

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

2

generates the program in a feed-forward manner. The approach is

inspired by the ability of deep networks for generative sequence

modeling such as for speech and language. As a result CSGNET is

efficient at test time, as it can be viewed as an amortized search [3]

procedure. Furthermore, it be used as an initialization for search-

based approaches leading to improvements in accuracy at the cost

of computation.

At a high-level, CSGNET is an encoder-decoder architecture

that encodes the input shape using a convolutional network and

decodes it into a sequence of instructions using a recurrent

network (Figure 2). It is trained on a large synthetic dataset of

automatically generated 2D and 3D programs (Table 2). However,

this leads to poor generalization when applied to new domains.

To adapt models to new domains without program annotations,

we employ policy gradient techniques from the reinforcement

learning literature [4]. Combining the parser with a CSG rendering

engine allows the networks to receive feedback based on the visual

difference between the input and generated shape, and the parser

is trained to minimize this difference (Figure 2). Furthermore, we

investigate two network architectures: a vanilla recurrent network

(CSGNET), and a new variant called CSGNETSTACK (Figure 3).

This new variant stores intermediate shapes produced during the

execution of the CSG program, inspired by call or execution stacks

[5]. This stack can also be seen as a form of explicit memory

in our network encoding the intermediate program state. Our

experiments demonstrate that this improves the overall accuracy

of the generated programs while using less training data.

We evaluate the CSGNET and CSGNETSTACK architectures

on a number of shape parsing tasks. Both offer consistently better

performance than a nearest-neighbor baseline and are significantly

more efficient than an optimization based approach. Reinforce-

ment learning improves their performance when applying them to

new domains without requiring ground-truth program annotations

making the approach more practical (Table 4). We also investigate

the effect of the training data size and reward choices used in the

policy gradient algorithm [6] on the performance of the parser.

Finally, we evaluate the performance on the task of primitive

detection and compare it with a Faster R-CNN detector [7] trained

on the same dataset. CSGNET offers 4.2% higher Mean Average

Precision (MAP) and is 4× faster compared to the Faster R-CNN

detector, suggesting that joint reasoning about the presence and

ordering of objects leads to better performance for object detection

(Table 6).

This paper extends our work that first appeared in [8], adding

to it an analysis on effect of reward shaping and training set

size on the performance, as well as the stack-augmented network

architecture. Our PyTorch [9] implementation is publicly available

at: https://hippogriff.github.io/CSGNet/.

2 RELATED WORK

CSG parsing has a long history and a number of approaches have

been proposed in the literature over the past 20 years. Much of the

earlier work can be categorized as “bottom-up” and focuses on

the problem of converting a boundary representation (b-Rep) of

the shape to a CSG program. Our work is more related to program

generation approaches using neural networks which have recently

seen a revival in the context of natural language, graphics, and

visual reasoning tasks. We briefly summarize prior work below.

2.1 Bottom-up shape parsing

An early example of a grammar-based shape parsing approach

is the “pictorial structure” model [10]. It uses a tree-structured

grammar to represent articulated objects and has been applied

to parsing and detecting humans and other categories [11]–[13].

However, the parse trees are often shallow and these methods rely

on accurate bottom-up proposals to guide parsing (e.g., face and

upper-body detection for humans). In contrast, primitive detection

for CSG parsing is challenging as shapes change significantly

when boolean operations are applied to them. Approaches, such

as [14]–[16], assume an exact boundary representation of primi-

tives which is challenging to estimate from noisy or low-resolution

shapes. This combined with the fact that parse trees for CSG

can be significantly deeper makes bottom-up parsing error prone.

Evolutionary approaches have also been investigated for opti-

mizing CSG trees [17]–[19], however, they are computationally

expensive.

Thus, recent work has focused on reducing the complexity

of search. Tao et al. [20] directly operates on input meshes, and

converts the mixed domain of CSG trees (discrete operations and

continuous primitive locations) to a discrete domain that is suitable

for boolean satisfiability (SAT) based program synthesizers. This

is different from our approach which uses a neural network to

generate programs without relying on an external optimizer.

