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1 Introduction

The engineering of gauge theories in different dimensions by means of branes probing
Calabi-Yau (CY) singularities in string and M-theory has received considerable attention.
Among its multiple applications, this approach: provides a way to construct interesting
gauge theories and study their dynamics and dualities, is a framework for local model
building [1–4] and it is at the heart of the gauge/gravity correspondence [5–7].

The well-known connection between CY (m+2)-folds and gauge theories on the world-
volume of D(5 − 2m)-branes for m = 0, . . . , 3 (see e.g. [8–20] for the widely studied case
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of D3-branes on CY 3-folds) can be extended to arbitrary m in terms of the topological
B-model. In this context, the open string sector of the B-model on CY (m + 2)-folds is
described by m-graded quivers with superpotentials (see [21–24] and references therein).

This correspondence is particularly well understood in the case of toric CYs. For
m = 1, brane tilings (a.k.a. dimer models), significantly simplify the map between CY
3-folds and 4d N = 1 gauge theories [17, 19, 25]. Progress in this area has considerably ac-
celerated in recent years, initially fueled by a desire to develop brane constructions for lower
dimensional gauge theories [26–31]. Lately, the scope of these investigations expanded to
developing tools for toric CYs of arbitrary dimension. These efforts culminated in [32] with
the introduction of m-dimers, which fully encode the m-graded quivers with superpoten-
tials associated to toric CY (m + 2)-folds and streamline the connection between quivers
and geometry.

The m-dimers associated to specific geometries can be determined via a variety of
traditional approaches, such as partial resolution and mirror symmetry, which have been
extended to general m [26]. Despite the considerable simplifications brought by m-dimers,
their determination can sometimes become practically challenging and additional tools are
desirable. Examples of such methods include orbifold reduction [33] and 3d printing [34]
which were originally developed in the context of CY 4-folds but can be applied more
broadly [24].

In this paper we introduce a substantially more powerful approach, which we denote
Calabi-Yau product. This algorithm starts from the known quiver theories1 for a pair of
toric CYm+2 and CYn+2 and produces the quiver theory for a related CYm+n+3. In doing
so, it enables the computation of quiver theories that were previously out of practical reach.

This paper is organized as follows. Section 2 presents a review of m-graded quivers.
Section 3 introduces the basics of the CY product, in particular the input data for the
construction and how the parent geometries give rise to the product geometry. Section 4
explains how to construct the periodic quiver for the product theory. Section 5 discusses
the superpotential. The construction is illustrated in section 6 with explicit examples.
Section 7 considers the relation between the CY product and other constructions. We
conclude and present ideas for future work in section 8. Additional details are provided in
two appendices.

2 A brief review of m-graded quiver theories

In order to make our presentation self-contained, in this section we present a brief review
of m-graded quivers and their dualities. We refer the interested reader to [23, 24, 32] for
further details.

Given an integer m ≥ 0, an m-graded quiver is a quiver with a grading for every arrow
Φij by a quiver degree:

|Φij | ∈ {0, 1, · · · , m} . (2.1)

1Throughout this paper, we will use the term quiver theory to indicate the combination of a quiver and
its superpotential.
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Every node i corresponds to a unitary “gauge group” U(Ni). Arrows connecting nodes
correspond to bifundamental or adjoint “fields”.

The conjugate of every arrow Φij has the opposite orientation and degree m− |Φij |:

Φ(m−c)
ji ≡ (Φ(c)

ij ) , (2.2)

where we use a superindex in parenthesis to explicitly indicate the degree of the corre-
sponding arrow, i.e. |Φ(c)

ij | = c.
The integer m determines the possible degrees, i.e. the different types of fields, which

can be restricted to the range:

Φ(c)
ij : i −→ j , c = 0, 1, · · · , nc − 1 , nc ≡

⌊
m + 2

2

⌋
, (2.3)

since other degrees can be obtained by conjugation. We refer to degree 0 fields as chiral
fields.

