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Abstract

We report on recent upgrades to our general relativistic radiation-magnetohydrodynamics code, Cosmos++, which
expands the two-moment,M1, radiation treatment from gray to multi-frequency transport, including Doppler and
gravitational frequency shifts. The solver accommodates either photon (Bose–Einstein) or neutrino (Fermi–Dirac)
statistical distribution functions with absorption, emission, and elastic scattering processes. An implicit scheme is
implemented to simultaneously solve the primitive inversion problem together with the radiation–matter coupling
source terms, providing stability over a broad range of opacities and optical depths where the interaction terms can
be stiff. We discuss our formulations and numerical methods, and validate our methods against a wide variety of
test problems spanning optically thin to thick regimes in flat, weakly curved, and strongly curved spacetimes.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Radiative magnetohydrodynamics
(2009); Astrophysical fluid dynamics (101)

1. Introduction

Today we are living in an exciting multi-messenger era in
astronomy. Telescopes cover the entire electromagnetic (EM)
spectrum, with nightly full-sky coverage becoming a reality (e.g.,
Chambers et al. 2016; Graham et al. 2019; Ivezić et al. 2019).
Additionally, cosmic-ray detectors (e.g., Cerenkov Telescope
Array Consortium et al. 2019), neutrino detectors (e.g., Aartsen
et al. 2019), and now gravitational wave detectors (Abbott et al.
2018) give us views of the universe beyond EM radiation, and as
each new means of observation has been added, new discoveries
have quickly followed (e.g., Abbott et al. 2017; Metzger 2017;
IceCube Collaboration et al. 2018; Keivani et al. 2018; Fang et al.
2019). Certainly many more are to be expected.

A principal focus of multi-messenger astronomy is the transient
universe (Charles & Shaw 2013), particularly events that are
characterized by short bursts of electromagnetic radiation, possibly
accompanied by cosmic-ray, neutrino, or gravitational wave
signals, such as kilonovae (e.g., Abbott et al. 2017; Metzger 2017),
fast radio bursts (e.g., Burke-Spolaor 2018; Wang et al. 2020),
gamma-ray bursts (e.g., Burns et al. 2019), and tidal disruption
events (e.g., Senno et al. 2017). These events are often highly
energetic and commonly associated with compact objects (white
dwarfs, neutron stars, or black holes), suggesting that relativistic
physics plays a role.

The many new discoveries in multi-messenger astronomy need
to be matched by corresponding developments in the computa-
tional tools that help in their interpretation and understanding.
Over the decades, advances in observational capabilities have
seen parallel developments in astrophysical simulation tools
toward ever higher levels of sophistication, ranging from
relatively simple hydrodynamic and N-body simulations to
magnetohydrodynamics (MHD), radiation MHD, and beyond
(see Abramowicz & Fragile 2013, for a review of relativistic code
development). Most transient phenomena require some combina-
tion of relativity, hydrodynamics, magnetic fields, and radiation
to be adequately modeled. Fortunately, the number of codes
available for advanced radiation MHD simulations has exploded
in recent years (an incomplete list includes Farris et al. 2008;
Müller et al. 2010; Shibata et al. 2011; Zanotti et al. 2011;

Jiang et al. 2012; Lentz et al. 2012; Sa  dowski et al. 2013; Zhang
et al. 2013; González et al. 2015; Just et al. 2015; Tominaga et al.
2015; Kuroda et al. 2016; Skinner et al. 2019; Ryan & Dolence
2020; Weih et al. 2020). Our own contribution is the general
relativistic radiation-magnetohydrodynamics code, Cosmos++
(Anninos et al. 2005; Fragile et al. 2012, 2014), which includes
a discontinuous-Galerkin variant, COSMOSDG (Anninos et al.
2017).
As ever, though, numerical simulations are only an

approximation to reality. The current limitation in radiation
MHD is that solving the full Boltzmann transport equation
remains computationally challenging and not entirely practical
in most scenarios, owing to the large number of degrees of
freedom (in space and frequency) and wide range of optical
depths, although new formulations have been developed for
this purpose (Davis & Gammie 2020). Therefore, most codes
today treat some simplified form of radiation. One common
approach is to use a scheme where only the first few moments
of the radiation distribution function are evolved (Thorne 1981;
Shibata et al. 2011). The most basic is the flux-limited diffusion
approximation (Levermore & Pomraning 1981; Pomraning
1981), which only treats the zeroth moment, meaning it retains
information only about the radiation intensity and not the
direction of its propagation. A two-moment scheme, such
asM1 (Levermore 1984; Dubroca & Feugeas 1999; González
et al. 2007), retains both the intensity and (average) direction of
radiation flow, yet still closes the system of equations at a level
that remains computationally reasonable. This approach has
seen wide implementation in the context of black hole accretion
(Sa  dowski et al. 2013; Fragile et al. 2014, 2018b; McKinney
et al. 2014; Mishra et al. 2016; Takahashi et al. 2016), black
hole–neutron-star mergers (Foucart et al. 2015, 2016b), binary
neutron stars (Foucart et al. 2016a; Sekiguchi et al. 2016), core-
collapse supernovae (Just et al. 2015; O’Connor 2015; Kuroda
et al. 2016), and the interaction of Type I X-ray bursts with
accretion disks (Fragile et al. 2018a, 2020).
Another simplification is that most relativistic radiation MHD

codes today assume a frequency-integrated (or gray) opacity and
evolve the radiation field with a single characteristic frequency.
However, resolving the photon (or neutrino) frequency (energy),
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even crudely, can be crucially important to properly modeling
and understanding many transient phenomena, such as core-
collapse supernovae (e.g., Janka 2012; Burrows 2013; Foglizzo
et al. 2015), tidal disruption events (Dai et al. 2018), and the
outbursts of black hole X-ray binaries.

This is the goal of our current work, to extend our radiation
transport capabilities from a frequency-integrated (gray) approx-
imation to a multi-frequency (equivalently multi-energy or
sometimes called multi-group) method by discretizing the
radiation energy and flux equations in frequency as well as
space and time. As in our previous paper (Fragile et al. 2014), we
adopt theM1 closure for general relativistic transport, though we
have additionally developed a multi-frequency, flux-limited
diffusion (with an anisotropic Eddington tensor) solver for
Newtonian systems. Much of the methodology, including the
formalism and numerical methods, discussed in this paper is
taken from Fragile et al. (2014), and we occasionally refer the
reader back to that paper for further details, particularly regarding
the high-resolution shock-capturing algorithms and the primitive
inversion scheme. All of those specifics are similar to what
we have developed for this work, except they are applied to the
radiation fields in each frequency bin separately. The primitive
inversion scheme utilizes a first-order Taylor expansion of the
conserved fields together with the radiation coupling terms, again
similar to our previous work except here the dimension of the
matrix system scales with the number of radiation bins, and the
coupling to the hydrodynamics occurs after integrating each
source contribution over frequency. The most significant new
element that comes from frequency-dependent transport is the
introduction of a source term responsible for advecting energies
in frequency space as radiation propagates through gravitational
fields or experiences fluid velocities that produce shifts in the
photon frequencies (or neutrino energies).