2.2 Inverse procedural modeling

A popular approach to generate 3D shapes and scenes is to

infer context-free, often probabilistic “shape grammars” from a

small set of exemplars, then sample grammar derivations to create

new shapes [21]–[24]. This approach called Inverse Procedural

Modeling (IPM) has also been used in analysis-by-synthesis image

parsing frameworks [25]–[27].

Recent approaches employ CNNs to infer parameters of ob-

jects [28] or whole scenes [29] to aid procedural modeling. A

similar trend is observed in graphics applications where CNNs are

used to map input images or partial shapes to procedural model

parameters [30]–[32]. Wu et al. [33] detect objects in scenes

by employing a network for producing object proposals and a

network that predicts whether there is an object in a proposed

segment, along with various object attributes. Eslami et al. [34]

use a recurrent neural network to attend to one object at a time in

a scene, and learn to use an appropriate number of inference steps

to recover object counts, identities and poses.

Our goal is fundamentally different: given a generic grammar

describing 2D or 3D modeling instructions and a target image

or shape, our method infers a derivation, or more specifically a

modeling program, that describes it. The underlying grammar for

CSG is quite generic compared to specialized shape grammars. It

can model shapes in several different classes and domains (e.g.,

furniture, logos, etc.).

2.3 Neural program induction

Our approach is inspired by recent work in using neural networks

to infer programs expressed in some high-level language, e.g., to

answer question involving complex arithmetic, logical, or seman-

tic parsing operations [35]–[43]. Approaches, such as [44], [45],

produce programs composed of functions that perform composi-

tional reasoning on an image using an execution engine consisting

of neural modules [46]. Similarly, our method produces a program

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

3

Encoder
(CNN)

Decoder
(GRU) Program

Rendering

Reinforce

Reward

Input Output

Cross Entropy

Ground Truth
Program

Fig. 2: Overview of our approach. Our neural shape parser consists of two parts: first at every time step encoder takes as input a

target shape (2D or 3D) and outputs a feature vector through CNN. Second, a decoder maps these features to a sequence of modeling

instructions yielding a visual program. The rendering engine processes the program and outputs the final shape. The training signal can

either come from ground truth programs when such are available, or in the form of rewards after rendering the predicted programs.

consisting of shape modeling instructions to match a target image

by incorporating a shape renderer.

Other related work include the recent work by Tian et al.

[47], which proposes a program induction architecture for 3D

shape modeling. Here programs contain a variety of primitives and

symmetries are incorporated with loops. While this is effective

for categories such as chairs, the lack of boolean operations is

limiting. A more complex approach is that of Ellis et al. [48],

who synthesize hand-drawn shapes by combining (lines, circles,

rectangles) into Latex programs. Program synthesis is posed as a

constraint satisfaction problem which is computationally expen-

sive and can take hours to solve. In contrast, our feed-forward

model that takes a fraction of a second to generate a program.

2.4 Primitive fitting

Deep networks have recently been applied to a wide range of

primitive fitting problems for 2D and 3D shapes. Tulsiani et al.

[49] proposed a volumetric CNN that predicts a fixed number

of cuboidal primitives to describe an input 3D shape. Zou et al.

[50] proposed an LSTM-based architecture to predict a variable

number of boxes given input depth images. Li et al. [51] intro-

duced a point cloud based primitive fitting network where shapes

are represented as an union of primitives. Paschalidou et al. [52]

uses superquadrics instead of traditional cuboids. Genova et al.

[53] proposed a network that predicts local implicit functions

decomposing the input shape into 3D Gaussian blobs. Huang et

al. [54] decompose an image by detecting primitives and arranging

them into layers. Gao et al. [55] train deep network to produce

control points for splines using input images and point cloud.

