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Abstract: The problem of missingness in observational data is ubiquitous. When the confounders are missing

at random, multiple imputation is commonly used; however, the method requires congeniality conditions for

valid inferences, which may not be satisfied when estimating average causal treatment effects. Alternatively,

fractional imputation, proposed by Kim 2011, has been implemented to handling missing values in regression

context. In this article, we develop fractional imputation methods for estimating the average treatment

effects with confounders missing at random. We show that the fractional imputation estimator of the average

treatment effect is asymptotically normal, which permits a consistent variance estimate. Via simulation study,

we compare fractional imputation’s accuracy and precision with that of multiple imputation.
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1 Introduction
It is commonplace in scientific research for investigators to rely on observational data to address questions

of interest. While randomized experiments are the gold standard for drawing causal inferences about the

effect of a treatment (also known as exposure, intervention, regime, or policy), in many cases, randomized

experiments are difficult or infeasible to implement for logistical, financial or ethical reasons. For example,

it would be unethical to force people to smoke to study the causal effect of smoking on health outcomes.

Instead, researchers must utilize observational data and make careful corrections to address various biases.

Undeniably, it is considerably more difficult to draw correct causal conclusions from observational data than

from a randomized experiment. The main reason is due to confounding induced by non-randomization of

treatments. Usually, researchersmakeunverifiable assumptions to draw causal conclusions of treatment effects,

such as unconfoundedness of the treatment-outcome relationship, after adjusting for a set of confounders.

Current causal inference methods, including propensity score methods [1], outcome regression methods, and

doubly robust methods [2–5], have been developed to remove confounding bias, mainly in the settings where

confounders are fully observed. However, observational data is also highly prone to missingness. Thus it is

important, and at many times critical, to handle missing data properly to avoid introducing additional bias to

the data analysis.
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1.1 Missing Data

Despite the best intentions of researchers, missing data is nearly impossible to avoid in real-world settings.

Fortunately, as prevalent as missingness is, so too are methods with which to address missingness; however,

the type of missingness matters when selecting a method.

Missing data occurs by way of one of three mechanisms in observational data. The first and simplest type

is Missingness Completely at Random (MCAR) [6]. In this setting, whether or not an observation is missing

is independent of both the observed and missing data. The second is Missingness at Random (MAR). Here,

whether or not an observation is missing depends only on the observable data but not the missing data. Lastly,

missing data can be Missing Not at Random (MNAR). In this setting, even after conditioning on all observed

data, missingness will still depend on the missing portion of the data.

Confirming which missingness type is present for a given data set can not be validated from only the

observed data. Little [7] proposed a chi-square based test capable of checking if the MCAR assumption was

violated, and more recently Mohan and Pearl have been able to use m-graphs to refute instances where the

MAR and MNAR assumptions were proposed but shown not to hold [8, 9]. Despite not being able to validate if

a particular missingness model is true, it is still common for arguments towards one of these assumptions

to be made, relying on the knowledge of subject matter experts for the data at hand. If the observed data is

sufficient to explain the missingness, the MAR assumption is plausible, and it is this assumption we carry

forward for the majority of our discussion. In Section 6 we will discuss the extension to MNAR.

1.2 Approaches to Address Missing Data

Many methods have been proposed to address missingness when assuming a MAR pattern. Two of the most

common approaches in practice are complete case estimation (CC) and multiple imputation (MI). In particular,

MI was favored by the National Research Council in 2010 as one of its preferred means of addressing missing

data in clinical trials [10]. Under CC, all records with missing data are excluded, and treatment effects are

estimated only on fully observed cases. CC can be biased under MAR; more importantly, if multiple variables

have missing values, there will only be a small portion of complete cases in the data. By throwing out a large

portion of the data, the effective sample size shrinks, inflating variances. Therefore, CC suffers from loss of

efficiency by utilizing less of the observed data in the final analysis [11].

MI, on the other hand, is traditionally recommended for MAR in part due to its improved efficiency over CC

and due to it being applicable to a wider range of missingness mechanisms. With MI, the full joint distribution

of the data is estimated (either empirically or modeled based on distributional assumptions), and from this, a

series of M new imputed data sets are drawn. In each imputed data set, MI fills in each missing value with an

imputed value by sampling from the posterior predictive distribution of the missing value given the observed

values. Then, full sample analyses can be applied to each imputed data sets, and these multiple results are

summarized by an easy-to-implement combining rule for inference [12].

MI has produced valid frequentist inference in a wide range of applications [13]. At the same time, Rubin’s

variance estimator for MI has been shown to not always be consistent [14–22].For inference usingMI consistent,

imputation must be proper (see [12] for a precise definition). Practically speaking, for any proper imputations,

under sufficiently regular models, Rubin’s combining rule provides a consistent estimator of the parameter of

interest and a weekly unbiased estimator of its asymptotic variance. When the imputation model is correctly

specified and the MAR assumption holds, Meng [23] showed that a sufficient condition for imputation to

be proper is that the imputation model and the analysis model are congenial. For example, the imputation

model is correctly specified and the analysis is efficient under the same model. Congeniality is sometimes

more elusive than it would appear. Even when the imputation model is correctly specified, Yang and Kim [22]

showed that MI is not necessarily congenial for method of moments estimation. Therefore, some common

statistical procedures may be incompatible with MI. From a causal inference perspective, this poses a problem

as the validity of Rubin’s variance estimator has not been fully explored for many full sample estimation

methods used widely in causal inference. Certain otherwise unbiased and consistent full sample causal
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inference methods (outcome regression, weighting, matching, etc.) may lose these properties when applied in

conjunction with MI and MI-produced data sets. Many of the most common estimates for average treatment

effects are based onmethod of moments estimators and are thusly susceptible to inaccurate variance estimates

when using Rubin’s variance estimator for MI. For researchers desiring tomake causal claimswhen utilizingMI,

it is imperative for the variance properties of their estimators to, therefore, be either validated or an alternative

method must be proposed.

1.3 Fractional Imputation as an Alternative

As an alternative to CC and MI, there are likelihood-based methods that can be applied. When using these

methods, the key insight is that under fully observed confounders, the full sample estimators are obtained by

solving estimating equations. In the presence of partially observed confounders, the corresponding estimators

can be obtained by solving conditional estimating equations which integrate out the missing confounders

given the observed data. There are two difficulties in this approach. First, it requires consistent estimators in

the conditional distribution of the missing confounders given the observed data, such as MLE. In the presence

of missing values, an EM algorithm is typically used. Second, numerical integration is needed. Integration

approximated by imputation was considered by many authors, such as Monte Carlo EM methods [24]. For

Monte Carlo EM algorithms, in each E-step, the imputed values are regenerated, and thus the computation

can be quite heavy. Also, the convergence of Monte Carlo sequence of the estimators is not guaranteed for

fixed Monte Carlo sample size [25].

In practice, EM algorithms may not be feasible when the conditional expectation in the E-step is not avail-

able in a closed form. Instead, fractional imputation (FI) has been proposed to serve as a computational tool

for implementing the expectation step (E-step) in the EM algorithm [24, 26, 27], which simplifies computation

by drawing on importance sampling to obtain the fractional weights and reducing the iterative computation

burden over other simulation methods such as Markov Chain Monte Carlo. See [28–31] for applications of FI

outside of the causal inference context. The main idea in FI is to produce a complete data set by imputation

where each imputed value is associated with a fractional weight, by which the observed likelihood can be

approximated by the weighted average of the imputed data likelihood. The resulting estimator approximates

the maximum likelihood estimator.

For illustrative purposes, we can compare the format of the imputed data via FI to the more commonly

encountered imputed data via MI. Suppose we have a data set where some of the records are subject to

missingness. MI will attempt to address this missingness by creating M data sets where each imputed value is

imputed exactly once in each of the M data sets as depicted in Figure 1. In this image X1 is a fully observed

covariate, and A and Y are fully observed treatment indicator and response variables respectively. X2 is a

covariate subject to missingness. R1 and R2 are missingness indicators for X1 and X2 where Rij = 0 indicates

Xj is missing for record i. Records with missingness are indicated in red on the left. The completed data sets

(with X2 imputed) are on the right with the records now including imputed values for X2 highlighted in green.

