This amichs haa e acoagiesd for pabdkcation In & b s of shis marmal. e bas ned beaen fally ssflied, Corment may change prior o el pall cation, Cration nlermaton DO ae o TP AME a0, 344 T, TEEE

Transactions na Patirra. Analyes and Machiae Inkcllgenoe

Neural Shape Parsers for
Constructive Solid Geometry

Gopal Sharma’ Rishabh Goyal’

Difan Liut

Evangelos Kalogerakis' Subhransu Maji’

University of Massachusetts, Amherst!, University of llinois at Urbana-Champaign’

{n:_lupal:-harm:.d].:i.u. kalao, s:ua_f:n.]ﬁi:s-urr.ass Ledu';

1, rgoyalBBillincis.edue’

Abstraci—Constructive Solid Gaomery (C5G) & a geomatne modeling technique that defines complax shapas by recursively apphyng
boolean operalkans on primitves such s spharas and cybndars, We prasent CSGMNET, a deep nebwork architeciure thal takas as input
a 20 ar 30 shape and culpuls a CEG program thal models il Parsing shapes mlo C5G programs is desirable as it yelds & compac
and intarprefable penerative model, Howeser, the fask s challenging sinca the space of primiises and ther combinatians can be
prahibithely lange. CEONET uges g camuillional encoder and racurman decoder baged on deap netaarks 1o mag shapss o modaling
insiructions in a feed-farsand manner and is sigrificantly tasier than bottam-up appraaches. We rvestigale two archilecturas for This
1ask — a vanila encoder (GHM) - gecodar (MM and anathar architechune that avgmants tha encoder with an sxplicit memory mogduka
Eiasad an 1 program execilien giach. The sigch augmentabon Improves he recongiructon qualkty of tha ganarated shaps and
laarning efficiency. Our approach is also mome eflective as a shape primitive detectar companed 1o a stale-of-the-arl object delectar
Finally, we demonsirata CSGMET can be rained on novel datasats without program annotations threugh palicy gradent technigues.

Indbey Terma—Construchive Solld Geamatry. Rainforcamant Learning, Shage Paraing.

1 INTRODUCTION

Liv recent years, there has been a growing interest g generative
midels of 203 or 30 shoapes, especially through the use of desp
nevral metworks a8 image or shape priors, However, curment
migthads are limited 1o the generation of low-level shaps represen-
tatians consisting of pixels, vozels, or pomis, Human designers,
an the other hand, rarely masdel shapes as o collection of these
individual elements, For example, o ovector graphics modeling
packages {eg. Inkscape, Nlustratos, and 50 on), shapes ane often
created throsgh higher-level primitives, such as parametne curves
(e g, Berier curves) or basic shapes (e.g., circles, polygonsh, as
well as operalions acting on these primitives, such as boolean
operations, deformations, extrusions, and so on, Describing shapes
with higher-level primitives and operations is highly desitble for
designers since 1t s compact and makes subsequent editing easier.
[t may also better copture certnin aspects of human shape percep-
i such as view dovariance, compositionality, amd symmetry [1).

The poal of sur work is o develop on algorithm that parses
shapes il ther comiiuenl madelmg primitives amnd operations
within the framework of Constroctive Solid Geometry (CSG)[2].
%00 1% 3 p-:_r|1|.1l.'|r geomielnic mixleling frameswork whene xh.ape'-;
are generated by recursively applying boolean operations, such
a% unmn o imbersection, on ximpl: penmeinic Flrimil'iﬂ:ﬁ, such as
apheres or cylinders. Figare | illostrates an example where a 20
shape (bopd anc a 303 shape (botiom} are generted a5 a ssquence
of ogerations over pramitives of a viswal peogram. Yel, pasing a
shupe into its T80 program poses a number of challenges, Firs,
the wumber of peimitives and operations 15 not the same for all
shopes e, our output does not have constant dimensionality, as
in D casar of pekel arays, voxel grids, or Gued point sets. Second,
the arder of these instroctions matter — small changes in the order
of operations can signilicantly change the generated shape, Third,
ihe number of possible programs grows expenentially with the
progrum lenglh, making learning and inference challenging,

Pl = Circlel
P2 = Trianghe]
_’El-suﬂfﬂl,m

P3 = Circle?

EI = Subtract(E1, P3)
P4 = Triangh?

E} = Subtract{E2, Pd)
PS = Triangh3

Out = Subtmci(E3, P5)

Program

.l.

3.

AV
e

-
9

Inpin

-
v

Oulpet

i
-
.
Parse tree

Inprat
— CRGNet — C5{F engine

Fig. 1: Ohur shape porser prodhuces o progrom that generates

an input 20 or 20 shape. On wop is an inpul image of 20 shape,

its pragrom and the undedying parse tree where primitives are

combined with boolean operations. On the boltom s an input

voxelized 30 shape, the indueed progrom, and the resulting shape
froaum 0s execution,

Existing approsches for CS5G parsimg are predominantly
search-hased, A significant portion of related literature hos focused
o agproaches o efficiently estimate prinilives noa Bodboa-up
mipniber, and to search for their combinations using heuristic op-
lemezation. Whiale these lechnsgues can genenale complex shapes,
ihey are prome o noise in the inpot and are geperally slow, Our
comirrbution 1% & neant network architecture called CSGMNET thal

Olmd-RRdA [of 3800 IEEE. Permral wa @ pesreitied, bl sepuslication) redistribusns requises IEFE permisson. Ses hepaivearw eeeargpehlicatnes_sandsrdspubkcationalightuindes hirel far suee infonmodio.

Aumorized lcansed use limiled %00 University ol Massachusats Amhbarst. Downloaded on May 31,2027 at 15:35:30 UTC om IEEE Xpkora. Resinchons apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

generates the program in a feed-forward manner. The approach is
inspired by the ability of deep networks for generative sequence
modeling such as for speech and language. As a result CSGNET is
efficient at test time, as it can be viewed as an amortized search [3]
procedure. Furthermore, it be used as an initialization for search-
based approaches leading to improvements in accuracy at the cost
of computation.

At a high-level, CSGNET is an encoder-decoder architecture
that encodes the input shape using a convolutional network and
decodes it into a sequence of instructions using a recurrent
network (Figure 2). It is trained on a large synthetic dataset of
automatically generated 2D and 3D programs (Table 2). However,
this leads to poor generalization when applied to new domains.
To adapt models to new domains without program annotations,
we employ policy gradient techniques from the reinforcement
learning literature [4]. Combining the parser with a CSG rendering
engine allows the networks to receive feedback based on the visual
difference between the input and generated shape, and the parser
is trained to minimize this difference (Figure 2). Furthermore, we
investigate two network architectures: a vanilla recurrent network
(CSGNET), and a new variant called CSGNETSTACK (Figure 3).
This new variant stores intermediate shapes produced during the
execution of the CSG program, inspired by call or execution stacks
[5]. This stack can also be seen as a form of explicit memory
in our network encoding the intermediate program state. Our
experiments demonstrate that this improves the overall accuracy
of the generated programs while using less training data.

We evaluate the CSGNET and CSGNETSTACK architectures
on a number of shape parsing tasks. Both offer consistently better
performance than a nearest-neighbor baseline and are significantly
more efficient than an optimization based approach. Reinforce-
ment learning improves their performance when applying them to
new domains without requiring ground-truth program annotations
making the approach more practical (Table 4). We also investigate
the effect of the training data size and reward choices used in the
policy gradient algorithm [6] on the performance of the parser.
Finally, we evaluate the performance on the task of primitive
detection and compare it with a Faster R-CNN detector [7] trained
on the same dataset. CSGNET offers 4.2% higher Mean Average
Precision (MAP) and is 4 x faster compared to the Faster R-CNN
detector, suggesting that joint reasoning about the presence and
ordering of objects leads to better performance for object detection
(Table 6).

This paper extends our work that first appeared in [8], adding
to it an analysis on effect of reward shaping and training set
size on the performance, as well as the stack-augmented network
architecture. Our PyTorch [9] implementation is publicly available
at: https://hippogriff.github.io/CSGNet/.

2 RELATED WORK

CSG parsing has a long history and a number of approaches have
been proposed in the literature over the past 20 years. Much of the
earlier work can be categorized as “bottom-up” and focuses on
the problem of converting a boundary representation (b-Rep) of
the shape to a CSG program. Our work is more related to program
generation approaches using neural networks which have recently
seen a revival in the context of natural language, graphics, and
visual reasoning tasks. We briefly summarize prior work below.

