maximal set of vertex-disjoint shortest augmenting paths in each phase. A sin-
gle phase can be implemented in O(m) time leading to an overall execution time of O(m

√
n).

In weighted bipartite graphs with n vertices andm edges, the well-known Hungarian method
computes a minimum-weight maximum matching in O(mn+n2 log n) time [15]. Gabow and
Tarjan designed a weight-scaling algorithm (GT-Algorithm) to compute a minimum-weight
perfect matching in O(m

√
n log(nC)) time, provided all edge weights are integers bounded

by C [11]. Their method, like the Hopcroft-Karp algorithm, computes a maximal set of
vertex-disjoint shortest (for an appropriately defined augmenting path cost) augmenting
paths in each phase. For the maximum matching problem in arbitrary graphs (not neces-
sarily bipartite), a weighted approach has been applied to achieve a simple O(m

√
n) time

algorithm [10].

For planar graphs, the maximum-flow problem with multiple sources and multiple
sinks can be solved in O(n log3 n) time [5]. By applying a standard reduction from the
maximum cardinality bipartite matching problem to the maximum flow problem, this result
of [5] also implies an O(n log3 n) time algorithm for the maximum cardinality matching
problem on bipartite planar graphs. Recently Lahn and Raghvendra [16] gave Õ(n6/5)
and Õ(n7/5) time algorithms for finding a minimum-weight perfect bipartite matching in
planar and Kh-minor2 free graphs respectively, overcoming the Ω(m

√
n) barrier; see also

Asathulla et al. [4]. Both these algorithms are based on the existence of an r-clustering
which, for a parameter r > 0, is a partitioning of G into edge-disjoint clusters {R1, . . . ,Rk}
such that k = Õ(n/

√
r), every cluster Rj has O(r) vertices, and each cluster has Õ(

√
r)

boundary vertices. A boundary vertex has edges from two or more clusters incident on it.
Furthermore, the total number of boundary vertices, counted with multiplicity, is Õ(n/

√
r).

The algorithm of Lahn and Raghvendra extends to any graph that admits an r-clustering.
There are also algebraic approaches for the design of fast algorithms for bipartite matching;
see for instance [19, 20].

Matching in geometric settings: In geometric settings, A and B are points in a fixed
d-dimensional space and G is a complete bipartite graph on A and B. For a fixed integer
p ≥ 1, the weight of an edge between a ∈ A and b ∈ B is ‖a − b‖p, where ‖a − b‖
denotes the Euclidean distance between a and b. The weight of a matching M is given by(∑

(a,b)∈M ‖a−b‖p
)1/p. For any fixed p ≥ 1, we wish to compute a perfect matching with the

minimum weight. When p = 1, the problem is the well-studied Euclidean bipartite matching
problem. A minimum-weight perfect matching for p = ∞ will minimize the largest-weight
edge in the matching and is referred to as a bottleneck matching. The Euclidean bipartite

2They assume h = O(1).

http://jocg.org/

Journal of Computational Geometry jocg.org

matching in a plane can be computed in Õ(n3/2+δ) [24] time for an arbitrary small δ > 0;
see also Sharathkumar and Agarwal [25]. Efrat et al. present an algorithm to compute a
bottleneck matching in the plane in Õ(n3/2) [6] time. Both these algorithms use geometric
data structures in a non-trivial fashion to speed up classical graph algorithms.

When p = 1, for any 0 < ε ≤ 1, there is an ε-approximation algorithm for the
Euclidean bipartite matching problem that runs in Õ(n/εd) time [23]. For p = 2 and
A,B ⊂ R2, Lahn and Raghvendra gave an Õ(n5/4poly(1/ε)) time algorithm for computing
an ε-approximation [17]. For p > 2, all known ε-approximation algorithms take Ω(n3/2/εd)
time. We note that it is possible to find a Θ(1)-approximate bottleneck matching in 2-
dimensional space by reducing the problem to finding maximum flow in a planar graph and
then finding the flow using an Õ(n) time max-flow algorithm [5]. There are numerous other
results; see also [1, 2, 8, 14, 22]. Designing exact and approximation algorithms that break
the Ω(n3/2) barrier remains an important research challenge in computational geometry.

Our results: We present a weighted approach to compute a maximum cardinality matching
in an arbitrary bipartite graph. Our main result is a new matching algorithm that takes as
input a weighted bipartite graph G(A ∪ B,E) with every edge having a weight of 0 or 1.
Let w ≤ n be an upper bound on the weight of any matching in G. Consider the subgraph
induced by all the edges of G with a weight 0. Let {K1,K2, . . . ,Kl} be the connected
components in this subgraph and let, for any 1 ≤ i ≤ l, Vi and Ei be the vertices and
edges of Ki. We refer to each connected component Ki as a piece. Suppose |Vi| = O(r) and
|Ei| = O(mr/n). Given G, we present an algorithm to compute a maximum matching in G
in Õ(m(

√
w +

√
r + wr

n)) time. Consider any graph for which the removal of a sub-linear
number of “separator” vertices partitions the graph into connected components with O(r)
vertices and O(mr/n) edges. We can apply our algorithm to any such graph by simply
setting the weight of every edge incident on any separator vertex to 1 and weights of all
other edges to 0.

When all the edge weights are 1 or all edge weights are 0, our algorithm will be
identical to the HK-Algorithm algorithm and runs in O(m

√
n) time. However, if we can

carefully assign weights of 0 and 1 on the edges such that both w and r are sub-linear in n
and for some constant γ < 3/2, wr = O(nγ), then we can compute a maximum matching
in G in o(m

√
n) time. Using our algorithm, we obtain the following results:

• Our algorithm can be applied to any graph class with a sub-linear vertex separator.
Given any graph G(A∪B,E) that has an easily computable balanced vertex separator
S′ for every subgraph G′(V ′, E′) where |S′| = O(|V ′|δ), for δ ∈ [1/2, 1), there is a 0/1

weight assignment on edges of the graph so that the weight of any matching is O(n
2δ
1+δ)

and r = O(n
1

1+δ). As a result, we obtain an algorithm that computes the maximum
cardinality matching in Õ(mn

δ
1+δ) time (Section 5). Many classes of graphs including

planar graphs, Kh-minor free graphs, and subgraphs of d-dimensional grids have a
sub-linear sized balanced vertex separator.

• Notably, it is known how to efficiently compute separators of size Õ(
√
n) on Kh minor-

free graphs when h = O(1) [13, 26]. For such graphs, our result gives an Õ(n4/3) time

http://jocg.org/

Journal of Computational Geometry jocg.org

algorithm. This improves upon the algorithm of Lahn and Raghvendra [16] in the case
where the graph is unweighted. While asymptotically better algorithms exist for this
situation, using matrix multiplication [13, 20, 21, 26], such algorithms are randomized
and use algebraic methods, while our algorithm is combinatorial and deterministic. To
our knowledge, our Õ(n4/3) minor-free graph algorithm is the best known deterministic
result for this problem. Furthermore, the core of our algorithm seems to be practical.

• Given two point sets A,B ⊂ R2 and an 0 < ε ≤ 1, we reduce the problem of computing
an ε-approximate bottleneck matching to computing a maximum cardinality matching
in a subgraph G of the complete bipartite graph on A and B. We can, in O(n) time
assign 0/1 weights to the O(n2) edges of G so that any matching has a weight of
O(n2/3). Despite possibly Θ(n2) edges in G, we present an efficient implementation of
our graph algorithm with Õ(n4/3/ε3) execution time that computes an ε-approximate
bottleneck matching for d = 2; all previously known algorithms take Ω(n3/2) time.
Our algorithm, for any fixed d ≥ 2 dimensional space, computes an ε-approximate
bottleneck matching in 1

εO(d)n
1+ d−1

2d−1 poly log n time (Section 6).