Figure 1: Imputed Data via MI
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FI instead seeks to generate a single imputed data set, but one where each imputed record also includes a

fractional weight. That fractional weight is indicative of how likely the imputed data is to occur under the

distribution of the completed data set. Figure 2 shares all the same features as Figure 1 except now includes an

additional column in the imputed data for the fractional weight (ω) that will be incorporated into analyses.

Figure 2: Imputed Data via FI

At its most basic level, the difference in imputation approach is analogous to a debate between a wide vs a

tall data set. It could even be argued that when recombining data sets imputed via MI an implicit "weight" of

1/M is assigned to every record. This implicit 1/M weight acts similarly to the fractional weights ω generated

via FI. The important distinction between MI and FI lies in how the final "weights" assigned to each imputed

record are produced. The weight generation process for FI will be discussed in more depth in Section 3. For

the time being, we will assume these weights are generated appropriately and can be incorporated easily into

further analyses.

FI is sufficiently versatile that, like MI, it can be deployed along-side both continuous and categorical

variables. Under the same common regularity conditions as seen often with MI, we show that the FI estimators

are consistent and asymptotically normal. The remainder of this paper focuses on expanding FI into the

causal literature by developing an FI-based method for estimating causal treatment effects. Once developed

we will validate the method relative to existing causal inference methods. Specifically, we investigate the

comparative performance of FI vs MI and CC for estimating causal treatment effects when confounders are

subject to missingness.

In summary, the proposed FI framework achieves desirable properties for causal inference:

1. the same fractionally imputed data set allows for applying general full-sample estimators (which solve

certain estimating equations) of the average treatment effect, including regression estimators, inverse

probability of weighting estimators, and augmented weighting estimators;

2. the FI estimators are asymptotically linear and therefore allow resampling methods for variance estima-

tion and inference, which is simple to implement in practice;

3. the unified FI inference has theoretical guarantees and offers a solution to the uncongeniality issue of

MI;

4. and lastly, FI is not only statistically efficient but also computationally efficient compared to MI, as

demonstrated via simulation and real-world application.

The rest of the article is organized as follows. We begin in Section 2 with a description of notation and

assumptions. In Section 3 we fully outline the FI process as well as derive the resulting variance estimator

for the treatment effect estimator. We implement a simulation study in Section 4 comparing the accuracy

and precision of treatment effect estimators when the missingness is addressed by CC, MI, and FI. Section 5

provides a demonstration of FI’s utilization with a real-world health data set. Finally, in Section 6, we end

with a discussion of the results and of the implication they have on current and future causal work.
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2 Setup and Notation

2.1 Treatment Effect Estimation Notation

Following Neyman [32] and Rubin [33] we use the potential outcomes framework. Treatment is denoted by

Ai ∈ {0, 1}, where 0 and 1 are labels for control and treatment respectively. For each subject i, define a

pair of potential outcomes {Yi(1), Yi(0)} which represent the outcomes if the subject was treated, Yi(1), and

if he or she was not, Yi(0). Implicit in this notation, we make the stable unit treatment value assumption

[34]. The observed outcome for subject i is then Yi = Yi(Ai). Let Xi be the vector of confounders for subject i.

We assume that {Xi , Ai , Yi(1), Yi(0)}ni=1 are independent draws from the distribution {X, A, Y(1), Y(0)}, and
therefore, {(Xi , Ai , Yi)}ni=1 are independent and identically distributed. The conditional treatment effect is

τ(X) = E{Y(1) − Y(0) | X}, and the average treatment effect is τ0 = E{τ(X)}. The average treatment effect

cannot be estimated without further assumptions, because for each subject only one potential outcome is

observed. The common assumptions for identifying the average treatment effect [1] are as follows:

Assumption 1 (Ignorability). Y(a)⊥A | X for a = 0, 1, where⊥means "is conditionally independent of".

Assumption 2 (Sufficient overlap). With probability 1, 0 < c1 ≤ e(X) ≤ c2 < 1, where e(X) = pr(A = 1 | X) is

the propensity score.

UnderAssumption 1, adjusting for covariates X creates a randomization-like scenario and removes confounding

biases brought on by treatment selection (i.e., for each level of X, the treatment assignment is as good as

randomization). However, in practice, there are often many variables in X, some of which are continuous;

therefore, directly conditioning on each level of X is difficult. Alternatively, the propensity score has been

proposed as a one-dimensional summary of X [1]. The central role of the propensity score lies in the fact that

Assumption 1 implies Y(a)⊥A | e(X) for a = 0, 1. Therefore, adjusting for the propensity score alone can

remove confounding biases.

2.2 Treatment Effect Estimation Under Fully Observed Data

Reliance on the propensity score comes about naturally when we decompose the joint density of X, A, and Y

into three particular components. Specifically

f (X, A, Y) = f (X)f (A|X)f (Y|X, A) (1)

= f (X)e(X)f (Y|X, A)

Basedon this decomposition, a number of propensity score-based estimators havebeenproposed for estimating

the treatment effect including propensity scorematching, subclassification, orweighting. See [35] for a textbook

discussion. If we limit the class of propensity estimators to only parametric estimates (of the form e(X | θ)

where θ is the vector of parameters used to estimate the propensity score), the two most common estimates

of τ from this class are that of Inverse Propensity Weighting (IPW) and Augmented IPW (AIPW). Both are

illustrated here as examples. In both examples, let e(X | θ̂) be the estimated propensity score where θ has

been estimated by some consistent estimator θ̂. In practice, e(X | θ̂) is typically a logistic regression model.

Example 1 (IPW estimator). The IPW estimator of τ0 is

τ̂IPW = n−1
n∑
i=1

{
AiYi

e(Xi | θ̂)
−

(1 − Ai)Yi

1 − e(Xi | θ̂)

}
. (2)
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Example 2 (AIPW estimator). Let μ(X, a | β̂) be an unbiased estimator of E(Y | X, A = a; β), then the AIPW

estimator of τ0 is

τ̂AIPW = n−1
n∑
i=1

([
AiYi

e(Xi | θ̂)
+

{
1 −

Ai

e(Xi | θ̂)

}
μ(Xi , 1 | β̂)

]
(3)

−

[
(1 − Ai)Yi

1 − e(Xi | θ̂)
+

{
1 −

1 − Ai

1 − e(Xi | θ̂)

}
μ(Xi , 0 | β̂)

])
.

We adopt the estimating equations convention where we let U(τ; X, A, Y | η) be the estimating function for τ0

under a given set of nuisance parameters η. An unbiased estimate for τ0 can then be derived as the solution

to PnU(τ; X, A, Y | η̂) = 0 where η̂ is a consistent estimator of η and Pn is the empirical measure; namely

Pnf (X) = n−1
∑n

i=1 f (Xi). As examples, estimating functions for IPW and AIPW are shown below.

Example 3 (IPW estimating function). The estimating function of τ̂IPW is

UIPW (τ; X, A, Y | η̂) =
AY

e(X | θ̂)
−

(1 − A)Y

1 − e(X | θ̂)
− τ.

Here η̂ = (θ̂), the parameter estimates used to calculate the propensity scores.

Example 4 (AIPW estimating function). The estimating function for τ̂AIPW is

UAIPW(τ; X, A, Y | η̂) =

[
AY

e(X | θ̂)
+

{
1 −

A

e(X | θ̂)

}
μ(X, 1 | β̂)

]

−

[
(1 − A)Y

1 − e(X | θ̂)
+

{
1 −

1 − A

1 − e(X | θ̂)

}
μ(X, 0 | β̂)

]
− τ.

Here η̂ = (β̂, θ̂), the parameter estimates used to calculate μ(X, a | β̂) and the propensity scores respectively.

