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ABSTRACT

Machine learning models differ in terms of accuracy, computa-
tional/memory complexity, training time, and adaptability among
other characteristics. For example, neural networks (NNs) are well-
known for their high accuracy due to the quality of their auto-
matic feature extraction while brain-inspired hyperdimensional
(HD) learning models are famous for their quick training, compu-
tational efficiency, and adaptability. This work presents a hybrid,
synergic machine learning model that excels at all the said char-
acteristics and is suitable for incremental, on-line learning on a
chip. The proposed model comprises an NN and a classifier. The
NN acts as a feature extractor and is specifically trained to work
well with the classifier that employs the HD computing framework.
This work also presents a parameterized hardware implementation
of the said feature extraction and classification components while
introducing a compiler that maps any arbitrary NN and/or classifier
to the aforementioned hardware. The proposed hybrid machine
learning model has the same level of accuracy (i.e. £1%) as NNs
while achieving at least 10% improvement in accuracy compared
to HD learning models. Additionally, the end-to-end hardware re-
alization of the hybrid model improves power efficiency by 1.60x
compared to state-of-the-art, high-performance HD learning imple-
mentations while improving latency by 2.13x. These results have
profound implications for the application of such synergic models
in challenging cognitive tasks.
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1 INTRODUCTION

Machine learning models have proven successful in solving a wide
variety of challenging problems such as computer vision and speech
recognition. They are commonly characterized by their level of
accuracy, computational/memory complexity, training time, and
adaptability among other features. One can categorize machine
learning models according to the aforesaid characteristics. For ex-
ample, neural networks (NNs) typically achieve high accuracy [1],
are computationally expensive [2], have long training times [3],
and tend to forget previously learned information upon learning
new information (aka catastrophic forgetting) [4-6]. A machine
learning model is more viable for on-chip learning (also called
learning on-a-chip which refers to designing a custom chip that can
be used for both training and inference) when it has low compu-
tational/memory complexity and supports one-pass training/fine-
tuning while maintaining a high level of accuracy.

The main reason behind the high accuracy of NN is their abil-
ity to automatically extract high-quality, high-level features from
labeled data. AlexNet [7] is an outstanding example that clearly
demonstrates the gap between the quality of features extracted by
NNs compared to handcrafted features extracted by experts in the
domain (in the ImageNet Large Scale Visual Recognition Challenge
[8], AlexNet was able to achieve 10.8% higher accuracy compared
to the runner up, which used handcrafted features). Unfortunately,
the high accuracy of NNs is accompanied by an enormous compu-
tational/memory cost during training and inference. Training an
NN is a time-consuming, iterative process where in each iteration,
all training data is applied to the model and the parameters of the
model are updated according to stochastic gradient descent.

As another example, hyperdimensional (HD) learning models
train quickly, are highly adaptable and computationally efficient
(compared to NNs), but suffer from lower levels of accuracy com-
pared to NNs [9]. HD learning uses randomly generated, high-
dimensional vectors to project training data into HD space such
that samples belonging to the same class are placed in close proxim-
ity of each other, forming a cluster in the HD space. It then defines
HD centroids that represent different classes. This relatively simple
training process only requires one pass over the training data. It
also enables efficient incremental, lifelong learning because updat-
ing the model with new training data is as simple as updating the
cluster centroids. The major disadvantage of HD learning is that it



works with raw or handcrafted input features, which are inferior
to the ones extracted by NNs.

The complementary characteristics of NNs and HD models en-
courage the introduction of a hybrid, synergic machine learning
model that builds on their strengths while avoiding their short-
comings. However, simply employing NN for feature extraction
and HD models for classification so as to enable on-chip learning
has the following challenges. Not only is the training of NNs for
feature extraction an iterative, energy-consuming process but also
it requires access to both previous training data and newly pro-
vided data to avoid catastrophic forgetting. Therefore, frequent
weight updates of NNs can be extremely costly in the context of
learning on-a-chip. Additionally, the HD learning models that work
well for solving cognitive tasks have a huge number of dimensions,
e.g., 10,000, which requires their hardware implementation to time-
share resources and therefore, have a relatively high latency. This
prevents real-time fine-tuning of the model when new training data
becomes available. Moreover, training NN for feature extraction
separately from the design of the HD learning model produces
suboptimal results because it does not account for the effect of HD
classification layers on the NN feature extraction layers and vice
versa. This means that the prediction/classification accuracy of the
overall hybrid solution will suffer.