Our approach: Initially, we compute, in O(m
√
r) time, a maximum matching within all

pieces. Similar to the GT-Algorithm, the rest of our algorithm is based on a primal-dual
method and executes in phases. Each phase consists of two stages. The first stage conducts
a Hungarian search and finds at least one augmenting path containing only zero slack (with
respect to the dual constraints) edges. Let the admissible graph be the subgraph induced by
the set of all zero slack edges. Unlike in the GT-Algorithm, the second stage of our algorithm
computes augmenting paths in the admissible graph that are not necessarily vertex-disjoint.
In the second stage, the algorithm iteratively initiates a DFS from every free vertex. When
a DFS finds an augmenting path P , the algorithm will augment the matching immediately
and terminate this DFS. Let all pieces of the graph that contain the edges of P be affected.
Unlike the GT-Algorithm, which deletes all edges visited by the DFS, our algorithm deletes
only those edges that were visited by the DFS and did not belong to an affected piece.
Consequently, we allow for visited edges from an affected piece to be reused in another
augmenting path. As a result, our algorithm computes several more augmenting paths per
phase than the GT-Algorithm, leading to a reduction of number of phases from O(

√
n) to

O(
√
w). Note, however, that the edges of an affected piece may now be visited multiple times

by different DFS searches within the same phase. This increases the cumulative time taken
by all the DFS searches in the second stage. However, we are able to bound the total number
of affected pieces across all phases of the algorithm by O(w logw). Since each piece has
O(mr/n) edges, the total time spent revisiting these edges is bounded by O((mrw logw)/n).
The total execution time can therefore be bounded by Õ(m(

√
w +
√
r + wr

n)).

2 Preliminaries

We are given a bipartite graph G(A ∪B,E), where any edge (a, b) ∈ E has a weight c(a, b)
of 0 or 1. Given a matching M , a vertex is free if it is not matched in M . An alternating
path (resp. cycle) is a simple path (resp. cycle) that alternates between edges in M and not

http://jocg.org/

Journal of Computational Geometry jocg.org

in M . An augmenting path is an alternating path that begins and ends at a free vertex.

To assist in describing our algorithm, we define a residual network, an augmented
residual network, and a set of feasibility conditions. A residual network GM with respect
to a matching M is a directed graph where every edge (a, b) ∈ E is directed from b to a if
(a, b) 6∈ M and from a to b if (a, b) ∈ M . We use the notation u v to represent an edge
in the residual graph directed from a vertex u to a vertex v. Any directed edge u v will
inherit the cost c(u, v) from the corresponding undirected edge (u, v). For any matching M
and its residual graph GM , the edges of M correspond to a set of directed edges in GM . For
convenience in presentation, we will use M to also denote the set of directed edges in GM
that correspond to the matching edges, i.e., we will use u v ∈M and u v /∈M to denote
whether u v corresponds to a matching edge or a nonmatching edge in E.

Next, we define a set of feasibility conditions, which relate to the directions of edges
in the residual graph. A matching M and an assignment of dual weights y(·) on the vertices
of G are feasible if for any edge (a, b) ∈ (A×B) ∩ E:

y(b)− y(a) ≤ c(a, b) if (a, b) 6∈M, (1)
y(a)− y(b) = c(a, b) if (a, b) ∈M. (2)

We say that any edge u v of the residual graph is feasible if the corresponding
condition (1) or (2) holds. The weight s(u, v) of any edge u v in the residual graph is given
by the slack of the edge with respect to feasibility conditions (1) and (2), i.e., if u v 6∈M ,
then u ∈ B, v ∈ A, and s(u, v) = c(u, v) + y(v) − y(u). Otherwise, (u, v) ∈ M , u ∈ A,
v ∈ B, and we have s(a, b) = 0. An augmented residual network is obtained by adding to
the residual network an additional vertex s and additional directed edges from s to every
free vertex of B, each having a weight of 0. We denote the augmented residual network as
G′M .

3 Our algorithm

Throughout this section we will use M to denote the current matching maintained by the
algorithm and AF and BF to denote the vertices of A and B that are free with respect
to M . Initially M = ∅, AF = A, and BF = B. Our algorithm consists of two steps.
The first step, which we refer to as the preprocessing step, will execute the Hopcroft-Karp
algorithm and compute a maximum matching within every piece. Any maximum matching
MOpt has at most w edges with a weight of 1 and the remaining edges have a weight of
0. Therefore, |MOpt| − |M | ≤ w. The time taken by the preprocessing step for Ki is
O(|Ei|

√
|Vi|) = O(|Ei|

√
r). Since the pieces are vertex disjoint, the total time taken across

all pieces is O(m
√
r). After this step, no augmenting path with respect to M is completely

contained within a single piece. We set the dual weight y(v) of every vertex v ∈ A∪B to 0.
The matching M along with the dual weights y(·) satisfies (1) and (2) and is feasible.

The second step of the algorithm is executed in phases. We describe phase k of the
algorithm. This phase consists of two stages.

http://jocg.org/

Journal of Computational Geometry jocg.org

First stage: In the first stage, we construct the augmented residual network G′M and
execute Dijkstra’s algorithm with s as the source. Let `v for any vertex v denote the
shortest path distance from s to v in G′M . If a vertex v is not reachable from s, we set `v to
∞. Let

` = min
v∈AF

`v. (3)

Suppose M is a perfect matching or ` = ∞, then this algorithm returns with M as a
maximum matching. Otherwise, we update the dual weight of any vertex v ∈ A ∪ B as
follows. If `v ≥ `, we leave its dual weight unchanged. Otherwise, if `v < `, we set
y(v) ← y(v) + ` − `v. After updating the dual weights, we construct the admissible graph
which consists of a subset of edges in the residual network GM that have zero slack. After
the first stage, the matching M and the updated dual weights are feasible (see Lemma 5).
Furthermore, there is at least one augmenting path in the admissible graph. This completes
the first stage of the phase.

Second stage: In the second stage, we initialize G′ to be the admissible graph and execute
DFS to identify augmenting paths. For any augmenting path P found during the DFS, we
refer to the pieces that contain its edges as affected pieces of P .

Similar to the HK-Algorithm, the second stage of this phase will iteratively initiate
a partial DFS for each free vertex b ∈ BF in G′. If the DFS does not lead to an augmenting
path, we delete all edges that were visited by the DFS. On the other hand, if the DFS finds
an augmenting path P , then the matching is augmented along P , all edges that are visited
by the DFS and do not lie in an affected piece of P are deleted, and the DFS initiated at b
will terminate.

Now, we describe in detail the DFS initiated for a free vertex b ∈ BF . Initially
P = 〈b = v1〉. Every edge of G′ is marked unvisited. At any point during the execution of
DFS, the algorithm maintains a simple path P = 〈b = v1, v2, . . . , vk〉. The DFS continues
from the last vertex of this path as follows:

• If there are no unvisited edges that are going out of vk in G′,

– If P = 〈v1〉, remove all edges that were marked as visited from G′ and terminate
the execution of DFS initiated at b.

– Otherwise, delete vk from P and continue the DFS from vk−1.

• If there is an unvisited edge going out of vk, let vk v be this edge. Mark vk v as
visited. If v is on the path P , continue the DFS from vk. If v is not on the path P ,
add vk v to P , set vk+1 to v, and,

– Suppose v ∈ AF , then P is an augmenting path from b to v. Execute the
Augment procedure, defined below, which augments M along P . Delete from
G′ every visited edge that does not belong to any affected piece of P and terminate
the execution of DFS initiated at b.

– Otherwise, v ∈ (A ∪B) \AF . Continue the DFS from vk+1.

http://jocg.org/

Journal of Computational Geometry jocg.org

The Augment procedure receives a feasible matching M , a set of dual weights y(·),
and an augmenting path P as input. For any b a ∈ P \M , where a ∈ A and b ∈ B, set
y(b)← y(b)−2c(a, b). Then augmentM along P by settingM ←M⊕P . The residual graph
is updated accordingly to reflect the new matching. Every edge of M after augmentation
satisfies the feasibility condition (2) (see Lemma 5). This completes the description of our
algorithm. The algorithm maintains the following invariants during its execution:

(I1) The matchingM and the set of dual weights y(·) are feasible. Let ymax = maxv∈B y(v).
The dual weight of every vertex v ∈ BF is ymax and the dual weight for every vertex
v ∈ AF is 0.

(I2) For every phase that is fully executed prior to obtaining a maximum matching, at least
one augmenting path is found and the dual weight of every free vertex of BF increases
by at least 1.