Remark 1 (Doubly Robust Estimation). The IPW estimate in Example 3 does not need to model the outcome Y,

but it does require a correct model for e(X | θ). On the other hand, the AIPW estimate for τ0 obtained from the

mean estimating function in Example 4, incorporates a double robust (DR) feature for estimation. That is, UAIPW

is an unbiased estimating function for τ0 if either e(X | θ) or μ(a, X | β) is correctly specified.

2.3 Missing Data Notation

Whereas all of the above discussion holds under fully observed responses and confounders, in this article we

consider the case where X contains missing values. To that end, let R be a collection of indicator variables

R = (R1, ..., Rp) corresponding to (X1, ..., Xp) where Rij = 1 indicates that Xj is observed for subject i and

Rij = 0 indicates Xj is not observed for subject i. LetR denote the collection of all possiblemissingness patterns.

Let Xobs,i, the observed part of covariates for individual i, consist of Xij with Rij = 1. Similarly let Xmis,i, the

missing part of covariates for individual i, consist of Xij with Rij = 0. Note that the dimension of Xobs,i and

Xmis,i will vary across individuals. For notational simplicity, we suppress the subscript i for subject.

If we return to equation (1) and incorporate the parameterizations laid out in examples 1 and 2, the

decomposition of the joint distribution can be naturally extended to account for missingness. To do so, we

rewrite the joint distribution as:

f (X, A, Y , R; α, β, θ, ρ) = f (X)e(X|θ)f (Y|X, A; β)f (R|X, A, Y; ρ) (4)

= f (Xobs, Xmis)e(X|θ)f (Y|X, A; β)f (R|X, A, Y; ρ)
= f (Xobs)f (Xmis|Xobs; α)e(X|θ)f (Y|X, A; β)f (R|X, A, Y; ρ)

where α is the collection of parameters used to estimate the missing portion of X given the observed portion of

X, and ρ is the collection of parameters used in describing the missingness mechanism.
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Finally, in this article we are only interested in the case where Xmis follows a MAR pattern, which leads us

to our final assumption which completes the basis for Theorem 1 (the proof for which is made available in the

appendix).

Assumption 3 (Missing at random). R⊥Xmis | Xobs, A, Y

Here we adopt the notion of Rubin’s MAR in the sense that MAR may hold for different variables depending on

the missingness pattern. The scientific justification of this assumption may be difficult; however, theoretically

it is the weakest condition under which the missingness process can be ignored [6]. Alternatively, one can con-

sider the variable-based taxonomy of MAR [9], where Xmis represents variables that are subject to missingness

and Xobs represents variables that are fully observed. Our method development is similar under this notion of

MAR but using the new definition of Xmis and Xobs in equation (4).

Theorem 1. Under Assumptions 1–3, τ0 is identifiable from the observed data.

A convenient consequence of adopting an MAR framework is that because of Assumption 3, any expectations

taken with respect to Xmis will result in f (R|X, A, Y; ρ) falling out of the decomposition; therefore for the

remainder of this article, unless otherwise noted, we will be suppressing inclusion of an explicit missingness

mechanism term and instead using the decomposition:

f (X, A, Y; α, β, θ) = f (Xobs)f (Xmis|Xobs; α)e(X|θ)f (Y|X, A; β) (5)

2.4 Treatment Effect Estimation Under MAR

In the presence of missingness, we can let U(τ; Xobs, A, Y | η̂) = E{U(τ; X, A, Y | η̂) | Xobs,A, Y}. We term

U(τ; Xobs, A, Y | η̂) the "mean estimating function" of τ0 given the observed data. Note that in defining

U(τ; Xobs, A, Y | η̂), η̂ must now also expand to include any new parameters α̂ utilized in estimating E(Xmis |

Xobs, A, Y; α). From Theorem 1, under Assumptions 1–3, U(τ; Xobs, A, Y | η̂) is an unbiased estimating function

of τ0. Therefore, a consistent estimator of τ0 can be obtained by solving PnU(τ; Xobs, A, Y | η̂) = 0.

Remark 2 (Doubly Robust Estimation Under MAR). As with IPW estimation under fully observed data, IPW

estimation under MAR does not need to model the outcome Y, but it does now require correct models for both

e(X | θ) and f (Xmis | Xobs, A, Y; α). On the other hand, the AIPW estimate for τ0 will still be unbiased provided

f (Xmis | Xobs, A, Y; α) is correctly specified and either e(X | θ) or μ(a, X | β) is correctly specified. The DR feature

of AIPW estimation for treatment effects has been shown extensively in full data situations and more recently in

the case where exposures are MAR [36].

3 Fractional Imputation
Estimation of treatment effects under fully observed data is straightforward; unfortunately, fully observed data

is rarely encountered in practice. Imputation methods are often used to facilitate estimation in the presence of

missing values by completing the partially observed portions of the data and coaxing a "full" data set out of

a partial one. It is important to note, though, imputation methods only provide a means of addressing the

missingness and complete the data set without heed given to effect estimation. Therefore, to examine the

consequences of choosing a specific imputation method, we propose a two-stage procedure. In the first stage,

referred to as the design stage, we use an imputation technique to fill in the missing covariate values and

estimate the propensity scores. In the second stage, referred to as the analysis stage, classical propensity score

techniques are applied to estimate the causal parameters. See [37, 38], and [39] for themention of decomposing

causal inference into two different stages.
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This framework will be used for both FI and MI methods. The former of these methods we discuss in more

detail here. For a more detailed examination of MI see [12].

3.1 Implementing Fractional Imputation

Earlier in this paper, Figure 2 depicted what a completed data set might look like after using FI to impute

missing data during the design stage. Besides the shape of the data, the addition of an explicit weight to each

record of the imputed data set stands out frommore commonly encounteredMI data sets. To generate fractional

weights, FI deploys a three-step process. First, missing values are imputed from some proposed distribution,

then fractional weights are updated, then model parameters for the full joint distribution are re-estimated

(now under updated weights). The re-weighting and model updating steps cycle until convergence.

In the first step, sometimes referred to as the imputation step or the I-step [27, 40], every missing value is

imputed M times by means of some proposal function h(Xmis | Xobs). This generates M new values X*(j)mis,i for

each partially observed record. The choice of h() is arbitrary and left to the imputer, but a convenient choice

is f (Xmis | Xobs; α) to align with the decomposition from equation (5). This choice would necessitate being

able to provide or estimate a value for α (for instance α = α̂0 where α̂0 is the MLE for α calculated only using

complete cases). At this first step, every record where a value was imputed will have a fractional weight of

ω*
ij = 1/M. Note, at the conclusion of every step in FI, fractional weights for each individual, observation, etc.

i are held to the condition
∑M

j=1 ω
*
ij = 1.

In the second step, the weighting step or W-step, the fractional weights are updated proportional to the

likelihood of the imputed value under the full joint distribution, divided by the likelihood of the imputed

value under the proposal distribution h() from the I-step. If choosing the decomposition from equation (5) that

would appear as

ω*(t)
ij ∝

f (Xobs,i , X
*(j)
mis,i , Ai , Yi; η̂

(t))

h(X*(j)mis,i)
,

given the current parameter estimates for η̂(t) = (α̂(t), β̂(t), θ̂(t)).

In the third step, the maximization step or M-step, the parameter values used to estimate the full joint

distribution are updated given the new values of ω*
ij from η̂(t) to η̂(t+1). The W-step and M-step iterate, setting

t=t+1 after each M-step, until the model parameters converge. The resulting data set with the final fractional

weights included can then be passed on to the analysis stage as if it were a complete data set (similar to MI

passing on M data sets). An example generating a complete data set via FI is included in the appendix.

