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Abstract:

Personalized treatment aims at tailoring treatments to individual characteristics. An important step

is to understand how treatment effect varies across individual characteristics, known as the conditional

average treatment effect (CATE). This article concerns making robust inferences of the CATE from

observational data, which becomes challenging with multivariate confounder. To reduce the curse

of dimensionality while keeping the nonparametric merit, we propose double dimension reductions

that achieve different goals: first, we target at identifying the central mean subspace of the CATE

directly using dimension reduction in order to detect the most accurate and parsimonious structure

of the CATE; second, a nonparametric regression with prior dimension reduction is used to impute

counterfactual outcomes, which helps to improve the stability of the imputation. We establish the

asymptotic properties of the proposed estimator taking into account the two-step double dimension

reduction, and propose an effective bootstrapping procedure without bootstrapping the estimated

central mean subspace to make valid inferences. Simulation and applications show that the proposed

estimator outperforms existing competitors.

Key words and phrases: augmented inverse probability weighting; matching; kernel smoothing; U-

statistic; weighted bootstrap.

1



1 INTRODUCTION

1. Introduction

Because of patient heterogeneity in response to various aspects of treatment, the paradigm

of biomedical and health policy research is shifting from the “one-size-fits-all” treatment

approach to precision medicine (Hamburg and Collins, 2010). Toward that end, an important

step is to understand how treatment effect varies across patient characteristics, known as the

conditional average treatment effect (CATE) (Rothwell, 2005). A large body of literature

focuses on modeling the treatment-specific prognostic score (e.g., Chakraborty et al., 2010;

Zhao et al., 2011; Song et al., 2017), since the CATE is simply the difference between the

treated and control prognostic scores. However, modeling prognostic scores may lead to an

overfitting problem for the CATE, and direct modeling of the CATE may provide a more

accurate characterization of treatment effects, avoiding redundancy of non-useful features;

see Section 2.2. Another body of literature thus focuses on modeling and approximating

the CATE parametrically (Murphy, 2003; Robins, 2004), semiparametrically (Liang and Yu,

2020) and by machine learning methods (Zhao et al., 2012; Zhang et al., 2012; Rzepakowski

and Jaroszewicz, 2012; Athey and Imbens, 2016; Athey et al., 2019; Künzel et al., 2019).

However, parametric and semiparametric methods are susceptible to model misspecification,

and machine learning produces results that are too complicated to be interpretable. Most

importantly, it is a daunting task to draw valid inferences based on machine learning methods.

In this article, we propose a nonparametric framework to make robust inferences of

the CATE with multivariate confounder. To mitigate the possible curse of dimensionality,

we consider the central mean subspace of the CATE, which is the smallest linear subspace

spanned by a set of linear index that can sufficiently characterize the estimand of interest

(Cook and Li, 2002). Under this framework, we specify the CATE nonparametrically and
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1 INTRODUCTION

use a model selection procedure to determine a sufficient structural dimension. Directly

targeting the central mean subspace of the CATE enables us to detect the most accurate

and parsimonious structure of the CATE. However, existing dimension reduction methods

are not applicable due to the fundamental problem in causal inference that not all poten-

tial outcomes are observable. To estimate the central mean subspace, we propose imputing

counterfactual outcomes by kernel regression with a prior dimension reduction. The prior

dimension reduction helps to improve the stability of the imputation and the subsequent

estimation of the CATE. In our simulation studies, the proposed imputation method out-

performs existing methods such as the nearest neighbor imputation, the inverse probability

weighted adjusted outcomes (Abrevaya et al., 2015), and the augmented inverse probability

weighting (Zhao et al., 2012).

Theoretically, we derive the consistency and asymptotic normality of the proposed es-

timator of the CATE. The main challenge is that the imputed counterfactual outcomes are

not independent. To overcome this challenge, we calculate the difference between imputed

and conditional counterfactual outcomes, which can be expressed as a weighted empirical

average of the influence functions of the kernel regression estimator. Thus, we can show

that the influence function of the proposed estimator can be approximated by a U-statistic.

Invoking the properties of degenerate U-processes discussed in Nolan and Pollard (1987), we

can derive the asymptotic distribution of the estimated CATE and show that the imputation

step plays a non-negligible role. To make valid inference, we propose an under-smooth strat-

egy such that the asymptotic bias is dominated by the asymptotic variance. We estimate the

asymptotic variances by applying weighted bootstrap techniques and construct Wald-type

confidence intervals. Interestingly, the fact that the central mean subspace is estimated does
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not affect the asymptotic distribution of the proposed estimator of the CATE. Thus, in our

bootstrap procedure, we can safely skip the step of bootstrapping the estimated central mean

subspace, which saves a lot of computation time in practice.

The remaining of the article is organized as follows. Section 2 establishes the proposed

robust inference framework and the asymptotic properties. In Section 3, we conduct sim-

ulation studies to assess the finite-sample performance of the proposed inference procedure

in comparison with existing competitors. In Section 4, we apply the proposed method to

estimate the CATE of maternal smoking on birth weight based on two datasets. We conclude

the article in Section 5 with discussions.

2. Methodology

2.1 Preliminaries

Let X ∈ X ⊆ Rp be a vector of pre-treatment covariates, A ∈ A = {0, 1} the binary

treatment, and Y ∈ R the outcome of interest. Under the potential outcomes framework

(Rubin, 1974), let Y (a) denote the potential outcome had the individual received treatment

a ∈ A. Based on the potential outcomes, the individual causal effect is D = Y (1) − Y (0),

and the CATE is τ(x) = E{Y (1) − Y (0) | X = x} = E(D | X = x). To link the potential

outcomes with the observed outcome, we make the usual causal consistency assumption that

Y = Y (A) = AY (1)+(1−A)Y (0). The main goal of this article is to estimate τ(x) based on

observational data {(Ai, Yi, Xi) : i = 1, . . . , n}, which independently and identically follow

f(A, Y,X).