2.1

An early example of a grammar-based shape parsing approach
is the “pictorial structure” model [10]. It uses a tree-structured
grammar to represent articulated objects and has been applied
to parsing and detecting humans and other categories [11]-[13].
However, the parse trees are often shallow and these methods rely
on accurate bottom-up proposals to guide parsing (e.g., face and
upper-body detection for humans). In contrast, primitive detection
for CSG parsing is challenging as shapes change significantly
when boolean operations are applied to them. Approaches, such
as [14]-[16], assume an exact boundary representation of primi-
tives which is challenging to estimate from noisy or low-resolution
shapes. This combined with the fact that parse trees for CSG
can be significantly deeper makes bottom-up parsing error prone.
Evolutionary approaches have also been investigated for opti-
mizing CSG trees [17]-[19], however, they are computationally
expensive.

Thus, recent work has focused on reducing the complexity
of search. Tao et al. [20] directly operates on input meshes, and
converts the mixed domain of CSG trees (discrete operations and
continuous primitive locations) to a discrete domain that is suitable
for boolean satisfiability (SAT) based program synthesizers. This
is different from our approach which uses a neural network to
generate programs without relying on an external optimizer.

Bottom-up shape parsing

2.2

A popular approach to generate 3D shapes and scenes is to
infer context-free, often probabilistic “shape grammars” from a
small set of exemplars, then sample grammar derivations to create
new shapes [21]-[24]. This approach called Inverse Procedural
Modeling (IPM) has also been used in analysis-by-synthesis image
parsing frameworks [25]-[27].

Recent approaches employ CNNs to infer parameters of ob-
jects [28] or whole scenes [29] to aid procedural modeling. A
similar trend is observed in graphics applications where CNNs are
used to map input images or partial shapes to procedural model
parameters [30]-[32]. Wu et al. [33] detect objects in scenes
by employing a network for producing object proposals and a
network that predicts whether there is an object in a proposed
segment, along with various object attributes. Eslami et al. [34]
use a recurrent neural network to attend to one object at a time in
a scene, and learn to use an appropriate number of inference steps
to recover object counts, identities and poses.

Our goal is fundamentally different: given a generic grammar
describing 2D or 3D modeling instructions and a target image
or shape, our method infers a derivation, or more specifically a
modeling program, that describes it. The underlying grammar for
CSG is quite generic compared to specialized shape grammars. It
can model shapes in several different classes and domains (e.g.,
furniture, logos, etc.).

Inverse procedural modeling

2.3 Neural program induction

Our approach is inspired by recent work in using neural networks
to infer programs expressed in some high-level language, e.g., to
answer question involving complex arithmetic, logical, or seman-
tic parsing operations [35]-[43]. Approaches, such as [44], [45],
produce programs composed of functions that perform composi-
tional reasoning on an image using an execution engine consisting
of neural modules [46]. Similarly, our method produces a program

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

Decoder
(GRU)

Encoder
(CNN)

i
o.
>
=
o
=
(@]
()

‘ Ground Truth
Program

Cross Entropy

v
"~ Rendering
Program ——————>

Output

Fig. 2: Overview of our approach. Our neural shape parser consists of two parts: first at every time step encoder takes as input a
target shape (2D or 3D) and outputs a feature vector through CNN. Second, a decoder maps these features to a sequence of modeling
instructions yielding a visual program. The rendering engine processes the program and outputs the final shape. The training signal can
either come from ground truth programs when such are available, or in the form of rewards after rendering the predicted programs.

consisting of shape modeling instructions to match a target image
by incorporating a shape renderer.

Other related work include the recent work by Tian et al.
[47], which proposes a program induction architecture for 3D
shape modeling. Here programs contain a variety of primitives and
symmetries are incorporated with loops. While this is effective
for categories such as chairs, the lack of boolean operations is
limiting. A more complex approach is that of Ellis et al. [48],
who synthesize hand-drawn shapes by combining (lines, circles,
rectangles) into Latex programs. Program synthesis is posed as a
constraint satisfaction problem which is computationally expen-
sive and can take hours to solve. In contrast, our feed-forward
model that takes a fraction of a second to generate a program.

2.4 Primitive fitting

Deep networks have recently been applied to a wide range of
primitive fitting problems for 2D and 3D shapes. Tulsiani et al.
[49] proposed a volumetric CNN that predicts a fixed number
of cuboidal primitives to describe an input 3D shape. Zou et al.
[50] proposed an LSTM-based architecture to predict a variable
number of boxes given input depth images. Li et al. [51] intro-
duced a point cloud based primitive fitting network where shapes
are represented as an union of primitives. Paschalidou et al. [52]
uses superquadrics instead of traditional cuboids. Genova et al.
[53] proposed a network that predicts local implicit functions
decomposing the input shape into 3D Gaussian blobs. Huang et
al. [54] decompose an image by detecting primitives and arranging
them into layers. Gao et al. [55] train deep network to produce
control points for splines using input images and point cloud.
Recent networks such as BSP-Net [56] and CvxNet [57] are
built on the concept of binary space partitioning to produce a
collection of convexes that approximates the input point cloud or
an image. Deprelle et al. [58] proposed representing shapes as the
combination of learned deformable elementary 3D structures. The
above approaches are trained to minimize reconstruction error like
ours. On the other hand, they focus on predicting primitives, while
our method also learns modeling operations (CSG) on them.

3 DESIGNING A NEURAL SHAPE PARSER

In this section, we first present a neural shape parser, called
CSGNET, that induces programs based on a CSG grammar
given only 2D/3D shapes as input. We also present another
shape parser variant, called CSGNETSTACK, which incorporates
a stack as a form of explicit memory and results in improved
accuracy and faster training. We show that both variants can be
trained to produce CSG programs in a supervised learning setting
when ground-truth programs are available. When these are not
available, we show that reinforcement learning can be used based
on policy gradient and reward shaping techniques. Finally, we
describe ways to improve the shape parsing at test time through a
post-processing stage.

CSGNET. The goal of a shape parser 7 is to produce a
sequence of instructions given an input shape. The parser can
be implemented as an encoder-decoder using neural network
modules as shown in Figure 2. The encoder takes as input an
image I and produces an encoding ®(I) using a CNN. The
decoder O takes as input ®(I) and produces a probability
distribution over programs P represented as a sequence of
instructions. Decoders can be implemented using Recurrent
Neural Networks (RNNs). We employ Gated Recurrent Units
(GRUs) [59] that have been widely used for sequence prediction
tasks such as generating natural language and speech. The overall
network can be written as (1) = © o ®(I). We call this basic
architecture as CSGNET (see also Figure 3, left).

CSGNETSTACK. The above architecture can further be improved
by incorporating feedback from the renderer back to the network.
More specifically, the encoder can be augmented with an execution
stack that stores the result of the renderer at every time step along
with the input shape. This enables the network to adapt to both
current and previous rendered results. To accomplish this, our CSG
rendering engine executes the program instructions produced by
the decoder with the help of stack S = {s; : t = 1,2...} ateach
time step ¢. The stack is updated after every instruction is executed
and contains intermediate shapes produced by previous boolean
operations or simply an initially drawn shape primitive. This stack

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

I

Input = [Target, S]

1
1
1 r e 3 5
1
: SLoSE S-l
1 Target | Sl
Input = [Target] I
Encoder Decoder ! Encoder Decoder
P ot=1
1
1
Predicted | 1 Predicted
Program |

't=2

: 1

' ' !

: ' !

' :

' 1=3
1
X
1
1

CSGNet

: CSGNetStack

Fig. 3: Two proposed architectures of our neural shape parser CSGNET (left), CSGNETSTACK (right). CSGNet takes the target
shape as input and encodes it using a CNN, whereas in CSGNETSTACK, the target shape is concatenated with stack Sy along the
channel dimension and passes as input to the CNN encoder at every time step. Empty entries in the stack are shown in white.

of shapes is concatenated with the target shape, all stored as binary
maps, along the channel dimension. The concatenated map is
processed by the network at the next time step. Instead of taking
all elements of the stack, which vary in number depending on the
generated program, we only take the top-K maps of the stack.
Empty entries in the stack are represented as all-zero maps (see
also Figure 3, right). At the first time step, the stack is empty, so all
K maps are zero. While the stack contains complete information
about the program execution at any point in time, it can grow
arbitrarily deep. Keeping the top- K elements of the stack provides
a way to trade-off the computational and memory requirements
with the amount of information about the program execution.

