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Abstract:

Personalized treatment aims at tailoring treatments to individual characteristics. An important step
is to understand how treatment effect varies across individual characteristics, known as the conditional
average treatment effect (CATE). This article concerns making robust inferences of the CATE from
observational data, which becomes challenging with multivariate confounder. To reduce the curse
of dimensionality while keeping the nonparametric merit, we propose double dimension reductions
that achieve different goals: first, we target at identifying the central mean subspace of the CATE
directly using dimension reduction in order to detect the most accurate and parsimonious structure
of the CATE; second, a nonparametric regression with prior dimension reduction is used to impute
counterfactual outcomes, which helps to improve the stability of the imputation. We establish the
asymptotic properties of the proposed estimator taking into account the two-step double dimension
reduction, and propose an effective bootstrapping procedure without bootstrapping the estimated
central mean subspace to make valid inferences. Simulation and applications show that the proposed

estimator outperforms existing competitors.

Key words and phrases: augmented inverse probability weighting; matching; kernel smoothing; U-

statistic; weighted bootstrap.



1 INTRODUCTION

1. Introduction

Because of patient heterogeneity in response to various aspects of treatment, the paradigm
of biomedical and health policy research is shifting from the “one-size-fits-all” treatment
approach to precision medicine (Hamburg and Collins, 2010). Toward that end, an important
step is to understand how treatment effect varies across patient characteristics, known as the
conditional average treatment effect (CATE) (Rothwell, 2005). A large body of literature
focuses on modeling the treatment-specific prognostic score (e.g., Chakraborty et al., 2010;
Zhao et al., 2011; Song et al., 2017), since the CATE is simply the difference between the
treated and control prognostic scores. However, modeling prognostic scores may lead to an
overfitting problem for the CATE, and direct modeling of the CATE may provide a more
accurate characterization of treatment effects, avoiding redundancy of non-useful features;
see Section 2.2. Another body of literature thus focuses on modeling and approximating
the CATE parametrically (Murphy, 2003; Robins, 2004), semiparametrically (Liang and Yu,
2020) and by machine learning methods (Zhao et al., 2012; Zhang et al., 2012; Rzepakowski
and Jaroszewicz, 2012; Athey and Imbens, 2016; Athey et al., 2019; Kiinzel et al., 2019).
However, parametric and semiparametric methods are susceptible to model misspecification,
and machine learning produces results that are too complicated to be interpretable. Most
importantly, it is a daunting task to draw valid inferences based on machine learning methods.

In this article, we propose a nonparametric framework to make robust inferences of
the CATE with multivariate confounder. To mitigate the possible curse of dimensionality,
we consider the central mean subspace of the CATE, which is the smallest linear subspace
spanned by a set of linear index that can sufficiently characterize the estimand of interest

(Cook and Li, 2002). Under this framework, we specify the CATE nonparametrically and
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use a model selection procedure to determine a sufficient structural dimension. Directly
targeting the central mean subspace of the CATE enables us to detect the most accurate
and parsimonious structure of the CATE. However, existing dimension reduction methods
are not applicable due to the fundamental problem in causal inference that not all poten-
tial outcomes are observable. To estimate the central mean subspace, we propose imputing
counterfactual outcomes by kernel regression with a prior dimension reduction. The prior
dimension reduction helps to improve the stability of the imputation and the subsequent
estimation of the CATE. In our simulation studies, the proposed imputation method out-
performs existing methods such as the nearest neighbor imputation, the inverse probability
weighted adjusted outcomes (Abrevaya et al., 2015), and the augmented inverse probability
weighting (Zhao et al., 2012).

Theoretically, we derive the consistency and asymptotic normality of the proposed es-
timator of the CATE. The main challenge is that the imputed counterfactual outcomes are
not independent. To overcome this challenge, we calculate the difference between imputed
and conditional counterfactual outcomes, which can be expressed as a weighted empirical
average of the influence functions of the kernel regression estimator. Thus, we can show
that the influence function of the proposed estimator can be approximated by a U-statistic.
Invoking the properties of degenerate U-processes discussed in Nolan and Pollard (1987), we
can derive the asymptotic distribution of the estimated CATE and show that the imputation
step plays a non-negligible role. To make valid inference, we propose an under-smooth strat-
egy such that the asymptotic bias is dominated by the asymptotic variance. We estimate the
asymptotic variances by applying weighted bootstrap techniques and construct Wald-type

confidence intervals. Interestingly, the fact that the central mean subspace is estimated does
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not affect the asymptotic distribution of the proposed estimator of the CATE. Thus, in our
bootstrap procedure, we can safely skip the step of bootstrapping the estimated central mean
subspace, which saves a lot of computation time in practice.

The remaining of the article is organized as follows. Section 2 establishes the proposed
robust inference framework and the asymptotic properties. In Section 3, we conduct sim-
ulation studies to assess the finite-sample performance of the proposed inference procedure
in comparison with existing competitors. In Section 4, we apply the proposed method to
estimate the CATE of maternal smoking on birth weight based on two datasets. We conclude

the article in Section 5 with discussions.

2. Methodology

2.1 Preliminaries

Let X € X C RP? be a vector of pre-treatment covariates, A € A = {0,1} the binary
treatment, and Y € R the outcome of interest. Under the potential outcomes framework
(Rubin, 1974), let Y (a) denote the potential outcome had the individual received treatment
a € A. Based on the potential outcomes, the individual causal effect is D = Y (1) — Y (0),
and the CATE is 7(z) = E{Y (1) =Y (0) | X = 2} = E(D | X = z). To link the potential
outcomes with the observed outcome, we make the usual causal consistency assumption that
Y =Y(A) =AY (1)+(1—A)Y(0). The main goal of this article is to estimate 7(z) based on
observational data {(4;,Y;, X;) : ¢ = 1,...,n}, which independently and identically follow
f(AY, X).

To identify the treatment effects based on observational data, we assume the following

assumptions, which are standard in causal inference with observational studies (Rosenbaum
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and Rubin, 1983):
Assumption 1. {Y(0),Y(1)} L A | X.

Assumption 2. There exist constants ¢; and ¢y such that 0 < ¢; < 7(X) < ¢y < 1 almost

surely, where m(z) = P(A = 1| X = z) is the propensity score.

