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Abstract—Plug-and-play priors (PnP) is a methodology for
regularized image reconstruction that specifies the prior through
an image denoiser. While PnP algorithms are well understood
for denoisers performing maximum a posteriori probability (MAP)
estimation, they have not been analyzed for the minimum mean
squared error (MMSE) denoisers. This letter addresses this gap
by establishing the first theoretical convergence result for the
iterative shrinkage/thresholding algorithm (ISTA) variant of PnP
for MMSE denoisers. We show that the iterates produced by PnP-
ISTA with an MMSE denoiser converge to a stationary point of
some global cost function. We validate our analysis on sparse
signal recovery in compressive sensing by comparing two types of
denoisers, namely the exact MMSE denoiser and the approximate
MMSE denoiser obtained by training a deep neural net.

Index Terms—Plug-and-play priors, inverse problems, com-
putational imaging, iterative shrinkage/thresholding algorithm
(ISTA), MMSE estimation, deep learning.

I. INTRODUCTION

HE recovery of an unknown signal from its noisy mea-

surements is fundamental in signal processing. It often
arises in the context of linear inverse problems, where the
goal is to recover £ € R™ from its noisy measurements

y=Hz+e. (1)

Here, H € R™*" represents the response of the acquisition
system and e € R™ models the measurements noise.

The solution of ill-posed inverse problems is commonly
formulated as a regularized inversion, expressed as an opti-
mization problem

Z =argmin f(x) with f(z)=g(x)+h(z), 2

xcR™

where g is the data-fidelity term and h is the regularizer or
prior. Proximal algorithms [1] are widely used for solving (2)
when the regularizer is nonsmooth. For example, the iterative
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shrinkage/thresholding algorithm (ISTA) [2]-[5] is a standard
approach for solving (2) via the iterations

zt —_ l‘t_l _ 'ng(:ct_l)

xt = proxvh(zt) ,

(3a)
(3b)

where v > 0 is the step-size parameter. The second step of
ISTA relies on the proximal operator defined as

1
prox,,(z) = argmin {||az —z|3 + Th(a:)} , @
zeR™ 2

where 7 > 0 controls the influence of h. The proximal operator
can be interpreted as a maximum a posteriori probability
(MAP) estimator for the AWGN denoising problem

n~N(0,7I), (5

z=x+n where x ~ pg,

by setting h(x) = —log(pz(x)). This perspective inspired
the development of the PnP methodology [6], [7], where the
proximal operator is replaced by a more general denoiser
D(-), such as BM3D [8] or DnCNN [9]. For example, PnP-
ISTA [10] can be summarized as

Zt _ wtfl o ’ng(wtil)
x' =D, (2",

(6a)
(6b)

where by analogy to 7 in (4), we introduce the parameter
o > 0 for controling the relative strength of the denoiser D,.

PnP algorithms have been shown to achieve state-of-the-
art performance in many imaging problems [11]-[20]. Recent
work has also provided theoretical convergence guarantees for
PnP algorithms under various assumptions on the data-fidelity
term and the denoiser [7], [11], [15], [21]-[24]. However, PnP
has not been investigated for denoisers performing minimum
mean squared error (MMSE) estimation

D,(z) =E[z|z] = /Rn XPy|x(x|2)de . (7)

MMSE denoisers are “optimal” with respect to widely used
image-quality metrics such as signal-to-noise ratio (SNR).
However, they are generally not nonexpansive [16] and their
direct computation is often intractable in high-dimensions [25].
Insights into the performance of PnP for MMSE denoisers are
valuable as many denoisers (pre-trained CNNs, NLM, BM3D)
can be interpreted as approximate or empirical MMSE denois-
ers [26]. In this letter, we show that PnP-ISTA with an MMSE
denoiser converges to a stationary point of a certain (possibly
nonconvex) cost function. To the best of our knowledge,
this explicit link between PnP-ISTA and MMSE estimation
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is absent from the current literature on PnP methods. Our
analysis builds on an elegant formulation by Gribonval [27]
that establishes a direct link between MMSE estimation and
regularized inversion. We validate our analysis on sparse signal
recovery in compressive sensing by comparing PnP-ISTA with
two types of denoisers—the exact MMSE denoiser and the
approximate MMSE denoiser obtained by training DnCNN [9]
to minimize the mean squared error (MSE). Our simulations
show convergence of PnP-ISTA for both denoisers, highlight
close agreement between their performance, and illustrate the
limitation of using an AWGN denoiser as a prior within ISTA.

