
JointDNN: An Efficient Training and
Inference Engine for Intelligent

Mobile Cloud Computing Services
Amir Erfan Eshratifar , Mohammad Saeed Abrishami, and Massoud Pedram , Fellow, IEEE

Abstract—Deep learning models are being deployed in many mobile intelligent applications. End-side services, such as intelligent

personal assistants, autonomous cars, and smart home services often employ either simple local models on the mobile or complex

remote models on the cloud. However, recent studies have shown that partitioning the DNN computations between the mobile and

cloud can increase the latency and energy efficiencies. In this paper, we propose an efficient, adaptive, and practical engine, JointDNN,

for collaborative computation between a mobile device and cloud for DNNs in both inference and training phase. JointDNN not only

provides an energy and performance efficient method of querying DNNs for the mobile side but also benefits the cloud server by

reducing the amount of its workload and communications compared to the cloud-only approach. Given the DNN architecture, we

investigate the efficiency of processing some layers on the mobile device and some layers on the cloud server. We provide optimization

formulations at layer granularity for forward- and backward-propagations in DNNs, which can adapt to mobile battery limitations and

cloud server load constraints and quality of service. JointDNN achieves up to 18 and 32 times reductions on the latency and mobile

energy consumption of querying DNNs compared to the status-quo approaches, respectively.

Index Terms—Deep neural networks, intelligent services, mobile computing, cloud computing

Ç

1 INTRODUCTION

DNN architectures are promising solutions in achieving
remarkable results in a wide range of machine learning

applications, including, but not limited to computer vision,
speech recognition, language modeling, and autonomous
cars. Currently, there is amajor growing trend in introducing
more advanced DNN architectures and employing them in
end-user applications. The considerable improvements in
DNNs are usually achieved by increasing computational
complexity which requires more resources for both training
and inference [1]. Recent research directions to make this
progress sustainable are: development of Graphical Process-
ing Units (GPUs) as the vital hardware component of both
servers and mobile devices [2], design of efficient algorithms
for large-scale distributed training [3] and efficient infer-
ence [4], compression and approximation of models [5], and
most recently introducing collaborative computation of
cloud and fog as known as dew computing [6].

Deployment of cloud servers for computation and storage
is becoming extensively favorable due to technical advance-
ments and improved accessibility. Scalability, low cost, and
satisfactory Quality of Service (QoS) made offloading to
cloud a typical choice for computing-intensive tasks. On the
other side, mobile-device are being equipped with more

powerful general-purpose CPUs and GPUs. Very recently
there is a new trend in hardware companies to design
dedicated chips to better tackle machine-learning tasks. For
example, Apple’s A11 Bionic chip [7] used in iPhone X uses a
neural engine in its GPU to speed up the DNN queries of
applications such as face identification and facial motion
capture [8].

In the status-quo approaches, there are two methods for
DNN inference: mobile-only and cloud-only. In simple
models, a mobile device is sufficient for performing all the
computations. In the case of complex models, the raw input
data (image, video stream, voice, etc.) is uploaded to and
then the required computations are performed on the cloud
server. The results of the task are later downloaded to the
device. The effects of raw input and feature compression
are studied in [9] and [10].

Despite the recent improvements of the mobile devices
mentioned earlier, the computational power of mobile devi-
ces is still significantly weaker than the cloud ones. Therefore,
the mobile-only approach can cause large inference latency
and failure in meeting QoS. Moreover, embedded devices
undergomajor energy consumption constraints due to battery
limits. On the other hand, cloud-only suffers communication
overhead for uploading the raw data and downloading the
outputs. Moreover, slowdowns caused by service congestion,
subscription costs, and network dependency should be con-
sidered as downsides of this approach [11].

The superiority and persistent improvement of DNNs
depend heavily on providing a huge amount of training
data. Typically, this data is collected from different resour-
ces and later fed into a network for training. The final model

� The authors are with the Department of Electrical Engineering, University
of Southern California, Los Angeles, CA 90089-2562 USA.
E-mail: {eshratif, abri442, pedram}@usc.edu.

Manuscript received 6 Sept. 2018; revised 9 Oct. 2019; accepted 13 Oct. 2019.
Date of publication 16 Oct. 2019; date of current version 7 Jan. 2021.
(Corresponding author: Amir Erfan Eshratifar.)
Digital Object Identifier no. 10.1109/TMC.2019.2947893

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021 565

1536-1233� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1339-7671
https://orcid.org/0000-0002-1339-7671
https://orcid.org/0000-0002-1339-7671
https://orcid.org/0000-0002-1339-7671
https://orcid.org/0000-0002-1339-7671
https://orcid.org/0000-0002-2677-7307
https://orcid.org/0000-0002-2677-7307
https://orcid.org/0000-0002-2677-7307
https://orcid.org/0000-0002-2677-7307
https://orcid.org/0000-0002-2677-7307
mailto:eshratif@usc.edu
mailto:abri442@usc.edu
mailto:pedram@usc.edu

can then be delivered to different devices for inference func-
tions. However, there is a trend of applications requiring
adaptive learning in online environments, such as self-
driving cars and security drones [12], [13]. Model parame-
ters in these smart devices are constantly being changed
based on their continuous interaction with their environ-
ment. The complexity of these architectures with an increas-
ing number of parameters and current cloud-only methods
for DNN training implies a constant communication cost
and the burden of increased energy consumption for mobile
devices. The main difference of collaborative training and
cloud-only training is that the data transferred in the cloud-
only approach is the input data and model parameters but
in the collaborative approach, it is layer(s)’s output and a
portion of model parameters. Therefore, the amount of data
communicated can be potentially decreased [14].

Automatic partitioning of computationally extensive tasks
over the cloud for optimization of performance and energy
consumption has been already well-studied [15]. Most
recently, scalable distributed hierarchy structures between
the end-user device, edge, and cloud have been suggested [16]
which are specialized for DNN applications. However,
exploiting the layer granularity of DNN architectures for run-
time partitioning has not been studied thoroughly yet.

In this work, we are investigating the inference and
training of DNNs in a joint platform of mobile and cloud as
an alternative to the current single-platform methods
as illustrated in Fig. 1. Considering DNN architectures as an
ordered sequence of layers, and the possibility of computa-
tion of every layer either on mobile or cloud, we can model
the DNN structure as a Directed Acyclic Graph (DAG). The
parameters of our real-time adaptive model are dependent
on the following factors: mobile/cloud hardware and soft-
ware resources, battery capacity, network specifications,
and QoS. Based on this modeling, we show that the problem
of finding the optimal computation schedule for different
scenarios, i.e., best performance or energy consumption, can
be reduced to the polynomial-time shortest path problem.