Assumption 1 rules out latent confounding between the treatment assignment and out-
come. This can be made plausible by collecting detailed information on characteristics of the
units that are related to treatment assignment and outcome. Assumption 2 implies a suffi-
cient overlap of the covariate distribution between the treatment groups. If this assumption
is violated, a common approach is to trim the sample; see Yang and Ding (2018).

Let po(z) = E{Y(a) | X = 2} (a = 0,1). Under Assumptions 1-2, pu,(z) = E(Y |
A=a,X =1z)and 7(z) = pi(x) — po(x) are identifiable from f(A,Y, X). This identification
formula motivates a common strategy of estimating 7(x) by approximating p,(X) separately
for a = 0,1. However, this may lead to an overfitting model for 7(z), as we will discuss in the
next subsection. Alternatively, we propose robust inference of 7(z) directly using dimension
reduction, which requires no parametric model assumptions and can detect accurate and

parsimonious structures of 7(z).

2.2 Dimension reduction on CATE

The main idea is to search for the fewest linear indices Bz such that
7(x) = g(Brx), (2.1)

where B, is a p X d, matrix consisting of index coefficients, and ¢ is an unknown d,-variate
function. Since 7(x) = E(D | X = z), the column space of B; is called the central mean

subspace of D given X, denoted by Sg(p|x) (Cook and Li, 2002).
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The central mean subspace Sg(px) is nonparametric. In other words, for any multivariate
function 7(x), without particular parametric or semiparametric modeling, there always exists
a central mean subspace. To illustrate, consider the single-index model g(z"3) which leads to
a one-dimensional central mean subspace spanned by 5. Unlike the single-index model that
prefixes the dimension of the central mean subspace, we leave both d, and B, unspecified,
and the primary goal of dimension reduction is to estimate d, and B,. In addition, the curse

of dimensionality can be avoided if d, is much smaller than p.

Remark 1. Recall that 7(x) = p(z) — po(x). An alternative way to employ dimension

reduction is to search for two sets of linear indices Bjx and Bjx such that

po(x) = go(Byx),  m(x) = gi(Byx), (2:2)

where gy and g, are unknown functions. That is, we can also estimate Sg{y(0)x} = span(By)
and Sggy1)xy = span(B;), and then recover 7(x) by ¢1(Bfz) — go(Bgz). In fact, we can
show that Sg(p|x) € Seqy(0)x} +SE{y(1)|x}, Where the sum of two linear subspaces is U+V =
{u+v:ueUwveV} Insome cases Sgpx) may be different from Sggy(0)x} and Sgqy1yx}
or have a strictly smaller dimension than Sggy(0)xy and Sgiy1)x}, as demonstrated by the
following examples. Thus, using model (2.1) may detect more parsimonious structures of

7(z) than using model (2.2).

Example 1. Let Y(0) = o™X and Y (1) = "X, where o, § € R, and « and f are linearly
independent. Then, 7(x) = (f —«)"X. Thus, Sgp|x) = span(3 — o), which is different from
Skv(0)x} = span(a) and Sggy)xy = span(3). Thus, nonparametric dimension reduction
for po(z) and py(z) can detect two directions a and f separately but can not detect the

central mean subspace of the CATE function.
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Example 2. Let Y(0) = o™X + (7X)? and Y (1) = o™X + (87X)?, where a, 8 € R, and
o and 3 are linearly independent. Then, 7(z) = (87X)* — (87X)?. Thus, dim(Sg{y(o)x}) =
dim(Sgqya)xy) = dim{span(a, )} = 2, while dim(Sgp|x)) = dim{span(f)} = 1. In
this example, detecting the smaller dimension of Sg(pjx) can help estimate 7(x) with an
only one-dimensional nonparametric smoothing estimator. If we recover 7(x) by estimating
p1(x) — po(z), two-dimensional nonparametric smoothing estimators for 1 (x) and po(x) are

required, and hence are more unstable in finite sample.

Remark 2. As discussed in Ma and Zhu (2013), the parameter B is not identifiable without
further restrictions. To see this, suppose that () is an invertible d X d matrix and consider

g*(u) = g{(Q™) 'u}. Then we can derive another equivalent representation of 7(x) as
7(x) = g(B"x) = g{(Q") Q"B "z} = ¢*{(BQ)"x}.

Thus, the two sets of parameters (B, g) and (BQ, g*) correspond to the same CATE. As
a result, the central subspace was introduced to make the column space invariant to these
invertible linear transformations. We use a particular parametrization of the central mean
subspace as used in Ma and Zhu (2013). Without loss of generality, we set the upper d x d
block of B to be the identity matrix I.4 and write X = (XT, X[)T, where X, € R? and
X; € RP~4, Hence, the free parameters are the lower (p — d) x d entries of B, corresponding
to the coefficients of X;. For generic matrix B, we now denote vecl(B) as the vector formed

by the lower (p — d) x d entries of B.

2.3 Imputation and Estimation

If D were known, existing methods can be directly applied to estimate Sgp|x). However,

the fundamental problem in causal inference is that the two potential outcomes can never
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be jointly observed for each unit, one is factual Y(A) and the other one is counterfactual
Y (1—A). To overcome this challenge, we propose an imputation step to impute the counter-
factual outcomes. A natural choice to impute Y (1 — A) is using its conditional mean given
X, p1-a(X). As mentioned in Section 2.1, p,(z) can be estimated by matching or other
nonparametric smoothing techniques. To further reduce the possible curse of dimensionality,
we propose a prior dimension reduction procedure to estimate pi,(z).

The proposed imputation and estimation procedure proceeds as follows.