As for the organization of this paper, Section 2 follows with
an overview of the essential formalism and conservation
equations. Section 3 discusses our numerical implementation
with an emphasis on the new elements: frequency advection,
closure relations, and the implicit approach for solving the
coupled primitive inversion and multi-frequency radiation
source terms. Section 4 reports on a series of validating test
problems, and we conclude in Section 5.

Most of the equations in this paper are written in units where
G=c=1, although in a few places we leave in factors of c
for clarity. We adopt the usual convention whereby Greek
(Latin) indices refer to spacetime (spatial) coordinates and
adopt a - + + +, , ,( ) metric signature.

2. Formalism

A multi-frequency treatment of radiation transport can be
derived by selecting a finite set of frequency groups (or bins)
and defining the discrete energy densities nE n( ) as integrals of
the energy spectral densities, E(ν), over the group frequency

interval dnn. Mathematically, ò n=
n dn

n dn
n-

+
E E dn 2

2

n n

n n

( ) , and there-

fore ò n= å =n n

n
nE E E dn n

l

u
( ) ( ) , where νl and νu are the lower

and upper limits to our frequency bins. In this notation, the total
stress-energy tensor can be written as

ò ån= +ab ab
n

abT T d R , 1
i

ifluid ( )( )

where abTfluid is the fluid component, and n
abRi ( ) is the spectral

radiation stress tensor summed over all radiation components i

representing photons or different neutrino species. For this
work we consider only single species (either photon or single-
flavor neutrino) transport.
The spectral radiation tensor, n

abR( ) , can be written in any
number of ways, depending on the frame of reference. For
example, the representations

= + + +n
ab

n
a b

n
a b

n
b a

n
abR E n n F n F n P , 2( )( ) ( ) ( ) ( ) ( )

= + + +n
a b

n
a b

n
b a

n
abJ u u H u H u L , 3( )( ) ( ) ( ) ( )

= +n n
a

n
b

n
abE u u E g

4

3

1

3
, 4R R R R ( )( ) ( ) ( ) ( )

are commonly used for formalisms in the Eulerian (lab), co-
moving (fluid), or isotropic (radiation) frame, respectively,
where a= -an , 0, 0, 0( ) is a timelike vector orthogonal to the
spacelike hypersurface, uα is the fluid rest-frame 4-velocity,
and a = -g1 00 is the lapse function. The quantities E(ν),
J(ν), and ER(ν) represent the frequency-dependent radiation
energy densities in the different frames; likewise, n

aF( ) and n
aH( )

represent the radiation momentum densities. Finally, n
abP( ) and

n
abL( ) are most often referred to as the pressure or stress tensors

of the radiation. In previous work (Fragile et al. 2014), we
adopted the radiation-frame formalism (Sa  dowski et al. 2013),
which offers some unique advantages for computation. Notice,
for example, that the radiation pressure does not appear in the
isotropic stress tensor, because it implicitly represents the
covariant formulation of theM1 closure scheme (Levermore
1984), which assumes the radiation is isotropic in the radiation
rest frame.3 There is also no explicit appearance of a radiation
momentum density in the radiation frame. However, certain
calculations are most conveniently done in either the fluid or
Eulerian frame, so we retain the flexibility to transform
between the different reference frames and fields. To this
end, we explicitly write out here some of the more important
relations between radiation fields and moments.
First, the frame-dependent primitive moments are extracted

from the spectral radiation stress tensor (or equivalently the
conserved or evolved radiation fields) as

g g g= = - =n n
ab

a b n n
ab

a b n n
ab

a bE R n n F R n P R, , ,

5

i i ij i j

( )
( ) ( ) ( ) ( ) ( ) ( )

and

= = - =n n
ab

a b n
g

n
ab

a b
g

n
gd

n
ab

a
g

b
dJ R u u H R u h L R h h, , ,

6( )
( ) ( ) ( ) ( ) ( ) ( )

where g = +ab ab a bg n n is the spatial metric, =abh
+ab a bg u u is the fluid-frame projection metric, and the

second-rank tensors nP
ij
( ) and n

gdL( ) are determined by closure
relations to be discussed later. Additionally we can relate the
energy and flux variables directly via (Shibata et al. 2011)

= - +n n n nJ E w wF u P u u2 , 7k
k

ij
i j

2 ( )( ) ( ) ( ) ( )

= - + -n
a

n n b
a b

b
a

n
b

n
aH E w F u h n wh F P h u , 8k

k
ij

i j[ ] ( )( ) ( ) ( ) ( ) ( )

3 We are as yet unaware of any general proof of the existence of such a frame,
though from our experience we have not found any cases where this
formulation breaks down.
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where a=w u0 is the Lorentz factor. The flux vector and
pressure tensor in the Eulerian frame additionally satisfy

= =a
a

ab
aF n P n 0, implying = =n n

aF P 00 0
( ) ( ) , a fact we have

exploited in writing Equations (7) and (8).
The radiation variables, ER(ν) and n

auR( ) , representing the
spectral radiation energy density in the radiation rest frame and
the 4-velocity of the radiation rest frame itself, can easily be
defined in terms of either lab- or fluid-frame tensor compo-
nents. In particular, the quadratic equations

= - +ab n
a

n
b

n n ng R R E u E g
8

9

1

9
, 9R R R

0 0 2 0 2 2 00[ ] ( )( ) ( ) ( ) ( ) ( )

= +n n n nR E u E g
4

3

1

3
, 10R R R

00 0 2 00[ ] ( )( ) ( ) ( ) ( )

can be solved for nER( ) and nuR
0

( ) (Sa  dowski et al. 2013). The
remaining spatial components of the radiation 4-velocity, nuR

i
( ) ,

are derived from the time components of the radiation stress
tensor.

Following the truncated moment formalism (Thorne 1981;
Shibata et al. 2011), the radiation conservation equations
become

n
n-

¶
¶

= -n b
ab

n
abg

b g a nR M u G , 11; ;[ ] ( )( ) ( ) ( )

where a nG ( ) represents radiation–matter interaction source

terms, and n
abgM( ) is the third-rank moment tensor associated

with Doppler and gravitational frequency shifts.
These radiation equations are solved together with the

conservation equations for mass r =b
bu 0;( ) and fluid stress-

energy ò n=a
b

b a nT G d;( ) ( ) . Ignoring non-ideal effects and
magnetic fields, the fluid stress-energy tensor takes the form

r r= + + +ab a b abT P u u P g , 12gas gas( ) ( )

where Pgas is the gas pressure. Although we do not consider
magnetic fields or viscosity in this work, we advertise that both
of these physics capabilities are currently fully integrated with
this multi-frequency radiation upgrade. We refer the reader to
Fragile et al. (2012, 2018b) for details of their respective
implementations.