II. THEORETICAL ANALYSIS

Our analysis requires three assumptions that serve as suffi-
cient conditions for establishing theoretical convergence.

Assumption 1. The prior p, is non-degenerate over R™.

As a reminder, a probability distribution p,, is degenerate over
R™, if it is supported on a space of lower dimensions than n.
Assumption 1 is satisfied by a large number of probability
distributions, including those promoting sparsity, such as the
Bernoulli-Gaussian prior adopted in our numerical evaluation.
Consider the image set of the MMSE denoiser X := Im(D,).
Assumption 1 is required for establishing an explicit link
between (7) and the following regularizer [27]

honse () = (8)
— 3|z — D, (@)|* + T hy (D, (z)) forzeX
+oo forx ¢ X,

where v > 0 is the step-size, D,* X — R" is the
inverse mapping, which is well defined and smooth over X
(see Appendix A), and h,(-) = —log(p.(-)), where p, is
the probability distribution of the AWGN corrupted obser-
vation (5). As discussed in Appendix A, the function A
is smooth for any € X, which is the consequence of the
smoothness of both D! and h,. Note that it is generally easier
to evaluate the denoiser D, (either exactly or approximately)
than explicitly differentiating the expression (8).

Assumption 2. The function g is continuously differentiable
and has a Lipschitz continuous gradient with constant L > 0.

This is a standard assumption used extensively in the analysis
of gradient-based algorithms (see [28], for example).

Assumption 3. The function f has a finite infimum f* > —oo.

This mild assumption ensures that the function f is bounded
from below. We can now establish the following result.

Theorem 1. Run PnP-ISTA with a denoiser (7) under As-
sumptions 1-3 using a fixed step-size 0 < v < 1/L. Then,
the sequence {f(x')}i>o with h defined in (8) monotonically
decreases and ||V f(z")|| = 0 as t — oc.

The proof is provided in Appendix B. Theorem 1 establishes
convergence of PnP-ISTA with MMSE denoisers to a station-
ary point of the problem (2) where h is specified in (8). The
proof relies on the majorization-minimization (MM) strategy
widely used in the context of both convex and nonconvex
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Fig. 1. Convergence of PnP-ISTA for exact and approximate MMSE de-

noisers. The latter corresponds to DnCNN trained to minimize MSE. Average
normalized cost f(x?)/f(x) is plotted against the iteration number with the
shaded areas representing the range of values attained over 100 experiments.
Note the monotonic decrease of the cost function f as predicted by our
analysis as well as the excellent agreement of both denoisers.
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Fig. 2. Convergence of PnP-ISTA for exact and approximate MMSE denois-
ers. The latter corresponds to DnCNN trained to minimize MSE. Average SNR
(dB) is plotted against the iteration number with the shaded areas representing
the range of values attained over 100 experiments. The SNR behavior of
LASSO, implemented using ISTA with the £1-norm prior, is also provided
for reference. We highlight the excellent agreement of both denoisers and
their superior SNR performance compared to the ¢; regularization.

optimization [29]—[33]. It is important to note that the theorem
does not assume that g or h are convex, or that the denoiser
is nonexpansive. The convexity of h,.. is equivalent to the
log-concavity of p, [34], which does not hold for a wide
variety of priors, such as mixtures of Gaussians [16]. On the
other hand, when the function ¢ is convex and p, is log-
concave, Theorem 1 implies that PnP-ISTA achieves the global
minimum of f. The denoiser D, is a proximal operator of
a proper, closed, and convex function h if and only if D,
is monotone and nonexpansive [35]. Finally, note that e
depends on both v and o, both of which influence the relative
weighting between g and h. This is the consequence of nnee
being specified by reverse engineering the MMSE denoiser
D,, which leads to the explicit dependence of the regularizer
on the problem parameters [27].