3.2 Characterizing Fractional Imputation for Estimating Treatment Effects

For illustration, consider the case where X contains only two variables, X = (X1, X2), where X1 is fully observed

and X2 is subject to missingness. Let R2 be the response indicator of X2. From Examples 3 and 4, we can obtain

an estimator of τ0 by solving the mean estimating equation

n∑
i=1

U(τ; Xobs,i , Ai , Yi | η̂) =

n∑
i=1

E{U(τ; Xi , Ai , Yi | η̂) | Xobs,i , Ai , Yi} (6)

=

n∑
i=1

R2iU(τ; Xi , Ai , Yi | η̂) +

n∑
i=1

(1 − R2i)E{U(τ; Xi , Ai , Yi | η̂) | X1i , Ai , Yi} = 0,

where U(τ; Xi , Ai , Yi | η̂) denotes either UIPW (τ; Xi , Ai , Yi | η̂) or UAIPW (τ; Xi , Ai , Yi | η̂).

In (6), the conditional expectation E{U(τ; Xi , Ai , Yi | η̂) | Xobs,i , Ai , Yi} is often difficult to obtain. The

basic idea of FI is to overcome this difficulty by creating a weighted set {(ω*
ij , X

*(j)
i , Ai , Yi) : j = 1, ...,M} such

that E{U(τ; Xi , Ai , Yi | η̂) | Xobs,i , Ai , Yi} can be approximated by
∑n

i=1

∑M
j=1 ω

*
ijU(τ; X

*(j)
i , Ai , Yi | η̂).
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Remark 3. Only records where R2i = 0 need imputed, so when utilizing FI, only these observations require

a weight ω*
ij to be calculated in the weighted set {(ω*

ij , X
*(j)
i , Ai , Yi) : j = 1, ...,M}. However, implicit in this

representation is the generation of weights ωi = 1 for observations where R2i = 1. While notation for such implicit

generation is suppressed in this article, if desired, the weighted set can be rewritten as {(ω*
ij , X

*(j)
i , Ai , Yi) : i =

1, ..., n; j = 1, ...,mi} where

mi =

{
M if R2i = 0

1 if R2i = 1
, and X*(j)i =

{
(Xobs,i , x

*(j)
i ) if R2i = 0

(Xobs,i) if R2i = 1
.

Such notation may be beneficial if equational symmetry is desired, though the FI process and resulting estimates

of τ0 are unaffected.

Toward that goal of approximating E{U(τ; Xi , Ai , Yi | η̂) | Xobs,i , Ai , Yi} as:∑n
i=1

∑M
j=1 ω

*
ijU(τ; X

*(j)
i , Ai , Yi | η̂), notice that the last conditional expectation in (6) can be written as

E{U(τ; Xi , Ai , Yi | η̂) | X1i , Ai , Yi} =
∫
U(τ; X1i , x2, Ai , Yi | η̂)f (X1i , x2, Ai , Yi | η̂)dx2∫

f (X1i , x2, Ai , Yi | η̂)dx2
,

where f (X1, X2, A, Y | η̂) is the joint distribution of (X1, X2, A, Y) with nuisance parameters η set to η̂. Fur-

thermore, the joint distribution can be decomposed similar as in (5) to be

f (X1, X2, A, Y | η̂) = f (X1, X2 | α̂)f (A | X1, X2; θ̂)f (Y | X1, X2, A; β̂) (7)

= f (X1)f (X2 | X1; α̂)e(X | θ̂)f (Y | X1, X2, A; β̂),

where we assume f (X2 | X1; α̂) and f (Y | X1, X2, A; β̂) be correctly specified as f (X2 | X1; α) and f (Y |

X1, X2, A; β), respectively.

Under complete response, the maximum likelihood estimator (MLE) of θ can be obtained as a solution to

the score equations,
n∑
i=1

S(θ; Xi , Ai) = 0,

where S(θ; X, A) is the score function of θ and can be written as S(θ; X, A) = ∂ log f (A | X; θ)/∂θ with f (A |

X; θ) = e(X | θ)A{1 − e(X | θ)}1−A [41, 42], which under missingness is rewritten

n∑
i=1

R2iS(θ; Xi , Ai) +

n∑
i=1

(1 − R2i)E{S(θ; Xi , Ai) | X1i , Ai , Yi} = 0. (8)

MLE estimates of α̂ and β̂ can be obtained similarly to (8) for their respective mean score equations.

For α̂ the mean score equation is

n∑
i=1

S(α; Xi) =

n∑
i=1

S(α; X1i , X2i) = 0, (9)

where S(α; X) is the score equation for α written as S(α; X) = S(α; X1, X2) = ∂ log f (X2 | X1; α)/∂α. Under MAR,

α̂ can be obtained using only complete cases.

For β̂ the mean score equation is
n∑
i=1

S(β; Xi , Ai , Yi) = 0,

where S(β; X, A, Y) is the score function of β and can be written as S(β; X, A, Y) = ∂ log f (Y | X, A; β)/∂β,

which under missingness is rewritten

n∑
i=1

R2iS(β; Xi , Ai , Yi) +

n∑
i=1

(1 − R2i)E{S(β; Xi , Ai , Yi) | X1i , Ai , Yi} = 0. (10)

To obtain the solution to (6), (8), (9) and (10), the EM algorithm can be applied. To do so using FI, the

following process can be implemented:



258 | N. Corder and S. Yang

Step 0. Let the initial values for parameters be set to α(0), β(0), and θ(0) which are the MLE of α, β, and θ using

only complete cases. For each unit i with R2i = 0, generate M imputed values of X2i, denoted by x*(j)2i

(j = 1, . . . ,M), from a proposal distribution h(x2), e.g. f (x2 | X1; α
(0)).

Step 1. At the tth EM iteration, compute the fractional weight

ω*(t)
ij ∝

f (x*(j)2i | X1i; α
(t))e

{
(X1i , x

*(j)
2i ) | θ

(t)
}
f (Yi | Ai , X1i , x

*(j)
2i ; β

(t))

h(x*(j)2i )

subject to
∑M

j=1 ω
*(t)
ij = 1.

Step 2. Use ω*(t)
ij and (X1i , x

*(j)
2i , Ai , Yi) to update the parameters from (α(t), β(t), θ(t)) to (α(t+1), β(t+1), θ(t+1)) by

solving the respective imputed score equations. To update α(t) to α(t+1), solve the imputed score equation

n∑
i=1

R2iS (α; X1i , X2i) +

n∑
i=1

(1 − R2i)

M∑
j=1

ω*(t)
ij S

(
α; X1i , x

*(j)
2i

)
= 0.

To update β(t) to β(t+1), solve the imputed score equation

n∑
i=1

R2iS(β; X1i , X2i , Ai , Yi) +

n∑
i=1

(1 − R2i)

M∑
j=1

ω*(t)
ij S(β; X1i , x

*(j)
2i , Ai , Yi) = 0.

To update θ(t) to θ(t+1), solve the imputed score equation

n∑
i=1

R2iS(θ; Xi , Ai) +

n∑
i=1

(1 − R2i)

M∑
j=1

ω*(t)
ij S(θ; X1i , x

*(j)
2i , Ai) = 0.

Step 3. Set t = t + 1 and go to Step 1. Continue until convergence.

Remark 4. Recall under MAR α̂ can be obtained under only complete cases. In such case, α(0) = α̂, and there is

no need to update the parameter estimate α(t) each iteration. Additionally, if h(x2) = f (x2 | X1; α̂), the calculation

of the weight function simplifies to ω*(t)
ij ∝ e

{
(X1i , x

*(j)
2i )

Tθ(t)
}
f (Yi | X1i , x

*(j)
2i , Ai; β

(t)) and
∑M

j=1 ω
*(t)
ij = 1. The

simplification is not necessary under MAR, but we mention it here for the event when additional computational

resource efficiencies are desired for a particular application.

Let η̂ = (α̂, β̂, θ̂) be the resulting estimates for the nuisance parameters. Note that at each EM iteration, imputed

values of X2 are not changed; only fractional weights are updated for each iteration. The weights ω
*
ij, obtained

at the end of the EM iteration, assigned to imputed values can be called fractional weights. The fractional

weight represents a similarity measure between the imputed value and the missing value.