To present realistic results, we made experiments with
fair representative hardware of mobile device and cloud. To
model the communication costs between platforms, we used
various mobile network technologies and the most recent
reports on their specifications in the U.S.

DNN architectures can be categorized based on function-
ality. These differences enforce specific type and order of
layers in architecture, directly affecting the partitioning
result in the collaborative method. For discriminative
models, used in recognition applications, the layer size grad-
ually decreases going from input toward output as shown in
Fig. 2. This sequence suggests the computation of the first

few layers on themobile device to avoid excessive communi-
cation cost of uploading large raw input data. On the other
hand, the growth of the layer output size from input to out-
put in generative models which are used for synthesizing
new data, implies the possibility of uploading a small input
vector to the cloud and later downloading one of the last
layers and performing the rest of computations on themobile
device for better efficiency. Interesting mobile applications
like image-to-image translation are implemented with
autoencoder architectures whose middle layers sizes are
smaller compared to their input and output. Consequently,
to avoid huge communication costs, we expect the first and
last layers to be computed on themobile device in our collab-
orative approach. We examined eight well-known DNN
benchmarks selected from these categories to illustrate their
differences in the collaborative computation approach.

As we will see in Section 4, the communication between
the mobile and cloud is the main bottleneck for both perfor-
mance and energy in the collaborative approach. We investi-
gated the specific characteristics of CNN layer outputs and
introduced a loss-less compression approach to reduce the
communication costs while preserving the model accuracy.

State-of-the-art work for collaborative computation of
DNNs [14] only considers one offloading point, assigning
computation of its previous layers and next layers on the
mobile and cloud platforms, respectively. We show that this
approach is non-generic and fails to be optimal, and intro-
duced a newmethod granting the possibility of computation
on either platform for each layer independent of other layers.
Our evaluations show that JointDNN significantly improves
the latency and energy up to 3� and 7� respectively com-
pared to the status-quo single platform approaches without
any compression. The main contributions of this paper can
be listed as:

� Introducing a new approach for the collaborative
computation of DNNs between the mobile and cloud

� Formulating the problem of optimal computation
scheduling of DNNs at layer granularity in the
mobile cloud computing environment as the shortest
path problem and integer linear programming (ILP)

� Examining the effect of compression on the outputs
of DNN layers to improve communication costs

� Demonstrating the significant improvements in per-
formance, mobile energy consumption, and cloud
workload achieved by using JointDNN

2 PROBLEM DEFINITION AND MODELING

In this section, we explain the general architecture of DNN
layers and our profiling method. Moreover, we elaborate on

Fig. 1. Different computation partitioning methods. (a) Mobile only: com-
putation is completely done on the mobile device. (b) Cloud only: raw
input data is sent to the cloud server, computations is done on the cloud
server and results are sent back to the mobile device. (c) JointDNN:
DNN architecture is partitioned at the granularity of layers, each layer
can be computed either on cloud or mobile.

Fig. 2. Typical layer size in (a) Discriminative, (b) Autoencoder, and
(c) Generative models.

566 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

how cost optimization can be reduced to the shortest path
problem by introducing the JointDNN graph model.
Finally, we show how the constrained problem is formu-
lated by setting up ILP.

2.1 Energy and Latency Profiling

There are three methods in measuring the latency and
energy consumption of each layer in neural networks [17]:

StatisticalModeling. In thismethod, a regressionmodel over
the configurable parameters of operators (e.g., filter size in the
convolution) can be used to estimate the associated latency
and energy. This method is prone to large errors because of
the inter-layer optimizations performed by DNN software
packages. Therefore, it is necessary to consider the execution
of several consecutive operators grouped during profiling.
Many of these software packages are proprietary, making
access to inter-layer optimization techniques impossible.

In order to illustrate this issue, we designed two experi-
ments with 25 consecutive convolutions onNVIDIAPascal

TM

GPU using cuDNN
�
library [18]. In the first experiment, we

measure the latency of each convolution operator separately
and set the total latency as the sum of them. In the second
experiment, we execute the grouped convolutions in a single
kernel together andmeasure the total latency. All parameters
are located on the GPU’s memory in both experiments,
avoiding any data transfer from the main memory to make
sure results are exactly representing the actual computation
latency.

As we see in Fig. 3, there is a large error gap between sep-
arated and grouped execution experiments which grows as
the number of convolutions is increased. This observation
confirms that we need to profile grouped operators to have
more accurate estimations. Considering the various conse-
cutive combination of operators and different input sizes,
this method requires a very large number of measurements,
not to mention the need for a complex regression model.

Analytical Modeling. To derive analytical formulations for
estimating the latency and energy consumption, it is required
to obtain the exact hardware and software specifications.How-
ever, the state-of-the-art in latencymodeling of DNNs [19] fails
to estimate layer-level delay within an acceptable error bound,
for instance, underestimating the latency of a fully connected
layer with 4,096 neurons by around 900 percent. Industrial
developers do not reveal the detailed hardware architecture
specifications and the proprietary parallel computing architec-
tures such as CUDA

�
, therefore, the analytical approach could

be quite challenging [20].
Application-Specific Profiling. In this method, the DNN

architecture of the application being used is profiled in

run-time. The number of applications in a mobile device
using neural networks is generally limited. In conclusion,
this method is more feasible, promising higher accuracy
estimations. We have chosen this method for the estimation
of energies and latencies in the experiments of this paper.

2.2 JointDNN Graph Model

First, we assume that a DNN is presented by a sequence of
distinct layers with a linear topology as depicted in Fig. 4.
Layers are executed sequentially, with output data gener-
ated by one layer feeds into the input of the next one. We
denote the input and output data sizes of kth layer as ak

and bk, respectively. Denoting the latency (energy) of layer
k as vk, where k ¼ 1; 2; . . . ; n, the total latency (energy) of
querying the DNN is

Pn
k¼1 vk.

The mobile cloud computing optimal scheduling prob-
lem can be reduced to the shortest path problem, from node
S to F , in the graph of Fig. 5. Mobile Execution cost of the kth
layer (CðMEkÞ) is the cost of executing the kth layer in the
mobile while the cloud server is idle. Cloud Execution cost of
the kth layer (CðCEkÞ) is the executing cost of the kth layer
in the cloud server while the mobile is idle. Uploading the
Input Data cost of the kth layer is the cost of uploading out-
put data of the (k-1)th layer to the cloud server ðUIDkÞ.
Downloading the Input Data cost of the kth layer is the cost of
downloading output data of the (k-1)th layer to the mobile
ðDODkÞ. The costs can refer to either latency or energy.
However, as we showed in Section 2.1, the assumption of
linear topology in DNNs is not true and we need to consider
all the consecutive grouping of the layers in the network.
This fact suggests the replacement of linear topology by a
tournament graph as depicted in Fig. 6. We define the
parameters of this new graph, JointDNN graph model, in
Table 1.