In our implementation, the parser 7 takes Z = [I, 5] as input
of size 64 x 64 x (K +1) for 2D networks and 64 x 64 x 64 x (K +
1) for 3D networks, where I is the input shape, S is the execution
stack of the renderer, and K is the size of the stack. The number
of channels is (K + 1) since the target shape, also represented
as 642 (or 643 in 3D), is concatenated with the stack. Details of
the architecture are described in Section 4. Similarly to the basic
CSGNET architecture, the encoder takes Z as input and yields
a fixed length encoding ®(Z), which is passed as input to the
decoder O to produce a probability distribution over programs P.
The stack-based network can be written as 7(Z) = ©o®(Z). We
call this stack based architecture CSGNETSTACK. The difference
between the two architectures is illustrated in Figure 3.
Grammar. The space of programs can be efficiently described
according to a context-free grammar [60]. A context-free grammar
is a formal grammar when its production rules can be applied
regardless of the context of its non-terminal symbols. For example,
in constructive solid geometry the instructions consist of drawing
primitives (eg, spheres, cubes, cylinders, etc) and performing
boolean operations described as a grammar with the following
production rules:

S—FE

E—SEET|P

T — 0P1|0Pg]|... 0P,

P — SHAPE;|SHAPEs|...|SHAPE,

Each rule indicates possible derivations of a non-terminal
symbol separated by the | symbol. Here S is the start sym-
bol, OP; is chosen from a set of defined modeling opera-
tions and the SHAPE; is a primitive chosen from a set of
basic shapes at different positions, scales, orientations, etc. In-
structions can be written in a standard post-fix notation, e.g.,
SHAPE{SHAPE,OP1SHAPE3O0Py, which can be written in in-
fix notation as: (SHAPE1 OP; SHAPEs) OP2 SHAPEj3 . Table
4 shows an example of a program predicted by the network and
corresponding rendering process.

3.1

Given the input shape I and execution stack S of the renderer,
the parser network 7 generates a program that minimizes a
reconstruction error between the shape produced by executing the
program and a target shape. Note that not all programs are valid.
Our learning incorporates rewards promoting the generation of
programs that are both valid and capture the target shape well.

Learning

3.1.1 Supervised learning

When target programs are available both CSGNET and CSGNET-
STACK variants can be trained with standard supervised learning
techniques. Training data consists of N shapes, P corresponding
programs, and also in the case of CSGNETSTACK S stacks,
program triplets (I, S% P%), i = 1,...,N. The ground-truth
program P’ can be written as a sequence of instructions g, g5 ..
g%, where T is the length of the program P, Similarly, in the
case of CSGNETSTACK, the S can be written as sequence of
states of stack si, s .. si;pi used by the rendering engine while
executing the instructions in program P?. Note that while training
in supervised setting, the stack s; is generated by the renderer
while executing ground truth instructions g .¢, but during inference
time, the stack is generated by the renderer while executing
the predicted instructions. For both network variants, the RNN
produces a categorical distribution 7 for both variants.

The parameters 6 for either variant can be learned to maximize
the log-likelihood of the ground truth instructions:

N T;
'C(a) = Z Z log 779(9“911:75717 $1i—1 Il)

i=1t=1

6]

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

Instruction Execution

circle(32,32,28) push circle(32,32,28)
square (32,40,24) | push square (32,40,24)
circle(48,32,12) push circle(48,32,12)
circle(24,32,16) push circle(24,32,16)
union A=pop; B=pop; push (BUA)
intersect A=pop; B=pop; push (BMNA)
subtract A=pop; B=pop; push (B-A)

5
Stack P3 P4
[P1]
[P2 P1] P2 union(P3, P4)
[P3 P2 P1]
[P4 P3 P2 P1] P1 intersect(P2, E1)
[E1l P2 P1] // E1=P3UP4
[E2 P1] // E2=P2NEl subtract(P1, E2)
[Out] // Out=Pl-E2 Rendered Image

Fig. 4: Example program execution. Each row in the table from the top shows the instructions, program execution, and the current
state of the stack of the shift-reduce CSG parser. On the right is a graphical representation of the program. An instruction corresponding
to a primitive leads to push operation on the stack, while an operator instruction results in popping the top two elements of the stack

and pushing the result of applying this operator.

3.1.2 Learning with policy gradients

Without target programs one can minimize a reconstruction error
between the shape obtained by executing the program and the tar-
get. However, directly minimizing this error using gradient-based
techniques is not possible since the output space is discrete and
execution engines are typically not differentiable. Policy gradient
techniques [4] from the reinforcement learning (RL) literature can
instead be used in this case.

Concretely, the parser 7y, that represents a policy network,
can be used to sample a program y = (aj,a2 .. ar) conditioned
on the input shape I, and in the case of CSGNETSTACK, also on
the stack S' = (s1, s2 .. S7). Note that while training using policy
gradient and during inference time, the stack s; is generated by
the renderer while executing predicted instructions by the parser
since ground-truth programs are unavailable. Then a reward R can
be estimated by measuring the similarity between the generated
image I obtained by executing the program and the target shape
1. With this setup, we want to learn the network parameters 6 that
maximize the expected rewards over programs sampled under the
predicted distribution 7g(y|.S, I) across images I sampled from a
distribution D:

T
Erep [Jo(I)] =Erep ¥ Eyiomg(ylsrs.r) [B]
t=1

The outer expectation can be replaced by a sample estimate
on the training data. The gradient of the inner expectation can be
obtained by rearranging the equation as !

Vo Jg =V Z 779 = Z Vg log my (y) [7"9 (y)R]

Y

Here we use the identity Vomg(y) = mo(y)Vologme(y). It
is often intractable to compute the expectation Jp(I) since the
space of programs is very large. Hence, the expectation must be
approximated. The REINFORCE algorithm computes a Monte-
Carlo estimate (see also [4], [61] for derivations and explanation
of the policy gradient algorithm). This is expressed as:

Vo do(I ZZVIogm) ag*layt, v, 8% 1, I)R™

mltl

by sampling M programs from the policy my. Each program 4™
is obtained by sampling instructions @;* ;. from the distribution

1. conditioning on stack and input image is removed for the sake of brevity.

ayr ~ mg(arlafy_q1;87%_1,1) at every time step ¢ until the
stop symbol (EOS) is sampled. The reward R™ is calculated by
executing the program y™. Sampling-based estimates typically
have high variance that can be reduced by subtracting a baseline
without changing the bias as:

Vo do(I Z ZVglogwe ag*latt, _y, 871, I)(R™)

m=1t=1
2
A good choice of the baseline is the expected value of returns
starting from ¢ [4], [62]. We compute the baseline as the running
average of past rewards.

Reward. The rewards should be primarily designed to encourage
visual similarity of the generated program with the target. Visual
similarity between two shapes is measured using the Chamfer
distance (CD) between points on the silhouettes of each shape.
We focus on the silhouettes because these tend to be more related
to the perceptual similarity of shapes [63]. The CD is between two
point sets, x and y, is defined as follows:

Ch(x,y) = 2‘X|Zmln||w yll, + mellx yll,

’L/Ey

The points are scaled by the image diagonal, thus Ch(x,y) €
[0,1] Vx,y. The distance can be efficiently computed using
distance transforms. In our implementation, we also set a max-
imum length T for the induced programs to avoid having too
long or redundant programs (e.g., repeating the same modeling
instructions over and over again). We then define the reward as:

R [(Ch(Edge(I),Edge(R(y)), yis valid
o, vy is invalid

where f is a reward shaping function and R is the CSG rendering
engine that renders the program y into a binary image. Note that
a valid program follows the grammar described in the Section
4.1, which can be verified by the execution engine. Since invalid
programs get zero reward, the maximum length constraint on the
programs helps the network to produce shorter programs with
high rewards. We use maximum length 7" = 13 in all of our RL
experiments. The function f shapes the CD as f(z) = (1 — z)”
with an exponent v > (. Higher values of v makes the reward
closer to zero, thereby making the network to produce programs
with smaller CD. Table 1 (left) shows the dynamics of reward
shaping function with different v value and (right) shows that

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

This amichs haa e acoegied for paibdkcation (n & fanie |-\.-|..-;\-.|I'|;I|I-\._-.pr1,|l i bt et e Fally sllied, Consent may change prios o Hnad pebd catian Crstdon inksrmatian TCY e 0o TP AN 20an, 3T, TEEE

Transactions na Patirra. Analyes and Machiae Inkcllgenoe

e =i

(o -

al Gy n wm =1 AL

- L =5 E

ax Ik - . e] "

g B e B

Ll " e i:i

(-1 (" . L 1]

(1] e -
(1] [T] LT oL i

Chamier Dieearee jroemal bed|

TABLE 1: Reward shaping. (Lefis We visualize ol skewness
introcuced by the < in dhe reward function, (Right) Larger ~ value
produces smaller CO (e nomber of paxels) when our nwdel is
trained vsing REIMNFORCE,

ADRAA
OO W

Fig. 5: SIII'IFI!:IF ol wur synthedically peneraled programs. 20
samples are in the top row and 3D zamples in the boitom. Por
clarity. the shapes are rendered in their original, high-resolufion
miesh format before voxelization.

increasang < valoes decreases the average CDocalculalsd over the
test sed. W choose + = 20 in our experiments, as this gives best
prl'li,:-l'mu.m.:l: o ciar vidlilatmon sel as shown m Tahle 1.