By incorporating these weights, the conditional estimating equation for τO can be approximated by

n∑
i=1

R2iU(τ; Xi , Ai , Yi|η̂) +
n∑
i=1

(1 − R2i)

M∑
j=1

ω*
ijU(τ; X1i , x

*(j)
2i , Ai , Yi|η̂) = 0,

and τ̂ can be obtained by solving this imputed estimating equation for τ. Here, U(τ; X, A, Y|η̂) can be either
the IPW or AIPW estimating function.

3.3 Asymptotic Results

Because τ̂ is obtained through the method of estimating equations, we establish the asymptotic properties of

τ̂, in a manner similar to [20].

Theorem 2. Let η = (α, β, θ) be a vector of the nuisance parameters, and let η̂ = (α̂, β̂, θ̂) be the vector of

corresponding MLE estimators converging in probability to η0 = (α0, β0, θ0), the true values of the nuisance

parameters. Under certain regularity conditions, the solutions to (6), τ̂, is consistent for τ0 and satisfies
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√
n(τ̂ − τ0) → N(0, V),

as n → ∞, where

V = λ−1Ωλ−1T ,

λ = E

{
∂

∂τ
U(τ0; X, A, Y)

}
,

Ω = Var{U(τ0; Xobs, A, Y , η0) + κSobs(η0; Xobs, A, Y)},
U(τ; Xobs, A, Y , η) = E

{
U(τ; X, A, Y) | Xobs, A, Y , η

}
,

κ = E{U(τ0; X, A, Y)STmis(η0; Xobs, A, Y)}I−1obs,

Smis(η; Xobs, A, Y) = E

{
∂

∂η
logf (Xmis | Xobs, A, Y; η) | Xobs, A, Y; η

}
,

Sobs(η; Xobs, A, Y) = E {S (η; X, A, Y) | Xobs, A, Y; η} ,

S(η; X, A, Y) =
∂

∂η
logf (X, A, Y; η),

and

Iobs = −E

{
∂

∂ηT
Sobs(η0; Xobs, A, Y)

}

= −E

{
∂

∂ηT
S(η0; X, A, Y)

}
+ E

{
Smis(η0; Xobs, A, Y)

⊗2
}

where B⊗2 ≡ BBT for some matrix B.

Proof. Let U(τ | η) ≡ n−1
∑n

i=1 E
{
U(τ; Xi , Ai , Yi) | Xobs,i , Ai , Yi , η

}
. Note that τ̂ and η̂ satisfy U(τ̂ | η̂) = 0 as

M → ∞. By use of Taylor expansions we can study the asymptotic properties of τ̂.

First, by a Taylor expansion of U(τ | η̂) about η̂ = η0 we obtain

U(τ | η̂) = U(τ|η0) + E
{

∂

∂ηT
U(τ | η0)

}
(η̂ − η0) + op

(
n−1

)
. (11)

Because U(τ|η) = n−1
∫
U(τ; Xi , Ai , Yi)f (Xmis,i|Xobs,i, Ai , Yi; η)dXmis we obtain

E

{
∂

∂ηT
U(τ|η)

}
= E

{
n−1

n∑
i=1

∫
U(τ; Xi , Ai , Yi)

∂f (Xmis,i|Xobs,i, Ai , Yi; η)

∂η
dXmis

}
(12)

= E

{
n−1

n∑
i=1

∫
U(τ; Xi , Ai , Yi)

∂logf (Xmis,i|Xobs,i, Ai , Yi; η)

∂η

f (Xmis,i|Xobs,i, Ai , Yi; η)dXmis

}

= E
{
U (τ; X, A, Y) S

T
mis (η; Xobs, A, Y)

}
.

To express η̂ − η0 from (11) further, we note that the EM algorithm leads to the MLE of η0 and therefore η̂ satisfies

n−1
n∑
i=1

E
{
S(η̂; Xi , Ai , Yi) | Xobs,i, Ai , Yi; η̂

}
= 0, (13)

which depends on η̂ in two places, namely S(η̂; Xi , Ai , Yi) and the conditional expectation taken with respect to

f (Xmis | Xobs, A, Y; η̂). Applying another Taylor expansion about η̂ = η0 this time in (13) leads to
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0 =n−1
n∑
i=1

E
{
S(η0; Xi , Ai , Yi) | Xobs,i, Ai , Yi; η0

}
(14)

+ n−1
n∑
i=1

[
E

{
∂

∂ηT
S(η0; Xi , Ai , Yi) | Xobs,i, Ai , Yi; η0

}

+E
{
S(η0; Xi , Ai , Yi)S

T
mis(η0, Xi , Ai , Yi) | Xobs,i, Ai , Yi; η0

}]
+ op

(
n−1/2

)
.

Therefore we can express

η̂ − η0 ∼= I−1obsn
−1

n∑
i=1

Sobs(η0; Xobs,i, Ai , Yi). (15)

Combining (12) and (15), ignoring the small order terms, (11) can be expressed in a linear form:

Ul(τ | η0) = n−1
n∑
i=1

[
U(τ; Xobs,i, Ai , Yi; η0)

+ E
{
U(τ; X, A, Y)STmis

(
η; Xobs,i, Ai , Yi

)}
I−1obsSobs(η0; Xobs,i, Ai , Yi)

]

= n−1
n∑
i=1

{
U(τ | Xobs,i, Ai , Yi; η0) + κSobs(η0; Xobs,i, Ai , Yi)

}
.

with the l being used to denote the linearization.

Second, note that we now have U(τ̂ | η̂) = Ul(τ̂ | η0) + op

(
n−1/2

)
. We apply another Taylor expansion, this

time on Ul(τ̂ | η0) about τ̂ = τ0, and we obtain

τ̂ − τ0 = −E

{
∂

∂τT
Ul(τ0 | η0)

}−1

Ul(τ0 | η0) + op

(
n−1/2

)
.

Because E
{
Sobs(η0; Xobs, A, Y)

}
= 0, the first term simplifies as

E

{
∂

∂τT
Ul(τ0 | η0)

}
= E

{
∂

∂τT
U(τ0; Xobs, A, Y , η0)

}

= E

{
∂

∂τT
U(τ0; X, A, Y)

}
= λ.

Lastly, if we combine all the results above, we obtain an asymptotic linearization of τ̂ − τ0 as

τ̂ − τ0 = −λ−1{Ul(τ0|η0) (16)

= −λ−1n−1
n∑
i=1

{
U(τ0; Xobs,i, Ai , Yi , η0) + κSobs(η0; Xobs,i, Ai , Yi)

}
+ op

(
n−1/2

)

with κ and λ defined as in the above theorem.

Therefore, the asymptotic variance of
√
n(τ̂ − τ0) is

λ−1Var
{
U(τ0; Xobs, A, Y , η0) + κSobs(η0; Xobs, A, Y)

}
λ−1,

which completes the proof.

As a result of Theorem 2, we can obtain a consistent variance estimator of τ̂. Define λ̂ and κ̂ as empiri-

cal versions of λ and κ, respectively. For example, λ̂ = n−1
∑n

i=1
∂
∂τ
U(τ̂; Xobs,i, Ai , Yi , η̂). Next define q̂i =
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U(τ̂; Xobs,i, Ai , Yi , η̂) + κ̂Sobs(η̂; Xobs,i, Ai , Yi). Then we can estimate the variance of τ̂ using a sandwich for-

mula

Var(τ̂) = λ̂−1

{
n−1

1

n − 1

n∑
i=1

(
q̂i − q̂

)2}
λ̂−1,

where q̂ = n−1
∑n

i=1 q̂i.

3.4 Variance Estimation

Because of how data is imputed under FI, we can obtain further simplification when using IPW or AIPW. The

λ terms cancels since ∂
∂τ
U(τ0; X, A, Y) = −1 under either estimator, and it can be shown that the κSobs(η0)

term falls out of Ω for observations where X2 is observed. However, even after these mild simplifications,

it is still apparent that exact variance estimates will be difficult to obtain. Only in rare situations will the

derivatives of the score functions be anything other than impractical to calculate. Theorem 2 suggests large

sample approximation is appropriate, and a bootstrap or jackknife estimator can serve as a more practical

alternative.