Coupling of the fluid and radiation equations occurs through
the radiation 4-force density, n

mG( ) , written in the form

r k k

r k k

= - +

- +
n
m

n n n
mn

n

n n
ab

a b n n
m

G R u

R u u B u , 13

a s

s a

[ ]

[ ] ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

where k n
a
( ) and k n

s
( ) represent the frequency-dependent absorp-

tion/emission and elastic scattering opacities, respectively; B(ν)

is the Bose–Einstein or Fermi–Dirac statistical distribution
function

p n
h

=
-

n n m- n
B

g h

hc e

4 1
, 14

h kT

3

3

( )
( )

( )( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

where μν is the chemical potential, g=2 (1) is the
statistical weight for photons (neutrinos), and η=1 (−1) for
photons (neutrinos). The gray (frequency-integrated) version of

Equation (13) can be written as

r k k
r k k k k

=- +
- + - +

m mn
n

ab
a b

m

G R u

R u u a T u , 15R

F
a s

s
F
a

A
a

P
a 4

( )
[( ) ] ( )

where aR is the radiation constant (different for photons and
neutrinos) and kF

a , kA
a , and kP

a are the flux, absorption, and
Planck mean opacities, respectively.
Expanding out the covariant derivatives, the full set of

conservation equations to be solved are written as

¶ + ¶ =D DV 0, 16t i
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¶ + ¶ - - = - - G - -b
a

a
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where D=Wρ, ρ is the rest-frame fluid density,
g a= - = -W gu g0 ( ) is the relativistic boost factor,

=V u ui i 0 is the fluid transport velocity, g is the 4-metric
determinant, Gag

b are the geometric connection coefficients of the

metric, = - - gT0
0 is the total energy density, = - gTj j

0

is the covariant momentum density, = - -n n gR0
0

( ) ( ) is the

conserved radiation spectral energy, = -n n gRj j
0

( ) ( ) is the

conserved radiation spectral momentum, and ò n=a a nG G d( ) .

3. Numerical Implementation

Equations (16)–(20) are solved by operator splitting terms
into spacetime advection, curvature, frequency advection, and
radiation–matter coupling. The first three contributions are
solved using high-order explicit methods, while the fourth is
updated with a fully implicit approach, which provides stability
when radiation–matter interactions become stiff relative to a
hydrodynamic timescale, as they often do when strongly
coupled. Solution methods for each of these contributions are
discussed below.

3.1. Advection and Curvature

The radiation conservation laws (19) and (20) are identical in
form to the equations for fluid energy and momentum
conservation already solved in Cosmos++, and are amenable
to similar numerical techniques, specifically the high-resolution
shock-capturing (HRSC) scheme as described in Fragile et al.
(2012).
Representing conserved fields as = n n   U D, , , ,j j[ ]( ) ( ) ,

the discrete finite-volume representation of Equations (16)–(20)
is written in generic fashion as

å= -
D

+ DU U F S
t

V
A t , 21n i
i
n

c
n

cell faces

* ( ) ( )

where S Pc ( ) contains the curvature source terms, =F Pi ( )
r- - - n ng u T T R R, , , ,i

j
i i

j
i0

0 0[ ]( ) ( ) are the fluxes, and U*
represents the intermediate solution state (accounting for
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advection and curvature, but not frequency shift or coupling
terms). Notice that both the flux and curvature source terms are
computed from the set of primitive, not conserved, fields.

One of the differences between this work and that presented
in Fragile et al. (2014) is the choice of primitive fields. Here we
have opted to use the fluid and spectral radiation 4-velocities
[u i and nuR

i
( ) ] and not the normal observer-projected

4-velocities ( = -u u u g gi i i0 0 00˜ ) that we used previously.
With this change, the set of primitive variables becomes

r= n nP u E u, , , ,i
R R

i[ ]( ) ( ) , where ò is the specific internal
energy as measured in the fluid rest frame.

The flux terms are calculated at zone faces using either the
Harten–Lax–van Leer (HLL) or Lax–Friedrichs (LF) Riemann
solver with options for linear or piecewise parabolic method
(PPM) slope-limited reconstruction of the primitive fields. For
the HLL solver this takes the form

l l l l
l l

=
- + -

-
+ - - +

+ -
F

F F U U
, 22HLL

L R R L( ) ( )

where R (L) subscripts denote right (left) reconstructed states,
and λ+ (λ−) is the characteristic maximum (minimum) wave
speed.

One of the advantages of formulating radiation transport in
terms of the primitive radiation variables, ER and u i

R, is that it
simplifies the calculation of characteristic radiation wave
speeds required for the Riemann solvers. We generally follow
the prescription outlined in our gray treatment (Fragile et al.
2012) where we effectively replace the fluid velocity with the
radiation velocity in the co-moving dispersion relation
(Gammie et al. 2003) (see also McKinney et al. 2014)

- + + + -

+ - + =

v
g

u u
c v V
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u u
V c

V V v V V
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1 1 2

0,

23

T
i

T
i

i
i i

i i
T

i i
ii

2
00

0 0
2 2

0

0 0

2
0 0

( )

( )

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
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⎞
⎠⎟

⎤
⎦⎥

where c i is the wave speed along each coordinate direction, x i,
and vT is the maximum of the fluid or radiation wave speeds
(1 3 in the optically thin regime). The minimum (l-) and
maximum (λ+) speeds are defined by the minimum and
maximum solutions of the quadratic Equation (23). General-
ization to the optically thick regime is accommodated by
limiting the characteristic velocities as

l l
t

 -- -max ,
4

3
24( )⎜ ⎟⎛

⎝
⎞
⎠

l l
t

+ +min ,
4

3
, 25( )⎜ ⎟⎛

⎝
⎞
⎠

where τ is the total optical depth in the cell. Although it appears
to make little difference, we provide an alternative extension of
the wave speed into the optically thick regime by using the
fluid-frame moments and the limiting procedure described in
Section 3.2 to interpolate between the two:

l
c

l
c

l=
-

+
-

  
3 1

2

3 1

2
, 26,thin ,thick

( ) ( )

where l,thin and l,thick are the corresponding speeds in the
optically thin and thick regimes respectively.

Advection and curvature operators are completed (advanced)
with several available time discretization options. Cosmos++
supports numerous options designed to enhance stability and
accuracy for specific applications and algorithms, including
(up to) fourth-order strong-stability-preserving Runge–Kutta
methods that benefit high-order finite elements (Anninos et al.
2017), and multi-step Crank–Nicholson methods that stabilize
highly dynamical black hole spacetimes. For the test problems
presented in this report we typically use a more conventional
second-order time discretization based on a low-storage
forward Euler method.