Graded quivers for m = 0, 1, 2, 3 describe d = 6, 4, 2, 0 supersymmetric gauge theories
with 23−m supercharges, respectively. Different degrees correspond to different types of
superfields. These theories can be engineered in terms of Type IIB D(5 − 2m)-branes
probing CY (m + 2)-folds.

Superpotential. Graded quivers admit superpotentials, which are linear combinations
of gauge invariant terms of degree m− 1:

W = W (Φ) , |W | = m− 1 . (2.4)

Gauge invariant terms correspond to closed oriented cycles in the quiver, which may require
conjugation of some of the fields.

Kontsevich bracket condition. The superpotential must also satisfy

{W, W} = 0 . (2.5)

Here {f, g} denotes the Kontsevich bracket, which is defined as follows

{f, g} =
∑
Φ

(
∂f

∂Φ
∂g

∂Φ
+ (−1)(|f |+1)|Φ|+(|g|+1)|Φ|+|Φ||Φ|+1 ∂f

∂Φ
∂g

∂Φ

)
. (2.6)

2.1 The toric case

The CYm+2 associated to an m-graded quiver arises as its classical moduli space which,
generalizing the standard notion for m ≤ 3, is defined as the center of the Jacobian algebra
with respect to fields of degree m−1 [23]. Namely, it is obtained by imposing the relations:

∂W

∂Φ(m−1) = 0 , ∀Φ(m−1) (2.7)

plus gauge invariance. Since the superpotential has degree m−1, the terms that contribute
to the relations in (2.7) are of the general form Φ(m−1)J(Φ(0)), with J(Φ(0)) a holomorphic
function of chiral fields. We will refer to such terms as J-terms. The relations (2.7)
therefore comprise only chiral fields.
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Toric superpotential. Every toric CYm+2 has at least one toric phase, which is a quiver
theory satisfying the following properties. First, the ranks for all nodes can be equal. In
addition, the superpotential of a toric phase has a special structure, which is referred to
as the toric condition [32]. The toric condition implies that every field of degree m − 1
appears in exactly two superpotential terms, with opposite signs. Namely,

W = Φ(m−1)
a J+

a (Φ(0))− Φ(m−1)
a J−a (Φ(0)) + . . . , (2.8)

where dots stand for terms that do not contain Φ(m−1)
a . The relations (2.7) then take

the form:
J+

a (Φ(0)) = J−a (Φ(0)) . (2.9)

Due to this special structure, toric phases can be encoded in m-dimers or, equivalently,
by periodic quivers on Tm+1 [32].

Generalized perfect matchings. We define a generalized perfect matching, or perfect
matching for short, p as a collection of fields satisfying:

1) p contains precisely one field from each term in W .

2) For every field Φ in the quiver, either Φ or Φ̄ is in p.

Perfect matchings provide variables that automatically satisfy the relations (2.9).
Therefore, there is a one-to-one correspondence between them and GLSM fields in the
toric description of the CYm+2. Perfect matchings indeed substantially simplify the deter-
mination of the toric diagram (see [32] for details).

Since for every field a perfect matching contains either the field or its conjugate, a
perfect matching determines a polarization of the quiver. We define polarization as a
choice of orientation for every field in the quiver, i.e. a choice of what we regard as the
original field and its conjugate. In what follows, we will adopt a convention for defining
the polarization such that, given a perfect matching, we orient the fields in the quiver
such that the fields in the perfect matching are the only ones that appear conjugated in
the superpotential.2 This choice of polarization implies that the corresponding perfect
matching consists of the conjugates of all the fields in the quiver.

2.2 Dualities

m-graded quivers admit order (m + 1) mutations. For m ≤ 3, they correspond to the
dualities of the corresponding gauge theories: no duality for 6d N = (0, 1), Seiberg duality
for 4d N = 1 [35], triality for 2d N = (0, 2) [36] and quadrality for 0d N = 1 [30].
Interestingly, these mutations generalize these dualities to m > 3. We refer the reader
to [23, 24] for detailed discussions on the transformation of quiver theories under mutations.