Comparison with the GT-Algorithm: In the GT-Algorithm, the admissible graph does
not have any alternating cycles. Also, every augmenting path edge can be shown to not
participate in any future augmenting paths that are computed in the current phase. By
using these facts, one can show that the edges visited unsuccessfully by a DFS will not lead
to an augmenting path in the current phase. In our case, however, admissible cycles can
exist. Also, some edges on the augmenting path that have zero weight remain admissible
after augmentation and may participate in another augmenting path in the current phase.
We show, however, that any admissible cycle must be completely inside a piece and cannot
span multiple pieces (Lemma 2). Using this fact, we show that edges visited unsuccessfully
by the DFS that do not lie in an affected piece will not participate in any more augmenting
paths (Lemma 7 and Lemma 9) in the current phase. Therefore, we can safely delete them.

Correctness: From Invariant (I2), each phase of our algorithm will increase the cardinality
of M by at least 1 and so, our algorithm terminates with a maximum matching.

Efficiency: We use the following notations to bound the efficiency of our algorithm. Let
{P1, . . . , Pt} be the t augmenting paths computed in the second step of the algorithm. Let
Ki be the set of affected pieces with respect to the augmenting path Pi. Let M0 be the
matching at the end of the first step of the algorithm. Let, for 1 ≤ i ≤ t, Mi = Mi−1 ⊕ Pi,
i.e., Mi is the matching after the ith augmentation in the second step of the algorithm.

The first stage is an execution of Dijkstra’s algorithm which takes O(m + n log n)
time [9]. Suppose there are λ phases; then the cumulative time taken across all phases for the
first stage is O(λm+λn log n). In the second stage, each edge visited by a DFS is discarded
for the remainder of the phase, provided it is not in an affected piece. Since each affected
piece has O(mr/n) edges, the total time taken by all the DFS searches across all the λ phases
is bounded byO(mλ+(mr/n)

∑t
i=1 |Ki|). In Lemma 3, we bound λ byO(

√
w) and

∑t
i=1 |Ki|

by O(w logw). Therefore, the total time taken by the algorithm including the time taken by
the preprocessing step is O(m

√
r+m

√
w+n

√
w log n+ mrw logw

n) = Õ(m(
√
w+
√
r+ wr

n)).

http://jocg.org/

Journal of Computational Geometry jocg.org

Theorem 1. Let G(A∪B,E) be a bipartite graph with n = |A|+|B| and m = |E|. Let c(·, ·)
be a 0/1 weight assignment on the edges of E. Assume that any matching on G has weight
at most w, and any connected subgraph of G consisting of only weight 0 edges has O(r)
vertices and O(mr/n) edges. Then a maximum cardinality matching on G can be computed
in O(m

√
r +m

√
w + n

√
w log n+ mrw logw

n) time.

Lemma 1. For any feasible matching M,y(·) maintained by the algorithm, let ymax be the
dual weight of every vertex of BF . For any augmenting path P with respect to M directed
from a free vertex b′ ∈ BF to a free vertex a′ ∈ AF ,

c(P) = ymax +
∑

u v∈P
s(u, v).

Proof. The weight of P is

c(P) =
∑

u v∈P
c(u, v) =

∑
b a∈P\M

(y(b)− y(a) + s(b, a)) +
∑

a b∈P∩M
(y(a)− y(b)).

Since every vertex on P except for b′ and a′ participates in one edge of P ∩M and one edge
of P \M , we can write the above equation as

c(P) = y(b′)− y(a′) +
∑

b a∈P\M

s(b, a) = y(b′)− y(a′) +
∑

u v∈P
s(u, v).

The last equality follows from the fact that edges of P ∩M satisfy (2) and have a
slack of zero. From (I1), we get that y(b′) = ymax and y(a′) = 0, which gives,

c(P) = ymax +
∑

u v∈P
s(u, v).

Lemma 2. For any feasible matching M,y(·) maintained by the algorithm, and for any
directed alternating cycle C with respect to M , if c(C) > 0, then∑

u v∈C
s(u, v) > 0,

i.e., C is not a cycle in the admissible graph.

Proof. The weight of C is

c(C) =
∑

u v∈C
c(u, v) =

∑
b a∈C\M

(y(b)− y(a) + s(b, a)) +
∑

a b∈C∩M
(y(a)− y(b)).

Since every vertex on C participates in one edge of C ∩M and one edge of C \M , we can
write the above equation as

c(C) =
∑

b a∈C\M

s(b, a) =
∑

u v∈C
s(u, v).

http://jocg.org/

Journal of Computational Geometry jocg.org

The last equality follows from the fact that edges of C ∩M satisfy (2) and have a slack of
zero. Since c(C) > 0, we also have

∑
u v∈C s(u, v) > 0, implying the claim.

Lemma 3. The total number of phases is O(
√
w) and the total number of affected pieces is

O(w logw), i.e.,
∑t

i=1 |Ki| = O(w logw).

Proof. Let MOpt be a maximum matching, which has weight at most w. Consider the
state of the algorithm at any point in time. The symmetric difference of M and MOpt
contains j = |MOpt|−|M | vertex-disjoint augmenting paths. While the symmetric difference
also contains even-length alternating paths and even-length alternating cycles, we are only
concerned with the augmenting paths. Let {P1, . . . ,Pj} be these augmenting paths. These
paths contain edges of MOpt and M , both of which are of weight at most w. Therefore, the
sum of weights of these paths is

j∑
i=1

c(Pi) ≤ 2w.

Recall that, at any point in time, every free vertex of BF has a dual weight of ymax. By
Lemma 1 and the fact that the slack on every edge is non-negative, we immediately get,

j · ymax ≤ 2w. (4)

Next, we use equation (4) to bound the number of phases executed by the algorithm. Con-
sider the state maintained by the algorithm after the completion of phase k. From (I2),
ymax ≥ k. When

√
w ≤ k <

√
w + 1, it follows from equation (4) that j = |MOpt| − |M | ≤

2
√
w. From (I2), we will compute at least one augmenting path in each phase and so the

remaining j unmatched vertices are matched in at most 2
√
w phases. This bounds the total

number of phases by 3
√
w.

Next, we use equation (4) to bound the total augmenting path length. Recollect that
{P1, . . . , Pt} are the augmenting paths computed by the algorithm. The matching M0 has
|MOpt|− t edges. Let ylmax correspond to the dual weight of the free vertices of BF when the
augmenting path Pl is found by the algorithm. From Lemma 1, and the fact that Pl is an
augmenting path consisting of zero slack edges, we have ylmax = c(Pl). Before augmenting
along Pl, there are |MOpt| − t + l − 1 edges in Ml−1 and j = |MOpt| − |Ml−1| = t − l + 1.
Plugging this in to (4), we get c(Pl) = ylmax ≤ 2w

t−l+1 . Summing over all 1 ≤ l ≤ t, and
recalling that t = |MOpt| ≤ w, we get,

t∑
l=1

c(Pl) ≤ w
t∑
l=1

2

t− l + 1
= O(w log t) = O(w logw). (5)

For any augmenting path Pl, the number of affected pieces is upper bounded by one plus
the number of non-zero weight edges on Pl, i.e., |Kl| ≤ c(Pl) + 1. Therefore,

t∑
l=1

|Kl| ≤
t∑
l=1

(c(Pl) + 1) = O(w logw).

http://jocg.org/

Journal of Computational Geometry jocg.org

4 Proof of invariants

We now prove (I1) and (I2). Consider any phase k in the algorithm. Assume inductively
that at the end of phase k− 1, (I1) and (I2) hold. We will show that (I1) and (I2) also hold
at the end of the phase k. We establish a lemma that will help us prove (I1) and (I2).

Lemma 4. For any edge a b ∈ M , let `a and `b be the distances returned by Dijkstra’s
algorithm during the first stage of phase k, then `a = `b.

Proof. The only edge directed towards b is an edge from its match a. Therefore, any path
from s to b in the augmented residual network, including the shortest path, should pass
through a. Since the slack on any edge of M is 0, `b = `a + s(a, b) = `a.

Lemma 5. Any matching M and dual weights y(·) maintained during the execution of the
algorithm are feasible.