Step 1. Estimate the central mean subspace Sg(y()x} (@ = 0,1). Let pq(u; B) = E(Y |
A = a,B"X = u), where B is a p X d parameter matrix. Given B, the kernel smoothing

estimator of p,(u; B) is

fia(u; B) = 2 =1 Yil(A; = a)Kn(B'X; —u)
o Z?:l 1(Aj = CL)IC(Lh(BTXj — u) ’

(2.3)

where 1(-) is the indicator function, Ko (u) = [[i; Kq(ug/h)/h with u = (uy, ..., uq), K,
is a qth ordered and twice continuously differentiable kernel function with bounded support,
and h is a positive bandwidth. The basis matrix of Sgfy(a)|x} can be estimated by Ea, where

(afa, éa,/i;a) is the minimizer of the cross-validation criterion
OVo(d, B,h) =Y {Y; - i, (B"X;; B)}’1L(A; = a), (2.4)
i=1

where the superscript —i indicates the estimator (2.3) based on data without the ith subject.
The order of the kernel function ¢ > max(d/2 + 1, 2) is specified for each working dimension
d. This criterion (2.4) is a mean regression version of Huang and Chiang (2017), and more

details as well as computation algorithms can be found therein.
Step 2. Impute the individual treatment effect by

Dy = AdY; — fo( By X Bo)} + (1~ AV (BIX: B~ Y} (i=1,....n)
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with specified orders (g, q1) of kernel functions and bandwidths (hg, h;) in ﬁo(ég Xi; EO)}
and ﬁl(B\lTX,-; El) The choices of ¢g and ¢; will be discussed in § 2.4. The bandwidths can
be chosen as estimated optimal bandwidths by nonparametric smoothing methods, such that

he = Op{n~1/Cetd)} where d, = dim(Sg{y(a)x}) (@ = 0,1).

Step 3. Estimate the central mean subspace Sg(p|x) based on {(ﬁz, X;):i=1,...,n}. Let
T(u; B) = E{Y (1) = Y(0) | B"X = u}. Given B, the kernel smoothing estimator of 7(u; B)
is

> i1 Diyn(B*X; — )

S B) —
7w B) Z?:l Kon(B™X; — u)

(2.5)

We then estimate (d., B;) and a suitable bandwidth for 7(u; B) by the minimizer (c?, é,ﬁ)

of the following criterion:
ov(d, B,h) =n~'Y {D; —77(B"X;; B)}?,
i=1

where the superscript —i indicates the estimator (2.5) based on data without the ith subject.

Here, ¢ > max(d/2 4 1,2) is also specified for each working dimension d.

Step 4. Estimate 7(z) by 7(B"z; B) with some suitable choice of (¢, h,), which will be

further discussed in Section 2.4.

Remark 3. There have been a lot of existing dimension reduction methods in the litera-
ture that can be applied in Steps 1 and 3. Representative approaches include the inverse
regression (Li, 1991; Li and Wang, 2007; Zhu et al., 2010), average derivative methods (Xia
et al., 2002; Zhu and Zeng, 2006; Xia, 2007; Wang and Xia, 2008; Yin and Li, 2011), and
the semiparametric approach (Ma and Zhu, 2012, 2013). Different from these methods, the
cross-validation criterion of Huang and Chiang (2017) can estimate the structural dimen-

sion, the basis matrix, and an optimal bandwidth for the link function simultaneously. In
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particular, all the parameters are estimated in a data-driven way and no ad-hoc tuning is
required. As for the computational burden, the leave-one-out cross-validation is applied
for the unknown link functions but not for the index coefficients, and hence we do not re-
move each subject and repeatedly calculate the criterion. Instead, we simply calculate the
kernel weights /C,,(B"X; — B"X;) (i,j = 1,...,n) and then remove the diagonal weights
Kon(B*X; — B"X;) (i =1,...,n) to form the link function estimates. Thus, for each fixed
B, the computation of the proposed criterion only involves a kernel weight matrix of size
n X n as commonly seen in nonparametric smoothing methods and is feasible in practice.

Due to these properties, we adopt this method in our estimation procedure.

Remark 4. Liang and Yu (2020) considered the multiple index model with a fixed dimension
of the index and proposed the semiparametric efficient score of B,, while our proposed
estimator B may not reach the semiparametric efficiency bound. However, as we will show
in Theorem 1, the asymptotic distribution of B does not affect the asymptotic distribution
of the estimated CATE as long as B is root-n consistent. Therefore, it is not necessary to

pursue the semiparametric efficiency estimation of the central mean subspace in our context.

Remark 5. An alternative method of imputing the counterfactual outcomes is matching
(Yang and Kim, 2019, 2020). To fix ideas, we consider matching without replacement and
with the number of matches fixed at one. Then the matching procedure becomes nearest
neighbor imputation (Little and Rubin, 2002). Without loss of generality, we use the Eu-
clidean distance to determine neighbors; the discussion applies to other distances (Abadie
and Imbens, 2006). Let J; be the index set for the matched subject of ith subject. Define

the imputed missing outcome as Y;(4;) = Y; and Y;(1— 4;) = 3_._, Y;. Then the individual

JjE€T: 7 J

causal effect can be estimated by ﬁMAT,i = Y;(1) — Y;(0). Matching uses the full vector of

10
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confounders to determine the distance and corresponding neighbors. When the number of
confounders gets larger, this distance may be too conservative to determine proper neighbors
due to the curse of dimensionality. In the simulation studies, we find that the estimation of

Sk(p|x) based on ﬁM At has poorer performance compared with our proposed method.

Remark 6. Instead of imputing the counterfactual outcomes, weighting can also be used
to estimate D, directly. Several authors have considered an adjusted outcome ZA)IPWJ- =
{A; — n(X;)}Y;/[7(X;){1 — 7(X;)}] by inverse propensity score weighting. The adjusted
outcome is unbiased of 7(X;) due to

B(Diew. | %) =B { 355 - S22 1} = B0 - Y0) | ) = (%),

This approach is attractive in clinical trials, where m(X;) is known by trial design. In obser-
vational studies, m(X;) is usually unknown and needs to be estimated. Abrevaya et al. (2015)
considered kernel regression to estimate 7(X;). To avoid possible curse of dimensionality and
keep the nonparametric merit, we can perform a prior dimension reduction to find B, such
that 7(X;) = P(4; =1 | By X;). Then an improved estimator of m(X;) is

%(éTXi; Eﬂ_) — Zjnl Aleq,hE\BTTer _,\B;Xi)

where B, can be obtained similarly following Step 1 in § 2.3 by changing the outcome to
A. However, the estimator Dipw; = {4; — #(B*X;; Bx)}i/[7(B*X;; B,){1 —#(B*X;: B;)}]
still suffers from the instability due to the inverse weighting, especially when %\(E;Xi; Rr)
is close to zero or one. It is well known that the augmented inverse propensity weighted
estimator reduces this instability by combining inverse propensity weighting and outcome

regressions. Specifically, the corresponding estimator of D; is

Y; — {1 — ®#(B*X;; B.) Vi (By Xi; By) —

Daww, = {A: = #(B} X; By)} #(B*X;; B){1 — 7(BrX;; E )}

11
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One can easily show that ]E(EAIPWJ‘ | X;) is asymptotically unbiased of 7(X;). The estimator
D Arpw,; 1s a refined version of Lee et al. (2017), in which the propensity scores are estimated
without a prior dimension reduction. Our simulation shows that the estimated central mean
subspace and CATE based on ﬁz and lA?AIpW,i are comparable and both outperform those
based on lA)MATJ- and EIPWJ‘. Since lA)AIPW,Z» requires an extra dimension reduction on m(x)
and, hence, more computational time, our proposed ZA), is more computationally efficient in

practice.