This work presents SynergicLearning, a hybrid learning frame-
work for incremental, on-line learning on a chip. SynergicLearning
is comprised of three components which enable end-to-end learn-
ing:

(1) A Two-step Training Approach: This training approach

first trains an NN while including some components of the
HD learning system in the NN’s training loop to learn high-
quality, high-level features that are specifically tailored for
the HD learning system. It then passes training data (includ-
ing the initial data as well as the ones that are generated dur-
ing the lifetime of the model) through the feature extraction
layers of the NN to provide features for training/fine-tuning
of the HD classifier (the neural network parameters are fixed
at this step). Such a two-level training approach enables
automatic feature extraction while reducing the number of
dimensions in the HD classifier by two to three orders of
magnitude!.

(2) An On-chip Learning Module: This module is comprised
of parameterized NN and HD processing modules, which
respectively execute operations required by the NN feature
extraction layers and operations required by the HD classifier.
The NN processing module includes a systolic array which
performs vector-matrix multiplications and an ALU which
supports operations such as batch normalization, pooling,
and ReLU. The HD processing module supports the arith-
metic operations defined in the HD computing including
binding, bundling, and distance calculation (Section 2 details
these operations). The parameterized hardware implemen-
tation enables efficient exploration of the design space to
find configurations that satisfy the design constraints such
as energy and resource utilization.

(3) A Compiler: The custom compiler performs code optimiza-
tions and generates instructions that efficiently schedule
different operations required by the NN feature extraction

!While the term hyperdimensional learning is no longer applicable to such a classifier,
we keep using the same term to highlight the fact that the operations used in the
classifier are based on those defined in the hyperdimensional computing framework.

and HD classification steps (e.g., vector-matrix multiplica-
tions and data movement) on the target platform.

Table 1 compares different characteristics of NNs, HD learning
systems (HDL), and the proposed SynergicLearning approach. It is
observed that SynergicLearning enjoys automatic feature extraction
and high accuracy because it employs an NN that is tailored for
HDL. Furthermore, it only requires one pass to train/fine-tune its
HD classifier and last but not least, it does not require accessing
previous training samples to update the model when new data
becomes available.

The remainder of this paper is organized as follows. Section 2
explains the preliminaries on HD computing, discusses some of its
shortcomings, and motivates the presented solution. Next, Section 3
details the proposed learning framework while Section 4 explains
the proposed hardware architecture and compiler for inference.
After that, Section 5 presents the experimental results while Sec-
tion 6 briefly reviews the related work on HD computing. Finally,
Section 7 concludes the paper.

2 PRELIMINARIES & MOTIVATION

HD computing defines a new computation framework that relies on
high-dimensional random vectors (aka hypervectors) and the arith-
metic operations that manipulate such large random patterns. An
HD system starts by randomly generating d"-dimensional, holistic
seed hypervectors with independent and identically distributed
(i.i.d) elements. This means that the information encoded into each
hypervector is uniformly distributed over all its elements. Therefore,
unlike the conventional computing framework, elements in differ-
ent bit positions in hypervectors are equally significant. The seed
hypervectors are typically stored in a memory called the cleanup
memory. The arithmetic operations defined on the seed hypervec-
tors, e.g. binding and bundling, enable meaningful computations in
the corresponding hyperspace. The focus of this paper is on binary
hypervectors where each element is equally likely to be a zero
or one. Binary hypervectors enjoy simplified, hardware-friendly
arithmetic operations.

The distance between two binary hypervectors is measured in
normalized Hamming distance, i.e. the number of bit positions
where the values of hypervectors differ, divided by d”. Conse-
quently, the distance is always in the range zero to one inclusive.
However, because the distance between two randomly generated
hypervectors follows a binomial distribution, most hypervectors
are about 0.5 apart from one another (when dh is large) and there-
fore, are nearly orthogonal (aka unrelated). Additionally, flipping
the values of a relatively large portion of elements in a hypervector,
e.g. one-third of all elements, results in a hypervector that is closer
to the original hypervector compared to its unrelated hypervectors.
This results in considerable tolerance to noise and approximation.
When the cleanup memory is queried with a noisy hypervector,
it returns the seed hypervector that is closest to the input query,
hence the name cleanup.

Two of the commonly used arithmetic operations in HD com-
puting are binding and bundling. The binding operation is used for
variable-value association. Assume variable z and its corresponding
value z¢ are represented with unrelated hypervectors z and 2y, re-
spectively. Then, the bound pair z = 2z can be represented by 2 * 2y,
where element-wise multiplication (x) is replaced with element-
wise XOR for binary hepervectors. The resulting hypervector is
unrelated to both z and 2. However, each original hypervector



Table 1: Comparison of different characteristics of NNs, HD learning systems, and SynergicLearning.