Proof. We begin by showing that the dual weight modifications in the first stage of phase
k will not violate dual feasibility conditions (1) and (2). Let ỹ(·) denote the dual weights
after the execution of the first stage of the algorithm. Consider any edge u v. There are
the following possibilities:

If both `u and `v are greater than or equal to `, then y(u) and y(v) remain unchanged
and the edge remains feasible.

If both `u and `v are less than `, suppose u v ∈M . Then, from Lemma 4, `u = `v.
We have, ỹ(u) = y(u)+`−`u, ỹ(v) = y(v)+`−`v, and ỹ(u)− ỹ(v) = y(u)−y(v)+`v−`u =
c(u, v) implying u v satisfies (2).

If `u and `v are less than ` and u v 6∈ M , then u ∈ B and v ∈ A. By definition,
y(u) − y(v) + s(u, v) = c(u, v). By the properties of shortest paths, for any edge u v,
`v − `u ≤ s(u, v). The dual weight of u is updated to y(u) + ` − `u and dual weight of
v is updated to y(v) + ` − `v. The difference in the updated dual weights ỹ(u) − ỹ(v) =
(y(u) + ` − `u) − (y(v) + ` − `v) = y(u) − y(v) + `v − `u ≤ y(u) − y(v) + s(u, v) = c(u, v).
Therefore, u v satisfies (1).

If `u < ` and `v ≥ `, then, from Lemma 4, u v 6∈ M , and so u ∈ B and v ∈ A.
From the shortest path property, for any edge u v, `v − `u ≤ s(u, v). Therefore,

ỹ(u)− ỹ(v) = y(u)− y(v) + `− `u ≤ y(u)− y(v) + `v − `u ≤ y(u)− y(v) + s(u, v) = c(u, v),

implying u v satisfies (1).

If `u ≥ ` and `v < `, then, from Lemma 4, u v 6∈ M , and so u ∈ B and v ∈ A.
Since `v < `, we have,

ỹ(u)− ỹ(v) = y(u)− y(v)− `+ `v < y(u)− y(v) ≤ c(u, v),

implying u v satisfies (1).

In the second stage of the algorithm, when an augmenting path P is found, the dual
weights of some vertices of B on P decrease and the directions of edges of P change. We

http://jocg.org/

Journal of Computational Geometry jocg.org

argue these operations do not violate feasibility. Let ỹ(·) be the dual weights after these
operations. Consider any edge (a, b) where a ∈ A and b ∈ B. If b is not on P , then the
feasibility of (a, b) is unchanged. If b is on P and a is not on P , then ỹ(b) ≤ y(b), and
ỹ(b)− ỹ(a) ≤ y(b)− y(a) ≤ c(a, b), implying (1) holds. The remaining case is when both a
and b are on P . Consider if (a, b) ∈M after augmentation. Prior to augmentation, (a, b) was
an admissible edge not in M , and we have y(b) − y(a) = c(a, b) and ỹ(b) = y(b) − 2c(a, b).
So, ỹ(a)− ỹ(b) = y(a)−(y(b)−2c(a, b)) = y(a)−y(b)+2c(a, b) = c(a, b), implying (2) holds.
Finally, consider if (a, b) /∈ M after augmentation. Then, prior to augmentation, (a, b) was
in M , and y(a)− y(b) = c(a, b). So, ỹ(b)− ỹ(a) ≤ y(b)− y(a) = −c(a, b) ≤ c(a, b), implying
(1) holds. We conclude the second stage maintains feasibility.

Next we show that the dual weights AF are zero and the dual weights of all vertices
of BF are equal to ymax. At the start of the second step, all dual weights are 0. During the
first stage, the dual weight of any vertex v will increase by `− `v only if `v < `. By (3), for
every free vertex a ∈ AF , `a ≥ `, and so the dual weight of every free vertex of A remains
unchanged at 0. Similarly, for any free vertex b ∈ BF , `b = 0, and the dual weight increases
by `, which is the largest possible increase. This implies that every free vertex in BF will
have the same dual weight of ymax. In the second stage, matched vertices of B undergo a
decrease in their dual weights, which does not affect vertices in BF . Therefore, the dual
weights of vertices of BF will still have a dual weight of ymax after stage two. This completes
the proof of (I1).

Before we prove (I2), we will first establish a property of the admissible graph after
the dual weight modifications in the first stage of the algorithm.

Lemma 6. After the first stage of each phase, there is an augmenting path consisting of
admissible edges.

Proof. Let a ∈ AF be a free vertex whose shortest path distance from s in the augmented
residual network is `, i.e., `a = `. Let P be the shortest path from s to a and let Pa be
the path P with s removed from it. Note that Pa is an augmenting path. We will show
that after the dual updates in the first stage, every edge of Pa is admissible. Consider
any edge u v ∈ Pa ∩ M , where u ∈ A and v ∈ B. From Lemma 4, `u = `v. Then
the updated dual weights are ỹ(u) = y(u) + ` − `u and ỹ(v) = y(v) + ` − `v. Therefore,
ỹ(u)− ỹ(v) = y(u)−y(v)−`u+`v = c(u, v), and u v is admissible. Otherwise, consider any
edge u v ∈ Pa \M , where u ∈ B and v ∈ A. From the optimal substructure property of
shortest paths, for any edge u v ∈ Pa, we have `v − `u = s(u, v). Therefore, the difference
of the new dual weights is

ỹ(u)−ỹ(v) = y(u)+`−`u−y(v)−`+`v = y(u)−y(v)−`u+`v = y(u)−y(v)+s(u, v) = c(u, v),

implying that u v is admissible.

Proof of (I2): From Lemma 6, there is an augmenting path of admissible edges at the end
of the first stage of any phase. Since we execute a DFS from every free vertex b ∈ BF in the
second stage, we are guaranteed to find an augmenting path. Next, we show in Corollary 1

http://jocg.org/

Journal of Computational Geometry jocg.org

that there is no augmenting path of admissible edges at the end of stage two of phase k, i.e.,
all augmenting paths in the residual network have a slack of at least 1. This will immediately
imply that the first stage of phase k + 1 will have to increase the dual weight of every free
vertex by at least 1 completing the proof for (I2).

Edges that are deleted during a phase do not participate in any admissible augment-
ing path for the rest of the phase. We show this in two steps. First, we show that at the
time of deletion of an edge u v, there is no path in the admissible graph that starts from
the edge u v and ends at a free vertex a ∈ AF (Lemma 9). In Lemma 7, we show that any
such edge u v will not participate in any admissible alternating path to a free vertex of AF
for the rest of the phase.

We use DFS(b, k) to denote the DFS initiated from b in phase k. Let P bu denote the
path maintained by DFS(b, k) when the vertex u was added to the path.

Lemma 7. Consider some point during the second stage of phase k where there is an edge
u v that does not participate in any admissible alternating path to a vertex of AF . Then, for
the remainder of phase k, this edges u v does not participate in any admissible alternating
path to a vertex of AF .

Proof. Assume for the sake of contradiction that at some later time during phase k, the
edge u v becomes part of an admissible path Py,z from a vertex y to a vertex z ∈ AF .
Consider the first time this occurs for u v. During the second stage, the dual weights of
some vertices of B may decrease just prior to augmentation; however, this does not create
any new admissible edges. Therefore, Py,z must have become an admissible path due to
augmentation along a path Pa,b from some b ∈ BF to some a ∈ AF . Specifically, Py,z
must intersect Pa,b at some vertex x. Therefore, prior to augmenting along Pa,b, there was
an admissible path from y to a via x. This contradicts the assumption that u v did not
participate in any admissible path to a vertex of AF prior to this time.

Lemma 8. Consider the execution of DFS(b, k) and the path P bu. Suppose the DFS(b, k)
marks an edge u v as visited. Let Pv be an admissible alternating path from v to any free
vertex a ∈ AF in G′. Suppose Pv and P bu are vertex-disjoint. Then, DFS(b, k) will find an
augmenting path that includes the edge u v.

Proof. Pv and P bu are vertex-disjoint and so, v is not on the path P bu. Therefore, DFS(b, k)
will add u v to the path and we get the path P = P bv . We will show that all edges of Pv
are unvisited by DFS(b, k) at this time, and so the DFS procedure, when continued from v,
will discover an augmenting path.