32 Inference

Greedly decoding and beam search. Estimating the most likely
prognun given an dapul s oinisactable using BMNs Instead ome
wsilly employs & greedy decoder that picks the most likely
instraction at each wime sep. An alienale is 0 use o beam seanch
procedure thot mainiains the k-best likely sequences o each time
atiep. In our experiments we report resulis with varying beam sazes.

Yisamlly-puicled refinement. Both parser vamani= prvduce a pro-
cram with a discrete st of peimitives. However, further refinement
can be done by directly optimizing the position and size of the
printives o neEsiodze the reward. The refinement slep keeps
the program structore of the progam amd primitive ype fixed
bul wsess a heunste algombm [64) o oplomize the parnsslers
using feedbnck from the rendering engine, In our experiments, we
abserved that the algorthm converges o a local minima in aboul
10 iterations of refinement and consistently improves the resulis.

4 EXPERIMENTS

W describe our experiments on different datosets exploring the
generalizaten capabilities af ear petwork varants (CRGNET amd
CRGNETETACKL We first describe our datasets: (i) an aulomat-
ically generated datasst of 21 and 30D shapes bsed on synihetic
generation of CSG progroms., (i) 20 CAD shapes mined from the
weh where ground-truth prognums ane nol aviilabde, and (i) logo

Olmd-RRdE [of 3800 IEEE. Permral wa @ pesreitied, bl sepuslication) redistribusne requises IEEE permission. Ses

&

Progzram 2 il
Langth | Tron | ¥al | Test | Tron | Yal | Tesi

L] e [3k | Sk | 000k | 10k | Tk

5 MO0k | 10k | S0k | Ak | 0k | 40k

T 150k | 20k | S0k | 4000k | 40k | S0k

Q M0k | 20k | Sk . = =

11 1E0k | 2k 100K | - s s

1% 180k | 20k 100k | - = =

TABLE Z; Statistics of onr 210 and 31F synthetic datasct,

imapes mined also from the web where ground-tmth programs
are also i avalable. Below we discuss our gualistve amd
quantitative results on the above datase,

41 Datasels

Tor train our network in the supervised learning setting, we
automatcally cremed a large set of 2D and 30 CS5G-based
synthetic progrms aceording to the grammars described below,

Synthetic 2D shapes. We sampled denvations of the following
CS0 grammar 1o create our synthetic dataser i the 20 case:

R

E— EET| PiL.R):

T = intersect | wnion | subfrack;
P — aguare | circle | teiangle;

L— [H:H:Eﬁ]-z.- = [:-_t.-q :3;:,-].

Primitives are specified by their type: sqmare, circle. of trisngle,
locutions Loond circumseribing circle of radies i on o canvas
of size Gd = Gd. There ane three boolean operations: fnlergect,
wrion, and sabtroct. L ois discretized o lie on a square grid
with spaciig of 2 units and B s discretized with spacing of 4
units, The selaugles are assumed 1o be wpright and equilateral.
The svmhenc dalasel 15 creaied by sampling random progroms
containing different pumber of primitives from the above
grammar, constrwining the distnbution of vanous |'|rimi1i'.-1:
tvpes and operation types w0 be uniform. We alse cnsure thai
no duplicaie programs exist in our datases, The primitives are
rendered az binary images and the programs are executed on a
canvis of G = G pixels. Samples from oor dataset ane shown in
Figure 5. Table 2 provides details about the size and splits of our
dutnset,

Symthetic 3D shapes. We sampled derivations of the following
grammar in the case of 30 C50:

& =+ E)} E— EET:

E —apl LR | eofL, B) | eyl L, 12, H)
T = intersect | anion | subtract;
L+ [8:8: 56

R+ [8:4:32); H - [8:4:32)

The operations are same as in dhe 20 case, Three hasic
solids are denoted by “sp' Sphene, “ei”: Cabe, ‘e Cylisder. 1
represemts the center of primitive in a 3T vooel grid. 1 specifies
rading o sphere and cylinder, or the size of cube. 5 the
height of cylinder. The primitives are rendered as voxels and the
prognums are execuied on o 30D volomene grid of siee G4 =

Aumorized lcansed use limiled %00 University ol Massachusats Amhbarst. Downloaded on May 31,2027 at 15:35:30 UTC om IEEE Xpkora. Resinchons apply.

o e eve gy peblicrtinea_sandard wpobbcstiomirightaindes hirel i see infarrmetio.

This amichs haa e acoegied for paibdkcation (n & fanie I;.-||.-;\-.||'|;I||l\._-."1,|| i bt et e Fally s81ed, Conent may change prior o fired bl catian, Clrstion inkermation TCH e o TP AN 20an, s T, TEEE

Transactions na Patirra. Analyes and Machiae Inkcllgenoe

___________ &
S —a
W e [x
s ogemzees
il
3
T
o == [EGMNET bap-|
e o CAGNETSTACK top-1
i1 1 =¥= CHGRNET top-10
- CAGNETETACK top- 10
i

i in il Al il
Proportion of Traming data (%)

¥

—pp CRGNET top-]

Ali+ e CREGMETS MK top-]
- =F= CEGNET tap-1
E & CRGMETS acw bop- 10
=
E
a
E
£
et
[——— ¥
{5 & _'_T B e e s e e -
B o P
11 4 S — >
i a0 1] Fab 11

Propartion of Training data %)

Fig. & Performance (Left: 10W, Right: chamfer distance) of models by changing training size on oonr synthetic datasef. Training
15 done vsing 2 of the complete dataser, wihere o s shown on tee bornzontal axis, The wop-f beam sazes used during decoding at

iest time are shown in the legend. The perfommance of CSGMET (owr basic non-stack newrnl shape parser) is shown in blue and the
perfprmance of CHGNETSTACK (our varian thal wses the execution siack) is shown in lime. The above plots show the average of the

metrics evaluated at 4 different raining muns,

= G, We wsed the same randem samipling medhasd o5 used for the
svnthetic 20 dataset, resulting in 30 O30 programs, 30 shape
samiples are shown in Figure 5.

2D CAD shaypes, We collecied 8K CAD shapes froa the Trimible
ADWarehouse dataser [65] in three calegories: chair, desk and
lrrpes. We rendensd the CAL shapes inte G = 6 binary masks
from their fromt and side views. In Scection 4, we show that the
renlered xha'pe.':. cim e rlanm.l effechively through our viswal
program induction method. We split this dataset inte SR shapes
for truining, 15K validation amd 15K for testing,

Web logos. We mined 20 binary loges from the web that can
be maodeled using the primifives in our outpat shapes, We best our
approach on these logos withowt funther training of fine-tuning our
ned on this daga,

4.2 Implementation details

20 shape parsimg. Our encoder is based on oan image-based
cmenel m e case of 20 mpuls. In the case al CSGONETSTACK,
the input 1o the network is o fived size stock along with target
image concalemlel along the chammel dimension, resulling in an
ihe input tensor of size 61 o= 64 = (K + 1), where & is the
number of nsed maps in the stack (sack size). In the architecire
without stack (CSGNET), K is simply set w0 (L The outpit of
the encoder is passed as inpud o oor GEU-based decoder al
every program step. The hidden state of ouwr GRLU units 15 passad
throsgh two fully-connected layers, which are then converted
ine a probabiliy distibution over program instrnections through
a ¢lassifcation layer, Por the 200 CSG there are 000 umigue
instructions corresponding w306 different primdive cypes,
discrete locations and sizes. the 3 boolean operations and the siop
symbal.

A shape parsing,. In the case of 31 shapes. the encader is based
g an volumetrie, voxel-based convnel AD-CSGNETSTACK oom-
catenates the stack with the farget shape along the channel dimen-
siom, resulting in an input fensor of size 64 % 64 = 64 = (W + 1),

Methiad | BOU iRm0yt | DO kst | O ksl) | O k=T L
Ml Tal - I -
CHRGNET ApTT a8.74 L 132
CHONITETACK 9133 F3A45 (LD [N

TABLE 3 Comparison of a Y% baseline with the super-
vised network without stack (CSGNETY and with stack
(CSGNETSTACK) on the syaihetic 21F datesel. Besulls are
shown using Chamfer Distance (CD0) and 10U medric by varying
heam sizes () during decoding, T is in number of pixels,

where K s the number of used maps in the stack (stack skee) In
ihe architecture without stack (AD-CSGNET), R is simply sei bo
(L The encoder comprises of multiple bvers of 30 comvalations
vielding a fixed size encoding vector, Similarly o the 200 case,
the GRU-based decoder takes the outpul of the encoder aml
sequentially produces the progrom instroctions. In this case, there
are G35 I|.||1i1.|m:- instructions with i3] different Ly pes of 'primi-
tives with different sizes and locations. plos 3 boolean modeling
-:_|-|'u:|11i|,:rnx aml a slop svmbol.