Machine Learning Automatic High One-pass Adaptable w/o Accessing
Model Feature Extraction = Accuracy  Training/Fine-tuning  Previous Training Samples
NN v v X X
HDL X X v 4
SynergicLearning v v v v

can be recovered from the resulting hypervector given the other,
e.g. 2o = S((z * zp) * z), where S(.) looks up the cleanup memory.
This process is called unbinding. The bundling operation condenses
a list of hypervectors into a single representative hypervector that
is similar to all its constituents. This is achieved by summing up
all hypervectors, followed by the comparison of each element in
the resulting (summation) hypervector with half the number of
original hypervectors to create a binary hypervector. If the original
hypervectors are bound, their variables and/or values can be found
through unbinding the bundled hypervector.

The HD computing framework can be used to solve cognitive
tasks such as speech recognition and activity recognition [9-11].
Alg. 1 summarizes different steps of training an HD model. The
inputs to the algorithm are d!-dimensional input features, their
corresponding labels/classes, the dimension of hypervectors (dh,
and the number of quantization levels used to discretize the input
values while the outputs are the HD centroids representing each
class. The training starts with the generation of seed hypervectors
for all d' features as well as the quantized values they can assume.
While the seed hypervectors for features are generated randomly,
the ones for quantized values are found by randomly flipping a
specific number of bits of a seed hypervector to ensure the similarity
of the hypervectors representing nearby values. Next, each feature
and its value are bound and the set of all bound hypervectors
are bundled into a single hypervector (aka encoding). Finally, the
encoded hypervectors are categorized according to their labels and
the set of hypervectors belonging to a class are bundled to find a
representative centroid. During inference, the closest centroid to
an encoded test sample (in terms of normalized Hamming distance)
determines the model’s prediction.

By fixing d" and increasing g, the hypervectors representing
different quantization levels become more similar because fewer
bits are flipped across consecutive hypervectors. This, in turn, com-
plicates the unbinding process because the cleanup memory may
return the wrong values. Fig. 1 clearly illustrates this phenomenon
by depicting the mean and standard deviation of the normalized
absolute error between the input features and the decoded features
of their encoded hypervectors. Ideally, decoding encoded hyper-
vectors should return the exact same low-dimensional features
as the original inputs (i.e., zero error), but this does not happen
in practice. We believe this phenomenon is the main reason for
the relatively poor performance of HD models compared to some
other machine learning models such as NNs. Therefore, creating
input features that are aware of the error due to very sim-
ilar quantization levels can improve classification accuracy
significantly, especially at lower dh.

3 PROPOSED METHOD

Fig. 2 demonstrates a high-level overview of the proposed hybrid
learning framework. The proposed framework comprises two ma-
jor components: an encoder-aware NN for high-quality feature
extraction and an HD classifier.

Algorithm 1 Training an HD Model
Input:

X, gl = T1.n,T; € R? //the low-dimensional input features
Y=y1nl1<yi<c //the target labels/classes

dh //the number of hyperspace dimensions
q //the number of quantization levels
Output:
Togn =t1.c //the HD centroids
1: generate Sy gn = 81 41 //seed hypervectors for features
2 p= L%J //mumber of bits to flip
3: generate g; randomly
4 fori=2.qdo
5 g; = randomly pick p unflipped bits and flip them in g;—1
6: end for
7: qudh =dqi.q //seed hypervectors for levels
8: for each x; do //encode all samples
9: w? = quantize(x;, q) //quantize real values to integers
10: Xi=0
11 for jin 1..d! do //bind feature-value pairs
12: X; = X; Ubind(sj, qx? )
13: end for ’
14: x{" = bundle(X;) //bundle bound hypervectors
15: end for
16: Ty =T2=...:Tc=0
17: for each z{"° do //group encoded inputs by labels
18: Ty, = Ty, U i
19: end for

20: for each T do //bundle all members of each class
21: tk = bundle(Tk)
22: end for

23: return T

The NN includes feature extraction layers, an HD encoder-decoder
pair (i.e. HD codec), and classifier layer(s). It takes the input features,
passes them through the said components (aka forward propaga-
tion), and calculates a loss value by comparing the predicted labels
with the expected ones. It then updates the model parameters, i.e.
weights and biases, by backpropagating the loss value using the
derivative of the operations defined in the NN. Because the opera-
tions defined in the codec are not differentiable and the fact that
an ideal codec should behave like the identity function, the codec’s
derivative is approximated with that of the identity function during
backpropagation.