We show, through a contradiction, that all edges of Pv are not yet visited by
DFS(b, k). Consider, for the sake of contradiction, among all the edges of Pv, the edge
u′ v′ that was marked visited first. We claim the following:

(i) u′ v′ is visited before u v: This follows from the assumption that when u v was
marked as visited, u′ v′ was already marked as visited by the DFS.

http://jocg.org/

Journal of Computational Geometry jocg.org

(ii) u v is not a descendant of u′ v′ in the DFS: If u′ v′ was an ancestor of u v in the
DFS, then P bu contains u′ v′. By definition, Pv also contains u′ v′, which contradicts
the assumption that P bu and Pv are disjoint paths.

(iii) When u′ v′ is marked visited, it will be added to the path by the DFS: The only reason
why u′ v′ is visited but not added is if v′ is already on the path P bu′ . In that case, Pv
and P bu′ will share an edge that was visited before u′ v′ contradicting the assumption
that u′ v′ was the earliest edge of Pv to be marked visited.

From (iii), when u′ v′ was visited, it was added to the path P bv′ . Since u
′ v′ was the edge

on Pv that was marked visited first by DFS(b, k), all edges on the subpath from v′ to a are
unvisited. Therefore, the DFS(b, k), when continued from v′, will not visit u v (from (ii)),
will find an augmenting path, and terminate. From (i), u v will not be marked visited by
DFS(b, k) leading to a contradiction.

Lemma 9. Consider a DFS initiated from some free vertex b ∈ BF in phase k. LetM be the
matching at the start of this DFS andM ′ be the matching when the DFS terminates. Suppose
the edge u v was deleted during DFS(b, k). Then there is no admissible path starting with
u v and ending at a free vertex a ∈ AF in GM ′.

Proof. At the start of phase k, G′ is initialized to the admissible graph. Inductively, we
assume that all the edges discarded in phase k prior to the execution of DFS(b, k) do not
participate in any augmenting path of admissible edges with respect to M . Therefore, any
augmenting path of admissible edges in GM remains an augmenting path in G′. There are
two possible outcomes for DFS(b, k). Either, (i) the DFS terminates without finding an
augmenting path, or (ii) the DFS terminates with an augmenting path P̃ and M ′ = M ⊕ P̃ .

In case (i), M = M ′ and any edge u v visited by the DFS(b, k) is marked for
deletion. For the sake of contradiction, let u v participate in an admissible path P to a
free vertex a′ ∈ AF . Since u is reachable from b and a′ is reachable from u in GM , a′ is
reachable from b. This contradicts the fact that DFS(b, k) did not find an augmenting path.
Therefore, no edge u v marked for deletion participates in an augmenting path with respect
to M .

In case (ii), M ′ = M ⊕ P̃ . DFS(b, k) marks two kinds of edges for deletion.

(a) Any edge u v on the augmenting path P̃ such that c(u, v) = 1 is deleted, and,

(b) Any edge u v that is marked visited by DFS(b, k), does not lie on P̃ , and does not
belong to any affected piece is deleted.

In (a), there are two possibilities (1) u v ∈ P̃ ∩M or (2) u v ∈ P̃ \M . If u v ∈M (case
(a)(1)), then, after augmentation along P̃ , s(u, v) increases from 0 to at least 2, and u v
is no longer admissible. Therefore, u v does not participate in any admissible alternating
paths to a free vertex in AF with respect to GM ′ . If u v 6∈ M (case (a)(2)), then the
Augment procedure reduces the dual weight of u ∈ B by 2. So, every edge going out of u
will have a slack of at least 2. Therefore, u v cannot participate in any admissible path P
to a free vertex in AF . This completes case (a).

http://jocg.org/

Journal of Computational Geometry jocg.org

For (b), we will show that u v, even prior to augmentation along P̃ , did not par-
ticipate in any path of admissible edges from v to any free vertex of AF . For the sake of
contradiction, let there be a path Pv from v to a′ ∈ AF . We claim that Pv and P bu are
not vertex-disjoint. Otherwise, from Lemma 8, the path P̃ found by DFS(b, k) includes
u v. However, by our assumption for case (b), u v does not lie on P̃ . Therefore, we safely
assume that Pv intersects P bu. There are two cases:

• c(u, v) = 1: We will construct a cycle of admissible edges containing the edge u v.
Since c(u, v) = 1, our construction will contradict Lemma 2. Let x be the first vertex
common to both Pv and P bu as we walk from v to a′ on Pv. To create the cycle, we
traverse from x to u along the path P bu, followed by the edge u v, followed by the
path from v to x along Pv. All edges of this cycle are admissible including the edge
u v.

• c(u, v) = 0: In this case, u v belongs to some piece Ki that is not an affected piece.
Among all edges visited by DFS(b, k), consider the edge u′ v′ of Ki, the same piece as
u v, such that v′ has a path to the vertex a′ ∈ AF with the fewest number of edges.
Let Pv′ be this path. We claim that Pv′ and P bu′ are not vertex-disjoint. Otherwise,
from Lemma 8, the path P̃ found by DFS(b, k) includes u′ v′ and Ki would have
been an affected piece. Therefore, we can safely assume that Pv′ intersects with P bu′ .
Let z be the first intersection point with P bu′ as we walk from v′ to a′ and let z′ be the
vertex that follows after z in P bu′ . There are two possibilities:

– The edge z z′ ∈ Ki: In this case, z z′ is also marked visited by DFS(b, k),
and z′ has path to a′ with fewer number of edges than v′. This contradicts our
assumption about u′ v′.

– The edge z z′ 6∈ Ki: In this case, consider the cycle obtained by walking from
z to u′ along the path P bu′ followed by the edge u′ v′ and the path from v′ to
z along Pv′ . Since u′ v′ ∈ Ki and z z′ 6∈ Ki, the admissible cycle contains at
least one edge of weight 1. This contradicts Lemma 2.

This concludes case (b) which shows that u v did not participate in any augmenting paths
with respect to M . From Lemma 7, it follows that u v does not participate in any aug-
menting path with respect to GM ′ as well.

Corollary 1. At the end of any phase, there is no augmenting path of admissible edges.

5 Algorithm for graphs with small balanced vertex separators

A balanced vertex separator for any graph G(V,E) is a set S ⊆ V of vertices whose removal
from G disconnects the graph into two pieces, each piece having at least a third of the
vertices in V . For any δ ∈ [1/2, 1), we say that a graph has a balanced vertex separator
of size nδ if every subgraph G′(V ′, E′) of G has a balanced vertex separator S′ such that
|S′| = O(|V ′|δ). We assume that these balanced vertex separators are efficiently computable,
meaning the time taken to compute the separators is dominated by the time taken by our

http://jocg.org/

Journal of Computational Geometry jocg.org

algorithm, given the separators. Consider any graph G(V,E) with n vertices, m edges, and
a balanced vertex separator of size nδ. Using these separators, we describe a procedure for
assigning weights of 0 and 1 to the edges so that the cost of any matching is no more than
w = O(n

2δ
1+δ) and the value of r = O(n

1
1+δ). Assuming that the separators can be computed

efficiently, such a weight assignment can also be produced efficiently, and our algorithm will
compute a maximum cardinality matching in Õ(mn

δ
1+δ) time leading to Theorem 2.

Next, we describe how to compute a separator set S of size O(n/r1−δ) whose removal
disconnects the graph into disjoint pieces, each with at most r vertices and O(mr/n) edges.
We accomplish this by using a recursive procedure Separate(G′), which we describe next.
Separate(G′) accepts as input a subgraph (or piece) G′(V ′, E′) of G. If |V ′| < r and
|E′| < mr/n, then the procedure Separate(G′) returns immediately; this is the base case.
Otherwise, the procedure Separate(G′) further subdivides G′ by computing a separator
S′ of size O(|V ′|δ). The procedure adds all of these vertices to the overall separator set
by setting S ← S ∪ S′. Next, let G` and Gr be the two pieces of G′ formed by removing
the vertices of S′. The procedure Separate(G′) is invoked recursively on both G` and Gr.
Initially, we set S ← ∅ and call Separate on G. The set S returned by this call is a vertex
set whose removal from G creates pieces each with at most r vertices and at most mr/n
edges.