4 Simulation Study
In the current causal inference literature, there has not been a side-by-side comparison of FI and MI with

respect to how they perform estimating average treatment effects or of their corresponding variance estimates

in the same setting. To examine how FI performs compared to MI, we adapt a simulation study framework used

by Lunceford and Davidian [5]. We modify this setting for our purposes by creating missingness for covariates.

We examine the bias and variance properties of FI compared to two versions of MI as well as CC estimation.

Estimation of τ0 under fully observed data is also conducted as a reference point.

4.1 Simulation Setup

LetX = (X1, X2, X3) be confounders associatedwith the treatment effect.WegenerateX3 fromaBernoulli(0.2),

and we generate (X1, X2) from a bivariate normal N(μX3
, ΣX3

) conditional on X3 where

μ1 =

(
1

−1

)
, μ0 =

(
−1

1

)
, and Σ1 = Σ0 =

(
1 0.5

0.5 1

)
.

We specify the propensity score as e(X, θ) = {1 + e(0.3+0.2X1−0.1X2−0.1X3)}−1 and generate the treatment

indicator Ai from a Bernoulli{e(Xi , θ)}. We choose θ to ensure the starting propensity scores are well behaved

(i.e., between 0.1 and 0.9) and satisfy the sufficient overlap assumption.

We generate the outcome Y as

Y = −X1 + X2 − X3 + 2A + 0.5A × X1 + 0.25A × X2 + ϵY

where ϵY ∼ N(0, 1). The addition of the treatment-covariate interaction terms was implemented to better

match the simulation data to what is observed in practice. Note that because X1 and X2 have mean 0, these

terms fall out in expectation; however to approximate the true value of τ0, both Y(1) and Y(0) were evaluated

for all records so the average difference in potential outcomes could be taken. Simulation results for bias and

coverage were calculated for each sample relative to this within-sample τ0.

To simulate our missingness, we generate R from a Bernoulli(Φ) with

Φ = P(R = 1 | A, X1, X3, Y) = 1 −
{
1 + e(0.25+0.25X1−0.6X3+0.5A+0.4Y)

}−1
.
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The coefficient values in Φ approximate a missingness rate of 0.33. Table 1 is a two by two contingency table

for the missingness and the treatment assignment, averaging across all simulated data sets.

Table 1: Average Missingness vs Treatment Assignment

Control Treatment Total
Complete Cases 0.294 0.389 0.683

Cases Missing X2 0.231 0.087 0.317

Total 0.524 0.476 1.000

A new X*2 variable is next constructed according to the response indicator, where

X*2 =

{
X2 if R = 1

missing else
.

The observed data is Z = (X1, X
*
2, X3, A, Y , R).

In FI, tomotivate the proposal distribution for themissing X*2 records, we regress X2 on X1 and X3 based on

the complete cases. The proposal distribution h in Step 0 of the FI algorithm is a non-central t(4) distribution

with the mean and variance matched with the regression model. In Steps 1 and 2, the outcome model is

specified as a linear regression model with predictors X, A, and their interactions. The propensity score model

is the same as the true model e(X, θ). Under these settings, we generate M=200 imputed values for each

missing X*2. The imputation loop continues until either 250 iterations are performed or all parameters converge

within 1x10−6. The FI loop produces final FI weights which can then be used to calculate the IPW and AIPW

estimates for τ0 under FI. We compare these estimates versus CC and MI estimates. For CC, the process is

straightforward. For MI we use the mi package. We examine MI under two settings, one where the outcome is

included when imputing covariates (which we have labeled MI1), and the other where it is excluded (MI2).

While the literature surrounding MI indicates utilizing the response in imputing covariates is preferred [43–45],

MI2 has been included for completeness. Lastly, we calculate τ̂IPW and τ̂AIPW estimates utilizing the full data

(as if no missingness had been introduced) for benchmark comparison.

This process was run 2000 times. To estimate variances in each iteration for each method, a leave-10-out

jackknife was used.

4.2 Simulation Results

Once all simulations had been run for all methods, the results were as follows:

Table 2:Mean, Coverage, and Execution Results by Method: IPW Results

Method MAD MSE Average JackKnife SE Coverage
FI 0.0644 0.0065 0.0822 95.5%

MI1 0.0637 0.0065 0.0911 97.8%

MI2 0.0801 0.0098 0.0912 93.4%

CC 0.1381 0.0246 0.0764 56.6%

Full 0.0525 0.0043 0.0643 94.9%

Similar results were seen for the AIPW estimates:

As expected, both MI and FI do better than CC estimators in all regards. It is worth noting how sizable

an impact the exclusion of the response variable Y in the imputation step had on MI. Bias increased by 23%
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Table 3:Mean, Coverage, and Execution Results by Method: AIPW Results

Method MAD MSE Average JackKnife SE Coverage
FI 0.0644 0.0065 0.0820 95.5%

MI1 0.0648 0.0065 0.0917 97.6%

MI2 0.0798 0.0097 0.0922 93.5%

CC 0.1395 0.0250 0.0754 55.6%

Full 0.0518 0.0042 0.0633 94.8%

when not including Y. Comparing FI to MI1, FI and MI1 had comparable bias, but FI outperformed MI1 in

coverage. The FI coverage is much more in-line with the nominal 95% coverage used in the confidence interval

calculation. Multiple imputation (as viewed as MI1) saw over-coverage compared to the full data results. This

can be attributed to an inflated standard error.

As to performance, average execution times for FI, MI1, andMI2were similar. The average time of execution

for eachmethod (to perform both the estimate of tau0 and to complete the jack-knife estimation of its variance)

are presented in table 4. Execution times for CC and Full were negligible and are not reported.

Table 4: Average Execution Times by Method

Method Execution Time (Mins)
FI 24:46

MI1 23:41

MI2 23:44

5 Application to the National Health and Nutrition Examination
Survey Data

To illustrate the practical usage, we apply our method to a data set from the U.S. National Health and Nutrition

Examination Survey. We estimate the effect of cigarette smoking on blood lead levels with age, gender, race,

education, and income used as confounders. Of the confounders, only income was subject to missingness at a

rate of 8.5% overall (6.0% smokers, 9.2% non-smokers). In the published data set, missing income values

were imputed using mean imputation which risks being biased under MAR [10]. We investigate how the MI

and FI estimates change from the analysis based on mean imputation. CC was also examined for a common

point of reference.

As in our simulation, we will need to model our propensity scores, as well as regress both our Y (lead

level) on all confounders as well as our missing confounder (income) on all present confounders. With respect

to our regression for income in FI, we built a model of the form

Xinc = α0 + α1Xage + α2Xmale + α
T
eduXedu + α

T
raceXrace + ϵ

where αedu and Xedu represent the parameter estimates and data for the dummy variables that represent the 6

education levels (similarly for αrace and Xrace for its 5 levels of race) and ϵ is an error term with mean 0. The

dummy variables for unknown education and other race were excluded as they were, by construction, linearly

dependent on the other columns in their group. This regression gives us an estimate X
(μ)
inc;i of the initial mean

income vector and of the variance in income in the form of σ(init)Xinc
. As before, this was used to create M=200

imputed data values for each of the 285 missing cases drawn as X*inc;ij = X
(μ)
inc;i + t̃σ(init)Xinc

where t̃ was drawn
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from a t(4) distribution. hXinc
was calculated similarly as before. A leave-10-out jackknife was still used to

estimate variances.

For MI, the same regression as used in FI was performed but with the response and treatement added in

as linear terms. The regression equation for income used under MI was then:

Xinc = α0 + α1Xage + α2Xmale + αeduXedu + αraceXrace + αsmokeA + αleadY + ϵ

where A is the treatment indicator for smoking and Y the reported lead level in the blood and ϵ is an error

term with mean 0. Initial values for the mean and variance of Xinc could then be constructed using the

complete cases. Imputed values of income were then drawn from the predicted posterior distribution and then

subsequently updated via an MCMC process.