Recent networks such as BSP-Net [56] and CvxNet [57] are

built on the concept of binary space partitioning to produce a

collection of convexes that approximates the input point cloud or

an image. Deprelle et al. [58] proposed representing shapes as the

combination of learned deformable elementary 3D structures. The

above approaches are trained to minimize reconstruction error like

ours. On the other hand, they focus on predicting primitives, while

our method also learns modeling operations (CSG) on them.

3 DESIGNING A NEURAL SHAPE PARSER

In this section, we first present a neural shape parser, called

CSGNET, that induces programs based on a CSG grammar

given only 2D/3D shapes as input. We also present another

shape parser variant, called CSGNETSTACK, which incorporates

a stack as a form of explicit memory and results in improved

accuracy and faster training. We show that both variants can be

trained to produce CSG programs in a supervised learning setting

when ground-truth programs are available. When these are not

available, we show that reinforcement learning can be used based

on policy gradient and reward shaping techniques. Finally, we

describe ways to improve the shape parsing at test time through a

post-processing stage.

CSGNET. The goal of a shape parser π is to produce a

sequence of instructions given an input shape. The parser can

be implemented as an encoder-decoder using neural network

modules as shown in Figure 2. The encoder takes as input an

image I and produces an encoding Φ(I) using a CNN. The

decoder Θ takes as input Φ(I) and produces a probability

distribution over programs P represented as a sequence of

instructions. Decoders can be implemented using Recurrent

Neural Networks (RNNs). We employ Gated Recurrent Units

(GRUs) [59] that have been widely used for sequence prediction

tasks such as generating natural language and speech. The overall

network can be written as π(I) = Θ ◦ Φ(I). We call this basic

architecture as CSGNET (see also Figure 3, left).

CSGNETSTACK. The above architecture can further be improved

by incorporating feedback from the renderer back to the network.

More specifically, the encoder can be augmented with an execution

stack that stores the result of the renderer at every time step along

with the input shape. This enables the network to adapt to both

current and previous rendered results. To accomplish this, our CSG

rendering engine executes the program instructions produced by

the decoder with the help of stack S = {st : t = 1, 2 . . .} at each

time step t. The stack is updated after every instruction is executed

and contains intermediate shapes produced by previous boolean

operations or simply an initially drawn shape primitive. This stack

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

4

CNN GRU

GRU

Encoder Decoder
Target

�

2

�=1

CNN

Input = [Target, S]

CNN GRU

t=1

t=2

t=3

�

1

�=1

�

3

�=1

CNN GRU
GRU

Encoder Decoder

GRU

Predicted
Program

Predicted
Program

Input = [Target]

CSGNet CSGNetStack
Fig. 3: Two proposed architectures of our neural shape parser CSGNET (left), CSGNETSTACK (right). CSGNet takes the target

shape as input and encodes it using a CNN, whereas in CSGNETSTACK, the target shape is concatenated with stack St along the

channel dimension and passes as input to the CNN encoder at every time step. Empty entries in the stack are shown in white.

of shapes is concatenated with the target shape, all stored as binary

maps, along the channel dimension. The concatenated map is

processed by the network at the next time step. Instead of taking

all elements of the stack, which vary in number depending on the

generated program, we only take the top-K maps of the stack.

Empty entries in the stack are represented as all-zero maps (see

also Figure 3, right). At the first time step, the stack is empty, so all

K maps are zero. While the stack contains complete information

about the program execution at any point in time, it can grow

arbitrarily deep. Keeping the top-K elements of the stack provides

a way to trade-off the computational and memory requirements

with the amount of information about the program execution.

In our implementation, the parser π takes Z = [I, S] as input

of size 64×64×(K+1) for 2D networks and 64×64×64×(K+
1) for 3D networks, where I is the input shape, S is the execution

stack of the renderer, and K is the size of the stack. The number

of channels is (K + 1) since the target shape, also represented

as 642 (or 643 in 3D), is concatenated with the stack. Details of

the architecture are described in Section 4. Similarly to the basic

CSGNET architecture, the encoder takes Z as input and yields

a fixed length encoding Φ(Z), which is passed as input to the

decoder Θ to produce a probability distribution over programs P .