III. NUMERICAL EVALUATION

We illustrate PnP-ISTA with both exact and approximate
MMSE denoisers on the problem of sparse signal recovery in
compressive sensing [36], [37]. We emphasize that our aim
here is not to argue that ISTA is a superior sparse recovery
algorithm, or that the MMSE denoiser as a superior signal
prior. Rather, we seek to gain new insights into the behavior
of PnP-ISTA with MMSE priors in highly controlled setting.

As a model for the sparse vector £ € R" with n =
4096, we consider a widely used independent and identi-
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Fig. 3. [Illustration of the recovery performance of PnP-ISTA for exact
and approximate MMSE denoisers. Average SNR (dB) is plotted against
the measurement rate (m/n) with the shaded areas representing the range
of values attained over 100 experiments. We also provide the performance
of LASSO and GAMP, two widely used algorithms for sparse recovery in
compressive sensing. The figure highlights the suboptimality of both variants
of PnP-ISTA compared to GAMP, which stems from their assumption that
errors in every ISTA iteration are AWGN. One can also observe the remarkable
agreement between two variants of PnP-ISTA in all experiments.

cally distributed (i.i.d.) Bernoulli-Gaussian distribution. Each
component of x is thus generated from the distribution
Pz () = agy, () + (1 — a)d(x), where § is the Dirac delta
function and ¢, is the Gaussian probability density function
with zero mean and o, > 0 standard deviation. The parameter
0 < a <1 in p, controls the sparsity of the signal, and
we fix 02 = 1/a. Since the distribution p, = (¢o * ps)
is not log-concave, the Bernoulli-Gaussian prior leads to a
nonconvex regularizer [27]. Additionally, it is known that
the corresponding denoiser is generally expansive (see the
discussion in Section IIT of [27]). The entries of H € R™*"
are generated as i.i.d. Gaussian random variables N'(0,1/m).
For each experiment, we additionally corrupt measurements
with AWGN of variance o2 corresponding to an input SNR
of 20 dB. Accordingly, the data fidelity term is set as least-
squares g(z) = (1/2)|ly — Hx|>. All plots are obtained by
averaging results over 100 random trials.

We consider two reference signal recovery algorithms
extensively used in compressive sensing. The first is the
standard least absolute shrinkage and selection operator
(LASSO) [38], which computes (2) with an ¢;-norm regularizer
h(x) = A||z||1. The regularization parameter A > 0 of LASSO
is optimized for each experiment to maximize SNR. The sec-
ond reference method is the MMSE variant of the generalized
approximate message passing (GAMP) [39], which is known
to be nearly optimal for sparse signal recovery in compressive
sensing [40]. The parameters of GAMP are set to the actual
statistical parameters (o, o,,0.) of the problem. While the
suboptimality of ISTA to GAMP for random measurement
matrices is well known, our aim is to illustrate the relative
performance of “optimal” ISTA with the MMSE denoiser D,,.

Since x is a vector with i.i.d. elements, the exact MMSE
denoiser D, can be evaluated as a sequence of scalar integrals.
As an approximate MMSE denoiser, we use DnCNN with
depth 4 [9]. To that end, we train 9 different networks for
the removal of AWGN at noise levels in the range from
0.01 to 0.37. The training was conducted over 2000 random
realizations of the signal « ~ p, using the ¢>-loss. For each
experiment, we select the network achieving the highest SNR

value under the scaling technique from [41].