2Notice that while every perfect matching defines a polarization, not every polarization corresponds to
a perfect matching. For a quiver with Nf fields, there are 2Nf possible polarizations, arising from the two
choices of orientation for every field.
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2.3 Generalized anomaly cancellation

Under a mutation at a node ?, its rank transform as:

N ′? = N0 −N? , (2.10)

where N0 is the total number of incoming chiral fields. Invariance of the ranks under
m+1 consecutive mutations of the same node leads to the generalized anomaly cancellation
conditions. For odd m, these conditions are given by:

∑
j

Nj

nc−1∑
c=0

(−1)c
(
N
(
Φ(c)

ji

)
−N

(
Φ(c)

ij

))
= 0 , ∀i , if m ∈ 2Z + 1 , (2.11)

with N (Φ(c)
ij ) denotes the number of arrows from i to j of degree c. For every i, the sum

over j runs over all nodes in the quiver (including i), and nc is given by (2.3).
For even m, the conditions become

∑
j

Nj

nc−1∑
c=0

(−1)c
(
N
(
Φ(c)

ji

)
+N

(
Φ(c)

ij

))
= 2Ni , ∀i , if m ∈ 2Z . (2.12)

For m = 0, 1, 2, 3, these conditions reproduce the cancellation of non-abelian anomalies in
the corresponding d = 6, 4, 2, 0 gauge theories.

3 Product of toric Calabi-Yaus: the geometry

In this paper we will introduce the CY product. Before explaining the details of this novel
algorithm, let us discuss its main ingredients and basics of the resulting geometry.

Initial data. The input for this procedure is given by:

• An m-graded quiver theory P for a toric phase associated with a toric Calabi-Yau
(m + 2)-fold CYm+2. The toric diagram TCYm+2 is an (m + 1)-dimensional convex
polytope consisting of points ui. We also pick a perfect matching p of P , which
corresponds to the point u0 of TCYm+2 .

• An n-graded quiver theory Q for a toric phase associated with a toric Calabi-Yau
(n + 2)-fold CYn+2. The toric diagram TCYn+2 is an (n + 1)-dimensional convex
polytope consisting of points vi in it. We also pick a perfect matching q of Q, which
corresponds to the point v0 of TCYn+2 .

The product geometry. The output of this algorithm is an (m + n + 1)-graded quiver
theory that we will call Pp×Qq. This theory is a toric phase for the (m+n+3)-dimensional
toric Calabi-Yau CYm+n+3 whose toric diagram TCYm+n+3 is the convex hull of points

{(ui, v0)|ui ∈ TCYm+2} ∪ {(u0, vi)|vi ∈ TCYn+2} (3.1)

TCYm+n+3 is a lattice polytope in Zm+n+2. In this lattice, the TCYm+2 gets embedded in
a hyperplane spanned by the first m + 1 coordinates, while TCYn+2 gets embedded in a
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Figure 1: This figure will be turned into two examples

not the product of the two parent CYs. In particular, its dimension is not equal to the

sum of the dimensions of the starting CYs. However, we feel that the term captures

various aspects of the process and its su�ciently simple to justify its adoption.

It is clear that the product of CYs can very easily produce the quiver theories

for extremely complicated geometries. Moreover, iterating the process, it becomes

straightforward to deal with high dimensional geometries. We will present explicit

examples in §6.
There is substantial freedom in this construction. Given a desired CYm+n+3, it can

generally be decomposed into other CYm+2 and CYn+2 geometries in multiple ways

(even with di↵erent values of m and n), there is a choice of toric phase for each of

the parent geometries and of perfect matchings for the points u0 and v0. Therefore,

generically, the product method can generate a large number of quiver theories for a

given CYm+n+3, reflecting the rich space of theories related by the corresponding order

(m+ n+ 2) dualities.