The stack-based network can be written as π(Z) = Θ◦Φ(Z). We

call this stack based architecture CSGNETSTACK. The difference

between the two architectures is illustrated in Figure 3.

Grammar. The space of programs can be efficiently described

according to a context-free grammar [60]. A context-free grammar

is a formal grammar when its production rules can be applied

regardless of the context of its non-terminal symbols. For example,

in constructive solid geometry the instructions consist of drawing

primitives (eg, spheres, cubes, cylinders, etc) and performing

boolean operations described as a grammar with the following

production rules:

S → E

E → E E T | P

T → OP1|OP2| . . . |OPm

P → SHAPE1|SHAPE2| . . . |SHAPEn

Each rule indicates possible derivations of a non-terminal

symbol separated by the | symbol. Here S is the start sym-

bol, OPi is chosen from a set of defined modeling opera-

tions and the SHAPEi is a primitive chosen from a set of

basic shapes at different positions, scales, orientations, etc. In-

structions can be written in a standard post-fix notation, e.g.,

SHAPE1SHAPE2OP1SHAPE3OP2, which can be written in in-

fix notation as: (SHAPE1 OP1 SHAPE2) OP2 SHAPE3 . Table

4 shows an example of a program predicted by the network and

corresponding rendering process.

3.1 Learning

Given the input shape I and execution stack S of the renderer,

the parser network π generates a program that minimizes a

reconstruction error between the shape produced by executing the

program and a target shape. Note that not all programs are valid.

Our learning incorporates rewards promoting the generation of

programs that are both valid and capture the target shape well.

3.1.1 Supervised learning

When target programs are available both CSGNET and CSGNET-

STACK variants can be trained with standard supervised learning

techniques. Training data consists of N shapes, P corresponding

programs, and also in the case of CSGNETSTACK S stacks,

program triplets (Ii, Si, P i), i = 1, . . . , N . The ground-truth

program P i can be written as a sequence of instructions gi1, gi2 ..

giTi
, where Ti is the length of the program P i. Similarly, in the

case of CSGNETSTACK, the Si can be written as sequence of

states of stack si1, si2 .. siTi
used by the rendering engine while

executing the instructions in program P i. Note that while training

in supervised setting, the stack st is generated by the renderer

while executing ground truth instructions g1:t, but during inference

time, the stack is generated by the renderer while executing

the predicted instructions. For both network variants, the RNN

produces a categorical distribution π for both variants.

The parameters θ for either variant can be learned to maximize

the log-likelihood of the ground truth instructions:

L(θ) =
N
∑

i=1

Ti
∑

t=1

log πθ(g
i
t|g

i
1:t−1, s

i
1:t−1, I

i) (1)

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

5

Instruction Execution Stack

Rendered Image

union(P3, P4)

intersect(P2, E1)

subtract(P1, E2)

P3 P4

E1P2

E2P1

Out

circle(32,32,28) push circle(32,32,28) [P1]

square(32,40,24) push square(32,40,24) [P2 P1]

circle(48,32,12) push circle(48,32,12) [P3 P2 P1]

circle(24,32,16) push circle(24,32,16) [P4 P3 P2 P1]

union A=pop; B=pop; push(B∪A) [E1 P2 P1] // E1=P3∪P4

intersect A=pop; B=pop; push(B∩A) [E2 P1] // E2=P2∩E1

subtract A=pop; B=pop; push(B-A) [Out] // Out=P1-E2

Fig. 4: Example program execution. Each row in the table from the top shows the instructions, program execution, and the current

state of the stack of the shift-reduce CSG parser. On the right is a graphical representation of the program. An instruction corresponding

to a primitive leads to push operation on the stack, while an operator instruction results in popping the top two elements of the stack

and pushing the result of applying this operator.