Theorem 1 establishes monotonic convergence of PnP-ISTA
in terms of the cost function f. This is illustrated in Fig. 1
for the measurement rate m/n = 0.8. The average normalized
cost f(x')/f(x°) is plotted against the iteration number for
both exact and approximate MMSE denoisers. The shaded
areas indicate the range of values taken over 100 random
trials. Fig. 2 illustrates the convergence behaviour of PnP-
ISTA in terms of SNR (dB) for identical experimental setting
by additionally including the SNR performance of LASSO
as a reference. First, note the monotonic convergence of
{f(x")}+>0 as predicted by our analysis. Second, note the
excellent agreement between two variants of PnP-ISTA. This
close agreement is encouraging as deep neural nets have been
extensively used as practical strategies for regularizing large-
scale imaging problems. For example, the convergence of PnP-
ISTA for a modified DnCNN, trained using the real spectral
normalization, has been shown in [23].

The underlying assumption in PnP-ISTA is that errors within
every ISTA iteration can be modeled as AWGN, which is
known to be false [42]. This makes both exact and approximate
MMSE denoisers “suboptimal” when used within PnP-ISTA.
Unlike ISTA, GAMP explicitly ensures AWGN errors in every
iteration for random measurement matrices, making it a valid
upper bound in our experimental setting. Fig. 3 illustrates the
suboptimality of “optimal” ISTA for different measurement
rates, highlighting the necessity of developing more accurate
error models for PnP iterations [43].

IV. CONCLUSION

We provide several new insights into the widely used
PnP methodology by considering “optimal” MMSE denoisers.
First, we have analyzed the convergence of PnP-ISTA for
MMSE denoisers. Our analysis reveals the convergence of
the algorithm even when the data-fidelity term is nonconvex
and denoiser is expansive. Second, our simulations on sparse
signal recovery illustrate the potential of approximate MMSE
denoisers—obtained by training deep neural nets—to match
the performance of the exact MMSE denoiser. The latter
is intractable for high-dimensional imaging problems, while
the former has been extensively used in practice. Third, our
simulations highlight the suboptimality of “optimal” ISTA
with an MMSE denoiser, due to the assumption that error
within ISTA iterations are Gaussian. We hypothesize that a
similar phenomenon is present in the context of imaging in-
verse problems, which suggests the possibility of performance
improvements by using more refined statistical models for
characterizing errors within PnP algorithms [43].

APPENDIX
A. MMSE Denoising as Proximal Operator

The relationship between MMSE estimation and regularized
inversion has been established by Gribonval [27], and has also
been discussed in other contexts [25], [34]. Our contribution
is to formally connect this relationship to PnP algorithms,
leading to their new interpretation for MMSE denoisers.
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It is well known that the estimator (7) can be compactly
expressed using Tweedie’s formula [44]

Dy(2) = z — 0?Vh,(z) with h,(z) = —log(p.(2)), (9)

which can be obtained by differentiating (7) using the expres-
sion for the probability distribution

Pe(2) = (pe#00)(2) = [ 6oz~ w)pale)da .

(10)

where ¢, (x) is the Gaussian probability density function.
Since ¢, is infinitely differentiable, so are p, and D,. By
differentiating D,, one can show that the Jacobian of D, is
positive definite (see Lemma 2 in [27])

D, (z) =1—0?Hh,(2) =0, z€R", (11)

where Hh, denotes the Hessian matrix of the function h,.
Finally, Assumption 1 also implies that D, is a one-to-
one mapping from R™ to X = Im(D,), which means that
D-!: X — R™ is well defined and also infinitely differen-
tiable over X (see Lemma 1 in [27]). This directly implies
that the regularizer h in (8) is also infinitely differentiable for
any ¢ € X.
We will now show that