Pre-processing input features with an NN has numerous im-
portant advantages. First, including the codec in the training
loop encourages the NN to adjust its parameters such that it
minimizes the impact of the codec’s error on classification
accuracy. Training two identically initialized NNs, one including
a codec and the other without a codec, would result in a com-
pletely different set of parameters. Second, the number of features
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Figure 1: The mean and standard deviation of the normal-
ized absolute error between the input features and the de-
coded features of their encoded hypervectors for different
values of d" and g. Ideally, this error should be zero every-
where. However, the error has a non-zero value even at ex-
tremely high dimensions (4" =~ 10, 000).

extracted by the NN (dVN) can be much lower than the number
of low-dimensional input features (dl ), which in turn reduces the
complexity of the HD classifier. Third, because the NN extracts
encoder-aware features, d” can be reduced by two to three orders
of magnitude compared to the existing HD systems. In other words,
because the degree of similarity of hypervectors representing quan-
tization levels is less concerning, lower d” values can work equally
well. Fourth, there is a large body of work on reducing the com-
plexity of NNs through quantization [12, 13], pruning [14], and
knowledge distillation [15], to name but a few. This allows training
NNs that are lightweight, thereby adding little overhead to the
overall hardware cost.

The HD classifier is very similar to the one described in Alg. 1.
The only difference is that it takes the output of NN’s feature ex-
traction layers (af:fv N) instead of the original input features (x;).
Therefore, it not only benefits from the inherent strength of NNs
in feature extraction but also enjoys features that are specifically
tailored for the HD encoder.

4 PROPOSED HARDWARE ARCHITECTURE
& COMPILER

The proposed hardware architecture implements an end-to-end,
fully-parameterized implementation of SynergicLearning for in-
ference. It consists of two major hardware components: an NN
processing module, which includes a systolic array and an ALU,
and a fully-parallel HD processing module which supports various
operations such as binding, bundling, and distance calculation.

4.1 NN Processing Module

Fig. 3 demonstrates a high-level overview of the NN processing
module, which comprises the following components:

e the systolic array, which consists of a two-dimensional array
of processing elements,

e on-chip memories (i.e. weight, input, and output buffers),
which act as an intermediate storage between the DRAM
and the systolic array,

o tree adders, each of which performs a summation over a row
of the systolic array, and

e ALUs, which support activation functions, batch normaliza-
tion, pooling, etc.

Processing each layer of the NN requires the following operations.
First, the weights are read from the external memory (DRAM)
and stored in the weight buffer while inputs are read either from
the DRAM or the output buffer. Next, the systolic array and tree
adders calculate the neurons’ pre-activation values by implement-
ing vector-matrix multiplications. Then, ALUs apply batch nor-
malization, activation function, pooling, etc. to pre-activations to
generate the output features. Finally, the output features are either
rerouted to the input buffers or written back to the DRAM.

The systolic array implements a weight-stationary dataflow [2],
which reuses each weight value in different computations involved
in vector-matrix multiplication and therefore, reduces the overhead
associated with data movement. In this dataflow, the number of
cycles it takes to process each layer of the NN is approximated by

d, Ay,
(|-Wsys-| +logy wsys) X |-hsys I}

where dj, is number of neurons in the ith layer and wsys (hsys)
is the number of columns (rows) in the systolic array. log, wsys
represents the depth of each tree adder.

For mapping a neural network presented in high-level languages
to the target FPGA, we developed an in-house compiler called Syn-
ergicCompiler. Since all hardware designs presented in this paper
perform the same computation, i.e. a three-level nested loop for
fully connected layers, the space explorations are defined by trans-
formations (e.g., block, reorder, and parallelize) on the nested loop.
Therefore, the compiler tries various choices of loop ordering and
hardware parallelism for computing these nested loops of NNs
and finds the most efficient one in terms of latency. The Synergic-
Compiler also generates a static schedule for the data movements
between hierarchies of memories, e.g., between external memories
and buffers, and buffers and registers within PEs. Static schedul-
ing mitigates the need for complex handshaking and improves the
scalability and performance of the processing modules. Finally, the
compiler delivers a set of instructions that efficiently schedule dif-
ferent operations such as vector-matrix multiplications and data
movement on the target platform. More details about the compiler
are not included in this paper for brevity.