3.1.2 Learning with policy gradients

Without target programs one can minimize a reconstruction error

between the shape obtained by executing the program and the tar-

get. However, directly minimizing this error using gradient-based

techniques is not possible since the output space is discrete and

execution engines are typically not differentiable. Policy gradient

techniques [4] from the reinforcement learning (RL) literature can

instead be used in this case.

Concretely, the parser πθ , that represents a policy network,

can be used to sample a program y = (a1,a2 .. aT) conditioned

on the input shape I, and in the case of CSGNETSTACK, also on

the stack S = (s1, s2 .. sT). Note that while training using policy

gradient and during inference time, the stack st is generated by

the renderer while executing predicted instructions by the parser

since ground-truth programs are unavailable. Then a reward R can

be estimated by measuring the similarity between the generated

image Î obtained by executing the program and the target shape

I . With this setup, we want to learn the network parameters θ that

maximize the expected rewards over programs sampled under the

predicted distribution πθ(y|S, I) across images I sampled from a

distribution D:

EI∼D

[

Jθ(I)
]

= EI∼D

T
∑

t=1

Eyt∼πθ(y|s1:t−1,I) [R]

The outer expectation can be replaced by a sample estimate

on the training data. The gradient of the inner expectation can be

obtained by rearranging the equation as 1:

∇θJθ(I) = ∇θ

∑

y

πθ(y)R =
∑

y

∇θ log πθ(y)
[

πθ(y)R
]

Here we use the identity ∇θπθ(y) = πθ(y)∇θ log πθ(y). It

is often intractable to compute the expectation Jθ(I) since the

space of programs is very large. Hence, the expectation must be

approximated. The REINFORCE algorithm computes a Monte-

Carlo estimate (see also [4], [61] for derivations and explanation

of the policy gradient algorithm). This is expressed as:

∇θJθ(I) =
1

M

M
∑

m=1

T
∑

t=1

∇ log πθ(â
m
t |âm1:t−1, ŝ

m
1:t−1, I)R

m

by sampling M programs from the policy πθ . Each program ym

is obtained by sampling instructions âmt=1:T from the distribution

1. conditioning on stack and input image is removed for the sake of brevity.

âmt ∼ πθ(at|â
m
1:t−1; ŝ

m
1:t−1, I) at every time step t until the

stop symbol (EOS) is sampled. The reward Rm is calculated by

executing the program ym. Sampling-based estimates typically

have high variance that can be reduced by subtracting a baseline

without changing the bias as:

∇θJθ(I)=
1

M

M
∑

m=1

T
∑

t=1

∇θ log πθ(â
m
t |âm1:t−1, ŝ

m
1:t−1, I)(R

m−b)

(2)

A good choice of the baseline is the expected value of returns

starting from t [4], [62]. We compute the baseline as the running

average of past rewards.

Reward. The rewards should be primarily designed to encourage

visual similarity of the generated program with the target. Visual

similarity between two shapes is measured using the Chamfer

distance (CD) between points on the silhouettes of each shape.

We focus on the silhouettes because these tend to be more related

to the perceptual similarity of shapes [63]. The CD is between two

point sets, x and y, is defined as follows:

Ch(x,y) =
1

2|x|

∑

x∈x

min
y∈y

‖x− y‖2 +
1

2|y|

∑

y∈y

min
x∈x

‖x− y‖2

The points are scaled by the image diagonal, thus Ch(x,y) ∈
[0, 1] ∀x,y. The distance can be efficiently computed using

distance transforms. In our implementation, we also set a max-

imum length T for the induced programs to avoid having too

long or redundant programs (e.g., repeating the same modeling

instructions over and over again). We then define the reward as:

R =

{

f
(

Ch(Edge(I),Edge(ℜ(y)
)