To identify the treatment effects based on observational data, we assume the following

assumptions, which are standard in causal inference with observational studies (Rosenbaum
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and Rubin, 1983):

Assumption 1. {Y (0), Y (1)} A | X.

Assumption 2. There exist constants c1 and c2 such that 0 < c1 ≤ π(X) ≤ c2 < 1 almost

surely, where π(x) = P(A = 1 | X = x) is the propensity score.

Assumption 1 rules out latent confounding between the treatment assignment and out-

come. This can be made plausible by collecting detailed information on characteristics of the

units that are related to treatment assignment and outcome. Assumption 2 implies a suffi-

cient overlap of the covariate distribution between the treatment groups. If this assumption

is violated, a common approach is to trim the sample; see Yang and Ding (2018).

Let µa(x) = E{Y (a) | X = x} (a = 0, 1). Under Assumptions 1–2, µa(x) = E(Y |

A = a,X = x) and τ(x) = µ1(x)−µ0(x) are identifiable from f(A, Y,X). This identification

formula motivates a common strategy of estimating τ(x) by approximating µa(X) separately

for a = 0, 1. However, this may lead to an overfitting model for τ(x), as we will discuss in the

next subsection. Alternatively, we propose robust inference of τ(x) directly using dimension

reduction, which requires no parametric model assumptions and can detect accurate and

parsimonious structures of τ(x).

2.2 Dimension reduction on CATE

The main idea is to search for the fewest linear indices BT
τ x such that

τ(x) = g(BT

τ x), (2.1)

where Bτ is a p× dτ matrix consisting of index coefficients, and g is an unknown dτ -variate

function. Since τ(x) = E(D | X = x), the column space of Bτ is called the central mean

subspace of D given X, denoted by SE(D|X) (Cook and Li, 2002).
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2.2 Dimension reduction on CATE 2 METHODOLOGY

The central mean subspace SE(D|X) is nonparametric. In other words, for any multivariate

function τ(x), without particular parametric or semiparametric modeling, there always exists

a central mean subspace. To illustrate, consider the single-index model g(xTβ) which leads to

a one-dimensional central mean subspace spanned by β. Unlike the single-index model that

prefixes the dimension of the central mean subspace, we leave both dτ and Bτ unspecified,

and the primary goal of dimension reduction is to estimate dτ and Bτ . In addition, the curse

of dimensionality can be avoided if dτ is much smaller than p.

Remark 1. Recall that τ(x) = µ1(x) − µ0(x). An alternative way to employ dimension

reduction is to search for two sets of linear indices BT
0 x and BT

1 x such that

µ0(x) = g0(B
T

0 x), µ1(x) = g1(B
T

1 x), (2.2)

where g0 and g1 are unknown functions. That is, we can also estimate SE{Y (0)|X} = span(B0)

and SE{Y (1)|X} = span(B1), and then recover τ(x) by g1(B
T
1 x) − g0(BT

0 x). In fact, we can

show that SE(D|X) ⊆ SE{Y (0)|X}+SE{Y (1)|X}, where the sum of two linear subspaces is U+V =

{u+v : u ∈ U, v ∈ V }. In some cases SE(D|X) may be different from SE{Y (0)|X} and SE{Y (1)|X}

or have a strictly smaller dimension than SE{Y (0)|X} and SE{Y (1)|X}, as demonstrated by the

following examples. Thus, using model (2.1) may detect more parsimonious structures of

τ(x) than using model (2.2).

Example 1. Let Y (0) = αTX and Y (1) = βTX, where α, β ∈ Rp, and α and β are linearly

independent. Then, τ(x) = (β−α)TX. Thus, SE(D|X) = span(β−α), which is different from

SE{Y (0)|X} = span(α) and SE{Y (1)|X} = span(β). Thus, nonparametric dimension reduction

for µ0(x) and µ1(x) can detect two directions α and β separately but can not detect the

central mean subspace of the CATE function.
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2.3 Imputation and Estimation 2 METHODOLOGY

Example 2. Let Y (0) = αTX + (βTX)2 and Y (1) = αTX + (βTX)3, where α, β ∈ Rp, and

α and β are linearly independent. Then, τ(x) = (βTX)3− (βTX)2. Thus, dim(SE{Y (0)|X}) =

dim(SE{Y (1)|X}) = dim{span(α, β)} = 2, while dim(SE(D|X)) = dim{span(β)} = 1. In

this example, detecting the smaller dimension of SE(D|X) can help estimate τ(x) with an

only one-dimensional nonparametric smoothing estimator. If we recover τ(x) by estimating

µ1(x)−µ0(x), two-dimensional nonparametric smoothing estimators for µ1(x) and µ0(x) are

required, and hence are more unstable in finite sample.

Remark 2. As discussed in Ma and Zhu (2013), the parameter B is not identifiable without

further restrictions. To see this, suppose that Q is an invertible d × d matrix and consider

g∗(u) = g{(QT)−1u}. Then we can derive another equivalent representation of τ(x) as

τ(x) = g(BTx) = g{(QT)−1QTBTx} = g∗{(BQ)Tx}.

Thus, the two sets of parameters (B, g) and (BQ, g∗) correspond to the same CATE. As

a result, the central subspace was introduced to make the column space invariant to these

invertible linear transformations. We use a particular parametrization of the central mean

subspace as used in Ma and Zhu (2013). Without loss of generality, we set the upper d× d

block of B to be the identity matrix Id×d and write X = (XT
u , X

T
l )T, where Xu ∈ Rd and

Xl ∈ Rp−d. Hence, the free parameters are the lower (p− d)× d entries of B, corresponding

to the coefficients of Xl. For generic matrix B, we now denote vecl(B) as the vector formed

by the lower (p− d)× d entries of B.