2.4 Inference

In this subsection, we derive the large sample properties of B and ?(ETx; E), and an infer-
ence procedure for 7(x) based on these large sample properties is proposed. Based on the
notations and regularity conditions in the online supplementary materials, we first establish
the following theorem for the prior sufficient dimension reduction for p,(z) (a =0, 1).

Theorem 1. Suppose that Assumptions 1 and 2 and Conditions A1-A5 are satisfied. Then,

~

P(d, = dy) — 1, hy = Op{n~Y/ et} gnd
nl/Qvecl(éa — Ba)l(c?a = d,) =n'/? ZfBa,i + op(1) N N(0,%g,)
=1
as n — 00, where §p, = {Va(Ba)} ' Su(Ba) and Bp, = {Va(Ba)} " E{SF*(Ba) HVa(Ba)}

fora=0,1.

Exact forms of V,(B,) and S,(B,) are presented in the online supplementary materials.
Theorem 1 as well as Conditions A1-A5 are modifications of results in Huang and Chiang
(2017) and hence we omit the proof. Generally speaking, we require the prognostic scores and

the joint density functions of BT X to be smooth enough so that the nonparametric smoothing

12
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estimators for these parameter functions are consistent. The constraints on the rate of
bandwidths are used to ensure the n'/2-consistency of the estimated central mean subspaces,
which can be automatically satisfied by the proposed estimated bandwidths. Coupled with
the identifiability of vecl(B,), the cross-validation type criterion can successfully estimate
the true parameters. Theorem 1 serves as a stepping stone to deriving the asymptotic
distributions of the estimated central mean space and the proposed estimator for 7(z),

taking into account the fact that D; is imputed.

Theorem 2. Suppose that Assumptions 1 and 2 and Conditions A1-AS8 are satisfied. Then

~

P(d =d,) — 1, h = Op{n~ Y/} and
n'?vecl(B — B)1(d = d,) = n'/? iggﬁi +op(1) 5 N(0,25.)
=1
asn = 00, where &5, = {V(B,)}S(B,) and S5, = {V(B,)} ' B{S#(B)HV (B,)} !
Theorem 3. Suppose that Assumptions 1 and 2 and Conditions A1-A10 are satisfied. Then,
(nh) (7 (B s B) = 7(x) = hiry(a)} 5 N{0, o (2)}

as n — oo, where

9 {E(Z | BIX = u)fpry(u)} — E(Z | BEX = u)d furx (u)

Y(z) = K Forx(u) .
() = {J K (s ds} VIZ+{1l—m(X )}51—7T(X)50|B$X:B;rx]7
ferx(Brz)
p= [ s Ky (s)ds/a:), Z = QA=DY —jua(BY 4 X5 Bioa)}, and ey = {Y —j1a(X)}1(A =
a) fora=0,1.

The exact forms of V(B;) and S(B;) as well as the proofs of Theorems 2-3 are given in
the online supplementary materials. Similar to Conditions A1-A5, we require the smooth-

ness of 7(x) and the identifiability of vecl(B,) to guarantee the results of Theorems 2-3.
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The constraints on the bandwidth h, are satisfied by our suggested bandwidths, which will
be discussed later. The proof of Theorem 2 is similar to that of Theorem 1. The main
difference is that the outcome contributing to the asymptotic distribution is now Z instead
of the counterfactual D. The proof of Theorem 3 mainly focuses on approximating the influ-
ence function coupled with the difference between imputed and non-imputed counterfactual

outcomes.

Remark 7. One should note that the asymptotic bias of ji,(u; B) is not involved in the
asymptotic distribution of ?(ETSC; E) This is an important result of Condition A6, which
ensures that the convergence rate of fi,(u; B)— i, (u; B) is always faster than that of 7(u; B)—

E(Z | B™X = u).

Remark 8. The most important feature of Theorem 3 is that the asymptotic variance of B
is not involved in the asymptotic variance of ’T\(ETQJ; E) More precisely speaking, 7/:<§TLL‘; §)
has the same asymptotic variance as the one of 7(B z; B, ). The reason is that ||B — B,|| =
Op(n~%/?), which is much faster then the convergence rate Oplh? + {logn/(nhd)}'/?] of

T(Brx; By) — 7(x).

Based on Theorem 3, we can make inference of 7(z) by estimating the asymptotic bias
and variance. However, in practice, direct estimates of y(x) and ¢?(z) are usually unstable,
especially when the imputed counterfactual outcomes are involved. For a pre-specified ¢, that
satisfies Condition A10, we propose a under-smooth strategy such that the asymptotic bias is
dominated by the asymptotic variance. We propose to choose an optimal bandwidth A, o =
O{n~Y/a+d)} by using standard cross-validation for 7(B"z; B) and use hy = Ay gpn " for
some small positive value ¢, in the inference procedure. We then use a bootstrapping method
to estimate the asymptotic distribution of 7(B"z; B) — 7(x).

14
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Let & (i =1,...,n) be independent and identically distributed from a certain distribu-
tion with mean j¢ and variance 02. Then w; = &;/ 2?21 & (i =1,...,n) are exchangeable

random weights. The bootstrapped estimator 7*(x) is calculated as
21 Wi DK, n, (B"X; — B'x)

S wike, i, (BTX; — BTx)

(e) =

where

D; = AAY; — i(B3 Xi; Bo)} + (1 — A){Ai(BI Xi; By) — Vi),

" wYi1(A; = a)Ky . (BTX; — u
ﬁZ(U, B) _ 237_11 J*i ( J ) qa,ha(A a“rj ) (a _ 071)'
> i Wil(Aj = a)yq, n, (B3 X — u)

According to Remark 8, E, EO, and El require no bootstrapping in the inference, which
highly reduces the computational burden in practice.