In this graph, node Ci:j represents that the layers i to j are
computed on the cloud server, while node Mi:j represents
that the layers i to j are computed on the mobile device. An
edge between two adjacent nodes in JointDNN graph model
is associated with four possible cases: 1) A transition from
the mobile to the mobile, which only includes the mobile
computation cost (MEi;j) 2) A transition from the cloud to
the cloud, which only includes the cloud computation cost
(CEi;j) 3) A transition from the mobile to the cloud, which
includes the mobile computation cost and uploading cost of

Fig. 3. Latency of grouped and separated execution of convolution
operator.

Fig. 4. Computation model in linear topology.

Fig. 5. Graph representation ofmobile cloud computing optimal scheduling
problem for linear topology.

ESHRATIFAR ET AL.: JOINTDNN: AN EFFICIENT TRAINING AND INFERENCE ENGINE FOR INTELLIGENT MOBILE CLOUD COMPUTING... 567

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

the inputs of the next node (EUi;j ¼ MEi;j þ UIDjþ1)
4) A transition from the cloud to the mobile, which includes
the cloud computation cost and downloading cost of the
inputs of the next node (EDi;j ¼ CEi;j þDODjþ1). Under
this formulation, we can transform the computation
scheduling problem to finding the shortest path from S to
F . Residual networks are a class of powerful and easy-to-
train architectures of DNNs [21]. In residual networks, as
depicted in Fig. 7a, the output of one layer is fed into
another layer with a distance of at least two. Thus, we need
to keep track of the source layer (node 2 in Fig. 7) to know
that this layer is computed on the mobile or the cloud.
Our standard graph model has a memory of one which is
the very previous layer. We provide a method to transform
the computation graph of this type of network to our stan-
dard model, JointDNN graph.

In this regard, we add two additional chains of size k� 1,
where k is the number of nodes in the residual block
(3 in Fig. 7). One chain represents the case of computing
layer 2 on the mobile and the other one represents the case
of computing layer 2 on the cloud. In Fig. 7, we have only
shown the weights that need to be modified, where D2 and
U2 are the cost of downloading and uploading the output of
layer 2, respectively.

By solving the shortest path problem in the JointDNN
graph model, we can obtain the optimal scheduling of infer-
ence in DNNs. The online training consists of one inference
and one back-propagation step. The total number of layers is
noted by N consistently throughout this paper so there are
2N layers for modeling training, where the second N layers
are the mirrored version of the first N layers, and their asso-
ciated operations are the gradients of the error function con-
cerning the DNN’s weights. The main difference between
the mobile cloud computing graph of inference and online
training is the need for updating the model by downloading

the new weights from the cloud. We assume that the cloud
server performs thewhole back-propagation step separately,
even if it is scheduled to be done on the mobile, therefore,
there is no need for the mobile device to upload the weights
that are updated by itself to save mobile energy consump-
tion. The modification in the JointDNN graph model is add-
ing the costs of downloading weights of the layers that are
updated in the cloud toEDi;j. The shortest path problem can
be solved in polynomial time efficiently.

However, the problem of the shortest path subjected to
constraints is NP-Complete [22]. For instance, assuming our
standard graph is constructed for energy and we need to
find the shortest path subject to the constraint of the total
latency of that path is less than a time deadline (QoS). How-
ever, there is an approximation solution to this problem,
“LARAC” algorithm [23], the nature of our application does
not require to solve this optimization problem frequently,
therefore, we aim to obtain the optimal solution. We can
constitute a small look-up table of optimization results for a
different set of parameters (e.g., network bandwidth, cloud
server load, etc.). We provide the ILP formulations of DNN
partitioning in the following sections.

2.3 ILP Setup

2.3.1 Performance Efficient Computation Offloading

ILP Setup for Inference

We formulated the scheduling of inference in DNNs as an
ILP with tractable number of variables. In our method, first
we profile the delay and energy consumption of consecutive
layers of sizem 2 f1; 2; . . .; Ng. Thus, we will have

N þ ðN � 1Þ þ . . .þ 1 ¼ NðN þ 1Þ=2; (1)

TABLE 1
Parameter Definition of Graph Model

Param. Description of Cost

CEi:j Executing layers i to j on the cloud
MEi:j Executing layers i to j on the mobile
EDi;j CEi:j +DODj

EUi;j MEi:j + UIDj

fk All the following edges: 8i ¼ 1 : k� 1 EDi;k�1

Vk All the following edges: 8i ¼ 1 : k� 1MEi;k�1

Ck All the following edges: 8i ¼ 1 : k� 1 EUi;k�1

Gk All the following edges: 8i ¼ 1 : k� 1 CEi;k�1

Pm All the following edges: 8i ¼ 1 : n MEi;n

Pc All the following edges: 8i ¼ 1 : n EDi;n

U1 Uploading the input of the first layer

Fig. 7. (a) A residual building block in DNNs. (b) Transformation of a
residual building block to be able to be used in JointDNN’s shortest path
based scheduler.

Fig. 6. JointDNN graph model. The shortest path from S to F determines the schedule of executing the layers on mobile or cloud.

568 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

number of different profiling values for delay and energy.
Considering layer i to layer j to be computed either on the
mobile device or cloud server, we assign two binary varia-
bles mi;j and ci;j, respectively. Download and upload com-
munication delays needs to be added to the execution time,
when switching from/to cloud to/frommobile, respectively.

Tcomputation ¼
Xn
i¼1

Xn
j¼i

ðmi;j:TmobileLi;j
þ ci;j:TcloudLi;j

Þ (2)

Tcommunication ¼
Xn
i¼1

Xn
j¼i

Xn
k¼jþ1

mi;j:cjþ1;k:TuploadLj

þ
Xn
i¼1

Xn
j¼i

Xn
k¼jþ1

ci;j:mjþ1;k:TdownloadLj

þ
Xn
i¼1

c1;i:TuploadLi

þ
Xn
i¼1

ci;n:TdownloadLn

(3)

Ttotal ¼ Tcomputation þ Tcommunication: (4)