2.3 Imputation and Estimation

If D were known, existing methods can be directly applied to estimate SE(D|X). However,

the fundamental problem in causal inference is that the two potential outcomes can never
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be jointly observed for each unit, one is factual Y (A) and the other one is counterfactual

Y (1−A). To overcome this challenge, we propose an imputation step to impute the counter-

factual outcomes. A natural choice to impute Y (1− A) is using its conditional mean given

X, µ1−A(X). As mentioned in Section 2.1, µa(x) can be estimated by matching or other

nonparametric smoothing techniques. To further reduce the possible curse of dimensionality,

we propose a prior dimension reduction procedure to estimate µa(x).

The proposed imputation and estimation procedure proceeds as follows.

Step 1. Estimate the central mean subspace SE{Y (a)|X} (a = 0, 1). Let µa(u;B) = E(Y |

A = a,BTX = u), where B is a p × d parameter matrix. Given B, the kernel smoothing

estimator of µa(u;B) is

µ̂a(u;B) =

∑n
j=1 Yj1(Aj = a)Kq,h(BTXj − u)∑n
j=1 1(Aj = a)Kq,h(BTXj − u)

, (2.3)

where 1(·) is the indicator function, Kq,h(u) =
∏d

k=1Kq(uk/h)/h with u = (u1, . . . , ud), Kq

is a qth ordered and twice continuously differentiable kernel function with bounded support,

and h is a positive bandwidth. The basis matrix of SE{Y (a)|X} can be estimated by B̂a, where

(d̂a, B̂a, ĥa) is the minimizer of the cross-validation criterion

cva(d,B, h) =
n∑
i=1

{Yi − µ̂−ia (BTXi;B)}21(Ai = a), (2.4)

where the superscript −i indicates the estimator (2.3) based on data without the ith subject.

The order of the kernel function q > max(d/2 + 1, 2) is specified for each working dimension

d. This criterion (2.4) is a mean regression version of Huang and Chiang (2017), and more

details as well as computation algorithms can be found therein.

Step 2. Impute the individual treatment effect by

D̂i = Ai{Yi − µ̂0(B̂
T

0Xi; B̂0)}+ (1− Ai){µ̂1(B̂
T

1Xi; B̂1)− Yi} (i = 1, . . . , n)
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with specified orders (q0, q1) of kernel functions and bandwidths (h0, h1) in µ̂0(B̂
T
0Xi; B̂0)}

and µ̂1(B̂
T
1Xi; B̂1). The choices of q0 and q1 will be discussed in § 2.4. The bandwidths can

be chosen as estimated optimal bandwidths by nonparametric smoothing methods, such that

ha = OP{n−1/(2qa+da)}, where da = dim(SE{Y (a)|X}) (a = 0, 1).

Step 3. Estimate the central mean subspace SE(D|X) based on {(D̂i, Xi) : i = 1, . . . , n}. Let

τ(u;B) = E{Y (1)− Y (0) | BTX = u}. Given B, the kernel smoothing estimator of τ(u;B)

is

τ̂(u;B) =

∑n
j=1 D̂jKq,h(BTXj − u)∑n
j=1Kq,h(BTXj − u)

. (2.5)

We then estimate (dτ , Bτ ) and a suitable bandwidth for τ̂(u;B) by the minimizer (d̂, B̂, ĥ)

of the following criterion:

cv(d,B, h) = n−1
n∑
i=1

{D̂i − τ̂−i(BTXi;B)}2,

where the superscript −i indicates the estimator (2.5) based on data without the ith subject.

Here, q > max(d/2 + 1, 2) is also specified for each working dimension d.

Step 4. Estimate τ(x) by τ̂(B̂Tx; B̂) with some suitable choice of (qτ , hτ ), which will be

further discussed in Section 2.4.

Remark 3. There have been a lot of existing dimension reduction methods in the litera-

ture that can be applied in Steps 1 and 3. Representative approaches include the inverse

regression (Li, 1991; Li and Wang, 2007; Zhu et al., 2010), average derivative methods (Xia

et al., 2002; Zhu and Zeng, 2006; Xia, 2007; Wang and Xia, 2008; Yin and Li, 2011), and

the semiparametric approach (Ma and Zhu, 2012, 2013). Different from these methods, the

cross-validation criterion of Huang and Chiang (2017) can estimate the structural dimen-

sion, the basis matrix, and an optimal bandwidth for the link function simultaneously. In
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particular, all the parameters are estimated in a data-driven way and no ad-hoc tuning is

required. As for the computational burden, the leave-one-out cross-validation is applied

for the unknown link functions but not for the index coefficients, and hence we do not re-

move each subject and repeatedly calculate the criterion. Instead, we simply calculate the

kernel weights Kq,h(BTXj − BTXi) (i, j = 1, . . . , n) and then remove the diagonal weights

Kq,h(BTXi − BTXi) (i = 1, . . . , n) to form the link function estimates. Thus, for each fixed

B, the computation of the proposed criterion only involves a kernel weight matrix of size

n × n as commonly seen in nonparametric smoothing methods and is feasible in practice.

Due to these properties, we adopt this method in our estimation procedure.

Remark 4. Liang and Yu (2020) considered the multiple index model with a fixed dimension

of the index and proposed the semiparametric efficient score of Bτ , while our proposed

estimator B̂ may not reach the semiparametric efficiency bound. However, as we will show

in Theorem 1, the asymptotic distribution of B̂ does not affect the asymptotic distribution

of the estimated CATE as long as B̂ is root-n consistent. Therefore, it is not necessary to

pursue the semiparametric efficiency estimation of the central mean subspace in our context.