, y is valid

0, y is invalid

where f is a reward shaping function and ℜ is the CSG rendering

engine that renders the program y into a binary image. Note that

a valid program follows the grammar described in the Section

4.1, which can be verified by the execution engine. Since invalid

programs get zero reward, the maximum length constraint on the

programs helps the network to produce shorter programs with

high rewards. We use maximum length T = 13 in all of our RL

experiments. The function f shapes the CD as f(x) = (1 − x)γ

with an exponent γ > 0. Higher values of γ makes the reward

closer to zero, thereby making the network to produce programs

with smaller CD. Table 1 (left) shows the dynamics of reward

shaping function with different γ value and (right) shows that

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

11

create cube create cylinder
& intersect

result of
intersection

create cube
& subtract it

create sphere create sphere
& subtract it

result of
subtraction

create cylinder
& subtract it

add 2 spheres

add one sphere
& compute union

add cylinder & subtract it

(a) Input voxelized shape
(b) Step summary

of our induced program
(c) Output CSG shape

Fig. 11: Qualitative performance of 3D-CSGNET. a) Input

voxelized shape, b) Summarization of the steps of the program

induced by 3D-CSGNET in the form of intermediate shapes, c)

Final output created by executing induced program.

the voxel representation we use in our encoder. Sparser shape

representations [69] could help extending our network to handle

more challenging 3D cases and datasets, such as ShapeNet [70]

and ABC [71]. Another limitation is that our current control

of the CSG program size is crude; it is based only on an upper

bound of program size and a zero reward for invalid programs,

which often occur with larger number of program instructions.

Investigating more sophisticated complexity penalties could help

promoting right-sized programs. Other promising direction is

alternate strategies for combining bottom-up proposals and top-

down approaches for parsing shapes, in particular, approaches

based on constraint satisfaction and generic optimization.

Acknowledgments. The project is supported in part by grants

from the National Science Foundation (NSF) CHS-1422441,

CHS-1617333, IIS-1617917. We also acknowledge the MassTech

collaborative grant for funding the UMass GPU cluster.

REFERENCES

[1] I. Biederman, “Recognition-by-Components: A Theory of Human Image
Understanding,” Psychological Review, vol. 94, no. 2, 1987.

[2] D. H. Laidlaw, W. B. Trumbore, and J. F. Hughes, “Constructive solid
geometry for polyhedral objects,” in Proc. SIGGRAPH, 1986.

[3] S. Gershman and N. D. Goodman, “Amortized inference in probabilistic
reasoning,” in Proceedings of the Thirty-Sixth Annual Conference of the

Cognitive Science Society, 2014.

[4] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Machine Learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[5] E. W. Dijkstra, “Recursive programming,” Numer. Math., vol. 2, no. 1,
1960.

[6] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc.

ICML, 1999.

[7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” in Proc. NIPS,
2015.

[8] G. Sharma, R. Goyal, D. Liu, E. Kalogerakis, and S. Maji, “Cs-
gnet: Neural shape parser for constructive solid geometry,” CoRR, vol.
abs/1712.08290, 2017.

[9] “Pytorch,” https://pytorch.org.

[10] M. A. Fischler and R. A. Elschlager, “The representation and matching
of pictorial structures,” IEEE Transactions on computers, vol. 100, no. 1,
pp. 67–92, 1973.

[11] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object
recognition,” IJCV, vol. 61, no. 1, pp. 55–79, 2005.

[12] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible
mixtures-of-parts,” in Proc. CVPR, 2011.

[13] L. Bourdev, S. Maji, T. Brox, and J. Malik, “Detecting people using
mutually consistent poselet activations,” in Proc. ECCV, 2010.

[14] V. Shapiro and D. L. Vossler, “Construction and optimization of csg
representations,” Comput. Aided Des., vol. 23, no. 1, 1991.

[15] S. F. Buchele and R. H. Crawford, “Three-dimensional halfspace con-
structive solid geometry tree construction from implicit boundary rep-
resentations,” in Proceedings of the Eighth ACM Symposium on Solid

Modeling and Applications, 2003.