Dwring draining. on synthetic dataset. we sample images/30
shapes rendered (rom programs of vamable leagih {up o 13 Tor
20 and wp te 7 for 30 dataset) from training dataset from Table
2. Maore detnls aboul the architeciure ol our enconder amll decocder
(namber and type of layersh are provided in the supplememary
mitkerial,

For supervised learning, we uss the Adam optimizer [66] with
learning ruse 0L and dropout of 002 in non-recumant netwiork
connections. For reinforcement learning, we wse stochastic gradi-
ent descent with IRY momentuem, (LU leaming nde, and with the
same dropout as above,

4.3 Resulis

We evalumle our network vartants in twg different ways: i) as
midels For inferving the entire program, and i) as models for
inferring primitives, e, 05 object deteciors,

4.3.1 Inferring programs
Evaluation on the synthetic 210 shapes, We perform supervised
learning 1o trvin our slack-based netaork CSONETSTACE amd

Olmd-RRdA [of 3800 IEEE. Permral wa @ pesreitied, bl sepuslication) redistribusns requises IEFE permisson. Ses hepaivearw eeeargpehlicatnes_sandsrdspubkcationalightuindes hirel far suee infonmodio.

Aumorized lcansed use limiled %00 University ol Massachusats Amhbarst. Downloaded on May 31,2027 at 15:35:30 UTC om IEEE Xpkora. Resinchons apply.

This arslche bas besen acosgied for b kcation In & Faroe Issee of thils marmal. i bas ned Been fally ssllied, Content may change priod o Hral pabi catian Crstion

Imamactiors on Pattera. finalyes and Machime Inizlhgrrece

nbermation TCH ae o TP AME 200, sa- 1 e, TEEE

&
» . . .
CSGNET + AL k=1
. U0 @ refineinent feratinng]
Method Train Test T —1 'ri__ z ""i_ I ! "'.:'_H: — T CEGKat + RL k=10
' ' - : —=— CEGNetsack + AL ksl
NN : - 5 O S O S S Wl ¥ E e Rpetiact: + B Kl
CRGMETD Superilsed | k=1 Tan 1.2 103 DAT G G =10
CRGMET Supervised | k=10 | LG8 7O WGT DUE3 (LER OLGZ a
CEGNETSTACE | Supervised | k=i L0866 Al B 2om 2an Zos
CHEGMETSTACK | Supervised | k=IO | 138 uhG Dodh DG 0U9 0.0 E
CROMET HL k=1 L& L7l oad odr o L6 = L& ;
CROMET HL k=10 | 110 51 04T 04l o4l 0l W Tl -
CROMETSTACK | KL k=1 127 AT OEd 058 057 6T 0.4 B e = v
CROMETSTACE | KL k=10 | 10 4% 043 035 034 04
b z 4 B] 10 1z

Inferance Time [}

TABLE 4 Comparison of various approaches on the CAD shape dataset. CSGMET: newral shape parser without siock,
CHONETSTACK: parser with slack, NM: nearest neighbor, Lell: Besults are shown with dafferent beam sises (6 during decoding.
Fine-tuning using RL improves the performance of bath network, with CRGNETSTACK perfoming the best. Increasing the number of
iberadioms 000 ofF visually guiced] refinement during testing also improves resulls significantly, ¢ = 50 comesponcds W rumnimg visually
guided refinement till convergence, Right: Inference time for different methods. Increasing numiber of iterations of wviswally guided
refinement irnp'r-:n'l,:!.' e Th.*'rl'r-rln:lm,'n.l. with least C11 in a given inference lime is |'|r|'-c||||,'|.hcl by Stock based archilechure, CE) metric is in

number of pizels.

a)

f)

OCCORO
> >

Fig. T: Comparison of performance on syvathetic 210 datasel.
a) Input image. by MM-retrieved image, ¢ top-1 prediction of
CRGNET, d) tlop=1 predicion of CSGMNETSTACK, e top= 100 pre-
diction of CRGNET and £ fop-10 prediction of CSGNETSTACK.

thie non-stack-based network CRGMET on the 1raining splin of this
synithetic dalnset, and evaluage pl,:rf-:miu'-c:u o its fest split under
dafferent beam sizes. We compare with a baseline thal retreves
a program in the tmining split vsing o Mearest Meighbor (MR}
approach. In WM setting, the program for a west image is retreved
by toking the program of the troin image that is most similar to
the sl imsage wsing the 10U merne.

Tahle } compares CSONETSTACKE, CSGMET, and a NM

bascline wsing the Chamfer disiance and HOU between the fesi
targel and predicied shapes using the complete synibelic dalset.
Owir parser 9 able o owperform the MM method. One would
expiect that NN wouald rrcrl'nrm weell here becouse the size of
e traning set 13 large. Howeser, our resulis indicate that our
compasilional parser is better at capturing shape varahility, which
is abll significant an this dataser. Besulis ame also shown with
increasing beam sizes (k) during decading, which consistendly
igwoves perfonmanc:. Figure 7 also shows the programs retoeved
throwgh MM and our generated program for a number of charac-
lerishic exampdes 10 our e sphin o our symthets dataset.

We also examing the learning capability of CSGNETSTACK
with significontly less synthetic troining dataset in comparison
o CSGMET in the Figure 6, With just 5% of the waal datase,
CRGMETSTACK performs 800 [OU (1.5 CTY in comparison
w TR O (1LY CD) owsing CHGMET. The CSGNETSTACK
continues o perform better compared w CRGMNET in the case
o more traming data, Thes shesws thal imcorporaling the exira
knowledge in the form of an excowtion siack based on the
ezl archilecture makes il easier by beamn Lo parse shapes,

Evaluation on 2Id CAD} shapes, For this dotasel, we repori
resulis on ols fesl spdil under two comdiions: (1) when traming
our network only on synthetic data. and (i} when training our
netwiork on symthebic dala and also Ooe-lumng ol on the baming
aplit of rendered CAD datased using policy gradicnts.

Toble 4 shows quantitative resulis on this dadases, We firs)
compare with the NN baselie. For any shape 1n this dataser,
where grownd truth program is not available, NN retrieves o shape
Irivm svnilhene datasel and we wse the ground trath program of the
retrieved symthetic shape for comparison,

Wi then list the performance of CSGMNETSTACK and C5-
GMET wained in a supervised manner oaly on owur synilsetic
dadaset, Further iraining with Reinforcement Leaming (RL3 on
the trainimg split of the 20 CAD dotase improves the pesilis
significanily and cutperforms the MM approach by a considerable
margin. This also shows the advamiaze ol wang BL, which trmans
ihe shape parser without grownd-truth programs. The stack based
netwiork CSGMNETSTACK performs beller than CSGONET showing

Ol pede o) 38306 IEEE. Pemmral .|||-\.':rl'llll"-\.'.hll sepuslcation redhatrisiene quises ILEE pemmasdon. bes hepa e e |IIF\.-".|IJ'J|'J:JIrd qul'_lr\Jl\."rllll...Jn-ln.-r.Flu--m-Jr: hired Sar mes irdammostiom.

Aumorized lcansed use limiled %00 University ol Massachusats Amhbarst. Downloaded on May 31,2027 at 15:35:30 UTC om IEEE Xpkora. Resinchons apply.

This arslche bas bepen acosgred o pabdkcation In & Faroe [ssee of this imarmal i bas red been fally ssflied, Conteni may change prior o Hrad pebdcatian Cration inksematian TCH e o TP AME 20an, 34T, TEEE

Imamactiors on Pattera. finalyes and Machime Ir]:h_l,:rh..'

L .

a) Target I.l "I ’{

N

£} CSGNeT I"II ::l '|'|'

d) CSGNETSTAcK I"II -_I r‘

&) CSGNET + rstne]_I "] l'i
) CEGMETSTACK + refine].l T r‘

da| | hn| B by e
LA X 3 kL
s b Sk P MR S1p B
A O. A, 0. I_
aJa31d I3 o1
A d u| | s

Fig. & Comparison of performance on the 20 CAT dataset. a) Target image, by NN retrieved image, ¢) best result from beam scarch
o lop of CSGNET himestuned with BL. o) best resall froem beam seanch on op of CSGNETSTACK fine<duned with RL, and refining
results wsing the visually guided search on the best beam result of CSGNET (e} and CSGMETSTACK (f)

. AD-CEOMNET AD-CROMETETACK
Methed NN e TS TE e T T =W
O T | 702 | Bl | 6.0 | 860 | 15 | 869 | w05
I | 259 | 186 | a9 | e | ov | Lon | ot

TABRLE 5 Comparison ol the sopervised nelwork (3
CSGMNETSTACK and ID-CSGNET) with NN baseline on the
A datasel, Fesulis are shown m:in;_u FOOLI S amd Chamfer dis-
tance (C0) metrics, and varying beam sizes (&) domng decoding.
CLr has been multiplied by 100

hedter F.:m,-ral'i:-'ruidm on the new dataset, We nole that directly
training the network wsng BL alope does not yield good resulis
which sugpests that the two-siage leaming (supervised learning
and RLy is important. Fisally, optimizing the best beaim seasch
program with viseally gwided refinement yielded resulis with the
amsallest Chamter Distance. Frigure 5 shows o compansoen of the
remdered programs For various examples in the test splic of the
210 CAL datasel lor vanamls of our network. Visually gusbed
refinement on iop of beam search of our two stage-learned netaork
gualitatively provfuces resulis that best match the inpuet image.