Remark 5. An alternative method of imputing the counterfactual outcomes is matching

(Yang and Kim, 2019, 2020). To fix ideas, we consider matching without replacement and

with the number of matches fixed at one. Then the matching procedure becomes nearest

neighbor imputation (Little and Rubin, 2002). Without loss of generality, we use the Eu-

clidean distance to determine neighbors; the discussion applies to other distances (Abadie

and Imbens, 2006). Let Ji be the index set for the matched subject of ith subject. Define

the imputed missing outcome as Ỹi(Ai) = Yi and Ỹi(1−Ai) =
∑

j∈Ji Yj. Then the individual

causal effect can be estimated by D̂MAT,i = Ỹi(1) − Ỹi(0). Matching uses the full vector of
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confounders to determine the distance and corresponding neighbors. When the number of

confounders gets larger, this distance may be too conservative to determine proper neighbors

due to the curse of dimensionality. In the simulation studies, we find that the estimation of

SE(D|X) based on D̂MAT,i has poorer performance compared with our proposed method.

Remark 6. Instead of imputing the counterfactual outcomes, weighting can also be used

to estimate Di directly. Several authors have considered an adjusted outcome D̂IPW,i =

{Ai − π(Xi)}Yi/[π(Xi){1 − π(Xi)}] by inverse propensity score weighting. The adjusted

outcome is unbiased of τ(Xi) due to

E(D̂IPW,i | Xi) = E
{
AiYi
π(Xi)

− (1− Ai)Yi
1− π(Xi)

| Xi

}
= E{Yi(1)− Yi(0) | Xi} = τ(Xi).

This approach is attractive in clinical trials, where π(Xi) is known by trial design. In obser-

vational studies, π(Xi) is usually unknown and needs to be estimated. Abrevaya et al. (2015)

considered kernel regression to estimate π(Xi). To avoid possible curse of dimensionality and

keep the nonparametric merit, we can perform a prior dimension reduction to find Bπ such

that π(Xi) = P(Ai = 1 | BT
πXi). Then an improved estimator of π(Xi) is

π̂(B̂T

πXi; B̂π) =

∑n
j=1AjKq,h(B̂T

πXj − B̂T
πXi)∑n

j=1Kq,h(B̂T
πXj − B̂T

πXi)
,

where B̂π can be obtained similarly following Step 1 in § 2.3 by changing the outcome to

A. However, the estimator D̂IPW,i = {Ai− π̂(B̂T
πXi; B̂π)}Yi/[π̂(B̂T

πXi; B̂π){1− π̂(B̂T
πXi; B̂π)}]

still suffers from the instability due to the inverse weighting, especially when π̂(B̂T
πXi; B̂π)

is close to zero or one. It is well known that the augmented inverse propensity weighted

estimator reduces this instability by combining inverse propensity weighting and outcome

regressions. Specifically, the corresponding estimator of Di is

D̂AIPW,i = {Ai − π̂(B̂T

πXi; B̂π)}Yi − {1− π̂(B̂T
πXi; B̂π)}µ̂1(B̂

T
1Xi; B̂1)− π̂(B̂T

πXi; B̂π)µ̂0(B̂
T
0Xi; B̂0)

π̂(B̂T
πXi; B̂π){1− π̂(B̂T

πXi; B̂π)}
.
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One can easily show that E(D̂AIPW,i | Xi) is asymptotically unbiased of τ(Xi). The estimator

D̂AIPW,i is a refined version of Lee et al. (2017), in which the propensity scores are estimated

without a prior dimension reduction. Our simulation shows that the estimated central mean

subspace and CATE based on D̂i and D̂AIPW,i are comparable and both outperform those

based on D̂MAT,i and D̂IPW,i. Since D̂AIPW,i requires an extra dimension reduction on π(x)

and, hence, more computational time, our proposed D̂i is more computationally efficient in

practice.

2.4 Inference

In this subsection, we derive the large sample properties of B̂ and τ̂(B̂Tx; B̂), and an infer-

ence procedure for τ(x) based on these large sample properties is proposed. Based on the

notations and regularity conditions in the online supplementary materials, we first establish

the following theorem for the prior sufficient dimension reduction for µa(x) (a = 0, 1).

Theorem 1. Suppose that Assumptions 1 and 2 and Conditions A1–A5 are satisfied. Then,

P(d̂a = da)→ 1, ĥa = OP{n−1/(2q+da)}, and

n1/2vecl(B̂a − Ba)1(d̂a = da) = n1/2

n∑
i=1

ξBa,i + oP(1)
d→ N(0,ΣBa)

as n → ∞, where ξBa = {Va(Ba)}−1Sa(Ba) and ΣBa = {Va(Ba)}−1E{S⊗2a (Ba)}{Va(Ba)}−1

for a = 0, 1.

Exact forms of Va(Ba) and Sa(Ba) are presented in the online supplementary materials.

Theorem 1 as well as Conditions A1–A5 are modifications of results in Huang and Chiang

(2017) and hence we omit the proof. Generally speaking, we require the prognostic scores and

the joint density functions of BTX to be smooth enough so that the nonparametric smoothing
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estimators for these parameter functions are consistent. The constraints on the rate of

bandwidths are used to ensure the n1/2-consistency of the estimated central mean subspaces,

which can be automatically satisfied by the proposed estimated bandwidths. Coupled with

the identifiability of vecl(Ba), the cross-validation type criterion can successfully estimate

the true parameters. Theorem 1 serves as a stepping stone to deriving the asymptotic

distributions of the estimated central mean space and the proposed estimator for τ(x),

taking into account the fact that Di is imputed.