3.2. Doppler and Gravitational Frequency Shifts

The frequency advection source terms are updated following
the general procedure outlined in Shibata et al. (2011) (see also
Kuroda et al. 2016), after transforming the radiation-frame
moments to their lab-frame counterparts using Equation (5).
The conservation equations for the lab-frame moments take the
form

n
n¶ = -

¶
¶

n a n
abg

b gE n M u , 27t ;[ ] ( )( ) ( )

n
ng¶ =

¶
¶

n a n
abg

b gF M u , 28t j j ;[ ] ( )( ) ( )

where

= + + +n
abg

g b n
g a b

n
ag b

n
bg a

n
abg

g bM u H u u L u L u N u ,

29
; ;[ ]

( )
( ) ( ) ( ) ( ) ( )

and n
abgN( ) is determined by a closure formulation connecting

optically thin and thick regimes,

c c
=

-
+

-
n
abg

n
abg

n
abgN N N

3 1

2

3 1

2
. 30thin thick[ ] ( ) [ ] ( )( ) ( ) ( )

We adopt the thin/thick expressions recommended in Shibata
et al. (2011):

=n
abg n n

a
n
b

n
g

ab n
a

n
bN

J H H H

h H H
31thin 3 2

[ ]
( )

( )( )
( ) ( ) ( ) ( )
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= + +n
abg

n
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n
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1

5
. 32thick[ ] [ ] ( )( ) ( ) ( ) ( )

Among the many options for the closure function, χ, we have
chosen to use (Levermore 1984)

c
x

x
=

+

+ -

3 4

5 2 4 3
, 33

2

2
( )

where

x =
ab n

a
n
b

n

h H H

J
342

2
( )( ) ( )

( )

works well as an indicator of whether the fluid is locally
optically thick (x  0) or thin (x  1).
The form of Equations (27) and (28) is advective in nature

and fully conservative when the boundary conditions enforce
zero radiation flux at the edges of the frequency domain. We
thus discretize and update both equations using a conservative
multi-stage, second-order upwind scheme where the flux terms

4

The Astrophysical Journal, 900:71 (15pp), 2020 September 1 Anninos & Fragile



are reconstructed at group boundaries using a minmod limiter
to preserve monotonicity in the gradient extrapolants. The
scheme is multi-stage in the sense that we subcycle the source
update, respecting the characteristic advection time for the most
rapidly changing bin energies. In particular, the subcycle time
step is determined by the minimum advection time over all
groups based on the covariant divergence of the fluid
4-velocity, d dn n= a

at C uminsub cfl ;[ ( ∣ ∣)], where Ccfl<1 is a
Courant factor typically set to 0.3. After advancing the lab-
frame moments with Equations (27) and (28), the evolved
radiation fields are easily reconstructed from the radiation
stress-energy tensor (4) along with the following general
relativisticM1 closure relation for the pressure:

c c
=

-
+

-
n n nP P P

3 1

2

3 1

2
, 35ij ij ij

thin thick[ ] ( ) [ ] ( )( ) ( ) ( )

where

g
=n n

n n

n n

P E
F F

F F
, 36ij

i j

ij
i jthin[ ] ( )( ) ( )

( ) ( )

( ) ( )

and g=n nP E 3ij ij
thick[ ]( ) ( ) .

3.3. Primitive Inversion and Radiation–Matter Coupling

The radiation–matter coupling terms are updated using an
implicit, iterative Newton–Raphson method to provide greater
stability in strongly coupled regimes. In this section, we will
use the index n to indicate steps or cycles in the global time-
stepping scheme, whereas the index m indicates iteration steps
within the Newton–Raphson solver. Once all explicit steps
have been advanced, the implicit solve follows according to

= + D+ +U U St , 37n
r
n1 1* ( )

where = - - -n n
+ +S P g G G G G0, , , ,r
n

j j
n1

0 0
1( ) [ ]( ) ( ) repre-

sents the interactions terms at the advanced time +n 1. Taking
the first-order Taylor expansion with respect to primitive
variables, the (m+1)th iterate is approximated as

å d= +
¶
¶

+U U
U
P

P 38m m

a
a

m
a1 ( )⎜ ⎟⎛

⎝
⎞
⎠

å d= +
¶
¶a a

a+G G
G

P
P , 39m m

a
a

m
a1 ( )⎜ ⎟⎛

⎝
⎞
⎠

where

d

dr
d
d

d

d

r r

= =

-
-
-

-

-

n

n

n n

n n

+

+

+

+

+

  
P u

E

u

u u

E E

u u

. 40i

R

R
i

m m

m m

i m i m

R
m

R
m

R
i m

R
i m

1

1

1

1

1

( ) ( )

[ ] [ ]

( )
( )

( )

( ) ( )

( ) ( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

Plugging the expanded form of each variable into
Equation (37), we get the following set of equations for the
primitive fields δPa:
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which is in linear matrix formAx=b with Jacobian
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Notice thatA is really a matrix of size + ´N5 4 B( )
+ N5 4 B( ), andx andb are + N5 4 B( )-dimensional vectors,

where NB is the number of frequency bins; we have simply
condensed the notation by representing each 3-vector and all
spectral components inA,x, andb as single entries. The linear
system only includes terms known at iteration m. From these we
can solve for the vector of unknown primitives at iteration m+1,

= ++P P xm m1 , by inverting the matrixA, solving forx, then
repeating until dP P converges to a specified tolerance, which we
typically set to < 10−5 for all primitive fields.
In addition to this analytic approach we have also developed

a numerical method for calculating the Jacobian matrix that is
based on a forward difference approximation to the derivatives,
in which all conserved fields and source terms are evaluated as
functions of the primitive iterates. We have tested both analytic
and numerical procedures for calculating the derivatives in
(43). Both produce consistent results, but we currently use the
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analytic method as our primary (default) option because it is
faster. The Appendix summarizes all of the derivative
expressions needed for calculatingA analytically.

While this approach is limited to first-order accuracy in time
whenever the radiation source terms are stiff (i.e., for large
optical depths), it does have the advantages that it: (1) is
relatively easy to implement; (2) is stable over a much broader
range of parameters than a fully explicit scheme (see Fragile
et al. 2014); and (3) is asymptotic preserving (Pareschi &
Russo 2001). In future work, we plan to look into implement-
ing higher-order implicit–explicit (IMEX) schemes. This
strategy for solving the radiation source terms also clearly
accomplishes the primitive inversion step, since we ultimately
end up with the set of primitivesP at the new time step n+1.
The difference from radiation coupling is that it introduces
elements into the Jacobian matrix that depend on the time step,
so care must be taken in how, when, and how often this
operation is performed in the time sequence.

4. Test Problems

The Courant factor is set to kCFL=0.1 for all problems,
except for the radiation shock tube cases (kCFL=0.3) and the
free-streaming wave front test (kCFL=0.2). The primitive
solver tolerance is set to 10−5, except for the radiation shock
tubes, which use 10−8. All calculations use the closure
functions (33) and (34) of Levermore (1984). Unless otherwise
noted, the radiation energy is plotted in the Eulerian (lab)
frame.