Next, we show that the total size of S is O(n/r1−δ). We partition the set S into
subsets S0,S1, . . . ,Sk as follows: The set S0 contains all separator vertices added to S during
some recursive call to Separate(G′(V ′, E′)) such that |V ′| ≥ r. For any 0 < i ≤ k, the set
Si contains all separator vertices added to S as part of a recursive call Separate(G′) with
r
2i
≤ |V ′| < r

2i−1 .

Recollect that the procedure Separate is called on some piece of the original graph
G. We define a set {K0, . . . ,Kk+1} where, for 0 ≤ i ≤ k + 1, each Ki is a subset of pieces
on which the procedure Separate is called. Let K0 be a singleton set containing the graph
G. For 0 < i ≤ k+ 1, let Ki be the set of those pieces that contain at least mr/n edges and
that are formed after removing Si−1 from the pieces of Ki−1. Let ni be the subset of vertices
that participate in any piece of Ki. We bound the quantity ni for any i > 0. Removing
Si−1 from pieces of Ki−1 forms disjoint pieces, each containing at most r

2i−1 vertices. Recall
that a piece is not further subdivided unless it contains at least mr/n edges. Since there
are at most m edges, each participating in at most one piece, the total number of such
pieces requiring further subdivision is at most n

r . Each of these pieces contains at most r
2i−1

vertices, so the number of vertices in Ki is at most n
2i−1 .

Using standard arguments, it can be shown that, for a sufficiently large constant c,
by recursively applying Separate on G the size of S0 is at most cn

r1−δ
. For 0 < i ≤ k, we

can apply similar arguments for each Ki and use the bound on ni to upper bound |Si| by
cn

2i−1r1−δ
. Summing over all 0 ≤ i ≤ k gives a bound of O(n/r1−δ) for the size of S.
To generate our weight assignment, we simply assign each edge incident on a vertex

of S a weight of 1 and any other edge a weight of 0. It is easy to see that w = |S| = O(n
r1−δ

)

is an upper bound on the cost of any matching. We choose r = O(n
1

1+δ) and so w = O(n
2δ
1+δ)

as desired. Applying Theorem 1 gives the following:

http://jocg.org/

Journal of Computational Geometry jocg.org

Theorem 2. For any δ ∈ [1/2, 1) and any bipartite graph G(A ∪B,E) with an efficiently-
computable balanced vertex separator of size O(nδ) on each subgraph, a maximum cardinality
matching in G can be computed in O(mn

δ
1+δ log n) time.

6 Minimum bottleneck matching

We are given two sets A and B of n d-dimensional points. Consider a weighted and complete
bipartite graph on points of A and B. The weight of any edge (a, b) ∈ A×B is given by its
Euclidean distance and denoted by ‖a− b‖. For any matching M of A and B let its largest
weight edge be its bottleneck edge. In the minimum bottleneck matching problem, we wish to
compute a matching MOpt of A and B with the smallest weight bottleneck edge. We refer
to this weight as the bottleneck distance of A and B and denote it by β∗. An ε-approximate
bottleneck matching of A and B is any matching M with a bottleneck edge weight of at
most (1 + ε)β∗. We present an algorithm that takes as input A,B, and a value δ such that
β∗ ≤ δ ≤ (1 + ε/3)β∗, and produces an ε-approximate bottleneck matching. For simplicity
in presentation, we describe our algorithm for the 2-dimensional case when all points of A
and B are in a bounding square S. The algorithm easily extends to any arbitrary fixed
dimension d. For 2-dimensional case, given a value δ, our algorithm executes in Õ(n4/3/ε3)
time.

Although the value of δ is not known to the approximation algorithm, we can first find
a value α that is guaranteed to be an n-approximation of the bottleneck distance [3, Lemma
2.2] and then select O(log n/ε) values from the interval [α/n, α] of the form (1 + ε/3)iα/n,
for 0 ≤ i ≤ O(log n/ε). We will then execute our algorithm for each of these O(log n/ε)
selected values of δ. Our algorithm returns a maximum matching whose edges are of length
at most (1 + ε/3)δ in Õ(n4/3/ε3) time. At least one of the δ values chosen will be a
β∗ ≤ δ ≤ (1 + ε/3)β∗. The matching returned by the algorithm for this value of δ will be
perfect (|M | = n) and have a bottleneck edge of weight at most (1 + ε/3)2β∗ ≤ (1 + ε)β∗ as
desired. Among all executions of our algorithm that return a perfect matching, we return a
perfect matching with the smallest bottleneck edge weight. We can reasonably assume that
1/ε is a polynomial in n; therefore, the number of guesses is O(log n), and the total time
taken to compute the ε-approximate bottleneck matching is Õ(n4/3/ε3).

Given the value of δ, the algorithm will construct a graph as follows: Let G be a grid
on the bounding square S. The side-length of every square in this grid is εδ/(6

√
2). For any

cell ξ in the grid G, let N(ξ) denote the subset of all cells ξ′ of G such that the minimum
distance between ξ and ξ′ is at most δ. By the use of a simple packing argument, it can be
shown that |N(ξ)| = O(1/ε2).

For any point v ∈ A ∪B, let ξv be the cell of grid G that contains v. We say that a
cell ξ is active if (A∪B)∩ ξ 6= ∅. Let Aξ and Bξ denote the points of A and B in the cell ξ.
We construct a bipartite graph G(A∪B, E) on the points in A∪B as follows: For any pair of
points (a, b) ∈ A×B, we add an edge in the graph if ξb ∈ N(ξa). Note that every edge (a, b)
with ‖a − b‖ ≤ δ will be included in G. Since δ is at least the bottleneck distance, G will
have a perfect matching. The maximum distance between any cell ξ and a cell in N(ξ) is
(1 + ε/3)δ. Therefore, no edge in G will have a length greater than (1 + ε/3)δ. This implies

http://jocg.org/

Journal of Computational Geometry jocg.org

that any perfect matching in G will also be an ε-approximate bottleneck matching. We use
our algorithm for maximum matching to compute this perfect matching in G. Note, that
G can have Ω(n2) edges. For the sake of efficiency, our algorithm executes on a compact
representation of G that is described later. Next, we assign weights of 0 and 1 to the edges
of G so that the any maximum matching in G has a small weight w.

For a parameter3 r > 1, we will carefully select another grid G′ on the bounding
square S, each cell of which has a side-length of

√
r(εδ/(6

√
2)) and encloses

√
r ×
√
r cells

of G. For any cell ξ of the grid G, let �ξ be the cell in G′ that contains ξ. Any cell ξ of
G is a boundary cell with respect to G′ if there is a cell ξ′ ∈ N(ξ) such that �ξ′ 6= �ξ.
Equivalently, if the minimum distance from ξ to the boundary of �ξ is at most δ, then ξ is
a boundary cell. For any boundary cell ξ of G with respect to grid G′, we refer to all points
of Aξ and Bξ that lie in ξ as boundary points. All other points of A and B are referred to as
internal points. We carefully construct this grid G′ such that the total number of boundary
points is O(n/ε

√
r) as follows: First, we will generate the vertical lines for G′, and then we

will generate the horizontal lines using a similar construction. Consider the vertical line yij
to be the line x = i(εδ)/(6

√
2) + j

√
r(εδ/(6

√
2)). For any fixed integer i in [1,

√
r], consider

the set of vertical lines Yi = {yij | yij intersects the bounding square S}. We label all cells
ξ of G as boundary cells with respect to Yi if the distance from ξ to some vertical line in Yi
is at most δ. We designate the points inside the boundary cells as boundary vertices with
respect to Yi. For any given i, let Ai and Bi be the boundary vertices of A and B with
respect to the lines in Yi. We select an integer κ = arg min1≤i≤

√
r |Ai ∪ Bi| and use Yκ as

the vertical lines for our grid G′. We use a symmetric construction for the horizontal lines.

Lemma 10. Let Ai and Bi be the boundary points with respect to the vertical lines Yi. Let
κ = arg min1≤i≤

√
r |Ai ∪Bi|. Then, |Aκ ∪Bκ| = O(n/(ε

√
r)).