Theorem 2. Suppose that Assumptions 1 and 2 and Conditions A1–A8 are satisfied. Then

P(d̂ = dτ )→ 1, ĥ = OP{n−1/(2q+dτ )}, and

n1/2vecl(B̂ − Bτ )1(d̂ = dτ ) = n1/2

n∑
i=1

ξBτ ,i + oP(1)
d→ N(0,ΣBτ )

as n→∞, where ξBτ = {V (Bτ )}−1S(Bτ ) and ΣBτ = {V (Bτ )}−1E{S⊗2(Bτ )}{V (Bτ )}−1.

Theorem 3. Suppose that Assumptions 1 and 2 and Conditions A1–A10 are satisfied. Then,

(nhdττ )1/2{τ̂(B̂Tx; B̂)− τ(x)− hqττ γ(x)} d→ N{0, σ2
τ (x)}

as n→∞, where

γ(x) = κ
∂qτu {E(Z | BT

τX = u)fBT
τ X

(u)} − E(Z | BT
τX = u)∂qτu fBT

τ X
(u)

fBT
τ X

(u)

∣∣∣∣
u=BT

τ x

,

σ2
τ (x) =

{∫
K2
qτ (s)ds

}dτ V[Z + {1− π(X)}ε1 − π(X)ε0 | BT
τX = BT

τ x]

fBT
τ X

(BT
τ x)

,

κ =
∫
sqτKqτ (s)ds/qτ !, Z = (2A−1){Y −µ1−A(BT

1−AX;B1−A)}, and εa = {Y −µa(X)}1(A =

a) for a = 0, 1.

The exact forms of V (Bτ ) and S(Bτ ) as well as the proofs of Theorems 2–3 are given in

the online supplementary materials. Similar to Conditions A1–A5, we require the smooth-

ness of τ(x) and the identifiability of vecl(Bτ ) to guarantee the results of Theorems 2–3.
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2.4 Inference 2 METHODOLOGY

The constraints on the bandwidth hτ are satisfied by our suggested bandwidths, which will

be discussed later. The proof of Theorem 2 is similar to that of Theorem 1. The main

difference is that the outcome contributing to the asymptotic distribution is now Z instead

of the counterfactual D. The proof of Theorem 3 mainly focuses on approximating the influ-

ence function coupled with the difference between imputed and non-imputed counterfactual

outcomes.

Remark 7. One should note that the asymptotic bias of µ̂a(u;B) is not involved in the

asymptotic distribution of τ̂(B̂Tx; B̂). This is an important result of Condition A6, which

ensures that the convergence rate of µ̂a(u;B)−µa(u;B) is always faster than that of τ̂(u;B)−

E(Z | BTX = u).

Remark 8. The most important feature of Theorem 3 is that the asymptotic variance of B̂

is not involved in the asymptotic variance of τ̂(B̂Tx; B̂). More precisely speaking, τ̂(B̂Tx; B̂)

has the same asymptotic variance as the one of τ̂(BT
τ x;Bτ ). The reason is that ‖B̂ −Bτ‖ =

OP(n−1/2), which is much faster then the convergence rate OP[hqττ + {log n/(nhdττ )}1/2] of

τ̂(BT
τ x;Bτ )− τ(x).

Based on Theorem 3, we can make inference of τ(x) by estimating the asymptotic bias

and variance. However, in practice, direct estimates of γ(x) and σ2
τ (x) are usually unstable,

especially when the imputed counterfactual outcomes are involved. For a pre-specified qτ that

satisfies Condition A10, we propose a under-smooth strategy such that the asymptotic bias is

dominated by the asymptotic variance. We propose to choose an optimal bandwidth hτ,opt =

O{n−1/(2qτ+dτ )} by using standard cross-validation for τ̂(B̂Tx; B̂) and use hτ = hτ,optn
−δτ for

some small positive value δτ in the inference procedure. We then use a bootstrapping method

to estimate the asymptotic distribution of τ̂(B̂Tx; B̂)− τ(x).
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3 SIMULATION STUDY

Let ξi (i = 1, . . . , n) be independent and identically distributed from a certain distribu-

tion with mean µξ and variance σ2
ξ . Then wi = ξi/

∑n
j=1 ξj (i = 1, . . . , n) are exchangeable

random weights. The bootstrapped estimator τ̂ ∗(x) is calculated as

τ̂ ∗(x) =

∑n
j=1wjD̂

∗
jKqτ ,hτ (B̂TXj − B̂Tx)∑n

j=1wjKqτ ,hτ (B̂TXj − B̂Tx)
,

where

D̂∗i = Ai{Yi − µ̂∗0(B̂T

0Xi; B̂0)}+ (1− Ai){µ̂∗1(B̂T

1Xi; B̂1)− Yi},

µ̂∗a(u;B) =

∑n
j=1wjYj1(Aj = a)Kqa,ha(B̂T

aXj − u)∑n
j=1wj1(Aj = a)Kqa,ha(B̂T

aXj − u)
(a = 0, 1).

According to Remark 8, B̂, B̂0, and B̂1 require no bootstrapping in the inference, which

highly reduces the computational burden in practice.

The asymptotic variance of τ̂(B̂Tx; B̂) is estimated by [se{τ̂ ∗(x)}µξ/σξ]2, where se(·)

denote the standard error of N bootstrapped estimators. The confidence region of τ(x) with

1− α confidence level can then be constructed as

τ̂(B̂Tx; B̂)±Z1−α/2se{τ̂ ∗(x)}µξ
σξ
,

where Zp is the pth quantile of the standard normal distribution.

3. Simulation study

3.1 Data generating processes

In this section, we present a Monte Carlo exercise aimed at evaluating the finite-sample

accuracy of the asymptotic approximations given in the previous section. The covariates

X = (X1, . . . , X10) are generated from independent and identical Unif(−31/2, 31/2). The

propensity score is logit{π(X)} = 0.5(1+X1 +X2 +X3). The percentage of treated is about

60%. The potential outcomes are designed as following two settings:
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3.2 Competing estimators and simulation results3 SIMULATION STUDY

M1. Y (0) = X1−X2 +ε(0) and Y (1) = 2X1 +X3 +ε(1), where ε(0) and ε(1) independently

follow N(0, 0.022). Hence, the CATE is τ(x) = x1 + x2 + x3, and the central mean

subspace is span{(1, 1, 1, 0, . . . , 0)T}.