The asymptotic variance of 7(B"z; B) is estimated by [se{T*(x) }pe/o¢)?, where se(:)
denote the standard error of N bootstrapped estimators. The confidence region of 7(z) with

1 — « confidence level can then be constructed as

(B x; B) + Zy_ase{T" (f)}%=

O¢

where Z, is the pth quantile of the standard normal distribution.

3. Simulation study

3.1 Data generating processes

In this section, we present a Monte Carlo exercise aimed at evaluating the finite-sample
accuracy of the asymptotic approximations given in the previous section. The covariates
X = (Xi,...,Xyg) are generated from independent and identical Unif(—3'/2 3/2). The
propensity score is logit{7(X)} = 0.5(1+ X; + X5+ X3). The percentage of treated is about

60%. The potential outcomes are designed as following two settings:
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M1. Y(0) = X7 —Xo+¢(0) and Y (1) = 2X; + X3+¢(1), where €(0) and (1) independently
follow N(0,0.02%). Hence, the CATE is 7(x) = x; + o3 + x3, and the central mean

subspace is span{(1,1,1,0,...,0)"}.

M2. Y(0) = (X7 + X3)(Xo — 1) +2(0) and Y (1) = 2X5(X; + X3) + &(1), where £(0) and
(1) independently follow N(0,0.02?). Hence, the CATE is 7(z) = (z1 + x3)*(z2 + 1)?,

and the central mean subspace is span{(1,0,1,0,...,0)",(0,1,0,...,0)"}.

The sample size ranges from n = 250 and n = 500. All the results are based on 1000

replications.

3.2 Competing estimators and simulation results

First, we compare the finite-sample performance of the estimated central mean subspaces
using different imputed or adjusted outcomes. In addition to our proposed ﬁi, the nearest
neighbor imputation EMATJ-, the inverse weighted outcome ﬁlpwﬂ- as well as EAIPWJ, we
also consider ﬁx,i = (24; — 1){Y; — li1—4,(Xi; I,)}, which is the imputed outcome without
any dimension reduction. To compare the information loss for counterfactual outcomes and
prior dimension reduction, we further perform the dimension reduction based on the true
individual effect D; and the imputed outcome ZA)ORJ- = (2A4; — VD{Yi — 11-4,(Xi; Bi-a,)}
based on true oracle central mean subspaces of the prognostic scores. The proportions of
estimated structural dimension, the mean squared errors | B(B*B)~'BT — B,(B*B,) "' BX |2
of the estimated central mean subspaces, and the computing time in seconds are displayed
in Table 1. In general, all the proportions of selecting the correct structural dimension tend
to one and the mean squared errors tend to zero as sample size increases. Moreover, our

proposed estimator outperforms the others and is comparable with respect to the simulated
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3.2 Competing estimators and simulation resudts SIMULATION STUDY

estimators based on ﬁORﬂ-.

Second, we compare the finite-sample performance of the estimated CATE, which include
our proposed estimator ?(éTx; §), the estimator Tx () based on imputed outcome D x., the
estimator Tyar(x) based on the imputed outcome lA?MAT,Z-, the estimator Tipw(x) based on
the adjusted outcome EIPWJ’, and the estimator Tarpw(z) based on the adjusted outcome
ﬁAIPW’i. In addition, we also estimate the CATE by using the difference of two estimated
prognostic scores Tprog(x) = 7i1(BTx; By) — Jio(Bfz; By). The smoothing estimator 7o(z)
based on D; is also considered as a reference to demonstrate the information loss. The
CATEs are evaluated at = (0,...,0)". The means, standard deviations, and the mean
squared errors are displayed in Table 2. In general, our proposed estimator and the Tarpw
have comparable performance, and both of them outperform the others.

Finally, we construct confidence intervals and inference for the CATEs by using boot-
strapping. Here naive bootstrapping is adopted. That is, (wq, ..., w,) follows a multinomial
distribution with number of trials being n and event probabilities (1/n,...,1/n). Table 3
includes the standard deviations, bootstrapped standard errors and 95% quantile intervals
of estimated CATEs, as well as the normal-type 95% confidence intervals with corresponding
coverage probabilities and quantile-type 95% confidence intervals with corresponding cover-
age probabilities for true CATE. As expected, the standard errors get close to the standard
deviations, and the coverage probabilities tend to the nominal level when the sample size

gets larger.
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4 EMPIRICAL EXAMPLES

4. Empirical examples

4.1 The effect of maternal smoking on birth weight

We apply our proposed method to two existing datasets to estimate the effect of maternal
smoking on birth weight conditional on different levels of confounders. In the literature,
many studies documented that mother’s health, education, and labor market status have
important effects on child birth weight (Currie and Almond, 2011). In particular, maternal
smoking is considered as the most important preventable negative cause (Kramer, 1987).
Lee et al. (2017) studied the CATE of smoking given mother’s age. In this work, our goal is
to fully characterize the CATE of smoking on child birth weight given a vector of important

confounding variables while maintaining the interpretability.

4.2 Pennsylvania data

The first dataset consists of observations collected in 2002 from mothers in Pennsylvania,
available from the STATA website (http://www.stata-press.com/data/r13/cattaneo2.dta).
Following Lee et al. (2017), we focus on white and non-Hispanic mothers, leading to the
sample size 3754. The outcome Y of interest is infant birth weight measured in grams.
The treatment variable A is equal to 1 if the mother is a smoker and 0 otherwise. The
set of covariates X includes the number of prenatal care visits (X;), mother’s educational
attainment (X5), age (X3), an indicator for the first baby (X4), an indicator for alcohol
consumption during pregnancy (Xs), an indicator for the first prenatal visit in the first
trimester (Xg), and an indicator for whether there was a previous birth where the newborn
died (X7). In Lee et al. (2017), parametric models for the prognostic and propensity

scores are considered to recover counterfactual outcomes. Here we relax these stringent
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4.3 North Carolina data 4 EMPIRICAL EXAMPLES

assumptions and use the proposed nonparametric estimation procedure to provide more
detailed structures for the CATE function.