Proof. For any fixed cell ξ in G, of the
√
r values of i, there are O(1/ε) values for which Yi

has a vertical line at a distance at most δ from ξ. Therefore, each cell ξ will be a boundary
cell in only O(1/ε) shifts out of

√
r shifts. So, Aξ and Bξ will be counted in Ai ∪ Bi for

O(1/ε) different values of i. Therefore, if we take the average over choices of i, we get

min
1≤i≤

√
r
|Ai ∪Bi| ≤

1√
r

√
r∑

i=1

|Ai ∪Bi| ≤ O(n/(ε
√
r)).

Using a similar construction, we guarantee that the boundary points with respect to
the horizontal lines of G′ is also at most O(n/(ε

√
r)).

Corollary 2. The grid G′ that we construct has O(n/(ε
√
r)) many boundary points.

Let ξ and ξ′ be two cells of the grid G such that ξ′ ∈ N(ξ) and �ξ 6= �ξ′ . Then the
weights of all edges of Aξ ×Bξ′ and of Bξ ×Aξ′ are set to 1. All other edges have a weight
of 0. We do not make an explicit weight assignment as it is expensive to do so. Instead,

3Assume r to be a perfect square.

http://jocg.org/

Journal of Computational Geometry jocg.org

we can always derive the weight of an edge when we access it. Only boundary points will
have edges of weight 1 incident on them. From Corollary 2, it follows that any maximum
matching will have a weight of w = O(n/(ε

√
r)).

The edges of every piece in G have endpoints that are completely inside a cell of
G′. Note, however, that there is no straight-forward bound on the number of points and
edges of G inside each piece. Moreover, the number of edges in G can be Θ(n2). Consider
any feasible matching M,y(·) in G. Let GM be the residual network. In order to obtain a
running time of Õ(n4/3/ε3), we use the grid G to construct a compact residual network CGM
for any feasible matching M,y(·) and use this compact graph to implement our algorithm.
The following lemma assists us in constructing the compressed residual network.

Lemma 11. Consider any feasible matching M,y(·) maintained by our algorithm on G and
any active cell ξ in the grid G. The dual weight of any two points a, a′ ∈ Aξ can differ by at
most 2. Similarly, the dual weights of any two points b, b′ ∈ Bξ can differ by at most 2.

Proof. We present our proof for two points b, b′ ∈ Bξ. A similar argument will extend for
a, a′ ∈ Aξ. For the sake of contradiction, let y(b) ≥ y(b′) + 3. b′ must be matched since
y(b′) < y(b) ≤ ymax. Let m(b′) ∈ A be the match of b′ in M . From (2), y(m(b′)) −
y(b′) = c(b′,m(b′)). Since both b and b′ are in ξ, we have c(b,m(b′)) = c(b′,m(b′)). So,
y(b) − y(m(b′)) ≥ (y(b′) + 3) − y(m(b′)) = 3 − c(b,m(b′)). This violates (1) leading to a
contradiction.

For any feasible matching and any cell ξ of G, we divide points of Aξ and Bξ based
on their dual weight into at most three clusters. Let A1

ξ , A
2
ξ and A3

ξ be the three clusters of
points in Aξ and let B1

ξ , B
2
ξ and B3

ξ be the three clusters of points in Bξ. We assume that
points with the largest dual weights are in A1

ξ (resp. B
1
ξ), the points with the second largest

dual weights are in A2
ξ (resp. B2

ξ), and the points with the smallest dual weights are in A3
ξ

(resp. B3
ξ).

Compact residual network: Given a feasible matchingM , we construct a compact residual
network CGM to assist in the fast implementation of our algorithm. The vertex set A∪B for
the compact residual network is constructed as follows. First we describe the vertex set A.
For every active cell ξ in G, we add a vertex a1ξ (resp. a2ξ , a

3
ξ) to represent the set A1

ξ (resp.
A2
ξ , A

3
ξ) provided A1

ξ 6= ∅ (resp. A2
ξ 6= ∅, A3

ξ 6= ∅). We designate a1ξ (resp. a2ξ , a
3
ξ) as a free

vertex if A1
ξ ∩ AF 6= ∅ (resp. A2

ξ ∩ AF 6= ∅, A3
ξ ∩ AF 6= ∅). Similarly, we construct a vertex

set B by adding a vertex b1ξ (resp. b2ξ , b
3
ξ) to represent the set B1

ξ (resp. B2
ξ , B

3
ξ) provided

B1
ξ 6= ∅ (resp. B2

ξ 6= ∅, B3
ξ 6= ∅). We designate b1ξ (resp. b

2
ξ , b

3
ξ) as a free vertex if B1

ξ ∩BF 6= ∅
(resp. B2

ξ ∩BF 6= ∅, B3
ξ ∩BF 6= ∅). Each active cell ξ of the grid G therefore has at most six

points. Each point in A∪B will inherit the dual weights of the points in its cluster; for any
vertex a1ξ ∈ A (resp. a2ξ ∈ A, a3ξ ∈ A), let y(a1ξ)(resp. y(a2ξ), y(a3ξ)) be the dual weight of all
points in A1

ξ (resp. A2
ξ , A

3
ξ). We define y(b1ξ), y(b2ξ), and y(b3ξ) as dual weights of points in

B1
ξ , B

2
ξ , and B

3
ξ respectively. Since there are at most n active cells, |A ∪ B| = O(n).

http://jocg.org/

Journal of Computational Geometry jocg.org

Next, we create the edge set for the compact residual network CGM . Like before, we
use u v to denote an edge directed from u to v in the compact residual network. For any
active cell ξ in the grid G and for any cell ξ′ ∈ N(ξ),

• We add a directed edge from aiξ to bjξ′ , for i, j ∈ {1, 2, 3} if there is an edge (a, b) ∈
(Aiξ ×B

j
ξ′)∩M . We define the weight of aiξ bjξ′ to be c(a, b). We also define the slack

s(aiξ, b
j
ξ′) to be c(aiξ, b

j
ξ′)− y(aiξ) + y(bjξ′) which is equal to s(aiξ, b

j
ξ′) = c(a, b)− y(a) +

y(b) = s(a, b) = 0.

• We add a directed edge from biξ to ajξ′ , for i, j ∈ {1, 2, 3} if (Bi
ξ × A

j
ξ′) \M 6= ∅. Note

that the weight and slack of every directed edge in Bi
ξ × A

j
ξ′ are identical. We define

the weight of biξ ajξ′ to be c(a, b) for any (a, b) ∈ Ajξ′ × B
i
ξ. We also define the slack

s(biξ, a
j
ξ′) = c(biξ, a

j
ξ′)− y(biξ) + y(ajξ′) which is equal to the slack s(a, b).

For each vertex in A∪B, we added at most two edges to every cell ξ′ ∈ N(ξ). Since
N(ξ) = O(1/ε2), the total number of edges in E is O(n/ε2). For a cell � in G′, let A� be
the points of A generated by cells of G that are contained inside the cell �. A piece K� has
A� ∪ B� as the vertex set and E� = (A� × B� ∪ B� ×A�) ∩ E as the edge set. Note that
the number of vertices in any piece K� is O(r) and the number of edges in K� is O(r/ε2).
Every edge (u, v) of any piece K� has a weight c(u, v) = 0 and every edge (u, v) with a
weight of zero belongs to some piece of CGM .

The following straight-forward lemma implies that the compact graph CGM preserves
all minimum slack paths in GM .

Lemma 12. For any directed path P in the compact residual network CGM , there is a
directed path P in the residual network such that

∑
u v∈P s(u, v) =

∑
u v∈P s(u, v). For

any directed path P in GM , there is a directed path P in the compact residual network such
that

∑
u v∈P s(u, v) ≥

∑
u v∈P s(u, v).