TmobileLi;j
and TcloudLi;j

represent the execution time of

the ith layer to the jth layer on the mobile and cloud,
respectively. TdownloadLi

and TuploadLi
represent the latency of

downloading and uploading the output of the ith layer,
respectively. Considering each set of the consecutive layers,
whenevermi;j and one of fcjþ1;kgk¼jþ1:n are equal to one, the

output of the jth layer is uploaded to the cloud. The same
argument applies to downloading. We also note that the
last two terms in Eq. (3) represent the condition by which
the last layer is computed on the cloud and we need to
download the output to the mobile device, and the first
layer is computed on the cloud and we need to upload the
input to the cloud, respectively. To support for residual
architectures, we need to add a pair of download and
upload terms similar to the first two terms in Eq. (3) for the
starting and ending layers of each residual block. In order
to guarantee that all layers are computed exactly once, we
need to add the following set of constraints:

8m 2 1 : n :
Xm
i¼1

Xn
j¼m

ðmi;j þ ci;jÞ ¼ 1: (5)

Because of the non-linearity of multiplication, an addi-
tional step is needed to transform Eq. (3) to the standard
form of ILP. We define two sets of new variables

ui;j ¼ mi;j:
Xn
k¼jþ1

cjþ1;k

di;j ¼ ci;j:
Xn
k¼jþ1

mjþ1;k;

(6)

with the following constraints:

ui;j � mi;j

ui;j �
Xn
k¼jþ1

cjþ1;k

mi;j þ
Xn
k¼jþ1

cjþ1;k � ui;j � 1

di;j � ci;j

di;j �
Xn
k¼jþ1

mjþ1;k

ci;j þ
Xn
k¼jþ1

mjþ1;k � di;j � 1:

(7)

The first two constraints ensure that ui;j will be zero if
either mi;j or

Pn
l¼jþ1 cjþ1;l are zero. The third inequality

guarantees that ui;j will take value one if both binary varia-
bles, mi;j and

Pn
l¼jþ1 cjþ1;l, are set to one. The same reason-

ing works for di;j. In summary, the total number of variables
in our ILP formulation will be 4NðN þ 1Þ=2, where N is
total number of layers in the network.

2.3.2 Energy Efficient Computation Offloading ILP

Setup for Inference

Because of the nature of the application, we only care about
the energy consumption on the mobile side. We formulate
ILP as follows:

Ecomputation ¼
Xn
i¼1

Xn
j¼i

mi;j:EmobileLi;j
(8)

Ecommunication ¼
Xn
i¼2

Xn
j¼i

mi;j:EdownloadLi

þ
Xn
i¼1

Xn�1

j¼i

mi;j:EuploadLj

þ
�Xn

i¼1

ð1�m1;iÞ � ðn� 1Þ
�
:EuploadL1

þ
�Xn

i¼1

ð1�mi;nÞ � ðn� 1Þ
�
:EdownloadLn

(9)

Etotal ¼ Ecomputation þEcommunication; (10)

EmobileLi;j
and EcloudLi;j

represent the amount of energy
required to compute the ith layer to the jth layer on the
mobile and cloud, respectively.EdownloadLi

andEuploadLi
repre-

sent the energy required to download and upload the output
of ith layer, respectively. Similar to performance efficient ILP
constraints, each layer should be executed exactly once

8m 2 1 : n :
Xm
i¼1

Xn
j¼m

mi;j � 1: (11)

ESHRATIFAR ET AL.: JOINTDNN: AN EFFICIENT TRAINING AND INFERENCE ENGINE FOR INTELLIGENT MOBILE CLOUD COMPUTING... 569

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

The ILP problem can be solved for different set of param-
eters (e.g., different uplink and download speeds), and then
the scheduling results can be stored as a look-up table in the
mobile device. Moreover because the number of variables
in this setup is tractable solving ILP is quick. For instance,
solving ILP for AlexNet takes around 0.045 seconds on Intel
(R) Core(TM) i7-3770 CPU with MATLAB�’s intlinprog()
function using primal simplex algorithm.

2.3.3 Performance Efficient Computation Offloading

ILP Setup for Training

The ILP formulation of online training phase is very similar
to that of inference. In online training we have 2N layers
instead ofN obtained by mirroring the DNN, where the sec-
ondN layers are backward propagation. Moreover, we need
to download the weights that are updated in the cloud to the
mobile. We assume that the cloud server always has the
most updated version of the weights and does not require
the mobile device to upload the updated weights. The fol-
lowing terms need to be added for the ILP setup of training

Tcomputation ¼
X2n
i¼1

X2n
j¼i

ðmi;j:TmobileLi;j
þ ci;j:TcloudLi;j

Þ (12)

Tcommunication ¼
X2n
i¼1

X2n
j¼i

X2n
k¼jþ1

mi;j:cjþ1;k:TuploadLj

þ
X2n
i¼1

X2n
j¼i

X2n
k¼jþ1

ci;j:mjþ1;k:TdownloadLj

þ
Xn
i¼1

c1;i:TuploadLi

þ
X2n
i¼nþ1

X2n
j¼i

ci;j:TdownloadWi

(13)

Ttotal ¼ Tcomputation þ Tcommunication: (14)

2.3.4 Energy Efficient Computation Offloading ILP

Setup for Training

Ecomputation ¼
X2n
i¼1

X2n
j¼i

mi;j:EmobileLi;j
(15)

Ecommunication ¼
X2n
i¼2

X2n
j¼i

mi;j:EdownloadLi

þ
X2n
i¼1

X2n�1

j¼i

mi;j:EuploadLj

þ
�X2n

i¼1

ð1�m1;iÞ � ð2n� 1Þ
�
:EuploadL1

þ
� X2n

i¼nþ1

X2n
j¼i

ð1�mi;jÞ � ðn� 1Þ
�
:EdownloadWi

(16)

Etotal ¼ Ecomputation þ Ecommunication: (17)

Algorithm 1. JointDNN Engine Optimal Scheduling of
DNNs

1: function JointDNN ðN;Li;Di;NB;NP Þ;
Input: 1: N : number of layers in the DNN

2: Liji ¼ 1 : N : layers in the DNN
3:Diji ¼ 1 : N : data size at each layer
4: NB: mobile network bandwidth
5: NP : mobile network uplink and downlink power

consumption
Output: Optimal schedule of DNN

2: for i ¼ 0; i < N ; i ¼ iþ 1 do
3: for j ¼ 0; j < N ; j ¼ jþ 1 do
4: Latencyi;j; Energyi;j = ProfileGroupedLayersði; jÞ;
5: end
6: end
7: G,S,F =

ConstructShortestPathGraph(N;Li;Di;NB;NP) //S and F
are start and finish nodes and G is the JointDNN graph
model

8: if no constraints then
9: schedule = ShortestPath(G,S,F)
10: else
11: if Battery Limited Constraint then
12: Ecomm þ Ecomp � Eubound

13: schedule = PerformanceEfficientILP(N;Li;Di;NB;NP)
14: end
15: if Cloud Server Contraint then
16:

Pn
i¼1

Pn
j¼i ci;j:TcloudLi;j

� Tubound

17: schedule = PerformanceEfficientILP(N;Li;Di;NB;NP)
18: end
19: if QoS then
20: Tcomm þ Tcomp � TQoS

21: schedule = EnergyEfficientILP(N;Li;Di;NB;NP)
22: end
23: ;
24: end
25: return schedule;

2.3.5 Scenarios

There can be different optimization scenarios defined for
ILP as listed below:

� Performance efficient computation: In this case, it is suf-
ficient to solve the ILP formulation for performance
efficient computation offloading.