The estimated central mean subspace has dimension one. The coefficients of estimated
linear index and corresponding standard errors are displayed in Table 4. Figure 1 shows the
estimated CATE at different levels of linear index values along with corresponding normal-
type confidence intervals. In general, smoking has significant negative effects on low birth
weights, as detected in the existing studies. In the estimated linear index, our method selects
X4 as the baseline covariate and, compared to this baseline covariate, gives a significantly
negative coefficient —0.668 with standard error of 0.065 for the number of prenatal care
visits. Coupled with the fact that the estimated CATE decreases when the linear index
value increases, smoking has significantly more negative effects for mothers who had a non-
first baby and more frequent prenatal care visits. This result shows that more frequent
prenatal care visits and whether it is a first pregnancy mitigate the effect of smoking on low

birth weights.

4.3 North Carolina data

The second dataset is based on the records between 1988 and 2002 by the North Carolina
Center Health Services. The dataset was analyzed by Abrevaya et al. (2015) and can be
downloaded from Prof. Leili’s website. To make a comparison with the Pennsylvania data,
we focus on white and first-time mothers and form a random sub-sample with sample size
n = 3754 among the subjects collected in 2002. The outcome Y and the treatment variable
A remain the same as for the Pennsylvania data. The set of covariates includes those used

in the analysis of Pennsylvania data but the indicator for the first baby and the indicator for
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5 DISCUSSION

whether there was a previous birth where the newborn died. Besides, it includes indicators
for gestational diabetes (X3), hypertension (Xg), amniocentesis (X;g), and ultrasound exams
Xi1). In the analysis of Abrevaya et al. (2015), only the CATE of the mother’s age is
estimated, and a multi-dimensional kernel smoothing without dimension reduction is used in
the estimation procedure. In our analysis, we estimate the CATE of all collected confounding
variables, and the dimension reduction techniques are applied to reduce the possible curse
of dimensionality.

The estimated central mean subspace has dimension one. The coefficients of estimated
linear index and corresponding standard errors are also displayed in Table 4. Figure 1
shows the estimated CATE at different levels of linear index values along with correspond-
ing normal-type confidence intervals. Similar to the results from the Pennsylvania data,
smoking has significantly negative effects on low birth weights. Differently, the estimated
linear index includes the amniocentesis as the baseline covariate and mothers educational
attainment, mothers age, and hypertension as significant covariates. According to the signs
of the estimated coefficients and the fact that the estimated CATE decreases when the level
of estimated linear index values decreases, smoking has larger detrimental effects for older
mothers with lower educational attainment, no hypertension, and amniocentesis. A practi-
cal implication is that mothers with such characteristics should quit smoking to prevent low

birth weight.

5. Discussion

We propose a nonparametric framework for making inferences about the CATE with multi-

variate confounder. Our approach is based on the sufficient dimension reduction technique.
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5 DISCUSSION

The key insight is that Sg(px) may be a strict subspace of Sgqy(0)x} + Seqy(1)x}- Thus,
we target directly for estimating the central mean space of the CATE based on imputed
potential outcomes. The contribution of this work is multifold. First, a dimension reduction
technique is applied to detect a parsimonious structure of the CATE. This approach is non-
parametric in nature, and therefore does not require stringent parametric or semiparametric
model assumptions. Second, a kernel regression imputation with prior dimension reduction is
proposed to impute the counterfactual outcomes from observational studies, which has better
finite sample performances and more efficient computation than existing methods. Third, we
derive the asymptotic distribution of the estimated CATE given the estimated central mean
space, allowing for transparent interpretation and valid inference, in sharp contrast to usual
machine learning methods. In this regard, the proposed approach is the middle ground be-
tween simple parametric model approaches and flexible machine learning approaches. Forth,
in the theoretical development, the asymptotic distribution of the estimated central mean
subspace is not involved in the asymptotic distribution of the estimated CATE. With this
observation, the inference procedures on conditional average treatment effects can be done
by treating the estimated central mean subspace as the true central mean subspace. This
helps save a lot of computational time in our proposed bootstrap procedure. Overall, we
believe our method can be a valuable tool for causal inference with a reasonable number of
confounders.

However, our proposed estimator is not a panacea with limitations. First, like most
causal inference literature, our method is reliant on the key ignorability assumption which is
not verifiable based on existing data. Sensitivity analysis is often recommended to assess the

robustness of the conclusion the non-testable assumptions (Yang and Lok, 2018). Second,
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5 DISCUSSION

our proposal cannot handle cases with ultra high-dimensional confounders. Regularization
techniques may be coupled with the dimension reduction to deal with these cases. The pro-
posed framework of robust inference of the CATE can also be generalized in the following
directions. We use under-smoothing to avoid the asymptotic bias of the CATE estimator.
Without under-smoothing, the asymptotic bias is not negligible but may be estimated em-
pirically as in Cheng and Chen (2019). We will investigate the finite sample and asymptotic
properties of possible bias-corrected estimators in the future. Moreover, we can extend to
estimate the CATE with continuous treatment. In this case, the first-stage dimension reduc-
tion applies to the potential outcomes for a given treatment level and a reference treatment
level, and the second-stage searches the central space for the contrast between the two prog-
nostic scores under the two levels. Third, the first-stage dimension reduction is not confined
to the central mean space but can be applied to a transformation of the outcome g{Y (a)}
for any function g(-). This allows the estimation of the general type of conditional treat-
ment effects such as conditional distribution effects, quantile treatment effects, or survival
treatment effects (Yang et al., 2020). Similar to the main paper, we can also derive robust

estimators for these causal estimands.

Supplementary Materials

Additional information for this article is available in online supplementary materials, includ-

ing additional notation and the regularity conditions and the proofs of Theorems 2-3.

22



REFERENCES REFERENCES

Acknowledgements

Dr. Huang is partially supported by MOST grant 108-2118-M-001-011-MY2. Dr. Yang
is partially supported by NSF grant DMS 1811245, NCI grant P01 CA142538, NIA grant

1R01AG066883, and NIEHS grant 1R01ES031651.

References

Abadie, A. and G. W. Imbens (2006). Large sample properties of matching estimators for average treatment effects.

Econometrica 74(1), 235-267.

Abrevaya, J., Y.-C. Hsu, and R. P. Lieli (2015). Estimating conditional average treatment effects. J. Bus. Econom.

Statist. 33(4), 485-505.

Athey, S. and G. Imbens (2016). Recursive partitioning for heterogeneous causal effects. Proc. Natl. Acad. Sci.