M2. Y (0) = (X1 + X3)(X2 − 1) + ε(0) and Y (1) = 2X2(X1 + X3) + ε(1), where ε(0) and

ε(1) independently follow N(0, 0.022). Hence, the CATE is τ(x) = (x1 + x3)
2(x2 + 1)2,

and the central mean subspace is span{(1, 0, 1, 0, . . . , 0)T, (0, 1, 0, . . . , 0)T}.

The sample size ranges from n = 250 and n = 500. All the results are based on 1000

replications.

3.2 Competing estimators and simulation results

First, we compare the finite-sample performance of the estimated central mean subspaces

using different imputed or adjusted outcomes. In addition to our proposed D̂i, the nearest

neighbor imputation D̂MAT,i, the inverse weighted outcome D̂IPW,i as well as D̂AIPW,i, we

also consider D̂X,i = (2Ai − 1){Yi − µ̂1−Ai(Xi; Ip)}, which is the imputed outcome without

any dimension reduction. To compare the information loss for counterfactual outcomes and

prior dimension reduction, we further perform the dimension reduction based on the true

individual effect Di and the imputed outcome D̂OR,i = (2Ai − 1){Yi − µ̂1−Ai(Xi;B1−Ai)}

based on true oracle central mean subspaces of the prognostic scores. The proportions of

estimated structural dimension, the mean squared errors ‖B̂(B̂TB̂)−1B̂T −Bτ (B
T
τBτ )

−1BT
τ ‖2

of the estimated central mean subspaces, and the computing time in seconds are displayed

in Table 1. In general, all the proportions of selecting the correct structural dimension tend

to one and the mean squared errors tend to zero as sample size increases. Moreover, our

proposed estimator outperforms the others and is comparable with respect to the simulated
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estimators based on D̂OR,i.

Second, we compare the finite-sample performance of the estimated CATE, which include

our proposed estimator τ̂(B̂Tx; B̂), the estimator τ̂X(x) based on imputed outcome D̂X,i, the

estimator τ̂MAT(x) based on the imputed outcome D̂MAT,i, the estimator τ̂IPW(x) based on

the adjusted outcome D̂IPW,i, and the estimator τ̂AIPW(x) based on the adjusted outcome

D̂AIPW,i. In addition, we also estimate the CATE by using the difference of two estimated

prognostic scores τ̂prog(x) = µ̂1(B̂
T
1 x; B̂1) − µ̂0(B̂

T
0 x; B̂0). The smoothing estimator τ̂0(x)

based on Di is also considered as a reference to demonstrate the information loss. The

CATEs are evaluated at x = (0, . . . , 0)T. The means, standard deviations, and the mean

squared errors are displayed in Table 2. In general, our proposed estimator and the τ̂AIPW

have comparable performance, and both of them outperform the others.

Finally, we construct confidence intervals and inference for the CATEs by using boot-

strapping. Here naive bootstrapping is adopted. That is, (w1, . . . , wn) follows a multinomial

distribution with number of trials being n and event probabilities (1/n, . . . , 1/n). Table 3

includes the standard deviations, bootstrapped standard errors and 95% quantile intervals

of estimated CATEs, as well as the normal-type 95% confidence intervals with corresponding

coverage probabilities and quantile-type 95% confidence intervals with corresponding cover-

age probabilities for true CATE. As expected, the standard errors get close to the standard

deviations, and the coverage probabilities tend to the nominal level when the sample size

gets larger.
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4 EMPIRICAL EXAMPLES

4. Empirical examples

4.1 The effect of maternal smoking on birth weight

We apply our proposed method to two existing datasets to estimate the effect of maternal

smoking on birth weight conditional on different levels of confounders. In the literature,

many studies documented that mother’s health, education, and labor market status have

important effects on child birth weight (Currie and Almond, 2011). In particular, maternal

smoking is considered as the most important preventable negative cause (Kramer, 1987).

Lee et al. (2017) studied the CATE of smoking given mother’s age. In this work, our goal is

to fully characterize the CATE of smoking on child birth weight given a vector of important

confounding variables while maintaining the interpretability.

4.2 Pennsylvania data

The first dataset consists of observations collected in 2002 from mothers in Pennsylvania,

available from the STATA website (http://www.stata-press.com/data/r13/cattaneo2.dta).

Following Lee et al. (2017), we focus on white and non-Hispanic mothers, leading to the

sample size 3754. The outcome Y of interest is infant birth weight measured in grams.

The treatment variable A is equal to 1 if the mother is a smoker and 0 otherwise. The

set of covariates X includes the number of prenatal care visits (X1), mother’s educational

attainment (X2), age (X3), an indicator for the first baby (X4), an indicator for alcohol

consumption during pregnancy (X5), an indicator for the first prenatal visit in the first

trimester (X6), and an indicator for whether there was a previous birth where the newborn

died (X7). In Lee et al. (2017), parametric models for the prognostic and propensity

scores are considered to recover counterfactual outcomes. Here we relax these stringent
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4.3 North Carolina data 4 EMPIRICAL EXAMPLES

assumptions and use the proposed nonparametric estimation procedure to provide more

detailed structures for the CATE function.