4.1. Free-streaming Wave Front

An important advantage of theM1 closure method is its
ability to capture the free-streaming limit much more accurately
than an energy diffusion scheme, even with the steepest flux
limiters. So this is an appropriate problem with which to begin
testing because it is also the simplest to validate. For this test,
we set a background gas with ρ=1 g cm−3, T=104 K, and
κ=1 cm2 g−1. We then heat the left boundary to a
temperature of 106 K and set the initial radiation energy to
=E a Tr 4 and radiation flux to F=0.999cE. The entire grid

length is fixed at 0.01 of a mean free path so the medium
remains optically thin to photons throughout their propagation
history. We assume a constant opacity in temperature, density,
and frequency, but we nevertheless run this test with multiple
frequency groups (three), assigning spectral energies =nE n( )

dnE h Nn b[ ( )]/ / and spectral fluxes =n nF cEn n( ) ( ) , where δνn is
the width of bin n and Nb=3 is the number of frequency bins.
The bins are spaced logarithmically from 10−2 to 104 eV.
Figure 1 plots the three spectral energy densities together with
the analytic solution for the total energy density (normalized
such that ò n= =nE E d 1( ) behind the wave front) after the
wave front has traveled roughly 70% of the grid length. Note
that the spectral energy densities, E(ν)n, are in units of energy
density per energy dnE h[ ( )], so they are shifted in amplitude
from the analytic solution, which is just an energy density,
by the different spectral bin widths (and number of bins). We
intentionally plotted it this way to separate out the energy
density profiles for clarity. It is easy to confirm, however, that

dn dn dn+ + »n n nE E E E1 1 2 2 3 3( ) ( ) ( ) . We observe a slight
overshoot in E(ν)n of roughly 10%–15% at the front edge of
the wave, but otherwise the numerical and analytic solutions

agree quite nicely. The average relative error, å -ai i∣
A NAi i∣ ( ), where ai and Ai are the numerical and analytic
solutions, respectively, of E is < 8×10−3 for N=1000
zones, and converges at a rate slightly faster than first order, as
expected for problems with sharp discontinuities.

4.2. Diffusive Point Source

In the opposite, optically thick limit, Pons et al. (2000)
proposed an analytically tractable problem describing the
propagation of a single point source in a strongly diffusive
medium. The medium is endowed with zero absorptivity but
very high scattering opacity in each frequency bin k n

s
( ) . For a

sufficiently opaque, spherically symmetric medium, the lab-
frame energy and flux evolve as a function of radius (r) and
time (t) according to

=
-

E r t
k

t

k r

ct
, exp

3

4
, 45s s

3 2 2
( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜
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=F r t
r

t
E,

2
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The tests presented here fix the grid length to R=2×
109 cm, the gas density to ρ0=9×1014 g cm−3, and the gas
temperature to 5×106 eV. Specification of the Péclet number
Pe=κsΔℓ, where Δℓ is a characteristic scale, defines the
scattering opacity. We tie the length scale to a small fraction of
the grid length Δℓ=R/50 and set Pe = 100, safely within the
strong scattering limit. All calculations are initialized at
=t R c2000 , and for the convergence studies they run out to

t=1.5t0, enough time for the solutions to decay to roughly
half of their initial peak energies. Similar to the streaming test,
these problems are run with three logarithmically spaced
spectral bins ranging from 104 to 108 eV and initialized with
spectral energy densities E(ν) and fluxes nF

r
( ) such that the

frequency-integrated lab-frame energy density and flux equate
to Equations (45) and (46). Results for E(r) on a grid with
N=200 zones are plotted in Figure 2. We find average
(maximum) errors of E of 2.3×10−3 (8.7×10−3) and

Figure 1. Binned spectral energy densities, E(ν)n, and the analytic frequency-
integrated energy density, E, for the free-streaming wave problem. Note that
the units of E(ν)n are energy density per energy, while the units of E are just
energy density. The horizontal axis is in units of the photon mean free path
(MFP) for this problem.
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´ -5.9 10 4 (2.6×10−3) on grids of N=100 and 200 zones,
respectively, consistent with a second-order convergence rate.

4.3. Picket Fence

Analytic benchmark solutions for non-equilibrium radiative
transfer are scarce, and this is especially true for multi-
frequency general relativistic transfer. Hence we occasionally
resort, as we do in this section, to the Newtonian literature and
limit. As we have emphasized, the radiative transfer algorithms
in Cosmos++ are adapted to work in both Newtonian and
general relativistic regimes, and because of the covariant nature
of the formalism, much of the coding is shared. In fact the only
major difference between the two is the primitive inversion
scheme, which is not needed for the Newtonian limit. As a
result Newtonian problems will exercise much of the general
relativistic coding.

One particularly interesting Newtonian problem is the picket
fence proposed by Su & Olson (1999). This test provides a
semianalytic solution for non-gray, two-temperature, non-
equilibrium radiative transfer and diffusion, with the caveats
that the opacity must be independent of temperature and the
material specific heat must be proportional to the cube of the
temperature, i.e., Cv=αT3. This problem is initialized with a
cold, purely absorbing medium, then heated by an extended
isotropic radiation source that is a function of space, time, and
frequency nS x t, ,( ). The source is actually constant over space
and time, but active only for a finite duration and over a finite
region of space. Hydrodynamic motion (other than thermal
coupling) is ignored.

The cold medium is initialized with unit density, unit
temperature, and specific heat constant a = a4 r , where ar is
the radiation constant and ò=1. The multi-frequency aspect of
this test is scripted in the opacity, which is assumed to take one
of two values, κ(ν)=κn where n=(1, 2), across alternating
frequency bins. We use 20 bins to cover (logarithmically) the
frequency range 10−8

–10 eV/h, and set the alternating
opacities to 2 and 20. The radiating source emits at the rate

rk=S ca Tr 0 0
4 erg s−1 cm−3, where T0=103 K and

κ0=(κ1+κ2)/2 is the mean opacity, corresponding to Case

B from Su & Olson (1999). The numerical box size is set to
three mean free paths and the radiating source is contained
within half a mean free path of the leftmost edge of the grid.
Figure 3 plots the results at τ=0.3, where τ is the time
measured in units of a rkca4 r 0( ). The upper panel presents
the gas temperature, while the lower panel shows the radiation
energies corresponding to the quantities U1 and U2 in the
notation of Su & Olson (1999), which represent the total
integrated energies across each of the two opacity intervals, i.e.,

ò n= nU E dn n n( ) . We also include the benchmark transport
solutions as tabulated in Su & Olson (1999). The agreement
with the numerical solutions is better than 10% throughout the
temperature and energy profiles, a fairly good agreement
considering that theM1 closure makes different assumptions
than the transport model.

4.4. Homogeneous Radiating Sphere

We next consider two variants of the homogeneous radiating
sphere test (Müller et al. 2010). The basic configuration
consists of a static, spherically symmetric, homogeneous, and
isothermal stellar sphere of radius Rå, which radiates into a
surrounding vacuum region. We assume that the dominant
interaction process inside the sphere is isotropic absorption and
thermal emission with constant absorption opacity k n

a
( ) and

emissivity B. Under such conditions, this problem has the
following analytic solution (Smit et al. 1997):

m = - k m-I r B e, 1 , 47s r,( ) ( ) ( )( )

where
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m m m
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2
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and m q= cos is the directional cosine, such that this solution
is an integral over all directions. The radiation energy and flux
are derived via a numerical integration of the first two moments
(angular integrals) of (47).