USA 113(27), 7353-7360.
Athey, S., J. Tibshirani, and S. Wager (2019). Generalized random forests. Ann. Statist. 47(2), 1148-1178.

Chakraborty, B., S. Murphy, and V. Strecher (2010). Inference for non-regular parameters in optimal dynamic

treatment regimes. Stat. Methods Med. Res. 19(3), 317-343.

Cheng, G. and Y.-C. Chen (2019). Nonparametric inference via bootstrapping the debiased estimator. Electron. J.

Stat. 13(1), 2194-2256.
Cook, R. D. and B. Li (2002). Dimension reduction for conditional mean in regression. Ann. Statist. 30(2), 455-474.

Currie, J. and D. Almond (2011). Human capital development before age five. In Handbook of labor economics,

Volume 4, pp. 1315-1486. Elsevier.

Hamburg, M. A. and F. S. Collins (2010). The path to personalized medicine. New England Journal of

Medicine 363(4), 301-304.

23



REFERENCES REFERENCES

Huang, M.-Y. and C.-T. Chiang (2017). An effective semiparametric estimation approach for the sufficient dimension

reduction model. J. Amer. Statist. Assoc. 112(519), 1296-1310.

Kramer, M. S. (1987). Intrauterine growth and gestational duration determinants. Pediatrics 80(4), 502-511.

Kiinzel, S. R., J. S. Sekhon, P. J. Bickel, and B. Yu (2019). Metalearners for estimating heterogeneous treatment

effects using machine learning. Proceedings of the national academy of sciences 116(10), 4156—-4165.

Lee, S., R. Okui, and Y.-J. Whang (2017). Doubly robust uniform confidence band for the conditional average

treatment effect function. Journal of Applied Econometrics 32(7), 1207-1225.

Li, B. and S. Wang (2007). On directional regression for dimension reduction. J. Amer. Statist. Assoc. 102(479),

997-1008.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86(414), 316-342. With

discussion and a rejoinder by the author.

Liang, M. and M. Yu (2020). A semiparametric approach to model effect modification. Journal of the American

Statistical Association 00(0), 1-13.

Little, R. J. A. and D. B. Rubin (2002). Statistical analysis with missing data (Second ed.). Wiley Series in Probability

and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ.

Ma, Y. and L. Zhu (2012). A semiparametric approach to dimension reduction. J. Amer. Statist. Assoc. 107(497),

168-179.

Ma, Y. and L. Zhu (2013). Efficient estimation in sufficient dimension reduction. Ann. Statist. 41 (1), 250—-268.

Murphy, S. A. (2003). Optimal dynamic treatment regimes. J. R. Stat. Soc. Ser. B Stat. Methodol. 65(2), 331-366.

Nolan, D. and D. Pollard (1987). U-processes: rates of convergence. Ann. Statist. 15(2), 780-799.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second

Seattle Symposium in Biostatistics, Volume 179 of Lect. Notes Stat., pp. 189-326. Springer, New York.

24



REFERENCES REFERENCES

Rosenbaum, P. R. and D. B. Rubin (1983). The central role of the propensity score in observational studies for causal

effects. Biometrika 70(1), 41-55.

Rothwell, P. M. (2005). Subgroup analysis in randomised controlled trials: importance, indications, and interpreta-

tion. The Lancet 865(9454), 176-186.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of

educational Psychology 66(5), 688.

Rzepakowski, P. and S. Jaroszewicz (2012). Decision trees for uplift modeling with single and multiple treatments.

Knowledge and Information Systems 32(2), 303-327.

Song, R., S. Luo, D. Zeng, H. H. Zhang, W. Lu, and Z. Li (2017). Semiparametric single-index model for estimating

optimal individualized treatment strategy. FElectron. J. Stat. 11(1), 364-384.

Wang, H. and Y. Xia (2008). Sliced regression for dimension reduction. J. Amer. Statist. Assoc. 103(482), 811-821.

Xia, Y. (2007). A constructive approach to the estimation of dimension reduction directions. Ann. Statist. 35(6),

2654-2690.

Xia, Y., H. Tong, W. K. Li, and L.-X. Zhu (2002). An adaptive estimation of dimension reduction space. J. R. Stat.

Soc. Ser. B Stat. Methodol. 64(3), 363-410.

Yang, S. and P. Ding (2018). Asymptotic inference of causal effects with observational studies trimmed by the

estimated propensity scores. Biometrika 105(2), 487-493.

Yang, S. and J. K. Kim (2019). Nearest neighbor imputation for general parameter estimation in survey sampling.

In The Econometrics of Complex Survey Data. Emerald Publishing Limited.

Yang, S. and J. K. Kim (2020). Asymptotic theory and inference of predictive mean matching imputation using a

superpopulation model framework. Scand. J. Stat. 47(3), 839-861.

Yang, S. and J. J. Lok (2018). Sensitivity analysis for unmeasured confounding in coarse structural nested mean

models. Statist. Sinica 28(4), 1703-1723.

25



REFERENCES REFERENCES

Yang, S., K. Pieper, and F. Cools (2020). Semiparametric estimation of structural failure time models in continuous-

time processes. Biometrika 107(1), 123-136.

Yin, X. and B. Li (2011). Sufficient dimension reduction based on an ensemble of minimum average variance estima-

tors. Ann. Statist. 39(6), 3392-3416.

Zhang, B., A. A. Tsiatis, M. Davidian, M. Zhang, and E. Laber (2012). Estimating optimal treatment regimes from

a classification perspective. Stat 1, 103—114.

Zhao, Y., D. Zeng, A. J. Rush, and M. R. Kosorok (2012). Estimating individualized treatment rules using outcome

weighted learning. J. Amer. Statist. Assoc. 107(499), 1106-1118.

Zhao, Y., D. Zeng, M. A. Socinski, and M. R. Kosorok (2011). Reinforcement learning strategies for clinical trials in

nonsmall cell lung cancer. Biometrics 67(4), 1422-1433.

Zhu, L.-P., L.-X. Zhu, and Z.-H. Feng (2010). Dimension reduction in regressions through cumulative slicing estima-

tion. J. Amer. Statist. Assoc. 105(492), 1455-1466.

Zhu, Y. and P. Zeng (2006). Fourier methods for estimating the central subspace and the central mean subspace in

regression. J. Amer. Statist. Assoc. 101(476), 1638-1651.