We al=o show an ablation siudy indicating how much
pretraining on the synihetic datasel 15 regquired 1o perform well on
the CAD dataszt in Figure % With just 555 of the symheric dacaset
hased FlT{!ITﬂiﬂ'irl]_l., CROMETSTACK gi'n:-.n GUSE DO €aned 1.3 CT3)
in comparison o G TOU (and 19 CD, which shows the faster
learning copability of our stack based architecture. Incrensing the
h'_'.'lllhl:[il\.' [|u.1|li|'|g size used i FIIL'lIuJI!Ii:l'IE Al hI.iEI'Il decroasy in
performance for the CEGNETSTACK network after 155, which
hats @t the overfitting of the network on the symbenic datasel
damain,

Evaluation on Logoes, We experiment with the logo doatasst
desemibed in Section 4.1 (mome o these eos parscipale n
trainingl. Cuipwis of the induced programs parsing the inpui
logos are shown in Figure 1L In general, our method s able o

parse hogos inte primitives well, yet performance can degrade
when kng proprams are regquired o generale thems, o when they
contain shapes that are very different from our used primitives,

Evaluation on Synthetic 30 CS4. Finally, we show thal our
approach can be extended to 3D shopes, In the 300 CSG oset-
ting wee wse ADC80 datasel as descnbed an the Section 4.1,
Wi train a stack based AD-CSGMETSTACKE network that takes
Gd w6 w6 w (K 4+ 1) voxel representation of input shape
concatenated with voxel representation of stack. The input 1o our
AD-CREGMET are voselired d1:|.|'u.:x in a lxid=nhd 1:|'i|j. {ur
outpat 15 a A0 CRG program, which can be remdered a5 a high-
resodution podvpon mesh (we emphasize that our owpat is nol
vaxels, bul CR0 primitives and operations that can be comguibed
and rendered accurniely), Figure |1 show pairs of input voxel grids
andd oar cutpul shapes from the test splic of tse 30 dataser. The
quantitative resulis are shown in the Table 5. where we compare
air ADCSGMNETSTACK and AD-CSGNET networks al dillerent
beam search decodings with the NN method. using both the TOL
and Chamier distance metrics, Chamler distance is compuled
using Eq. 3 by sampling 5k points on ground fnath and predicied
surfnce, The stack-hased network alsoe irnTu'cl'rm the Tn:'rli:-'rm:ml;.:
owver the pon-stack variant, The resulis indicate thar our method
i% pmrn'ih'ing in im;ll.:u.:in; COTTECE Progrims for 30 xhapm. which
also lsas the advamiage of sccurately reconstracting the voxeliped
surfaces inin high-resclation surfoces

4.3.2 Primitive detection

Sweeessful program indaction for a shape requires not only pre-
dicting correct primitives bot alse comect sequences of operntions
o combinge lsese pringilives. Here we evaluate thse shape parser
a5 o primitive detector (Le., we evaloate the outpat primitives of
auir program, mdd The operations themselves), This allowws us o
direcily compare our approach with botbom-up object detection
lechnigues.

iz Eeds [ch 3336 IEFE. Persral us Jll-\.':rl'Jlll'H.'.h'Jl sepusleation redntrisisne requises ILEE pennasdon. bes b '.'.'h’h"H.l.'h.:alI"l'FlJllﬂl:alrl HJ.II'_II'h]L'Tlllt:llllm'l‘.F'llu'lrl-\jitjllrl']1II s oo,

Aumorized lcansed use limiled %00 University ol Massachusats Amhbarst. Downloaded on May 31,2027 at 15:35:30 UTC om IEEE Xpkora. Resinchons apply.

This arslche bas bepen acosgred o pabdkcation In & Faroe [ssee of this imarmal i bas red been fally ssflied, Conteni may change prior o Hrad pebdcatian Cration inksematian TCH e o TP AME 20an, 34T, TEEE

I mmactions oz Pativra Ainayes and Machine Ir]:h_l,:rh..'

LGRS

LIRFLI} o

a4

== [EGENE

* L RN ETSTACE

m] i Al 1
Prapartion of Synthetic Training data (55)

sl

1.4 == 5ENED
L Un e Ersreds

Charmter Distance

e] i]] 101
Proportion of Synthetic Training data ('5)

Fig. % Performance (Leftz IOU, Right: chamfer distance) of CRGNET and CSGNETSTACK on the tesi split of the 20 CAD
dataset wri the size of the synthetic dataset wsed to pre-train the two archifectures, Pre-iraining is done using 2% of the compleie
avinthetic datasen (2 1% shown o the horzomtal avis) and Goe-lendng 15 dose on the complete CAD datasel. CSONETSTACK performs
bedter while using less proportion of the synthetic dataset for prefraining. Incressing the size of pretruining dataset beyond 15% lends
to decrease in pedomanes, which hints an slight oserfiting on the syathetc datasen domsain.

(FEX*k)
C FNw L
9..0%°

'I"ig. 10 Besults e our logag diknsed, o) T.:r_|_1r,:1 'I|_'|]_1|.'|x. [all ol
shapes From CSGMET and ¢ infered primitives from owlpuat
program, Cirgle primitives are shown with red owilines, irinngles
with green amd sguares with bloe.

In particular we compare against Faster R-CNMs [T], a siade-
af-the-art object detector, Tle Faster B-CHM s based on the YG06-
M metwork [67] and is irained vsing Bronding-box and primitive
annotations based o our 20 symthete rainng dataset. AL sl
time the dedecior produces a set of bounding boxes with associabed
class scores. The muxlels are trained and evaluaved on G440 G400
pinel images, We also experimented with botiom-up approaches
oo primvitive detection based on Hough transtorm [68] and other
rule-hased approsches. However, our experiments indicated thai
the Faster R-CMM was considerably betler.

Foor o Fair |.:|1rn|1:|ri:-u,:-n._ wir ohitain |1rirn'i|i1.'{: detections from
CEGNET wained on the 2D synthene dataser only (same & the
Faster B-CHMY, To obiain detection scores, we sample & programs
with beam-search decoding. The primdtive score s the fraction of
times it appears pcross all beom progromes. This is a Monte Carlo
espmate of our detection score. The sccuracy can be measunsd
through stnndard evaluation protocols for object detection (similar
1o Bk i dthe PASCAL VOO benchmark). We report the Mean
Average Precision (MAP) for each primitive type using an overlap
threshald between the predicied and the tree bounding box af .5

Wdethoad |Circle | Sauare| Triangle |Mean|Speed (ine'ss
Feer B-UWMN B4 | 7Lk | HLH | BRI A
CEGMNET, k= 10| B0.7 | Mh3 HA. 1 | Hadl Hil
RGN, b — 40| BH.1 | BILT H41 | H43 2}

TABLE & MAF of detectors on the synthetic 20 shape dataset,
We also repont detection speed measured as imagesfecond on o
RWILHA 1070 GPLL

inbersection-over-union. Table & compares the parser network to
the Faster R-CNM approach.

Our parser clearly outperforms the Faster R-CHEN dedector on
the soquares amd triangles calegory. With larger beam search, we
also produce slighly better results for circle detection. Inberes-
ingly, our parser is considerably faster than Faster B-CNN pested

on the =ame GFL.

5 LIMITATIONS AND CONCLUSION

W believe that our work represents & step towands pearal gen-
erution of modeling programs given torget visual content, which
wi bielieve is guite ambitions and hard problen. We demsonstrabed
ihut the model penernlizes across domains, including bogos, 20
salhowsentes, asd 30 CAD shapes. It also 1% an effective primitive
dedectar in the comtext of 2D shupe primitive detection,

Cmiz maght argoe that the 20 images and 30 shages consicdensd
in this work are relatively simple in strocture or geometry, How-
ever, wie would like o poant oud that even in this ostensibly simple
application scenario (i) our methad demonstrates compelitive or
even heller resulls than stabe=olsthesar object deleciors, and mosl
imngortantly (iiy the problem of gemcrating programs using neusal
nedworks was B from trvial 1o solve; based on oar cxp:'rin'r:nlx._
a combasation of memory-enabled networks, supervised and RL
strutegies, along with beam and local exploration of the siote space
all seemed necessary o prodwce good nesalis.