� Energy efficient computation: In this case, it is sufficient
to solve the ILP formulation for energy efficient com-
putation offloading.

� Battery budget limitation: In this case, based on the
available battery, the operating system can decide to
dedicate a specific amount of energy consumption
to each application. By adding the following con-
straint to the performance efficient ILP formulation,
our framework would adapt to battery limitations

Ecomputation þ Ecommunication � Eubound; (18)

� Cloud limited resources: In the presence of cloud server
congestion or limitations on user’s subscription,
we can apply execution time constraints to each
application to alleviate the server load

570 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

Xn
i¼1

Xn
j¼i

ci;j:TcloudLi;j
� Tubound; (19)

� QoS: In this scenario, weminimize the required energy
consumptionwhilemeeting a specified deadline

minfEcomputation þ Ecommunicationg
Tcomputation þ Tcommunication � TQoS:

(20)

This constraint could be applied to both energy
and performance efficient ILP formulations.

3 EVALUATION

3.1 Deep Architecture Benchmarks

Since the architecture of neural networks depends on the
type of application, we have chosen three common applica-
tion types of DNNs as shown in Table 2:

1) Discriminative neural networks are a class of models
in machine learning for modeling the conditional
probability distribution P ðyjxÞ. This class generally
is used in classification and regression tasks. Alex-
Net [24], OverFeat [25], VGG16 [26], Deep Speech
[27], ResNet [21], and NiN [28] are well-known dis-
criminative models we use as benchmarks in this
experiment. Except for Deep Speech, used for speech
recognition, all other benchmarks are used in image
classification tasks.

2) Generative neural networks model the joint probability
distribution P ðx; yÞ, allowing generation of new sam-
ples. These networks have applications in Computer
Vision [29] and Robotics [30], which can be deployed
on a mobile device. Chair [31] is a generative model
we use as a benchmark in this work.

3) Autoencoders are another class of neural networks
used to learn a representation for a data set. Their
applications are image reconstruction, image to
image translation, and denoising to name a few.
Mobile robots can be equipped with autoencoders to
be used in their computer vision tasks. We use Pix2-
Pix [32], as a benchmark from this class.

3.2 Mobile and Server Setup

Weused the Jetson TX2module developed byNVIDIA
�
[33],

a fair representation of mobile computation power as our
mobile device. Thismodule enables efficient implementation
of DNN applications used in products such as robots,

drones, and smart cameras. It is equipped with NVIDIA
Pascal�GPUwith 256 CUDA cores and a shared 8 GB 128 bit
LPDDR4 memory between GPU and CPU. To measure
the power consumption of the mobile platform, we used
INA226 power sensor [34].

NVIDIA
�
Tesla

�
K40C [35] with 12 GB memory serves as

our server GPU. The computation capability of this device is
more than one order of magnitude compared to our mobile
device.

3.3 Communication Parameters

To model the communication between platforms, we used
the average download and upload speed of mobile Inter-
net [36], [37] for different networks (3G, 4G and Wi-Fi) as
shown in Table 3.

The communication power for download (Pd) and
upload (Pu) is dependent on the network throughput
(td and tu). Comprehensive examinations in [38] indicates
that uplink and downlink power can be modeled with lin-
ear equations (Eq. (21)) fairly accurate with less than 6 per-
cent error rate. Table 3 shows the parameter values of this
equation for different networks.

Pu ¼ autu þ b

Pd ¼ adtd þ b:
(21)

4 RESULTS

The latency and energy improvements of inference and
online training with our engine for 8 different benchmarks
are shown in Figs. 8 and 9, respectively. We considered the
best case of mobile-only and cloud-only as our baseline.
JointDNN can achieve up to 66 and 86 percent improve-
ments in latency and energy consumption, respectively dur-
ing inference. Communication cost increases linearly with
batch size while this is not the case for computation cost and
it grows with a much lower rate, as depicted in Fig. 10b.
Therefore, a key observation is that as we increase the batch
size, themobile-only approach becomesmore preferable.

During online training, the huge communication over-
head of transmitting the updated weights will be added to
the total cost. Therefore, to avoid downloading this large
data, only a few back-propagation steps are computed in
the cloud server. We performed a simulation by varying
the percentage of updated weight. As the percentage of
updated weights increases, the latency and energy con-
sumption becomes constant which is shown in Fig. 10. This
is the result of the fact that all the backpropagations will be
performed on the mobile device and weights are not trans-
ferred from the cloud to the mobile. JointDNN can achieve

TABLE 3
Mobile Networks Specifications in the US

Param. 3G 4G Wi-Fi

Download speed (Mbps) 2.0275 13.76 54.97
Upload speed (Mbps) 1.1 5.85 18.88
au (mW/Mbps) 868.98 438.39 283.17
ad (mW/Mbps) 122.12 51.97 137.01
b (mW) 817.88 1288.04 132.86

TABLE 2
Benchmark Specifications

Type Model Layers

Discriminative AlexNet 21
OverFeat 14
Deep Speech 10
ResNet 70
VGG16 37
NiN 29

Generative Chair 10
Autoencoder Pix2Pix 32

ESHRATIFAR ET AL.: JOINTDNN: AN EFFICIENT TRAINING AND INFERENCE ENGINE FOR INTELLIGENT MOBILE CLOUD COMPUTING... 571

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

improvements up to 73 percent in latency and 56 percent in
energy consumption during inference.

Different patterns of scheduling are demonstrated in
Fig. 11. They represent the optimal solution in the Wi-Fi net-
work while optimizing for latency while mobile/cloud is
allowed to use up to half of their computing resources.
They show how the computations in DNN is divided

between the mobile and the cloud. As can be seen, discrimi-
native models (e.g., AlexNet), inference follows a mobile-
cloud pattern and training follows a mobile-cloud-mobile
pattern. The intuition is that the last layers are computation-
ally intensive (fully connected layers) but with small data
sizes, which require a low communication cost, therefore,
the last layers tend to be computed on the cloud. For

Fig. 8. Latency and energy improvements for different batch sizes during inference over the base case of mobile-only and cloud-only approaches.