The resulting IPW and AIPW estimates and the accompanying variances for τ can be found in table 5.

Additionally, the execution time for each method is provided.

Table 5: Results for estimating the effect of cigarette smoking on blood lead levels: estimate (Est), standard error (SE), and
execution time

IPW AIPW

Method Est SE Est SE Execution Time (Hrs)
FI 1.290 0.231 0.932 0.163 0:59:05

MI1 1.281 0.257 0.929 0.172 1:30:18

CC 1.163 0.228 0.942 0.184 0:00:18

Original 1.256 0.210 0.924 0.155 N/A

While we can not know the true values of income from which we could calculate our bias, an examination

of resource utilization does prove useful. It is unsurprising that CC would take minimal time since it does not

need to attempt any convergence loop. FI and MI take significantly longer, but we would argue the increase in

time is worth the added asymptotic bias advantages over CC. In comparing execution times, MI took about

50% longer to finish the full mean and jack-knife execution process than FI. As to why this resource gain exists

for FI over MI, we postulate that since FI does not have to model and redraw from the full distribution of X

every iteration, it is able to arrive at estimates of τ0 and standard errors much more quickly than MI.

6 Summary and Future Work
We have demonstrated that FI is an effective method for addressing missingness in covariates when estimating

average treatment effects under the condition that covariates are MAR via simulation study and real-world

application. Moreover, we were able to demonstrate FI’s superiority over the existing leading methods of MI

and CC. FI produces lower bias and better coverage properties than either MI or CC. We also showed that when

deployed in a real-world setting, FI is less resource-intensive than MI-based methods, most likely due to the

lack of need to estimate the full covariate distribution.

With these results in mind, it is worth noting a comment made by Rubin [46] in his 18 year retrospective of

his original work introducing MI. As an initial defense to then contemporary critiques of the method, some

of which have been cited here already (see [15] and [23]), Rubin offered up the response that in cases where

randomization validity (i.e., actual confidence coverage = nominal interval coverage) is difficult to achieve,

statisticians should alternatively seek confidence validity (i.e., actual interval coverage ≥ nominal interval

coverage) with decisions between competing methods decided by which method has the shortest interval.

Near the end of that defense the reader can find the following comment:
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Of course, if we have a procedure that is confidence valid but not randomization valid, there is hope that a better confidence-

valid procedure exists (i.e., one with shorter intervals), which is also randomization valid, but in general this is not achievable

[46, p. 475].

It is our belief the results above demonstrate FI produces randomization valid inference based on general

estimation approaches for the population average treatment effect that MI may lack.

In our own future work, we will extend the FI algorithm in Section 3.1 to the MNAR setting by the inclusion

of a model for the missingness and considering the full likelihood from equation (4). When the covariates are

MNAR, an important challenge is that the full likelihood function (4) is not identifiable (or recoverable under

[9]) in general. To overcome this challenge, one may consider non-response instrumental variable methods

(e.g., [47]), missingness graphical models (e.g., [9]), negative controls (e.g., [48]), and sensitivity analysis (e.g.,

[49]). Once the identification conditions are established, the FI algorithm can be developed similarly based on

the full likelihood equation (4). Finally, we would like to explore FI’s potential uses in other causal inference

methods for treatment effect estimation beyond weighting methods, particularly as it applies to matching

methods.
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A1 Appendix

A1.1 Identifiability of Average Treatment Effect under MAR

Proof of Theorem 1
It is well known that under MAR, the full data distribution is identifiable from the observed data. To show that

the average treatment effect τ0 can be identified from the observed data, we express

τ0 = E
{
Y(1) − Y(0)

}
= E

{
AY

e(X)
−
(1 − A)Y

1 − e(X)

}

= E

[ ∫
Xmis

{
AY

e(Xobs, xmis)
−

(1 − A)Y

1 − e(Xobs, xmis)

}
f (Xmis = xmis | Xobs,A, Y)dxmis

]
,

where the second equality follows by Assumption 1 and 2, and the fourth equality follows by Assumption 3.

A1.2 Example FI implementation

Example A1 (Generating a complete data set under FI). For illustration, consider a population where co-

variates X1 and X2, treatment indicator A, and response indicator Y are all binomial variables. Let X1 ∼
Binomial(0.5). Let X2 ∼ Binomial(ϕX1

) where ϕX1
= 0.4 + 0.2X1. Let A ∼ Binomial

{
(1 + eX1+X2 )−1

}
.

Finally, let Y ∼ Binomial
{
(1 + eX1+X2−2A)−1

}
.

Suppose we draw a sample of size n = 10 from the population described above but some observation are

missing values for X2 with probability pR = (1 + eX1+A+Y )−1, leaving us with the starting data set in Table A1.

Table A1: Pre-imputed data. Observation 2 and observation 3 are both missing values for X2.

ID X1 X2 A Y

1 1 0 0 0

2 1 N/A 0 0

3 0 N/A 0 0

4 0 1 0 0

5 0 1 0 1

6 0 1 0 0

7 1 0 1 0

8 0 0 1 1

9 1 1 0 0

10 0 1 0 0

To generate imputed values for units 2 and 3, a proposal distribution must be provided. Adopting the

decomposition from equation 5, a natural choice is h(X2) = f (X2 | X1; α). Since X2 is binomial, we can estimate

f (X2 | X1; α) via logistic regression. At this point, α can only be estimated based on the complete cases. This

results in the proposal distribution

P(X2 = 1) =
1

1 + e−(1.386−2.079X1)
,

with α̂ = (α̂0, α̂1) = (1.386, −2.079) or put more plainly the probability mass function corresponding to Table

A2.
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Table A2: PMF for imputation function h().

X1 X2 f (X2 | X1; α̂)

1 1 0.3333

1 0 0.6667

0 1 0.8000

0 0 0.2000

With h() in hand, we can generate M new values for each missing X2. If we let M = 5, then this would mean

we would generate 5 values (X*(j)2,2; j = 1, ..., 5) for observation 2 drawing from Binomial(0.3333) and 5 values

(X*(j)2,3; j = 1, ..., 5) for observation 3 drawing from Binomial(0.8000). At this point in the process, no weights

have been updated, so the fractional weight on each of these imputed values is 1/M, leaving us with our initial

imputed data set (Table A3) to conclude the I-step. Note, since the imputed values X*2 never change, the values

h(X*2) never change, so it is convenient to include a column holding these values, as they will be used repeatedly

when updating the fractional weights in each W-step. In Table A3 the column holding the proposal distribution

likelihood for each observation is labeled h0.

Table A3: Initial imputed data set prior to the first W-step.

ID X1 X*2 A Y ω* h0

1 1 0 0 0 1 0.6667

2.1 1 0 0 0 0.2 0.6667

2.2 1 1 0 0 0.2 0.3333

2.3 1 0 0 0 0.2 0.6667

2.4 1 1 0 0 0.2 0.3333

2.5 1 1 0 0 0.2 0.3333

3.1 0 0 0 0 0.2 0.2000

3.2 0 0 0 0 0.2 0.2000

3.3 0 0 0 0 0.2 0.2000

3.4 0 1 0 0 0.2 0.8000

3.5 0 1 0 0 0.2 0.8000

4 0 1 0 0 1 0.8000

5 0 1 0 1 1 0.8000

6 0 1 0 0 1 0.8000

7 1 0 1 0 1 0.6667

8 0 0 1 1 1 0.2000

9 1 1 0 0 1 0.3333

10 0 1 0 0 1 0.8000

To begin the first W-step, we must first estimate the full joint distribution of (X1, X2, A, Y). Again we will

return to the decomposition in equation 5, and because both A and Y are binomial we will choose to estimate the

distributions e(X1, X2 | θ) and f (Y | X1, X2, A; β) using weighted logistic regression. Similarly, from now on we

will be estimating f (X2 | X1; α) using weighted logistic regression to incorporate the fractional weights (whereas

before, only the complete cases were used in the I-step). Initial values of α̂(t), β̂(t), θ̂(t) for t = 1 are as follows:

– α̂(1) = (α̂0, α̂1) = (1.0116, −1.4171),

– β̂(1) = (β̂0, β̂1, β̂2, β̂A) = (−19.7160, −39.1894, 18.4922, 39.3107),

– θ̂(1) = (θ̂0, θ̂1, θ̂2) = (0.5108, −0.8473, −20.8207).
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Once initial values for (α̂, β̂, θ̂) are estimated, it is convenient to calculate the likelihood of each observation’s

X*2, A, and Y under their respective current estimated distributions, that is to say calculating P(X2 = X*(j)2,i | α̂
(1))

for all observations and similarly for A and Y with their distributions and current parameters. For short hand,

let fX2
(), fA(), and fY () be the likelihood functions for X2, A, and Y respectively under the current parameter

values α̂(t), β̂(t), θ̂(t) that were just calculated. For example, fY (Yi) = f (Yi | Ai , X1,i , X
*(j)
2,i ; β̂

(t)).With the respective

likelihoods calculated, each observation’s fractional weight can be updated as

ω*(j)
i =

fX2
(X*(j)2,i )fA(Ai)fY (Yi)

h0,ij
.

It is possible at this point that
∑M

j=1 ω
*(j)
i ≠ 1 for an individual. If so the weights for that individual will need

re-normalized to ensure the condition
∑M

j=1 ω
*(j)
i = 1 is still met ∀i. The updated data set after the first W-step

can be seen in Table A4. Note the only data elements to change between Table A3 and Table A4 are the fractional

weights in column ω*.

Table A4: Updated data after the first W-step.

ID X1 X*2 A Y ω* h0

1 1 0 0 0 1 0.6667

2.1 1 0 0 0 0.1129 0.6667

2.2 1 1 0 0 0.2581 0.3333

2.3 1 0 0 0 0.1129 0.6667

2.4 1 1 0 0 0.2581 0.3333

2.5 1 1 0 0 0.2581 0.3333

3.1 0 0 0 0 0.1714 0.2000

3.2 0 0 0 0 0.1714 0.2000

3.3 0 0 0 0 0.1714 0.2000

3.4 0 1 0 0 0.2429 0.8000

3.5 0 1 0 0 0.2429 0.8000

4 0 1 0 0 1 0.8000

5 0 1 0 1 1 0.8000

6 0 1 0 0 1 0.8000

7 1 0 1 0 1 0.6667

8 0 0 1 1 1 0.2000

9 1 1 0 0 1 0.3333

10 0 1 0 0 1 0.8000

The M-step, follows naturally from the W-step. Given the updated weights ω* in Table A4, parameters α̂(t),

β̂(t), and θ̂(t) are all updated from t = 1 to t = 2 again using weighted logistic regression. In the first M-step that

would mean updating α̂(1), β̂(1), θ̂(1) to

– α̂(2) = (α̂0, α̂1) = (1.0860, −1.3127),

– β̂(2) = (β̂0, β̂1, β̂2, β̂A) = (−19.7179, −39.2118, 18.4692, 39.3238),

– θ̂(2) = (θ̂0, θ̂1, θ̂2) = (0.6650, −0.8686, −20.9515).

The updated parameters are checked against some convergence criteria (for instance stopping once the

max absolute difference between all parameters is ≤ 0.0001). If the convergence criteria is not met, the process

cycles back to the W-step, and weights are recalculated now using parameters α̂(2), β̂(2), θ̂(2). With new weights

the M-step will update distributional parameters α̂(t), β̂(t), θ̂(t), and the process continues until the convergence

criteria are met. In our sample, the parameters converged on the 18th iteration, producing the final FI-completed
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data set in Table A5. This data set can now be incorporated into any weighted analysis where a complete-data

consistent estimator exists

Table A5: Final FI-completed data set.

ID X1 X*2 A Y ω*

1 1 0 0 0 1

2.1 1 0 0 0 0.0886

2.2 1 1 0 0 0.2743

2.3 1 0 0 0 0.0886

2.4 1 1 0 0 0.2743

2.5 1 1 0 0 0.2743

3.1 0 0 0 0 0.1334

3.2 0 0 0 0 0.1334

3.3 0 0 0 0 0.1334

3.4 0 1 0 0 0.3000

3.5 0 1 0 0 0.3000

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 0 0 1

7 1 0 1 0 1

8 0 0 1 1 1

9 1 1 0 0 1

10 0 1 0 0 1

A1.3 Sensitivity to Imputation Size

In our primary simulation study, the imputation sizeMwas established to be 200with the assumption that such

an M would be sufficiently large to obtain approximately asymptotic results. Traditional recommendations for

the size ofM aremuch smaller (M = 2 toM = 10)when only inference about the point estimateswere of interest.

More recent recommendations for the selection of M have occurred when also needing accurately estimate

variance of the point estimate are somewhat higher. For our data set with %-missingness approximately

equal to 0.33, recommendations for an M size in the context of MI range from 20-40 [50, 51]. To examine

if we could lower our M setting for FI we reran the first 500 simulations of our analysis varying M to be

M = 5, 10, 20, 50, 100. The results are summarized below in both Figure A1 and in Table A6.

Our results demonstrate no loss of accuracy between FI and MI1 regardless of the setting of M. There also

is no gain in accuracy among any of the methods with increasingM. This matches with existing literature that

if only point estimation is of interest then low M settings are sufficient for MI. Our results further suggest FI

can also permit low M settings when variance estimation is not of interest. However, all methods perform

poorly with respect to coverage until M is at least greater than 20. As Graham, Olchowski, and Gilreath [50]

and von Hippel [51] suggest, low M values are not sufficient for accurate variance estimation. Moreover, if

focusing on MI1, the coverage gains stop somewhere between M = 20 and M = 50 (again, as expected), but

the MI1 coverage is still about 2% higher than the nominal coverage.

As for FI, it takes slightly higher M to surpass the coverage potential of MI1. At M = 100, FI coverage

was within 1% of nominal coverage with gains still being seen as M increased to the settings used in our

simulations. From these results, we conclude M = 200 was a sufficient setting for our simulations though

even better coverage may have been attainable with higher M. Furthermore, if computational resources are

limited setting M to only 100 may be a passable setting – still superior to MI but not yet reaching approximate
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asymptotic properties. It is also important to note that these sensitivity results are only confirmatory for our

simulation settings and may differ when FI and MI are applied in more complex settings or when there is

a higher level of missingness. As such, we recommend plotting coverage curves like these when deploying

either method in future applications to validate M has been set sufficiently high in those situations.

Figure A1: Comparing sensitivity to size of M on bias and coverage among FI and MI implementations when estimating treat-

ment effects via IPW

Table A6: Table of results for comparing sensitivity to size of M on bias and coverage among FI and MI implementations

IPW AIPW
Setting Bias Coverage Bias Coverage
FI_M5 0.065 100.0% 0.064 100.0%

MI1_M5 0.065 100.0% 0.065 100.0%

MI2_M5 0.081 99.6% 0.080 99.8%

FI_M10 0.062 100.0% 0.061 100.0%

MI1_M10 0.064 99.4% 0.065 99.4%

MI2_M10 0.082 98.8% 0.081 98.8%

FI_M20 0.062 99.4% 0.061 100.0%

MI1_M20 0.064 98.2% 0.065 98.2%

MI2_M20 0.081 96.8% 0.081 97.4%

FI_M50 0.064 97.6% 0.063 98.0%

MI1_M50 0.064 97.4% 0.065 97.2%

MI2_M50 0.082 94.8% 0.081 95.4%

FI_M100 0.064 95.8% 0.063 96.2%

MI1_M100 0.064 97.2% 0.065 97.0%

MI2_M100 0.082 94.6% 0.081 94.6%

FI_M200* 0.064 95.5% 0.064 95.5%

MI1_M200* 0.064 97.8% 0.065 97.6%

MI2_M200* 0.080 93.4% 0.080 93.5%