4.2 HD Processing Module

Fig. 4 demonstrates a high-level overview of the pipelined HD
processing module, which comprises the following components:

o lookup tables (LUTs) that store hypervectors representing
quantized levels,

binding/unbinding units, which perform parallel XOR oper-
ations,

e majority counters, which compute the population count of a

bit vector by incrementing a (log, (dl + 1) + 1)-bit counter
when a set bit is encountered and decrementing it when a
reset bit is seen,

e comparators, which produce binary hypervectors from inte-
ger hypervectors, and

o tree adders and tree comparators, which implement a fully-
parallel Hamming distance calculation and therefore, pro-
duce outputs in constant time.

The architecture of the proposed HD processing module has the
lowest achievable latency but suffers from high resource consump-
tion at large d" values compared to other possible architectures
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Figure 3: Architectural view of the NN processing mod-

ule which includes a systolic array, on-chip memories, tree

adders, and ALUs.

such as the ones explained in [16]. However, because SynergicLearn-
ing allows the utilization of HD learning systems with extremely
low d" values, the resource usage of the HD processing module
will be negligible. Furthermore, because all the aforementioned
components produce their results in constant time, the final output
of the HD processing module will be produced in constant time
too. Additionally, because of the pipelined implementation of the

HD processing module, it can produce an output every cycle, hence
very high throughput.

5 RESULTS & DISCUSSION

5.1 Experimental Setup

5.1.1 Datasets. To study the effectiveness of SynergicLearning,
we use two publicly available datasets: Human Activity Recognition
(HAR) [17] and ISOLET [18]. HAR includes 10,299 samples, each
of which contains 561 handcrafted features and a label that corre-
sponds to one of six possible activities. ISOLET, on the other hand,
contains 7,797 samples, each of which includes 617 handcrafted
features and a label that corresponds to one of the 26 characters in
the English alphabet. The goal is to take the input features and their
labels and train classifiers that predict labels of unseen samples
accurately.

5.1.2 Training Framework. We implement a PyTorch-compatible
[19] HD computing library that includes operations such as bind-
ing/unbinding, bundling, encoding, and decoding. Because of the
compatibility with PyTorch, the operations can be mapped effi-
ciently to either CPUs or GPUs. Additionally, they can be easily
integrated into existing PyTorch designs such as NNs.

We also implement a training ecosystem that takes a user-defined
(possibly existing) NN architecture and the parameters of the HD
learning system (e.g. d" and q) and automatically glues different
components together to enable encoder-aware training of the neu-
ral network. Similarly, it includes easy-to-use HD training modules.
This training ecosystem allows us to quickly explore different de-
signs and compare their accuracy.

5.1.3 Neural Network Training. We train all NNs by minimiz-
ing a cross-entropy loss function for 120 epochs, with a batch size
of 256, and an I, regularizer. Additionally, we use a learning rate
scheduler similar to the one described in [20] where the maximum
learning rate is set to 0.01 while the number of steps per epoch is
25.
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Figure 4: Architectural overview of the HD processing module which includes lookup tables that store hypervectors represent-
ing quantized levels, binding/unbinding units, majority counters, comparators, tree adders, and tree comparators.

5.14 Hardware Emulation Framework. To implement the NN
and HD processing modules, we use the Xilinx SDAccel which
provides a toolchain for programming and optimizing different
applications on Xilinx FPGAs using a high-level language (C, C++
or OpenCL) and/or hardware description languages (VHDL, Verilog
and SystemVerilog), as well as a runtime based on the OpenCL APIs
that can be used by the host-side software to interact with the
accelerator. We evaluate our proposed architecture using SDAccel
on the ISOLET dataset targeting the Xilinx UltraScale+ VU9P FPGA
on AWS EC2 F1 instances. We also use the Vivado power report
provided by Xilinx to assess the power consumption of each design.

5.2 The Impact of NNs on the Quality of HD
Features

In this section, we study the impact of NNs on the quality of encoded
HD features by visualizing different samples of the HAR dataset in
two-dimensional (2D) space. The feature extraction layers of the
NN consist of two fully-connected layers, each of which has 561
neurons. We deliberately keep the number of neurons in the final
feature extraction layer the same as the one for the input features
(i.e. dNN = d) to ensure the difference across the results of various
experiments is only due to the introduction of NNs. We use ReLU
and PACT [12] for the activation functions of the first and second
layer, respectively.

Fig. 5 shows the 2D representation of the encoded hypervectors
of the test set for three different designs: HDL, NN followed by
HDL, and encoder-aware NN followed by HDL (i.e. the proposed
flow). To obtain the 2D representation, we employ t-distributed
stochastic neighbor embedding (t-SNE) [21], which is a technique
used for visualizing high-dimensional data. t-SNE tends to provide
good visualizations because it tries to keep the similarities in HD
space in the 2D representation as well. The 2D representations
of hypervectors belonging to different classes are shown using
different colors. For figures 5a-5c, we use dh = 16, and for figures
5d-5f, we use dh = 10, 240. For all experiments, g = 4.