1
D, (2z) = prox,,,(z) = arg min {2||w —z|* + ’yh(m)}
xeR”™

where h is the (possibly nonconvex) function defined in (8).
We thus establish that u* = z is the global minimizer of

1
o(u) = §||Dg(u) —2||? + vh(Dy(u)), u€R".
By using (8) and (9), we get
1 1
¢(u) = 5|Ds(u) — 2|~ 51Do(u) ~ ul|? + 0%hg (u)

1 s ot 2 2
= 5lIDo(w) = 2[" = - [IVhe (W) " + 0"ho (u) -
The gradient of ¢ is then given by

V(z) = [UDs(u)] (Dg(u) + 02Vhe(u) — z)
= [JDs (u))(u — 2) ,

where we used (11) in the second line and (9) in the third
line. Consider ¢(v) = ¢(z + vu) and its derivative

q (V) =Vo(z +vu) u=vu'[JD,(z + vu)|u .

From the positive definiteness of the Jacobian (11), we have
¢'(v) < 0and ¢'(v) > 0 for v < 0 and v > 0, respectively.
This implies that v = 0 is the global minimizer of g. Since
u € R" is an arbitrary vector, we have that ¢ has no stationary
point beyond u* = z and that p(z) < p(u) for any u # z.

B. Convergence Analysis

Prior work has analyzed the convergence of PnP algorithms
for contractive, nonexpansive, or bounded denoisers [7], [11],
[16], [22]-[24]. Our analysis extends the prior work on PnP
by analyzing convergence for MMSE denoisers without any
assumptions on convexity of g and h or on nonexpansiveness

of D,. We adopt the majorization-minimization (MM) strategy
widely used in nonconvex optimization [29]-[33].
Consider the following approximation of f at s € R"”

wx, ) = g(s) + Vg(s) (x — s) + %Ilw = s[* + (=)

Assumption 2 implies that for any 0 < v < 1/L, we have

plx,s) > f(x) and p(s,s) = f(s),

We express (6) in the MM format

x,s € R". (12)

z' = argminp(z,z'"!) = Dy(x' ' —yVg(z'")), (13)
xcR"™

where from Appendix A, we know that D, =
Therefore, from (12) and (13), we directly have that

fla'=).

From Assumption 3, we know that f is bounded from below;
therefore, the monotone convergence theorem implies that the
sequence {f(z")};>0 converges.

Consider the residual function r between p and f

r(@) = p(x, s) - f(z)
1
= g(s) + Vg(s) (x — s) + 7 1= s|? — g(x) .

Prox. .

fa) < pla' 2™ < ple' =2l =

The definition of r implies that 7(s) = 0 and Vr(s) = 0.
Additionally, we have for any =,y € R"

IVr(z) = Vr(y)ll < (1/9)lz -yl + [Vg(z) = Vg(y)]l
<(A/v+ Dz -yl < @/)lz -yl ,
where we used 0 < v < 1/L. The last inequality implies that
Vr is Lipschitz continuous with constant 2/-.

Denote by f* the infimum of f and by ri(x) =
pu(x, zt=1) — f(x) > 0, x € R™, the residual at t. Then,

— pla',a' ) - f(2') < f(@'Y) - f(a!)
= Yol < (f@) - ).

t=1

re(zh)

where we used the fact that f* < lim;_, o, f(!). This implies
that 74 (z?) — 0 as t — oc.
Since Vry is (2/+)-Lipschitz continuous, we have that

u = x! — %Vrt(a:t)
= ni(w) S ro(a’) - F|Vre(@))? .

Since () > 0, for all x € R"™, we have

IVr(@)|? < 2 (r(at) — re(u) < %th) =0,

2

as t — oo.
Finally, consider the gradient of f at ' € X = Im(D,)

IVf (@) = [Vap(a',a' =)= Vr(a")|| = [Vr(z")] -0,

as t — oo, where we used the fact that 2! is the minimizer
of pu(x,xt~1). This concludes the proof.
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