[16] V. Shapiro and D. L. Vossler, “Separation for boundary to csg conver-
sion,” ACM Trans. Graph., vol. 12, no. 1, 1993.

[17] K. Hamza and K. Saitou, “Optimization of constructive solid geometry
via a tree-based multi-objective genetic algorithm,” in Genetic and

Evolutionary Computation, 2004.

[18] D. Weiss, “Geometry-based structural optimization on cad specification
trees, phd dissertation, eth zurich,” 2009.

[19] P.-A. Fayolle and A. Pasko, “An evolutionary approach to the extraction
of object construction trees from 3d point clouds,” Computer-Aided

Design, vol. 74, pp. 1 – 17, 2016.

[20] T. Du, J. P. Inala, Y. Pu, A. Spielberg, A. Schulz, D. Rus, A. Solar-
Lezama, and W. Matusik, “Inversecsg: Automatic conversion of 3d
models to csg trees,” ACM Trans. Graph., vol. 37, no. 6, Dec. 2018.

[21] C. A. Vanegas, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and P. Waddell,
“Inverse Design of Urban Procedural Models,” ACM Transactions on

Graphics, vol. 31, no. 6, 2012.

[22] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes,
“Inverse Procedural Modelling of Trees,” Computer Graphics Forum,
vol. 33, no. 6, 2014.

[23] D. Ritchie, B. Mildenhall, N. D. Goodman, and P. Hanrahan, “Controlling
Procedural Modeling Programs with Stochastically-ordered Sequential
Monte Carlo,” ACM Transactions on Graphics, vol. 34, no. 4, 2015.

[24] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Měch,
“Learning Design Patterns with Bayesian Grammar Induction,” in Proc.

UIST, 2012.

[25] A. Yuille and D. Kersten, “Vision as Bayesian inference: analysis by
synthesis?” Trends in Cognitive Sciences, pp. 301–308, 2006.

[26] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios,
“Shape Grammar Parsing via Reinforcement Learning,” in Proc. CVPR,
2011.

[27] A. Martinovic and L. Van Gool, “Bayesian Grammar Learning for Inverse
Procedural Modeling,” in Proc. CVPR, 2013.

[28] T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenenbaum, “Deep
convolutional inverse graphics network,” in Proc. NIPS, 2015.

[29] L. Romaszko, C. K. I. Williams, P. Moreno, and P. Kohli, “Vision-as-
inverse-graphics: Obtaining a rich 3d explanation of a scene from a single
image,” in ICCV workshops, 2017.

[30] H. Huang, E. Kalogerakis, E. Yumer, and R. Mech, “Shape Synthesis
from Sketches via Procedural Models and Convolutional Networks,”
IEEE Trans. Vis. & Comp. Graphics, vol. 23, no. 8, 2017.

[31] D. Ritchie, A. Thomas, P. Hanrahan, and N. D. Goodman, “Neurally-
Guided Procedural Models: Amortized Inference for Procedural Graphics
Programs using Neural Networks,” in Proc. NIPS, 2016.

[32] G. Nishida, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and A. Bousseau,
“Interactive Sketching of Urban Procedural Models,” ACM Transactions

on Graphics, vol. 35, no. 4, 2016.

[33] J. Wu and J. B. Tenenbaum, “Neural Scene De-rendering,” in Proc.

CVPR, 2017.

[34] S. M. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari,
K. Kavukcuoglu, and G. Hinton, “Attend, Infer, Repeat: Fast Scene
Understanding with Generative Models,” in Proc. NIPS, 2016.

[35] A. Neelakantan, Q. V. Le, and I. Sutskever, “Neural Programmer:
Inducing Latent Programs with Gradient Descent,” in Proc. ICLR, 2016.

[36] S. Reed and N. de Freitas, “Neural Programmer-Interpreters,” in Proc.

ICLR, 2016.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