Institute of Statistical Science, Academia Sinica

E-mail: myh0728Qstat.sinica.edu.tw

Department of Statistics, North Carolina State University

E-mail: syang24@ncsu.edu

26



REFERENCES REFERENCES

Table 1: The proportions of c?, the mean squared errors (MSE) of B , and the computing

time in seconds under different model settings, sample sizes (n), and imputation of D;

proportions of d

model n 0 1 2 3 >4 MSE  time

250 ﬁz 0.000 0.976 0.024 0.000 0.000 0.0293 134
ZA)XJ- 0.000 0.716 0.246 0.037 0.001 0.5840 94
Dyiar;  0.000 0.833 0.148 0.018 0.001 0.2927 119
Dipw,;  0.000 0.680 0.229 0.087 0.004 0.7143 130
Darpw,; 0.000 0.955 0.045 0.000 0.000 0.0555 157
D; 0.000 0.999 0.001 0.000 0.000 0.0013 142
lADOR,i 0.000 0.979 0.021 0.000 0.000 0.0267 64

- 500 D; 0.000 0.985 0.015 0.000 0.00 0.0171 634
ﬁXﬂ‘ 0.000 0.676 0.295 0.029 0.00 0.5392 327

IA)MATJ' 0.000 0.897 0.097 0.006 0.00 0.1588 288

ﬁlpwﬂ‘ 0.000 0.615 0.256 0.119 0.01 0.6744 1517

ﬁAIPW’i 0.000 0.980 0.020 0.000 0.00 0.0236 1367

D; 0.000 0.999 0.001 0.000 0.00 0.0012 448

ﬁom 0.000 0.985 0.015 0.000 0.00 0.0171 497

250 D; 0.000 0.000 0.995 0.005 0.000 0.0237 136

lA)X,Z- 0.000 0.062 0.883 0.053 0.002 0.3222 110

EMATJ 0.000 0.050 0.894 0.052 0.004 0.3608 104

ﬁlpwﬂ- 0.000 0.269 0.610 0.110 0.011 0.9581 298

ﬁAlpwﬂ- 0.000 0.008 0.978 0.014 0.000 0.0616 362

D; 0.000 0.000 0.995 0.005 0.000 0.0119 94

\o ﬁom 0.000 0.003 0.992 0.004 0.001 0.0243 126

500 ﬁz 0.000 0.000 0.997 0.003 0.000 0.0139 710
ﬁXﬂ‘ 0.000 0.008 0.955 0.035 0.002 0.1858 338
Dyiar;  0.000 0.013 0.963 0.021 0.003 0.2040 493
Dipw,; 0.000 0.165 0.714 0.109 0.012 0.7532 1019
Darpw, 0.000 0.001 0.995 0.004 0.000 0.0224 1334
D; 0.000 0.000 1.000 0.000 0.000 0.0090 573
Dor. 0.000 0.000 1.000 0.000 0.000 0.0027 687
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Table 2: The mean squared errors of estimated CATEs under different model settings and

sample sizes (n)

~

model n 7(B™2;B) 7x(x) Tuar(®) Tew(@) Tapw(®) Toeg(r)  To(z)

250 mean 0.003 -0.025  0.094 0.008 0.002 0.003  -0.000
s.d. 0.0493 0.2203 0.2325  0.5903 0.0532  0.0545 0.0258
MSE 0.0024 0.0492  0.0629  0.3485 0.0028  0.0030 0.0007

M1 200 mean -0.000 0.006 0.065 -0.005 -0.000 0.003  -0.001
s.d. 0.0300 0.1474  0.1417  0.3642 0.0311 0.0310  0.0159
MSE 0.0009 0.0218 0.0243  0.1327  0.0010  0.0010 0.0003

250 mean -0.029 -0.091  -0.180  -0.035 -0.007 -0.048  0.001
s.d. 0.1006 0.2072  0.3103  0.3803 0.1074  0.1399 0.0639
MSE 0.0110 0.0512  0.1288  0.1459 0.0116  0.0219 0.0041

Mo o 200 mean -0.015 -0.104  -0.157  -0.010 -0.002 -0.024  0.001
s.d. 0.0651 0.1418  0.2024  0.2463 0.0566  0.0926 0.0410
MSE 0.0045 0.0309  0.0655  0.0607 0.0032  0.0092 0.0017

Table 3: The standard deviations (s.d.), bootstrapped standard errors (s.e.), and 95% quan-
tile intervals (Q.1.) of estimated CATEs, and normal-type 95% confidence intervals (N.C.I.)
with corresponding coverage probabilities (N.C.P.) and quantile-type 95% confidence inter-
vals (Q.C.I.) with corresponding coverage probabilities (Q.C.P.) for true conditional treat-

ment treatment effect

model n s.d. s.e. Q.1 N.C.I N.C.P. Q.C.I. Q.C.P.
250 0.0493 0.0621 (-0.095,0.107) (-0.119,0.125) 0.966 (-0.119,0.124)  0.975

Ml 500 0.0300 0.0365 (-0.066,0.062) (-0.072,0.071) 0.965 (-0.074,0.067) 0.972
250 0.1006 0.0998 (-0.226,0.159) (-0.225,0.166) 0.944  (-0.224,0.167) 0.921

M2 500 0.0651 0.0645 (-0.132,0.109) (-0.142,0.111) 0.951 (-0.140,0.112) 0.937
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Table 4: The estimated coefficients of linear indices and corresponding standard errors (s.e.)
for the Pennsylvania and North Carolina data: * indicates the estimated coefficient is sta-

tistically significant at 0.05 level

Pennsylvania data North Carolina data

covariate coefficient  s.e. coefficient  s.e.
X, prenatal visit number —0.668* 0.0645 0.043 0.0719
X5 education —0.059 0.2101 —0.271% 0.0477
X3 age —0.210 0.3076 0.243* 0.0485
X4 first baby 1
X5 alcohol 0.142 0.6103 —0.101 0.2122
Xg first prenatal visit 0.275 0.3224 —0.104 0.1556
X7 previous newborn death 0.169 0.1257
Xg diabetes —0.129 0.1268
X9 hypertension —0.333" 0.1084
X0 amniocentesis 1
Xi1  ultrasound —0.006 0.1612
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Figure 1: The estimated CATEs at different levels of linear index values with corresponding

confidence intervals.
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