Preprocessing step: At the start,M = ∅ and all dual weights are 0. Consider any cell � of
the grid G′ and any cell ξ of G that is contained inside �. Suppose we have a point a1ξ . We
assign a demand da1ξ = |A1

ξ | = |Aξ| to a1ξ . Similarly, suppose we have a point b1ξ , we assign a
supply sb1ξ = |B1

ξ | = |Bξ|. The preprocessing step reduces to finding a maximum matching
of supplies to demand. This is an instance of the unweighted transportation problem which
can be solved using the algorithm of [18] in Õ(|E�|

√
|A� ∪ B�|) = Õ(|E�|

√
r). Every edge of

E participates in at most one piece. Therefore, the total time taken for preprocessing across
all pieces is Õ(|E|

√
r) = Õ(n

√
r/ε2). We can trivially convert the matching of supplies to

demands into a matching in G.

Efficient implementation of the second step: Recollect that the second step of the algo-
rithm consists of phases. Each phase has two stages. In the first stage, we execute Dijkstra’s
algorithm in O(n log n/ε2) time by using the compact residual network CG. After adjusting
the dual weight of nodes in the compact graph, in the second stage, we iteratively compute

http://jocg.org/

Journal of Computational Geometry jocg.org

augmenting paths of admissible edges by conducting a DFS from each free vertex of B. Our
implementation of DFS has the following differences from the one described in Section 3.

• Recollect that each free vertex v ∈ B may represent a cluster that has t > 0 free
vertices. We will execute DFS from v exactly t times, once for each free vertex of B.

• During the execution of any DFS, unlike the algorithm described in Section 3, the
DFS will mark an edge as visited only when it backtracks from the edge. Due to
this change, all edges on the path maintained by the DFS are marked as unvisited.
Therefore, unlike the algorithm from Section 3, this algorithm will not discard weight
1 edges of an augmenting path after augmentation. From Lemma 3, the total number
of these edges is O(w logw). Note that this does not asymptotically increase the total
number of edge revisits during the DFS.

Efficiency: The first stage is an execution of Dijkstra’s algorithm which takes O(|E| +
|V| log |V|) = O(n log n/ε2) time. Suppose there are λ phases; then the cumulative time
taken across all phases for the first stage is Õ(λn/ε2). In the second stage of the algorithm,
in each phase, every edge is discarded once it is visited by a DFS, unless it is in an affected
piece or it is an edge of weight 1 on an augmenting path. Since each affected piece has
O(r/ε2) edges, and since there are O(w logw) edges of weight 1 on the computed augmenting
paths, the total time taken by all the DFS searches across all the λ phases is bounded by
Õ(nλ/ε2 + r/ε2

∑t
i=1 |Ki| + w logw). In Lemma 3, we bound λ by O(

√
w) and

∑t
i=1 |Ki|

by O(w logw). Therefore, the total time taken by the algorithm including the time taken
by the preprocessing step is Õ((n/ε2)(

√
r +
√
w + wr

n)). Setting r = n2/3, we get w =

O(n/(ε
√
r)) = O(n2/3/ε), and the total running time of our algorithm is Õ(n4/3/ε3). To

obtain the bottleneck matching, we execute this algorithm onO(log n) guesses of δ; therefore,
the total time taken to compute an ε-approximate bottleneck matching, accounting for these
guesses, is Õ(n4/3/ε3).

Finally, we give the bounds for our algorithm when d > 2. Like the d = 2 case,
each cell of the grid G′ contains r cells of the grid G. However, now the width of each cell
in G′ is r1/d times the width of each cell in G. Lemma 10 can be easily generalized for d
dimensions; the only change necessary is the reduction in number of shifts from

√
r to r1/d.

As a result, the number of boundary vertices due to each dimension is O(n
εr1/d

) and we get
w = O(dn

εr1/d
). It is also worth noting that, for any cell ξ ∈ G, the size of N(ξ) becomes

1/εd, and so the total number of edges in E becomes O(n/εd). Setting r = n
d

2d−1 gives a
running time of 1

εO(d)n
1+ d−1

2d−1 poly log n.

Theorem 3. Given A,B ⊂ Rd and a parameter ε > 0, we can compute a (1+ε)-approximate
bottleneck matching of A and B in 1

εO(d)n
1+ d−1

2d−1 poly log n time.

References

[1] Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen
Xiao. Faster algorithms for the geometric transportation problem. In 33rd International

http://jocg.org/

Journal of Computational Geometry jocg.org

Symposium on Computational Geometry, pages 7:1–7:16, 2017.

[2] Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite
matching with metric and geometric costs. In Proceedings of the 46th ACM Symposium
on Theory of Computing Conference, pages 555–564, 2014.

[3] Pankaj K. Agarwal and Kasturi R. Varadarajan. A near-linear constant-factor ap-
proximation for euclidean bipartite matching? In 20th International Symposium on
Computational Geometry, pages 247–252, 2004.

[4] Mudabir Kabir Asathulla, Sanjeev Khanna, Nathaniel Lahn, and Sharath Raghvendra.
A faster algorithm for minimum-cost bipartite perfect matching in planar graphs. ACM
Trans. Algorithms, 16(1):2:1–2:30, 2020.

[5] Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian
Wulff-Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in
near-linear time. SIAM J. Comput., 46(4):1280–1303, 2017.

[6] Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching
and related problems. Algorithmica, 31(1):1–28, 2001.

[7] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

[8] Kyle Fox and Jiashuai Lu. A Near-Linear Time Approximation Scheme for Geometric
Transportation with Arbitrary Supplies and Spread. In 36th International Symposium
on Computational Geometry, pages 45:1–45:18, 2020.

[9] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[10] Harold N. Gabow. The weighted matching approach to maximum cardinality matching.
Fundam. Inform., 154(1-4):109–130, 2017.

[11] Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for network
problems. SIAM J. Comput., 18(5):1013–1036, 1989.

[12] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[13] Ken-ichi Kawarabayashi and Bruce A. Reed. A separator theorem in minor-closed
classes. In 51th Annual IEEE Symposium on Foundations of Computer Science, pages
153–162, 2010.

[14] Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning
for the geometric transportation problem. In 35th International Symposium on Com-
putational Geometry, pages 15:1–15:14, 2019.

[15] Harold Kuhn. Variants of the Hungarian method for assignment problems. Naval
Research Logistics, 3(4):253–258, 1956.

http://jocg.org/

Journal of Computational Geometry jocg.org

[16] Nathaniel Lahn and Sharath Raghvendra. A faster algorithm for minimum-cost bi-
partite matching in minor-free graphs. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 569–588, 2019.

[17] Nathaniel Lahn and Sharath Raghvendra. An Õ(n5/4) time ε-approximation algorithm
for RMS matching in a plane. In Proceedings of the 32nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 869–888, 2021.

[18] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in Õ(vrank) iterations and faster algorithms for maximum flow. In 55th
IEEE Annual Symposium on Foundations of Computer Science, pages 424–433, 2014.

[19] Aleksander Madry. Navigating central path with electrical flows: From flows to match-
ings, and back. In 54th Annual IEEE Symposium on Foundations of Computer Science,
pages 253–262, 2013.

[20] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In
45th Annual IEEE Symposium on Foundations of Computer Science, pages 248–255,
2004.

[21] Marcin Mucha and Piotr Sankowski. Maximum matchings in planar graphs via gaussian
elimination. Algorithmica, 45(1):3–20, 2006.

[22] Jeff M. Phillips and Pankaj K. Agarwal. On bipartite matching under the RMS distance.
In Proceedings of the 18th Annual Canadian Conference on Computational Geometry,
pages 143–146, 2006.

[23] Sharath Raghvendra and Pankaj K. Agarwal. A near-linear time ε-approximation al-
gorithm for geometric bipartite matching. J. ACM, 67(3):18:1–18:19, 2020.

[24] R. Sharathkumar. A sub-quadratic algorithm for bipartite matching of planar points
with bounded integer coordinates. In 29th International Symposium on Computational
Geometry, pages 9–16, 2013.

[25] R. Sharathkumar and P. K. Agarwal. Algorithms for transportation problem in geo-
metric settings. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 306–317, 2012.

[26] Christian Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free
graphs with applications. In 52nd Annual IEEE Symposium on Foundations of Com-
puter Science, pages 37–46, 2011.

http://jocg.org/

	Introduction
	Preliminaries
	Our algorithm
	Proof of invariants
	Algorithm for graphs with small balanced vertex separators
	Minimum bottleneck matching