4 Product of Toric Calabi-Yaus: the Periodic Quiver

Having discussed the connection between the parent and product geometries, we now

explain how to construct the periodic quiver for the product. The periodic quiver

contains all the information defining the quiver theory, namely not only the quiver

but also the superpotential. Having said that, in §5 we will present explicit rules for

constructing the superpotential directly, without having to read it from the periodic

quiver.

The starting point of the construction is the initial data discussed in the previous

section. As already mentioned, choosing di↵erent toric phases for the two parent ge-

ometries and/or using di↵erent perfect matchings for the u0 and v0 points can result

in di↵erent phases for the same product geometry. Similar freedom has been observed
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Figure 1. Two examples of the action of the Calabi-Yau product on toric diagrams. The first line
is an example of CY2×CY2 =CY3. The second line is CY3×CY2 =CY4.

hyperplane spanned by the last n + 1 coordinates. These two hyperplanes are orthogonal
and meet at a single point (u0, v0). In other words, the final toric diagram TCYm+n+3 is the
convex hull of the set of points obtained by “interlacing” TCYm+2 and TCYn+2 at the point
(u0, v0). Figure 1 shows two examples of this construction. Higher dimensional examples
are straightforward although, obviously, difficult to visualize.

At first sight, the use of the term “product” to refer to the operation that acts on the
geometry as described above, might be slightly confusing. The resulting geometry is not
the product of the two parent CYs. In particular, its dimension is not equal to the sum
of the dimensions of the starting CYs. However, we feel that the term captures various
aspects of the process and its sufficiently simple to justify its adoption.

It is clear that the product of CYs can very easily produce quiver theories for extremely
complicated geometries. Moreover, iterating the process, it becomes straightforward to deal
with high dimensional geometries. We will present explicit examples in section 6.

There is substantial freedom in this construction. Given a desired CYm+n+3, it can
generally be decomposed into other CYm+2 and CYn+2 geometries in multiple ways (even
with different values of m and n), there is a choice of toric phase for each of the parent
geometries and of perfect matchings for the points u0 and v0. Therefore, generically, the
CY product method can generate a large number of quiver theories for a given CYm+n+3,
reflecting the rich space of theories related by the corresponding order (m+n+2) dualities.

4 Product of toric Calabi-Yaus: the periodic quiver

Having discussed the connection between the parent and product geometries, we now ex-
plain how to construct the periodic quiver for the product. The periodic quiver contains
all the information defining the quiver theory, namely not only the quiver but also the
superpotential. Having said that, in section 5 we will present explicit rules for constructing
the superpotential directly, without having to read it from the periodic quiver.
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i j (i, j)

(a)

i j1 j2d (i, j1) (i, j2)d + m + 1

(b)

i1

i2

c j2

(i1, j)

(i2, j)

c + n + 1

(c)

i1

i2

c j1 j2d

(i1, j1) (i2, j2)

(i2, j2)(i1, j2)

c + d

(d)

Figure 2: The four cases of elements of P and Q giving rise to elements of Pp ⇥ Qq.
In all cases we only consider the fields in P which are p and the fields in Q which are
in q

This process is depicted graphically in Figure 2. This process not only gives us the

quiver for Pp ⇥ Qq but also constructs the periodic quiver. This is because given an

embedding of the periodic quiver P on Tm+1 and an embedding of Q on Tn+1, these

rules give us an embedding of Pp ⇥Qq on Tn+m+2.

For the sake of completeness we also describe the conjugates of the fields we have

written above

• The conjugate of Z̄
(d+m+1)
(i,j1)(i,j2)

is Z
(n�d)
(i,j2)(i,j1)

. This can be considered as arising from

the product the gauge group i with the field Y
(n�d)
j2j1

which is not in q.