For small values of d” (e.g. 16), it is observed that HDL performs
poorly in the separation of points in the HD space (Fig. 5a). On
the other hand, the addition of an NN to the flow helps with more
proper separation of data points (Fig. 5b) while introducing an

encoder-aware NN leads to a near-perfect clustering of data (Fig. 5c).

The accuracy values reported in Fig. 5a-5c further support this

observation. For large values of dh (e.g. 10,240), it is observed that
HDL performs relatively well while models that include NN still
outperform the HDL model by a large margin (Fig. 5d-5f). In this
configuration, the model that includes an NN and the one that has
an encoder-aware NN perform almost equally well.

5.3 Comparison of Classification Accuracy

Table 2 compares the highest values of accuracy reported for NNs
and HD learning systems with the proposed SynergicLearning
approach on the HAR and ISOLET datasets. It is observed that on
these datasets, the proposed hybrid model outperforms both NNs
and HD learning systems used in the prior work.

Fig. 6 compares classification accuracy of three different models
(HDL, NN followed by HDL, and encoder-aware NN followed by
HDL) for different values of d" and q on HAR and ISOLET datasets.
It is observed that the model that includes an NN consistently
outperforms HDL while the model that has an encoder-aware NN
outperforms the other two in almost all experiments. On the HAR
dataset, the difference between the model with an encoder-aware
NN and the HDL model is as large as about 63% at d" = 16 while it
decreases to about 14% at d" = 10, 240. Similarly, On the ISOLET
dataset, the difference between the model with an encoder-aware
NN and the HDL model is as large as about 83% at d = 16 while it
decreases to about 10% at d = 10, 240.

Another key observation is that the model with an encoder-
aware NN achieves almost the same level of accuracy at different
values of d”. This is particularly interesting from a hardware cost
perspective, because we can pick the lowest value of d" (16 in
these experiments) and achieve significant reduction in resource
utilization while maintaining high accuracy.

We also study the effect of different random seeds for initializa-
tion of NN weights and randomly generated seed hypervectors on
classification accuracy. Based on our experiments, the difference
between the lowest and highest values of classification accuracy
across designs that use different seeds is at most 1%. We believe
such variation in classification accuracy is acceptable.

2They also reported higher accuracy of 97.6 % when they added statistical features
and data centering methods to their convolutional neural network.
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Figure 5: Two-dimensional (t-SNE) representation of the encoded hypervectors of the HAR dataset for three different designs:

(e) NN followed by HDL

HDL, NN followed by HDL, and encoder-aware NN followed by HDL.
Table 2: Top accuracy reported for NNs, HD learning sys-
tems, and SynergicLearning on HAR and ISOLET datasets.

(f) Encoder-aware NN followed by HDL

q = 4, HAR q = 16, HAR
Dataset | Machine Learning Model Accuracy (%) o % —— g o J—=
o NN [22] 2 9531 % g 80 T . g 2(: : L
< HDL [23] 93.4% =" e £ 0
= SynergicLearning 96.44 % < L < a5 e
E NN [24, 25]" 95.9 % : o : B
S HDL [25] 93.8 % log, (d") log, (d")
2} SynergicLearning 96.67 %
- - q = 4, ISOLET q = 16, ISOLET
*Uses a convolutional neural network. 100 — — 100 -
*Uses a fully-connected network with 48 hidden layers. £ w04 R S S JE— .
Z 60 o« ’ 5 60 o7
ERT o g 0 4 o
5.4 Incremental Learning Ry P . Sy P .
Table 3 compares the accuracy of HD learning models and Syner- 5 10 5 10
gicLearning when a portion of data is initially used for training logs (4") o (")
while the remaining data is used for fine-tuning the model on a
chip. Because on-chip-learning is extremely costly for NNs, we do we HDL -+ NN + HDL = —— Encoder-aware NN + HDL

not consider them in this comparison. As expected, the HDL model
is insensitive to whether the training data is provided incremen-
tally or all at once and therefore, its accuracy remains constant

Table 3: Comparison of the effect of incremental learning on
the accuracy of different models on the ISOLET dataset.