Fig. 9. Latency and energy improvements for different batch sizes during training over the base case of mobile-only and cloud-only approaches.

572 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

generative models (e.g., Chair), the execution schedule of
inference is the opposite of discriminative networks, in
which the last layers are generally huge and in the optimal
solution they are computed on the mobile. The reason
behind not having any improvement over the base case of
mobile-only is that the amount of transferred data is large.
Besides, cloud-only becomes the best solution when the
amount of transferred data is small (e.g., generative models).
Lastly, for autoencoders, where both the input and output
data sizes are large, the first and last layers are computed on
themobile.

JointDNN pushes some parts of the computations toward
the mobile device. As a result, this will lead to less workload
on the cloud server. As we see in Table 4, we can reduce the
cloud server’s workload up to 84 and 53 percent on average,
which enables the cloud provider to provide service to more
users, while obtaining higher performance and lower energy
consumption compared to single-platform approaches.

4.1 Communication Dominance

Execution time and energy breakdown for AlexNet, which
is noted as a representative for the state-of-the-art architec-
tures deployed in cloud servers, is depicted in Fig. 12. The
cloud-only approach is dominated by the communication
costs. As demonstrated in Fig. 12, 99, 93 and 81 percent of
the total execution time are used for communication in case
of 3G, 4G, and Wi-Fi, respectively. This relative portion also

applies to energy consumption. Comparing the latency and
energy of the communication to those of mobile-only
approach, we notice that the mobile-only approach for Alex-
Net is better than the cloud-only approach in all the mobile
networks. We apply loss-less compression methods to
reduce the overheads of communication, which will be cov-
ered in the next section.

4.2 Layer Compression

The preliminary results of our experiments show that
more than 75 percent of the total energy and delay cost in
DNNs are caused by communication in the collaborative
approach. This cost is directly proportional to the size of
the layer being downloaded to or uploaded from the
mobile device. Because of the complex feature extraction
process of DNNs, the size of some of the intermediate
layers are even larger than the network’s input data. For
example, this ratio can go as high as 10� in VGG16. To
address this bottleneck, we investigated the compression
of the feature data before any communication. This pro-
cess can be applied to different DNN architecture types;
however, we only considered CNNs due to their specific
characteristics explained later in detail.

CNN architectures are mostly used for image and video
recognition applications. Because of the spatially local pres-
ervation characteristics of conv layers, we can assume that
the outputs of the first convolution layers are following the
same structure as the input image, as shown in Fig. 13. More-
over, a big ratio of layer outputs is expected to be zero due to

Fig. 10. (a) Latency of one epoch of online training using JointDNN algo-
rithm versus percentage of updated weights. (b) Latency of mobile-only
inference versus batch size.

Fig. 11. Interesting schedules of execution for three types of DNN architec-
tures while mobile/cloud are allowed to use up to half of their computing
resources.

TABLE 4
Workload Reduction of the Cloud Server in Different

Mobile Networks

Optimization Target 3G (%) 4G (%) Wi-Fi (%)

Latency 84 49 12
Energy 73 49 51

Fig. 12. (a) Execution time of AlexNet optimized for performance. (b)
Mobile energy consumption of AlexNet optimized for energy. (c) Data
size of the layers in AlexNet and the scheduled computation, where the
first nine layers are computed on the mobile and the rest on the cloud,
which is the optimal solution w.r.t. both performance and energy.

ESHRATIFAR ET AL.: JOINTDNN: AN EFFICIENT TRAINING AND INFERENCE ENGINE FOR INTELLIGENT MOBILE CLOUD COMPUTING... 573

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

the presence of the ReLU layer. Our observations shows that
the ratio of neurons equal to zero (ZR) varies from 50 to 90
percent after relu in CNNs. These two characteristics, layers
being similar to the input image, and a large proportion of
their data being a single value, suggest that we can employ
existing image compression techniques to their output.

There are two general categories of compression techni-
ques, lossy and loss-less [40]. In loss-less techniques, the
exact original information is reconstructed. On the contrary,
lossy techniques use approximations and the original data
cannot be reconstructed. In our experiments, we examined
the impact of compression of layer outputs using PNG,
a loss-less technique, based on the encoding of frequent
sequences in an image.

Even though the data type of DNN parameters in typical
implementations is 32-bits floating-points, most image
formats are based on 3-bytes RGB color triples. Therefore,
to compress the layer in the same way as 2D pictures, the
floating-point data should be quantized into 8-bits fixed-
point. Recent studies show representing the parameters of
DNNs with only 4-bits affects the accuracy, not more than 1
percent [5]. In this work, we implemented our architectures
with an 8-bits fixed-point and presented our baseline with-
out any compression and quantization. The layers of CNN
contain numerous channels of 2D matrices, each similar to
an image. A simple method is to compress each channel
separately. In addition to extra overhead of file header for
each channel, this method will not take the best of the
frequent sequence decoding of PNG. One alternative is
locating different channels side by side, referred to as tiling,
to form a large 2D matrix representing one layer as shown
in Fig. 13. It should be noted that 1D fully connected layers
are very small and we did not apply compression on them.

The Compression Ratio (CR) is defined as the ratio of the
size of the layer (8-bit) to the size of the compressed 2D
matrix in PNG. Looking at the results of compression for two
different CNN architectures in Fig. 14, we can observe a high
correlation between the ratio of pixels being zero (ZR) and
CR. PNG can compress the layer data up to 5:8� and 3:5� by
average, therefore the communication costs can be reduced
drastically. By replacing the compressed layer’s output and

adding the cost of the compression process itself, which is
negligible compared to DNN operators, in JointDNN formu-
lations, we achieve an extra 4:9� and 4:6� improvements in
energy and latency on average, respectively.

5 RELATED WORK AND COMPARISON

General Task Offloading Frameworks. There are existing prior
arts focusing on offloading computation from the mobile
to the cloud[15], [41], [42], [43], [44], [45], [46]. However,
all these frameworks share a limiting feature that makes
them impractical for computation partitioning of the DNN
applications.

These frameworks are programmer annotations depen-
dent as they make decisions about pre-specified functions,
whereas JointDNN makes scheduling decisions based on
the model topology and mobile network specifications in
run-time. Offloading in function level, cannot lead to effi-
cient partition decisions due to layers of a given type within
one architecture can have significantly different computa-
tion and data characteristics. For instance, a specific convo-
lution layer structure can be computed on mobile or cloud
in different models in the optimal solution.