As futore work, we would like o generalize our approach
o |omger peograms with much |uu'5,u'.r ApEices af PATamElers m
the modeling operations and more sophisticated reward functions
halancing perceplual simmlarly B tbe mpul im@ge and program
length. Our meshad s comently limited in its capability 10 gen-
erabe 31 shapes, since the soppored resolulion s ko due o

Aumorized lcansed use limiled %00 University ol Massachusats Amhbarst. Downloaded on May 31,2027 at 15:35:30 UTC om IEEE Xpkora. Resinchons apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3044749, IEEE

Transactions on Pattern Analysis and Machine Intelligence

create sphere create sphere
- &subtractit !

-

create cube create cyllnder
. &intersect ;

add one sphere
& compute unron

e

(b) Step summary

of our induced program (c) Output CSG shape

(a) Input voxelized shape

Fig. 11: Qualitative performance of 3D-CSGNET. a) Input
voxelized shape, b) Summarization of the steps of the program
induced by 3D-CSGNET in the form of intermediate shapes, c)
Final output created by executing induced program.

the voxel representation we use in our encoder. Sparser shape
representations [69] could help extending our network to handle
more challenging 3D cases and datasets, such as ShapeNet [70]
and ABC [71]. Another limitation is that our current control
of the CSG program size is crude; it is based only on an upper
bound of program size and a zero reward for invalid programs,
which often occur with larger number of program instructions.
Investigating more sophisticated complexity penalties could help
promoting right-sized programs. Other promising direction is
alternate strategies for combining bottom-up proposals and top-
down approaches for parsing shapes, in particular, approaches
based on constraint satisfaction and generic optimization.
Acknowledgments. The project is supported in part by grants
from the National Science Foundation (NSF) CHS-1422441,
CHS-1617333, 1IS-1617917. We also acknowledge the MassTech
collaborative grant for funding the UMass GPU cluster.

REFERENCES
(1]

I. Biederman, “Recognition-by-Components: A Theory of Human Image
Understanding,” Psychological Review, vol. 94, no. 2, 1987.

D. H. Laidlaw, W. B. Trumbore, and J. F. Hughes, “Constructive solid
geometry for polyhedral objects,” in Proc. SIGGRAPH, 1986.

S. Gershman and N. D. Goodman, “Amortized inference in probabilistic
reasoning,” in Proceedings of the Thirty-Sixth Annual Conference of the
Cognitive Science Society, 2014.

R. J. Williams, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Machine Learning, vol. 8, no.
3-4, pp. 229-256, 1992.

E. W. Dijkstra, “Recursive programming,” Numer. Math., vol. 2, no. 1,
1960.

A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc.
ICML, 1999.

(71

(8]

(9]
[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]

(29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

11

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” in Proc. NIPS,
2015.

G. Sharma, R. Goyal, D. Liu, E. Kalogerakis, and S. Maji, “Cs-
gnet: Neural shape parser for constructive solid geometry,” CoRR, vol.
abs/1712.08290, 2017.

“Pytorch,” https://pytorch.org.

M. A. Fischler and R. A. Elschlager, “The representation and matching
of pictorial structures,” IEEE Transactions on computers, vol. 100, no. 1,
pp. 67-92, 1973.

P. E. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object
recognition,” IJCV, vol. 61, no. 1, pp. 55-79, 2005.

Y. Yang and D. Ramanan, “Articulated pose estimation with flexible
mixtures-of-parts,” in Proc. CVPR, 2011.

L. Bourdev, S. Maji, T. Brox, and J. Malik, “Detecting people using
mutually consistent poselet activations,” in Proc. ECCV, 2010.

V. Shapiro and D. L. Vossler, “Construction and optimization of csg
representations,” Comput. Aided Des., vol. 23, no. 1, 1991.

S. F. Buchele and R. H. Crawford, “Three-dimensional halfspace con-
structive solid geometry tree construction from implicit boundary rep-
resentations,” in Proceedings of the Eighth ACM Symposium on Solid
Modeling and Applications, 2003.

V. Shapiro and D. L. Vossler, “Separation for boundary to csg conver-
sion,” ACM Trans. Graph., vol. 12, no. 1, 1993.

K. Hamza and K. Saitou, “Optimization of constructive solid geometry
via a tree-based multi-objective genetic algorithm,” in Genetic and
Evolutionary Computation, 2004.

D. Weiss, “Geometry-based structural optimization on cad specification
trees, phd dissertation, eth zurich,” 2009.

P-A. Fayolle and A. Pasko, “An evolutionary approach to the extraction
of object construction trees from 3d point clouds,” Computer-Aided
Design, vol. 74, pp. 1 — 17, 2016.

T. Du, J. P. Inala, Y. Pu, A. Spielberg, A. Schulz, D. Rus, A. Solar-
Lezama, and W. Matusik, “Inversecsg: Automatic conversion of 3d
models to csg trees,” ACM Trans. Graph., vol. 37, no. 6, Dec. 2018.

C. A. Vanegas, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and P. Waddell,
“Inverse Design of Urban Procedural Models,” ACM Transactions on
Graphics, vol. 31, no. 6, 2012.

O. Stava, S. Pirk, J. Kratt, B. Chen, R. Méch, O. Deussen, and B. Benes,
“Inverse Procedural Modelling of Trees,” Computer Graphics Forum,
vol. 33, no. 6, 2014.

D. Ritchie, B. Mildenhall, N. D. Goodman, and P. Hanrahan, “Controlling
Procedural Modeling Programs with Stochastically-ordered Sequential
Monte Carlo,” ACM Transactions on Graphics, vol. 34, no. 4, 2015.

J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Méch,
“Learning Design Patterns with Bayesian Grammar Induction,” in Proc.
UIST, 2012.

A. Yuille and D. Kersten, “Vision as Bayesian inference: analysis by
synthesis?” Trends in Cognitive Sciences, pp. 301-308, 2006.

O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios,
“Shape Grammar Parsing via Reinforcement Learning,” in Proc. CVPR,
2011.

A. Martinovic and L. Van Gool, “Bayesian Grammar Learning for Inverse
Procedural Modeling,” in Proc. CVPR, 2013.

T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenenbaum, “Deep
convolutional inverse graphics network,” in Proc. NIPS, 2015.

L. Romaszko, C. K. I. Williams, P. Moreno, and P. Kohli, “Vision-as-
inverse-graphics: Obtaining a rich 3d explanation of a scene from a single
image,” in ICCV workshops, 2017.

H. Huang, E. Kalogerakis, E. Yumer, and R. Mech, “Shape Synthesis
from Sketches via Procedural Models and Convolutional Networks,”
IEEE Trans. Vis. & Comp. Graphics, vol. 23, no. 8, 2017.

D. Ritchie, A. Thomas, P. Hanrahan, and N. D. Goodman, “Neurally-
Guided Procedural Models: Amortized Inference for Procedural Graphics
Programs using Neural Networks,” in Proc. NIPS, 2016.

G. Nishida, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and A. Bousseau,
“Interactive Sketching of Urban Procedural Models,” ACM Transactions
on Graphics, vol. 35, no. 4, 2016.

J. Wu and J. B. Tenenbaum, “Neural Scene De-rendering,” in Proc.
CVPR, 2017.

S. M. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari,
K. Kavukcuoglu, and G. Hinton, “Attend, Infer, Repeat: Fast Scene
Understanding with Generative Models,” in Proc. NIPS, 2016.

A. Neelakantan, Q. V. Le, and I. Sutskever, “Neural Programmer:
Inducing Latent Programs with Gradient Descent,” in Proc. ICLR, 2016.
S. Reed and N. de Freitas, “Neural Programmer-Interpreters,” in Proc.
ICLR, 2016.

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 31,2021 at 15:36:30 UTC from IEEE Xplore. Restrictions apply.