The estimated central mean subspace has dimension one. The coefficients of estimated

linear index and corresponding standard errors are displayed in Table 4. Figure 1 shows the

estimated CATE at different levels of linear index values along with corresponding normal-

type confidence intervals. In general, smoking has significant negative effects on low birth

weights, as detected in the existing studies. In the estimated linear index, our method selects

X4 as the baseline covariate and, compared to this baseline covariate, gives a significantly

negative coefficient −0.668 with standard error of 0.065 for the number of prenatal care

visits. Coupled with the fact that the estimated CATE decreases when the linear index

value increases, smoking has significantly more negative effects for mothers who had a non-

first baby and more frequent prenatal care visits. This result shows that more frequent

prenatal care visits and whether it is a first pregnancy mitigate the effect of smoking on low

birth weights.

4.3 North Carolina data

The second dataset is based on the records between 1988 and 2002 by the North Carolina

Center Health Services. The dataset was analyzed by Abrevaya et al. (2015) and can be

downloaded from Prof. Leili’s website. To make a comparison with the Pennsylvania data,

we focus on white and first-time mothers and form a random sub-sample with sample size

n = 3754 among the subjects collected in 2002. The outcome Y and the treatment variable

A remain the same as for the Pennsylvania data. The set of covariates includes those used

in the analysis of Pennsylvania data but the indicator for the first baby and the indicator for
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whether there was a previous birth where the newborn died. Besides, it includes indicators

for gestational diabetes (X8), hypertension (X9), amniocentesis (X10), and ultrasound exams

X11). In the analysis of Abrevaya et al. (2015), only the CATE of the mother’s age is

estimated, and a multi-dimensional kernel smoothing without dimension reduction is used in

the estimation procedure. In our analysis, we estimate the CATE of all collected confounding

variables, and the dimension reduction techniques are applied to reduce the possible curse

of dimensionality.

The estimated central mean subspace has dimension one. The coefficients of estimated

linear index and corresponding standard errors are also displayed in Table 4. Figure 1

shows the estimated CATE at different levels of linear index values along with correspond-

ing normal-type confidence intervals. Similar to the results from the Pennsylvania data,

smoking has significantly negative effects on low birth weights. Differently, the estimated

linear index includes the amniocentesis as the baseline covariate and mothers educational

attainment, mothers age, and hypertension as significant covariates. According to the signs

of the estimated coefficients and the fact that the estimated CATE decreases when the level

of estimated linear index values decreases, smoking has larger detrimental effects for older

mothers with lower educational attainment, no hypertension, and amniocentesis. A practi-

cal implication is that mothers with such characteristics should quit smoking to prevent low

birth weight.

5. Discussion

We propose a nonparametric framework for making inferences about the CATE with multi-

variate confounder. Our approach is based on the sufficient dimension reduction technique.
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5 DISCUSSION

The key insight is that SE(D|X) may be a strict subspace of SE{Y (0)|X} + SE{Y (1)|X}. Thus,

we target directly for estimating the central mean space of the CATE based on imputed

potential outcomes. The contribution of this work is multifold. First, a dimension reduction

technique is applied to detect a parsimonious structure of the CATE. This approach is non-

parametric in nature, and therefore does not require stringent parametric or semiparametric

model assumptions. Second, a kernel regression imputation with prior dimension reduction is

proposed to impute the counterfactual outcomes from observational studies, which has better

finite sample performances and more efficient computation than existing methods. Third, we

derive the asymptotic distribution of the estimated CATE given the estimated central mean

space, allowing for transparent interpretation and valid inference, in sharp contrast to usual

machine learning methods. In this regard, the proposed approach is the middle ground be-

tween simple parametric model approaches and flexible machine learning approaches. Forth,

in the theoretical development, the asymptotic distribution of the estimated central mean

subspace is not involved in the asymptotic distribution of the estimated CATE. With this

observation, the inference procedures on conditional average treatment effects can be done

by treating the estimated central mean subspace as the true central mean subspace. This

helps save a lot of computational time in our proposed bootstrap procedure. Overall, we

believe our method can be a valuable tool for causal inference with a reasonable number of

confounders.

However, our proposed estimator is not a panacea with limitations. First, like most

causal inference literature, our method is reliant on the key ignorability assumption which is

not verifiable based on existing data. Sensitivity analysis is often recommended to assess the

robustness of the conclusion the non-testable assumptions (Yang and Lok, 2018). Second,
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5 DISCUSSION

our proposal cannot handle cases with ultra high-dimensional confounders. Regularization

techniques may be coupled with the dimension reduction to deal with these cases. The pro-

posed framework of robust inference of the CATE can also be generalized in the following

directions. We use under-smoothing to avoid the asymptotic bias of the CATE estimator.

Without under-smoothing, the asymptotic bias is not negligible but may be estimated em-

pirically as in Cheng and Chen (2019). We will investigate the finite sample and asymptotic

properties of possible bias-corrected estimators in the future. Moreover, we can extend to

estimate the CATE with continuous treatment. In this case, the first-stage dimension reduc-

tion applies to the potential outcomes for a given treatment level and a reference treatment

level, and the second-stage searches the central space for the contrast between the two prog-

nostic scores under the two levels. Third, the first-stage dimension reduction is not confined

to the central mean space but can be applied to a transformation of the outcome g{Y (a)}

for any function g(·). This allows the estimation of the general type of conditional treat-

ment effects such as conditional distribution effects, quantile treatment effects, or survival

treatment effects (Yang et al., 2020). Similar to the main paper, we can also derive robust

estimators for these causal estimands.