Figure 2. Frequency-integrated radiation energy density for the diffusive point
source test, calculated on a grid of 200 zones at times t=200, 300, 400, and
500. The numerical solution converges at second order toward the analytic
solution.

Figure 3. Temperature (top panel) and frequency-integrated radiation energy
densities (bottom panel) for the picket-fence test Case B from Su & Olson
(1999) at t = 0.3 run on a grid of 300 zones. The analytic transport solutions
are included as symbols.
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We set the sphere radius to =R 10 km and initialize the
interior with a constant density ρ0=9×10

14 g cm−3, a constant
temperature with the parameterization =T B ar0

1 4( ) , and opacity
κ=Pe/Δr whereΔr=R/Nr is the cell size, R is the grid domain
length, Nr is the number of grid cells, and Pe is the Péclet number.
The exterior background density is fixed at r-10 10

0. We consider
two parameter sets representing different optical regimes: an
optically thinner case (Smit et al. 1997) with Nr=1000,

= R R3 , B=0.8, and Pe=0.015, and a very thick case
(Abdikamalov et al. 2012) with Nr=100, = R R5 , B=10, and
Pe=12.5. The steady-state solutions for the radiation energies and
ratios of radial flux to energy F Er( ) are shown in Figure 4
together with the corresponding analytic solutions. The top panels
plot the radiation energies, while the bottom panels are the radial
flux ratios. The left (right) panels are the optically thinner (thicker)
solutions. The qualitative behavior and results compare well to the
solutions. We point out, as have previous authors (Smit et al. 1997;
O’Connor 2015), that these tests are particularly sensitive to the
closure relation, which helps to explain the deviations observed
near the stellar surface. That our numerical methods can handle the
discontinuities near the surface and match the asymptotic behavior
extremely well is encouraging.

4.5. Doppler Frequency Shift

The frequency coupling terms from Section 3.2 are tested
using the same series of calculations as performed by Müller
et al. (2010), O’Connor (2015), and Kuroda et al. (2016). These
tests involve the propagation of radiation from a homogeneous
radiating sphere, similar to Section 4.4 except that in addition
to isotropic absorption and emission, a sharp velocity profile is

added outside the sphere to mimic an accretion flow capable of
Doppler redshifting the outgoing radiation.
For all of these tests we set the stellar radius to =R 10 km,

and impose a uniform interior density of ρ0=9×1014 g cm−3

and temperature of 5MeV/k. The outer radius of the computa-
tional box is fixed at R=800 km, and in order to resolve both
the radiating sphere and Doppler velocity features we use 1080
cells along the radial direction, resulting in a grid resolution of
Δr=0.74 km. We choose to run these tests with neutrinos,
rather than photons, and with both 15 and 25 frequency bins
spanning the range 1–50MeV/h. The stellar opacity is made
sufficiently thick by setting the Péclet number to unity over the
scale of a single zone. For the velocity profile we use

= -
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v r

r

c r

c r
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In this section we consider tests of just the Doppler redshift
arising from radiation streaming through the infalling velocity
profile of Equation (50) without a gravitational potential.
However, the same set of analytic solutions are equally
applicable to cases with a redshifting potential as we will see
in the next section. Variations in the luminosity arise in the
free-streaming limit when there are nonzero velocities or
potentials, and satisfy the following analytic solution

òa
a n

a
µ

-
+

µ
-
+

 r
w v

v
r g F d

w v

v

1

1

1

1
, 51rr

r
2( ) ( )

Figure 4. Steady-state radiation energy densities (top panels) and radial flux ratios (bottom panels) for the homogeneous radiating sphere tests. The left (right) panels
are the optically thinner (thicker) solutions. Symbols show the numerical solutions, while the thin black lines give the analytic ones.
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where w is the Lorentz factor, α(r) is the lapse function, and the
quantity òa nr g F drr

r
2 is the luminosity measured by an

Eulerian observer and should be constant far from the star.
This implies that the mean neutrino energy as measured in the
co-moving frame can be calculated as a function of radius:

n
a
a

n
á ñ =

á ñ
+

 h r
R

r

h

w v r1
52( ) ( )

( ) ( ( ))
( )

for both Doppler and gravitational redshifts provided the fluid
velocity is zero at the star surface and ná ñ =h 15.76 MeV is
the mean neutrino energy at the stellar surface. Because of the
high stellar opacity we can assume that any escaping radiation
originates from the stellar surface r=Rå.

Figure 5 shows the luminosity profile and the mean energy in
the co-moving frame as functions of radius calculated with 25
frequency bins after the radiation achieves a steady state. The
corresponding analytic solutions, also plotted in Figure 5,
match the numerical results almost exactly everywhere except
near the stellar surface, where the maximum error in the
average photon energy (in the right plot) plateaus at about 3%.
However, we point out that the width of the frequency bins
near the emission frequency (νå) is δνn≈2MeV/h, or about
0.13νå. Hence the observed error is within the uncertainty of
interpolation between frequency bins, and convergences to zero

with increasing frequency resolution, a fact that we have
confirmed by running this identical test with a smaller number
of frequency bins (15). We note that we importantly observe
between first- and second-order convergence in matching the
mean energies at the peak and in the region between the stellar
surface and the velocity discontinuity. In particular the
maximum errors with 15 (25) frequency bins in the near-
surface plateau and Doppler peak regions are 5.3% (3.0%) and
1.6% (0.73%), respectively, corresponding to a convergence
rate in frequency of about 1.5.

4.6. Gravitational Redshift

The problem from the previous section can readily be
amended to test gravitational redshifting, too, which we do
now. Aside from introducing a self-gravitating potential, all of
the problem parameters and the configuration are identical to
those specified previously. The potential (f<0) is calculated
by solving the Newtonian Poisson equation for the uniform-
density sphere, then assigning the spacetime metric in the
spherical, Kerr–Schild gauge as

f f= - + + - + Wds c dt c dr r d1 2 1 2 . 532 2 2 2 2 2 2( ) ( ) ( )
Figure 6 displays the mean neutrino energy as a function of

radius for two cases: pure gravitational redshift (left) and a
combination of gravitational plus Doppler redshift with the

Figure 5. Steady-state luminosity (left) and mean co-moving neutrino energy (right) as functions of radius for neutrino streams undergoing Doppler redshifting from
an accretion velocity field.

Figure 6. Mean co-moving neutrino energy as a function of radius for tests of pure gravitational (left) and gravitational plus Doppler (right) redshift.
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same velocity profile as specified in Section 4.5 (right).
Following the example in that section, we have run each
scenario with 15 and 25 frequency bins to verify convergence.
The solutions presented in Figure 6 are from the 25-bin tests.
The Doppler peaks agree with the analytic solution to better
than 1% for both resolutions. As found for the pure Doppler
test, agreement is worst right in front of the velocity
discontinuity. This region is sensitive to both the spatial and
frequency resolutions. Our results with 15 (25) bins never-
theless agree with the analytic solution with maximum errors of
about 3.1% (1.5%), converging between first and second order
in frequency.