Neurosurgeon [14] is the only prior art exploring a simi-
lar computation offloading idea in DNNs between the
mobile device and the cloud server at layer granularity.
Neurosurgeon assumes that there is only one data transfer
point and the execution schedule of the efficient solution
starts with mobile and then switches to the cloud, which
performs the whole rest of the computations. Our results
show this is not true especially for online training, where
the optimal schedule of execution often follows the mobile-
cloud-mobile pattern. Moreover, generative and autoen-
coder models follow a multi-transfer points pattern. Also,
the execution schedule can start with the cloud especially in
case of generative models where the input data size is large.
Furthermore, inter-layer optimizations performed by DNN
libraries are not considered in Neurosurgeon. Moreover,
Neurosurgeon only schedules for optimal latency and energy,
while JointDNN adapts to different scenarios including bat-
tery limitation, cloud server congestion, and QoS. Lastly,

Fig. 13. Layer output after passing the input image through convolution,
normalization and ReLU [39] layers. Channels are preserving the gen-
eral structure of the input image and large ratio of the output data is black
(zero) due to existence of relu. Tiling is used to put all 96 channels
together.

Fig. 14. Compression Ratio (CR) and ratio of zero valued neurons (ZR)
for different layers of (a) AlexNet and (b) VGG16.

574 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

Neurosurgeon only targets simple CNN and ANN models,
while JointDNN utilizes a graph-based approach to handle
more complex DNNarchitectures like ResNet and RNNs.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that the status-quo
approaches, cloud-only or mobile-only, are not optimal
with regard to latency and energy. We reduced the problem
of partitioning the computations in a DNN to shortest path
problem in a graph. Adding constraints to the shortest
path problem makes it NP-Complete, therefore, we also
provided ILP formulations to cover different possible sce-
narios of limitations of mobile battery, cloud congestion,
and QoS. The output data size in discriminative models is
typically smaller than other layers in the network, therefore,
last layers are expected to be computed on the cloud, while
first layers are expected to be computed on the mobile.
Reverse reasoning works for Generative models. Autoen-
coders have large input and output data sizes, which
implies that the first and last layers are expected to be com-
puted on the mobile. With these insights, the execution
schedule of DNNs can possibly have various patterns
depending on themodel architecture inmodel cloud comput-
ing. JointDNN formulations are designed for feed-forward
networks and its extension to recurrent neural networks will
be studied as a futurework.

ACKNOWLEDGMENTS

This research was supported by grants from NSF SHF,
DARPAMTO, and USC Annenberg Fellowship.

REFERENCES

[1] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes,
M.-L. Shyu, S.-C. Chen, and S. S. Iyengar, “A survey on deep
learning: Algorithms, techniques, and applications,” ACM
Comput. Surv., vol. 51, no. 5, pp. 92:1–92:36, Sep. 2018. [Online].
Available: http://doi.acm.org/10.1145/3234150

[2] K.-S. Oh and K. Jung, “GPU implementation of neural networks,”
Pattern Recognit., vol. 37, pp. 1311–1314, Jun. 2004.

[3] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z.Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributeddeepnetworks,” inProc. 25th Int. Conf. Neu-
ral Inf. Process. Syst., 2012, pp. 1223–1231. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999134.2999271

[4] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “LookNN:
Neural network with no multiplication,” in Proc. Design Autom.
Test Europe Conf. Exhib., March 2017, pp. 1775–1780.

[5] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[6] K. Skala, D. Davidovic, E. Afgan, I. Sovic, and Z. Sojat, “Scalable
distributed computing hierarchy: Cloud, fog and dew
computing,” Open J. Cloud Comput., vol. 2, no. 1, pp. 16–24, 2015.
[Online]. Available: http://nbn-resolving.de/urn:nbn:de:101:1-
201705194519

[7] A. Newsroom, “The future is here: iPhone X,” 2017. [Online].
Available: https://www.apple.com/newsroom/2017/09/the-
future-is-here-iphone-x/, Accessed: Jan. 15, 2018.

[8] H. Li, J. Yu, Y. Ye, and C. Bregler, “Realtime facial animation
with on-the-fly correctives,” ACM Trans. Graphics, vol. 32, no. 4,
pp. 42:1–42:10, Jul. 2013.

[9] A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A deep
learning architecture for intelligent mobile cloud computing
services,” in Proc. IEEE/ACM Int. Symp. Low Power Electron. Design,
Jul. 2019, pp. 1–6.

[10] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Towards collab-
orative intelligence friendly architectures for deep learning,”
in Proc. 20th Int. Symp. Qual. Electron. Design, Mar. 2019,
pp. 14–19.

[11] A. E. Eshratifar and M. Pedram, “Energy and performance effi-
cient computation offloading for deep neural networks in a
mobile cloud computing environment,” in Proc. Great Lakes Symp.
VLSI, 2018, pp. 111–116. [Online]. Available: http://doi.acm.org/
10.1145/3194554.3194565

[12] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving using end-to-end deep imi-
tation learning,” in Robot. Sci. Syst., 2018.

[13] M. Nazemi, A. E. Eshratifar, and M. Pedram, “A hardware-
friendly algorithm for scalable training and deployment of
dimensionality reduction models on FPGA,” in Proc. 19th IEEE
Int. Symp. Qual. Electron. Design, 2018, pp. 395–400.

[14] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” in Proc. 22nd Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2017, pp. 615–629.

[15] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic execution between mobile device and
cloud,” in Proc. 6th Conf. Comput. Syst., 2011, pp. 301–314.

[16] S. Teerapittayanon, B.McDanel, andH. T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 328–339.

[17] R. W. Ahmad, A. Gani, S. H. A. Hamid, F. Xia, and M. Shiraz,
“A review on mobile application energy profiling: Taxonomy,
state-of-the-art, and open research issues,” J. Netw. Comput. Appl.,
vol. 58, pp. 42–59, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1084804515002088

[18] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient primitives for
deep learning,” CoRR, vol. abs/1410.0759, 2014. [Online]. Avail-
able: http://arxiv.org/abs/1410.0759

[19] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performancemodel
for deep neural networks,” in Proc. Int. Conf. Learn. Representations,
2017.

[20] S. Hong and H. Kim, “An integrated GPU power and perfor-
mance model,” SIGARCH Comput. Architecture News, vol. 38,
no. 3, pp. 280–289, Jun. 2010.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. 2016 IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 770–778.

[22] Z. Wang and J. Crowcroft, “Quality-of-service routing for
supporting multimedia applications,” IEEE J. Sel. Areas Commun.,
vol. 14, no. 7, pp. 1228–1234, Sep. 1996.