This armiche bas been acoegied for publication (n & fanme |ssee of this joarnal. o bes not been fally eflied, Coment may change prior m firal peblication, Craion nkermation O3 1o e TPASELzea0 e, 1EEE

Transactions na Patirra. Analyes and Machiae Inkcllgenoe

(371 M. Denil 5, Gamez Colmenarejo, 5. Cabi, D, Saxion, snd M. De Freias,
“Programmabls Agents,” et mreprne arXie PTG 0383, 2007

[38] M, Balog, A L, Gaont, M. Brockschmady, 5, Nowozing and D, Tirlow,
“DigpCodir; Léaming W Wrile Prograss,” in Proc, 8OLE, I00T

[3%] A Joalin ond T. Mukokoy, “Infering Alporichmic Potiems wih Soack-
Augmenied Recaress Mot in Pase. MIPE 2004,

(4] W Zaremba and [Suiskever, “Leaming to Execute,” arkiv prepring
carXive P04 1S, 204,

4] W, Fareiwba, T, Mikolow, A, Joala, and B, Fergos, “leaming Simple
Algowichims from Exsmples” in Fae, FOWL, 2HF

[42] L Kaiser and 1. Smskever, "Meoral GPUs Learn Algarithms.” in Peac,
BCLR, 206,

431 . Liang,). Berimil, O, Lé, K, D, Foebais, and M, Lo, “Neual Symbalic
Waching: Leaming Seemante Pasers on Frochiss with Wik Supservi-
s, im Proe. ACEL, W7,

[44] 1. bohnson, B. Horihares, 1 %an Der Mosen, J. Hoffman, L Ped-Fel,

C. L. &imick, snd K. Girshick, "Infersg and Executing Programs for

Wisunl Bemsoning,” im Pre. JOCV, 2007,

K. Hu. J. Andreas. M. Eohrbach, T. Darrell, and K. Saenko, “Leaming o

e End-1o-end modube networks for visual qoestion answering.” im

Froc, #0CV, 00T

[J. Andreas, M, Kohrhach, T, Darrell, andd I3 Elen, “MNeural Modale

Merwniis,” i Faw, CFPR, 2060,

W Taan, A Luoa, X, Sun, K. Ellis, W. T. Freemes, 1. I, Tenenbauns,

and J. Wu, "Leamang (o infer aed execute 3d shape programs.” in JOLR,

Pl R

K. Elli=, I Kitchie, A, Sofar-Leeama, amd T B Tenesbanm, “Liaming

B Infir Craphics Prograsres Trom Hisd-Diawn Images” arloe preprmg

carXive [TOT 09627, 2007,

[4%] &, Talsiond, H. Su. L. 1. Guibas, A. A. Efros, ond J. Malik, "Lesmisg
Shepe Abezroctions by Assembling Volumetne Primicives,” in Proe,
CVER, JNT.

[50] C. Fom, E Yumer. I Yang, D Cexlan, ond [0 Hoiem, “3D-PRENN:
Generating Shape Primithves with Recament Meural Metworks™ in Pror,
OOV, 217,

[51] 1o Li, M. Sung, & Dwbrovin, L, ¥i, and 1. Gaihes, “Supervised finisg

of peomenne primivves e 3 point closds” CUVPR, pp, 364T-2655, I009

. Paschalidon, A, O Ulusoy, and A CGeiger. “Superquidncs revisioed:

Leamisg 3 shape parsing beyond cubaids” CaRR, vod. abs! 1904 080,

pai iR

K. Genova, FoCole, A Sl A, Simia, and T, Funkhoaser, “Loszal diop

implicit Tunclions e 3 sdape” in CVPR. June 1000

[34] 1. Huang, 1. Gae, ¥, Genapachi-Subransanion, H. Su, ¥, Lin, . Tang, ssd
L 1. Cinibirs, imrtives Image decomposation by lavened primiive
detection,” Compurational Vol Media, vol. 4, no. 4, pp 383397, Dec
HIlE.

155] 1. Gao, C. Tang, Y. Ganapathi-Subramanian, 1. Huasg. H. Su, and L. T
Guitas, “Deepspline: Dataedriven reconstruction of parametric cures
and serface=" CoR®R, vol. abs/ 190003781, JI%

[56] £ Chen, A Taplinsseds, and H, Fhang, “Basp-rer Gemeraling compact

rieshcs vin By epoce il ening.” VPR, 2120,

B Deng. K. Gemown, 8. Yaedani, % Boosriz, G. Himon, aed

A Tagliasacchi, "Cvrnes: Leamable conves decomposition.” in CVIPR,

o, pp. 31-41.

58] T Deprelle, T Groscis, M. Fisher, V. Kim, B, Bussell, ired M, Aubry,
“Larning clomestary sniciares [3 shipe generalion and matchisg.™
in Prew, Mewed P, vol, 32, 2009,

139 1. Chung. . Gulcebre, K. Cho, and Y. Bengio, "Empirical evaluatios of

gated recurment neunal networks on segqeence misdeling.™ arkiv prepring

arXhie 402 3885, N4,

I E. Hoperoft. B Motwani, and U, 1 D, fstredcnion o Ao

Theer, Lowgaeges, ond Compasanen. Sddison Wesley, 3001,

[45]

147

[48]

152]

53]

157

[l

Iel] R, 5. Sunon amd A, G, Barie, Reamforcamea) Livdemieg: Am ek T
Camitrdie, MA, USA: A Bradfond Book, J18,
[62] K. % Sutean, D Mollester, 8. Singh, and Y. Mansour, “Policy Gradent

Methoeds for Reinforcement Leamning with Funclion Approximation,” im
Prow. NIPS, |00,
631 & Lun, E, Kalogerakis, and A, ShiFeor, “Elements of siyli: Leanmming per-
ciplual shape style simikanly,” ACM Troweectiows on Gropdbedcor, val, 4,
w4, 20H 5,
M. L D Powell, "An efficient method for findisg the minimaem of
a function of sevemnl yonables withow cabculoling derivatves” T
Coparer Souemad, val. 7, ns 2 p. 155, 1964,
[65] “Tramble 30 Wareksomse,” ketps: | dwarehouse sketchup.coms,
] T B Kingms sead], Ba, <Adam: A methind for sechsgic optimization”
CoRR, wol, abal 141 26080, 004

[ixd]

12

[67] K. Chatfickl, K. Simonyan. A, Vedakdi, and A, Zissermman, “Return of

the devil in the detmils: Delving desp into comadutionz] mets" in Peaoe,

LMWV, 214,

E. O Duda and P E. Hart, "Use of the hough transfomation oo defect

lings and curves in pictures,” Commun. ACM, val. 15, no. L. pp. 11=15,

Jan. 19TL

C. Choy,) Gwok, and 5, Savorese. “dd spatic-lemporal commeis:

Minkow=ki comviutional neural nerworks,” in CVER, 20k 5.

[T A X, Chang, T. A. Funkhouser, L. J. Guibas, P2 Honrahease Q. Huoaeg.
£ 14, 8 Savarese. ML Smom, 5 Sonp. H. Swo . Xiao, Lo Y5, aed
F. Y, “Shapenet: An infommation-rich 5d mode| repositony,” CelE, vol
ahs/ 151X 0000E, 3015,

[T1] 8. Koch, A Matveey, £, Jang. F Williams, A, Anemoy, B, Bumiey,
M. Adexa, v Forin, and T Panoera, "Ahbc A big cod madel datases far
geomeiric deep leaming.” in CVPE, 2005,

(6%

B BIOGRAPHY

Biczraphics of the authors:
Gopal Sharme received BTech, in Electrical
Engiseering from [IT-Roorkee, lndia dn 2016,
He received an M5 degres in computer science
from University of Massachusens Amberst in
2009, Presently. he is o doctoral condidate in
corngiater setemce al Undversity of Massochiseis
Arnherst,

Rishabh Goyval completed his onderpgraduate
sludies n [_‘.|1mp|.|15 Science and Engineering
at the WIT Kanpur. Pollewing this he spent
am year working al IBM Research Labs,
developing artificial conversational agents. He
is currently pursuing o masters in Computer
Science al the Undversity of [liness & Urbana-
Champaign,

Difan Liw received the BS degres from the
Umiversity of Scwence and Technology of
China in 2007, and the MS degree from
Unmiversity o Massachusetts Amberst i 2020k
He is working toward his PhD degree in
compler science of University of Mossochusetts
Arnherst.

Evangelws Kalogerakls is an Associaie Professor
af the College of Information amd Compuier
Sciences a1 Universiry of Massachusens Amhers,
which he joined in 2012, He was a postdoc at
Sunford University (2000-2002). He earned
hiz Phl¥ from the University of Toronto in
Tk

Subbransu Maji s an Associate Professor i the
Cillege of Information and Compuier Sciences at
the University of Massachusaits, Amhberst, Fle obe
tained his Ph.Dw from the Univessicy of Califormia
af Berkeley in 20011, aml a B.Tech. in Compuier
Science and Enginecring from T Kanpur in

Olmd-RRdA [of 3800 IEEE. Permral wa @ pesreitied, bl sepuslication) redistribusns requises IEFE permisson. Ses hepaivearw eeeargpehlicatnes_sandsrdspubkcationalightuindes hirel far suee infonmodio.

Aumorized lcansed use limiled %00 University ol Massachusats Amhbarst. Downloaded on May 31,2027 at 15:35:30 UTC om IEEE Xpkora. Resinchons apply.