4.7. Radiation Shock Tube

Most of the tests we consider in this work do not involve
both strong kinetic and thermal coupling between the radiation
and matter. To address this, we include the following four
radiation shock tube tests, first introduced by Farris et al.
(2008) (see also Zanotti et al. 2011; Fragile et al. 2012;
McKinney et al. 2014): a nonrelativistic strong shock (case 1),
a relativistic strong shock (case 2), a relativistic wave (case 3),
and a radiation pressure-dominated relativistic wave (case 4).
The initial parameters are the same as those in Farris et al.
(2008) and are reproduced in Table 1. These tests are run until
t=300 on a grid with 800 zones over x ä [−20, 20]. All
calculations are run with spectrally uniform energy distribu-
tions, dn=nE E h Nn n b[ ( )]( ) / / , and 18 frequency groups with
bin edges at kT h0.05 min and kT h20 max , where Tmin and Tmax

come from the initial states of each case. The results are plotted
in Figure 7, where we show (from top to bottom) the gas
density, gas pressure, gas velocity, conserved radiation energy,
and radiation rest-frame velocity for each case. We point out
that we solve these problems using the M1 closure, whereas in
most earlier work presenting these tests (e.g., Farris et al. 2008;
Fragile et al. 2012, 2014; Sa  dowski et al. 2013), they were
solved using the Eddington closure. Not surprisingly, the two
closures yield slightly different results, which explains why our
new results look different from our previously published ones
(we also ran most of the cases to different stop times than
before). Only one work that we are aware of, McKinney et al.
(2014), has previously published these tests using theM1

closure, so our results should be compared with those, and in
fact we find the agreement to be excellent.

4.8. Shadow Casting

An important advantage ofM1 closure over the diffusion (or
isotropic Eddington) approximation is its ability to preserve
shadows in the wake of opaque objects. In a previous paper
(Fragile et al. 2014) we demonstrated this ability with our gray
(single group) version ofM1. In that paper we considered
radiation flow across an opaque spheroidal cloud embedded in

a low-density transparent medium with a light source placed at
one end of the computational domain. Here we generalize that
test problem by replacing the spheroidal cloud with a density-
stratified slab. As we will demonstrate, density stratification
serves to exercise the multi-frequency capabilities of our new
transport algorithm.
Four density layers are utilized in this test, along with three

frequency groups. The background (transparent medium)
density is fixed at 10−3 g cm−3, while the opaque object is
layered (from the bottom up) with densities of 103, 102, and
10 g cm−3. The opaque slab is 1 cm long by 1 cm tall and rests
0.5 cm along the bottom of a grid L=3 cm long by 4/3 cm
tall, resolved with 384×192 zones. Each density layer is
1/3 cm thick. The gas and radiation begin in cold equilibrium
with Tgas=Trad=290 K with a gas adiabatic index of
Γ=5/3. The photon streams are initialized at the left
boundary with a uniform (frequency-integrated) source
temperature Tsource=1740 K, so that =E a TR 4 and Fx=
0.99999E. Spectral energies and fluxes are initialized as

dn=nE E h Nn n b[ ( )]( ) / / and =n nF cEn n( ) ( ) , where Nb=3 is
the number of frequency bins.
The opacity of the gas is designed to produce the desired

behavior of the bin-center energies through the different
density layers. In particular, the frequency bin edges
(2×10−3 and 2 eV/h), the number of frequency groups
(three, with logarithmic spacing), the opacity parameters, and
the density layers are tailored so that each stacked layer of the
slab is optically thin to a different frequency bin so that we can
test shadow casting for each individual frequency group. This
is accomplished with the following power law for absorption
opacity (we do not consider scattering here):

k k
r
r

n
n

=
-

-cm g , 54a
0

0

3

0

4
2 1 ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where the coefficient κ0 is chosen to normalize the mean free
path of the highest frequency photons through the densest
(inner) layer to ≈10−2 cm, thus guaranteeing that the slab is
sufficiently opaque in its bottom layer to block all streaming
photons. Furthermore, the combination of densities and opacity
power-law parameters defines essentially the same optical
thickness to the middle frequency photons in the middle layer,
and to the lowest frequency photons in the topmost layer.
From this configuration we expect to observe the following:

all photons will be blocked by the bottom (highest density)
layer; photons in the two lowest frequency bins will be blocked
in the middle layer; only the lowest frequency photons will be
blocked in the upper layer; and all photons will stream through
the low-density gap above the opaque slab. Hence we should
see a clear separation of photon streams and shadows if we
plot each frequency bin separately. The results, after 1.5
light-crossing times, as shown in Figure 8, confirm these

Table 1
Radiation Shock Tube Parameters

Case Γ κ a ρL PL uL
x EL ρR PR uR

x ER

1 5/3 0.4 1 3×10−5 0.0015 1×10−8 2.4 1.61×10−4 6.25×10−3 2.51×10−7

2 5/3 0.2 1 4×10−3 0.25 2×10−5 3.11 0.04512 0.0804 3.46×10−3

3 2 0.3 1 60 10 2 8 2.34×103 1.25 1.14×103

4 5/3 0.08 1 6×10−3 0.69 0.18 3.65 3.59×10−2 0.189 1.30
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expectations. The three images plot n n( ) for the center
frequencies of the three photon bins, at roughly 0.01, 0.1, and
1 eV/h. As expected, the density layers produce sharp, clear
shadows in both space and spectral energy. Notice that, as the
radiation propagates, the edges of the shadows tend to flare out,
a trait that is sensitive to the reconstruction method and limiter
steepness (Davis et al. 2012; McKinney et al. 2014), yet the
transition from light to dark is nevertheless quite pronounced at

all frequencies. To demonstrate the clean separation of the three
spectral components after passing through the stratified slab,
we plot in Figure 9 the average photon energy as a function of
the vertical height, y, crossing the horizontal position
x=1.8 cm. Also plotted is an “analytic” solution that is
calculated by summing the energy only within the bin ranges
that are theoretically transparent for a given height. The
agreement is quite good.