Machine Learning Accuracy
Model (Ratio of the Initial Training Data)
85.76% 85.76% 85.76% 85.76%
HDL 025 (05 (075 (1)
SynersicLearnin 86.21% 91.21% 94.03% 95.77%
ynerg & (025 (05 (075 (1)

Figure 6: Classification accuracy of different models on HAR
and ISOLET datasets for different values of d” and q.

and relatively low. For the SynergicLearning model, on the other
hand, the accuracy keeps increasing when more data is provided
to the NN in the initial training phase because it allows the NN to
find higher quality features. This encourages less frequent, off-line
updates to the NN for increasing the accuracy of the model.



Table 4: Comparison between the hardware metrics of SynergicLearning (d" = 16) with pure HD (d" = 10, 240) over the ISOLET
dataset on Xilinx UltraScale+ VU9P FPGA. The improvements of our approach compared to other approaches are shown in

parantheses.
Approach | Implementation | BRAMs-18K (%) DSPs-48E (%)  FFs (%) LUTs (%) Latency (us) Power (W)
SynergicLearning | NN+HD \ 1.8 15.0 0.8 5.1 23.3 5.3
Parallel 0 (N/A 0 (N/A 11.0 (93% 15.0 (66% 49.5 (53% 8.5 (38%
Pure HD [16] | [ ovA) /) (93%) 150 (66%) 49.5(53%) 85 (38%)
|  Sequential | 0 (N/A) 0 (N/A) 11.0 (93%) 9.0 (43%)  788.7 (97%) 7.7 (31%)
NN [24,25] | Systolic Array | 1.7 (-6%) 15.0 (0%) 0.7 (-14%) 3.6 (-42%)  835.9 (97%) 5.1 (-4%)

5.5 The Hardware Cost of NN & HD Processing
Modules

Fig. 7 shows the LUT utilization and latency of HD processing mod-
ules for different values of d” while limiting the number of adders in
each stage of tree adders to 16. It is observed that the latency grows
very rapidly when increasing d” to values required for meeting
accuracy requirements. Additionally, to reduce the resource utiliza-
tion for large values of dh, we can change the architecture from a
fully-parallel architecture to a vector-sequential architecture where
all adders and counters operate in a sequential manner (compare
Sequential Implementation with Parallel Implementation entries
in Table. 4). While our parameterized architecture has a capability
to generate both parallel and sequential-vector for HD processing
module of SynergicLearning approach, we report the results for par-
allel implementation which delivers higher performance. Thanks
to exteremly low d" value in SynergicHD, the hardware overhead
of parallel implementation is minimal.

Table 4 compares area utilization, latency, and power consump-
tion of SynergicLearning at d" = 16 with pure HD processing
module at d" = 10, 240. SynergicLearning outperforms the fully-
parallel pure HD processing module in terms of latency by a factor
of 2.13x while yielding 1.60x lower power consumption. Compared
to the vector-sequential implementation of HD processing module,
SynergicLearning achieves 33.89x improvement in latency while
yielding 1.45x lower power consumption.

It is worth mentioning that our designs are capable of achiev-
ing high clock rates (i.e. 344 MHz). The breakdown of different
metrics between the NN and HD processing modules is as follows.
The NN processing module consumes 93%, 100%, 87%, and 71% of
the total consumed BRAMs-18K, DSPs-48E, FFs, and LUTs, respec-
tively. The latency of the NN processing module is 23.12ys and
the power consumption of the HD processing module is negligible
compared to the NN processing module (i.e. less than 4% of total
power consumption).
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Figure 7: the LUT utilization and latency of HD processing
modules for different values of d”.

6 RELATED WORK

Kanerva [9] explains the advantages and mathematical properties
of HD computing, and how data patterns should correspond in a
systematic way to the entities they represent in the real world for
achieving brain-like computing. Some of the prior work attempt to
improve the performance of HD computing, either by increasing the
obtained accuracy for some complex tasks, or enabling it to main-
tain the accuracy for lower dimensions. Authors in [10] propose a
hierarchical HD computing framework, which enables HD to im-
prove its performance using multiple encoders without increasing
the cost of classification. In [11], authors utilize the mathematics
of hyperdimensional spaces, and split each class hypervector into
separate components and combine them into a reduced dimensional
model. However, these works have not explored the effect of the
feature extraction for low-dimensional input features.

Several studies in the literature explore hardware optimizations
for implementing HD computing for different application domains.
Authors in [26] propose a memory-centric architecture for the
HD classifier with modular and scalable components, and demon-
strate its performance on a language identification task. In [27], au-
thors develop a programmable and scalable architecture for energy-
efficient supervised classification using HD computing, and com-
pare it with traditional architectures for a few conventional machine
learning algorithms. The work in [28] explores architectural de-
signs for the cleanup memory to facilitate energy-efficient, fast, and
scalable search operation, and the proposed designs are evaluated
for a language recognition application.