Supplementary Materials

Additional information for this article is available in online supplementary materials, includ-

ing additional notation and the regularity conditions and the proofs of Theorems 2–3.
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Table 1: The proportions of d̂, the mean squared errors (MSE) of B̂, and the computing

time in seconds under different model settings, sample sizes (n), and imputation of Di

proportions of d̂

model n 0 1 2 3 ≥4 MSE time

M1

250 D̂i 0.000 0.976 0.024 0.000 0.000 0.0293 134

D̂X,i 0.000 0.716 0.246 0.037 0.001 0.5840 94

D̂MAT,i 0.000 0.833 0.148 0.018 0.001 0.2927 119

D̂IPW,i 0.000 0.680 0.229 0.087 0.004 0.7143 130

D̂AIPW,i 0.000 0.955 0.045 0.000 0.000 0.0555 157

Di 0.000 0.999 0.001 0.000 0.000 0.0013 142

D̂OR,i 0.000 0.979 0.021 0.000 0.000 0.0267 64

500 D̂i 0.000 0.985 0.015 0.000 0.00 0.0171 634

D̂X,i 0.000 0.676 0.295 0.029 0.00 0.5392 327

D̂MAT,i 0.000 0.897 0.097 0.006 0.00 0.1588 288

D̂IPW,i 0.000 0.615 0.256 0.119 0.01 0.6744 1517

D̂AIPW,i 0.000 0.980 0.020 0.000 0.00 0.0236 1367

Di 0.000 0.999 0.001 0.000 0.00 0.0012 448

D̂OR,i 0.000 0.985 0.015 0.000 0.00 0.0171 497

M2

250 D̂i 0.000 0.000 0.995 0.005 0.000 0.0237 136

D̂X,i 0.000 0.062 0.883 0.053 0.002 0.3222 110

D̂MAT,i 0.000 0.050 0.894 0.052 0.004 0.3608 104

D̂IPW,i 0.000 0.269 0.610 0.110 0.011 0.9581 298

D̂AIPW,i 0.000 0.008 0.978 0.014 0.000 0.0616 362

Di 0.000 0.000 0.995 0.005 0.000 0.0119 94

D̂OR,i 0.000 0.003 0.992 0.004 0.001 0.0243 126

500 D̂i 0.000 0.000 0.997 0.003 0.000 0.0139 710

D̂X,i 0.000 0.008 0.955 0.035 0.002 0.1858 338

D̂MAT,i 0.000 0.013 0.963 0.021 0.003 0.2040 493

D̂IPW,i 0.000 0.165 0.714 0.109 0.012 0.7532 1019

D̂AIPW,i 0.000 0.001 0.995 0.004 0.000 0.0224 1334

Di 0.000 0.000 1.000 0.000 0.000 0.0090 573

D̂OR,i 0.000 0.000 1.000 0.000 0.000 0.0027 687
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Table 2: The mean squared errors of estimated CATEs under different model settings and

sample sizes (n)

model n τ̂(B̂Tx; B̂) τ̂X(x) τ̂MAT(x) τ̂IPW(x) τ̂AIPW(x) τ̂prog(x) τ̂0(x)

M1

250 mean 0.003 -0.025 0.094 0.008 0.002 0.003 -0.000

s.d. 0.0493 0.2203 0.2325 0.5903 0.0532 0.0545 0.0258

MSE 0.0024 0.0492 0.0629 0.3485 0.0028 0.0030 0.0007

500 mean -0.000 0.006 0.065 -0.005 -0.000 0.003 -0.001

s.d. 0.0300 0.1474 0.1417 0.3642 0.0311 0.0310 0.0159

MSE 0.0009 0.0218 0.0243 0.1327 0.0010 0.0010 0.0003

M2

250 mean -0.029 -0.091 -0.180 -0.035 -0.007 -0.048 0.001

s.d. 0.1006 0.2072 0.3103 0.3803 0.1074 0.1399 0.0639

MSE 0.0110 0.0512 0.1288 0.1459 0.0116 0.0219 0.0041

500 mean -0.015 -0.104 -0.157 -0.010 -0.002 -0.024 0.001

s.d. 0.0651 0.1418 0.2024 0.2463 0.0566 0.0926 0.0410

MSE 0.0045 0.0309 0.0655 0.0607 0.0032 0.0092 0.0017

Table 3: The standard deviations (s.d.), bootstrapped standard errors (s.e.), and 95% quan-

tile intervals (Q.I.) of estimated CATEs, and normal-type 95% confidence intervals (N.C.I.)

with corresponding coverage probabilities (N.C.P.) and quantile-type 95% confidence inter-

vals (Q.C.I.) with corresponding coverage probabilities (Q.C.P.) for true conditional treat-

ment treatment effect

model n s.d. s.e. Q.I. N.C.I N.C.P. Q.C.I. Q.C.P.

M1
250 0.0493 0.0621 (-0.095,0.107) (-0.119,0.125) 0.966 (-0.119,0.124) 0.975

500 0.0300 0.0365 (-0.066,0.062) (-0.072,0.071) 0.965 (-0.074,0.067) 0.972

M2
250 0.1006 0.0998 (-0.226,0.159) (-0.225,0.166) 0.944 (-0.224,0.167) 0.921

500 0.0651 0.0645 (-0.132,0.109) (-0.142,0.111) 0.951 (-0.140,0.112) 0.937
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Table 4: The estimated coefficients of linear indices and corresponding standard errors (s.e.)

for the Pennsylvania and North Carolina data: ∗ indicates the estimated coefficient is sta-

tistically significant at 0.05 level

Pennsylvania data North Carolina data

covariate coefficient s.e. coefficient s.e.

X1 prenatal visit number −0.668∗ 0.0645 0.043 0.0719

X2 education −0.059 0.2101 −0.271∗ 0.0477

X3 age −0.210 0.3076 0.243∗ 0.0485

X4 first baby 1

X5 alcohol 0.142 0.6103 −0.101 0.2122

X6 first prenatal visit 0.275 0.3224 −0.104 0.1556

X7 previous newborn death 0.169 0.1257

X8 diabetes −0.129 0.1268

X9 hypertension −0.333∗ 0.1084

X10 amniocentesis 1

X11 ultrasound −0.006 0.1612
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Figure 1: The estimated CATEs at different levels of linear index values with corresponding

confidence intervals.
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