Figure 7. Profiles of gas density, gas pressure, gas velocity, conserved radiation energy, and radiation rest-frame velocity after t=300 for the four radiation shock
tube cases.
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4.9. Two-beam Shadow Test

The shadow test from the previous section demonstrates one
advantage of theM1 closure scheme over simpler flux-limited
diffusion, the fact that it accurately casts shadows from a single
beam incident upon an opaque object. However, a well-known

shortcoming of flux-integrated (gray)M1 is that intersecting
beams of light do not correctly cross one another. Instead, they
merge, flowing in the direction of the average, resultant flux. A
traditional illustration of this is the two-beam, shadow test
(Sa  dowski et al. 2013; Fragile et al. 2014; McKinney et al.
2014). In this test, two beams of radiation enter the
computational domain, one from the upper boundary and one
from the lower. Each beam is angled toward a circular cloud
along the centerline of the grid. Rather than the two beams
casting two independent shadows as would be expected, they
cast three partial shadows, one each in the directions of the
original beams, and one in the “average” beam direction. This
third shadow is the unphysical result of the partial merging of
the two beams.
While our current multi-frequencyM1 radiation transport

does not provide a true solution to the issue of merging beams,
it does admit an interesting workaround. Since photons (or
beams) in different frequency bins are advected independently,
and since there is no process in this test to trigger frequency
exchanges, two beams of different frequencies can propagate
independently, cross as expected, and cast individual shadows
as they should. To illustrate this, we repeat the two-beam
shadow test as presented in Sa  dowski et al. (2013) and Fragile
et al. (2014), but with the new twist that each beam occupies a
different frequency bin (the bin boundaries are not relevant).
The test is run on a 120×120 grid, obviously with no
reflection applied at y=0. Figure 10 confirms our expectation
that the two beams now leave only two shadows, one in each of
the beam directions. Interestingly, since Figure 10 shows the
frequency-integrated radiation energy and velocity, the beams
appear to merge in the red triangular regions, but are actually
still traveling in their independent directions.

4.10. Beam of Light Near a Black Hole

An important test for a general relativistic radiation transport
scheme is to verify that the radiation propagates along geodesics
as expected in strong gravitational fields. To verify this, we
reproduce a series of light-beam tests introduced by Sa  dowski
et al. (2013). For these tests we initialize a photon beam in the
curved spacetime geometry near a 3Me Schwarzschild black
hole, and neglect any coupling interactions between the gas and
radiation (k k= = 0a s ) so that we can compare the path of the
radiation beam against accurate geodesic paths. In this section,
all distances are measured in units of GM/c2. All calculations are
run with five frequency groups covering 10–104 eV/h on a two-
dimensional r–f grid, with resolution 320×320 and grid
coverage over 0�f�π/2 and rin < r < rout. We consider two
cases: (rin, rout, rbeam) = (2.5, 3.5, 3.0±0.1) and (5.5, 11.5,
6±0.2), where rbeam defines the beam center and width.
Note that the beam in the first case is centered at the photon
orbit radius, = =r r 3beam p.o. , meaning that photons in the
center of the beam should be able to orbit the black hole
indefinitely. The radiation temperature within the initial beam is

= =T T10 10beam 0
7 K, where T0 is the temperature of the

background radiation. The radiation beam has an initial Lorentz
factor of γ=10 in the grid frame. The beam initial conditions
are held constant at the f=0 boundary.
Figure 11 shows the track of each radiation beam summed

over all frequency bins, i.e., ò n= nR R d0
0

0
0
( ) , along with

geodesic paths corresponding to the initial inner and outer
boundaries of each beam. The left image corresponds to the
photon orbit case with rbeam=3, while the right corresponds to

Figure 8. Pseudocolor plot of the conserved radiation spectral energy, n n( ) ,
for the multi-frequency shadow test. The bin-center energies, hνn, increase
from 10−2 eV (top image) to 10−1 eV (middle) to 1 eV (bottom). Colors are
linearly scaled, using an independent normalization for each frame. The three
different slabs (dashed, white lines) are constructed to be transparent at
different frequencies.

Figure 9. Line plot of the mean photon energy along the vertical (y) direction
for all photons that cross position x=1.8 cm in the multi-frequency slab
shadowing problem. The first slab (y<1/3 cm) is not shown since it is opaque
to radiation. The black line is the expected photon energy calculated by only
including source photons expected to be transmitted at a given height.
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rbeam=6. We see that each beam stays confined within the
prescribed geodesic tracks and experiences the expected
curvature. Furthermore, each frequency group experiences the
same curvature, so that the beam intensity is independent of the
number of groups.

5. Conclusion

In this work, we have extended the capabilities of our
Cosmos++ computational astrophysics code to include multi-
frequency radiation. This is done by selecting a finite number
of frequency groups and independently evolving the radiation
energy densities and momenta associated with each. We stick
with the same explicit–implicit split of advection and radiation
source terms and the two-momentM1 closure scheme as in our
previous work (Fragile et al. 2014). Thus, we retain the ability
to stably evolve a large range of parameter space from optically
thin to optically thick flows with reasonable time steps and
accuracy, while now relaxing the gray (frequency-integrated)
approximation. In this work, we have focused on presenting
and testing the general relativistic version, though we note that
we have also implemented a Newtonian version as well. We

also have a multi-group, flux-limited-diffusion option, which
we plan to report on elsewhere.
This multi-frequency capability expands the range of physical

processes that can be properly captured in a simulation. For
example, we demonstrated how the new code could successfully
treat frequency-dependent opacities and Doppler and gravita-
tional frequency shifts, and to some extent overcome the multi-
beam shadowing limitations of theM1 closure scheme.
While multi-frequency methods are already in use in studies

of core-collapse supernovae (e.g., Just et al. 2015; Kuroda et al.
2016), they have many potential uses beyond that class of
problem. Possible applications include Type Ia supernovae,
neutron star mergers, tidal disruption events, and super-
Eddington accretion onto compact objects. Another potential
application is in the study of black hole X-ray binary accretion
disks, especially in the so-called intermediate spectral states,
where hard and soft X-ray photons each play important roles,
not only in the observed spectra, but in physically interacting
with the accretion flow, affecting its structure and thermo-
dynamic state. It is important in such an application for hard
and soft X-ray photons to be able to propagate independently,

Figure 10. Pseudocolor plot of the frequency-integrated conserved radiation energy, , with vectors representing the radiation velocity, u i
R, for the two-beam cloud

shadow test at t=20. Note that the cloud casts two shadows, as it should.

Figure 11. Pseudocolor image of the frequency-integrated conserved radiation energy, ò n= nR R d0
0

0
0
( ) , (in code units) for the light-beam tests. A Schwarzschild black

hole is located at the coordinate origin. The light beams are introduced at the bottom boundary and propagate counterclockwise around the black hole. The orange
curves represent geodesic paths starting at the initial inner and outer boundaries of the beam. Note that the background radiation energy is at least five orders of
magnitude less than in the beam.
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experience the expected gravitational and Doppler frequency
shifts, follow proper geodesic paths, and interact with the gas in
a frequency-dependent manner—all of the capabilities we have
demonstrated in this paper.
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auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
AC52-07NA27344. P.C.F. gratefully acknowledges support from
National Science Foundation grants AST-1616185 and AST-
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Appendix
First-order Taylor Expansion Terms

The Jacobian matrix, A, from Section 3.3 can be calculated
either analytically or numerically. Although more tedious to
code, we have found that the analytic method is consistently
faster on all our tests, making it perhaps worth the extra effort.
To aid those who might wish to code the analytic solution, we
record all the pertinent partial derivatives for Equation (43) here,
ordered by conserved field. Notice that we have dropped the
frequency subscript notation in most of these expressions, but
emphasize that radiation-related derivatives apply to all groups.
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Also appearing in the Jacobian are the following gradients of
the radiation 4-force density:
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Finally, the following partial derivatives are needed to
evaluate the above expressions:
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