[23] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, “Lagrange relaxa-
tion based method for the QoS routing problem,” in Proc. IEEE
Conf. Comput. Commun., 2001, vol. 2, pp. 859–868.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. 25th Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[25] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “OverFeat: Integrated recognition, localization and
detection using convolutional networks,” CoRR, 2013. [Online].
Available: http://arxiv.org/abs/1312.6229

[26] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” CoRR, 2014. [Online].
Available: http://arxiv.org/abs/1409.1556

[27] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and
A. Y. Ng, “Deep speech: Scaling up end-to-end speech recognition,”
CoRR, vol. abs/1412.5567, 2014. [Online]. Available: http://arxiv.
org/abs/1412.5567

[28] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, 2013.
[Online]. Available: http://arxiv.org/abs/1312.4400

[29] I. Goodfellow, J. Pouget-Abadie ,M.Mirza, B. Xu, D.Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Proc. 27th Int. Conf. Neural Inf. Process. Syst., 2014,
pp. 2672–2680. [Online]. Available: http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf

[30] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in Proc. 2017 IEEE Int. Conf. Robot. Automat., 2016,
pp. 2786–2793.

[31] A. Dosovitskiy, J. T. Springenberg, and T. Brox, “Learning to
generate chairs with convolutional neural networks,” CoRR, 2014.
[Online]. Available: http://arxiv.org/abs/1411.5928

ESHRATIFAR ET AL.: JOINTDNN: AN EFFICIENT TRAINING AND INFERENCE ENGINE FOR INTELLIGENT MOBILE CLOUD COMPUTING... 575

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/3234150
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://nbn-resolving.de/urn:nbn:de:101:1-201705194519
http://nbn-resolving.de/urn:nbn:de:101:1-201705194519
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
http://doi.acm.org/10.1145/3194554.3194565
http://doi.acm.org/10.1145/3194554.3194565
http://www.sciencedirect.com/science/article/pii/S1084804515002088
http://www.sciencedirect.com/science/article/pii/S1084804515002088
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1312.4400
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1411.5928

[32] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-
tion with conditional adversarial networks,” CoRR, 2016. [Online].
Available: http://arxiv.org/abs/1611.07004

[33] N. Corporation, “Jetson TX2 Module,” 2018. [Online]. Available:
https://developer.nvidia.com/embedded/buy/jetson-tx2,
Accessed: Jan. 15, 2018.

[34] T. I. Incorporated, “INA current/power monitor,” 2018. [Online].
Available: http://www.ti.com/product/INA226, Accessed: Jan. 15,
2018.

[35] N. Corporation, “Tesla data center GPUs for servers,” 2018.
[Online]. Available: http://www.nvidia.com/object/tesla-
servers.html, Accessed: Jan. 15, 2018.

[36] OpenSignal.com, “State of mobile networks: USA,” 2017. [Online].
Available: https://opensignal.com/reports/2017/08/usa/state-
of-the-mobile-network, Accessed: Jan. 15, 2018.

[37] OpenSignal.com, “United States speedtest market report,” 2017.
[Online]. Available: http://www.speedtest.net/reports/united-
states/ Accessed: Jan. 15, 2018.

[38] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of
4G LTE networks,” in Proc. 10th Int. Conf.Mobile Syst. Appl. Services,
2012, pp. 225–238.

[39] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Statist., Apr. 2011,
pp. 315–323. [Online]. Available: http://proceedings.mlr.press/
v15/glorot11a.html

[40] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing).
Hoboken, NJ, USA: Wiley-Interscience, 2006.

[41] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan, “Odessa: Enabling interactive perception applica-
tions on mobile devices,” in Proc. 9th Int. Conf. Mobile Syst. Appl.
Services, 2011, pp. 43–56. [Online]. Available: http://doi.acm.org/
10.1145/1999995.2000000

[42] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in
Proc. 10th USENIX Conf. Operating Syst. Design Implementation,
2012, pp. 93–106. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2387880.2387890

[43] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. 8th Int. Conf. Mobile Syst. Appl. Services,
2010, pp. 49–62. [Online]. Available: http://doi.acm.org/10.1145/
1814433.1814441

[44] X. Wang, X. Liu, Y. Zhang, and G. Huang, “Migration and execu-
tion of JavaScript applications between mobile devices and cloud,”
in Proc. 3rd Annu. Conf. Syst. Program. Appl.: Softw. Humanity, 2012,
pp. 83–84.

[45] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang,
“Refactoring Android Java code for on-demand computation off-
loading,” ACM SIGPLAN Notices, vol. 47, no. 10, pp. 233–248,
Oct. 2012.

[46] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of compu-
tation offloading for mobile systems,” Mobile Netw. Appl., vol. 18,
no. 1, pp. 129–140, Feb. 2013. [Online]. Available: https://doi.
org/10.1007/s11036-012-0368-0

Amir Erfan Eshratifar received the dual BS
degrees in electrical engineering and computer sci-
ence from the Sharif University of Technology,
Tehran, Iran, in 2017. He is currently working
toward the PhD degree in the Ming Hsieh Depart-
ment of Electrical Engineering, University of South-
ern California (USC), Los Angeles, CA.

Mohammad Saeed Abrishami received the BS
degree in electrical engineering from the Univer-
sity of Tehran, Tehran, Iran, in 2014. He is
currently working toward the PhD degree in the
Ming Hsieh Department of Electrical Engineering,
University of Southern California (USC), Los
Angeles, CA.

Massoud Pedram (F’01) received the BS degree
in electrical engineering from the California Insti-
tute of Technology, Pasadena, CA, in 1986, and
the MS and PhD degrees in electrical engineering
and computer sciences from the University of
California Berkeley, CA, in 1989 and 1991,
respectively. In 1991, he joined the Ming Hsieh
Department of Electrical Engineering, University
of Southern California (USC), Los Angeles, CA,
where he is currently the Charles Lee Powel pro-
fessor of the USC Viterbi School of Engineering.
He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

576 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 15:32:01 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1611.07004
https://developer.nvidia.com/embedded/buy/jetson-tx2
http://www.ti.com/product/INA226
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/tesla-servers.html
https://opensignal.com/reports/2017/08/usa/state-of-the-mobile-network
https://opensignal.com/reports/2017/08/usa/state-of-the-mobile-network
http://www.speedtest.net/reports/united-states/
http://www.speedtest.net/reports/united-states/
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://doi.acm.org/10.1145/1999995.2000000
http://doi.acm.org/10.1145/1999995.2000000
http://dl.acm.org/citation.cfm?id=2387880.2387890
http://dl.acm.org/citation.cfm?id=2387880.2387890
http://doi.acm.org/10.1145/1814433.1814441
http://doi.acm.org/10.1145/1814433.1814441
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1007/s11036-012-0368-0