7 CONCLUSIONS

In this paper, we proposed SynergicLearning, in which by designing
NNs that include some components of the HD models in their train-
ing loop, we trained high-quality feature extraction layers tailored
to the HD learning model. By passing the input low-dimensional
features through these layers before encoding them into the HD
space, the number of dimensions of the HD space was reduced
by two to three orders of magnitude, while maintaining the high
classification accuracy, which led to less complex HD classifier. We
also proposed and implemented an end-to-end fully-parametrized
implementation of SynergicLearning for inference. Following the
proposed hardware architecture, we achieved 2.13x improvement
in terms of latency, while yielding 1.60x lower power consumption
compared to pure HD computing.

ACKNOWLEDGEMENTS

This research was sponsored in part by a grant from the Software
and Hardware Foundations program of the National Science Foun-
dation.



REFERENCES

(1]

o
&

[9

=

[10]

(1]

[12]

[13]

[14]

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In IEEE conference on computer vision and pattern
recognition (CVPR), 2016.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing
of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 2017.
Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency
of training neural networks. In Advances in neural information processing systems,
2014.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connection-
ist networks: The sequential learning problem. In Psychology of learning and
motivation. Elsevier, 1989.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning:
Learning deep neural networks on the fly. arXiv preprint arXiv:1711.03705, 2017.
Viktor Losing, Barbara Hammer, and Heiko Wersing. Incremental on-line learn-
ing: A review and comparison of state of the art algorithms. Neurocomputing,
2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, 2012.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Ima-
geNet large scale visual recognition challenge. International journal of computer
vision, 2015.

Pentti Kanerva. Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors. Cognitive
computation, 2009.

Mohsen Imani, Chenyu Huang, Degian Kong, and Tajana Rosing. Hierarchical hy-
perdimensional computing for energy efficient classification. In ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018.

Justin Morris, Mohsen Imani, Samuel Bosch, Anthony Thomas, Helen Shu, and
Tajana Rosing. CompHD: Efficient hyperdimensional computing using model
compression. In IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2019.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. PACT: Parameterized
clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085,
2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
DoReFa-Net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,
and Yanzhi Wang. A systematic DNN weight pruning framework using alternat-
ing direction method of multipliers. In European Conference on Computer Vision

[15

=
&

[17

(18

(19]

[20

[21

[22

[23

[24

[26

[27]

™
&

(ECCV), 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

Manuel Schmuck, Luca Benini, and Abbas Rahimi. Hardware optimizations of
dense binary hyperdimensional computing: Rematerialization of hypervectors,
binarized bundling, and combinational associative memory. ACM Journal on
Emerging Technologies in Computing Systems (JETC), 2019.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis
Reyes-Ortiz. A public domain dataset for human activity recognition using
smartphones. In Esann, 2013.

Ron Cole, Yeshwant Muthusamy, and Mark Fanty. The ISOLET spoken letter
database. Oregon Graduate Institute of Science and Technology, Department of
Computer ..., 1990.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
Torch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems, 2019.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of
neural networks using large learning rates. In Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications. International Society for
Optics and Photonics, 2019.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of machine learning research, 2008.

Andrey Ignatov. Real-time human activity recognition from accelerometer data
using convolutional neural networks. Applied Soft Computing, 2018.

Mohsen Imani, Sahand Salamat, Saransh Gupta, Jiani Huang, and Tajana Rosing.
Fach: Fpga-based acceleration of hyperdimensional computing by reducing com-
putational complexity. In Proceedings of the 24th Asia and South Pacific Design
Automation Conference, 2019.

Gal Chechik, Uri Shalit, Varun Sharma, and Samy Bengio. An online algorithm
for large scale image similarity learning. In Advances in Neural Information
Processing Systems, 2009.

Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. Voicehd: Hyper-
dimensional computing for efficient speech recognition. In 2017 IEEE International
Conference on Rebooting Computing (ICRC). IEEE, 2017.

Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. A robust and energy-efficient
classifier using brain-inspired hyperdimensional computing. In Proceedings of
;}6%5015 International Symposium on Low Power Electronics and Design (ISLPED),

Sohum Datta, Ryan AG Antonio, Aldrin RS Ison, and Jan M Rabaey. A pro-
grammable hyper-dimensional processor architecture for human-centric IoT.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019.
Mohsen Imani, Abbas Rahimi, Degian Kong, Tajana Rosing, and Jan M Rabaey.
Exploring hyperdimensional associative memory. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 2017.