• Similarly the conjugate of Z̄
(c+n+1)
(i1,j)(i2,j)

is Z
(m�c)
(i2,j)(i1,j)

. This can be considered as

arising from X
(m�c)
i2i1

which is not in p and gauge group j.

• The conjugate of Z̄
(c+d)
(i1,j1)(i2,j2)

is Z
(n+m+1�c�d)
(i2,j2)(i1,j1)

and this should be regarded as

arising from X
(m�c)
i2i1

and Y
(n�d)
j2j1

.

It is important to note that at the end of this process there is no field that comes from

the product of a field X̄
(c)
i1i2

which is in p with a field Y
(d)
j2j1

which is not in q or vice versa.

It is precisely this which makes the choice of p and q central to this construction.
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The starting point of the construction is the initial data discussed in the previous sec-
tion. As already mentioned, choosing different toric phases for the two parent geometries
and/or using different perfect matchings for the u0 and v0 points can result in different
phases for the same product geometry. Similar freedom has been observed in other con-
structions such as 3d printing [34] and it is natural to expect such different phases to be
related by duality.

As discussed in section 2.1, in order to simplify the product construction, given a
perfect matching it is convenient to pick the polarization of the quiver in which the perfect
matching turns out to simply consist of the conjugates of all the fields in the quiver. We
will do so here. Using the polarization of P given by p and the polarization of Q given
by q, we will define a polarization of the periodic quiver for Pp × Qp. As we will see
later, this polarization in fact corresponds to a perfect matching of the product theory and
corresponds to the point (u0, v0).

The periodic quiver of the product theory Pp × Qp can be elegantly defined in terms
of the action of the product operation on the basic elements of the parent quivers: nodes
and fields. Below, we will use the following convention to denote nodes and fields in the
different quivers: i and X for P , j and Y for Q and (i, j) and Z for Pq × Qq. We have
three possible products:

Node × node. The product of nodes i of P and j of Q gives rise to a node (i, j) of
Pp ×Qq. This process is illustrated in figure 2.

Field × node. The product of a field X̄
(c)
i1,i2

of P which is in p with a node j of Q gives
rise to a field Z̄

(c+n+1)
(i1,j)(i2,j) in Pp × Qq. Similarly, the product of a node i of P and a field

Ȳ
(d)

j1j2
of Q which is in q gives rise to a field Z̄

(d+m+1)
(i,j1)(i,j2) in Pp × Qq.3 Figure 3 represents

this operation. The horizontal and vertical directions encode the Tm+1 and Tn+1 tori,
respectively.

3For clarity, we have emphasized that we go over the fields X̄
(c)
i1,i2

of P which are in p and the fields Ȳ
(d)

j1j2
of Q in q. However, given our choice of polarization determined by p and q, these are simply the conjugates
of all the fields in P and Q.
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j1

j2

di1 i2c

(i1, j1) (i2, j1)

(i2, j2)(i1, j2)

c + d

(a)

Figure 5: The four cases of elements of P and Q giving rise to elements of Pp ⇥ Qq.
In all cases we only consider the fields in P which are p and the fields in Q which are
in q

It is important to note that at the end of this process there is no field that comes from

the product of a field X̄
(c)
i1i2

which is in p with a field Y
(d)
j2j1

which is not in q or vice versa.

It is precisely this which makes the choice of p and q central to this construction.

Henceforth i will be used to denote a gauge group of P and j a gauge group of

Q. Similarly we will always use X to refer to fields in P and Y to refer to fields in

Q. Lastly we will use the pair (i, j) to denote a gauge group and Z to denote a field

of Pq ⇥ Qq. These will be implicitly assumed to arise from elements of P and Q as

described above.

2.1 Anomaly Cancellation

We will now show that if P and Q satisfy the anomaly cancellation condition then so

does Pp ⇥Qq. For this we start with enumerating all the fields that are charged under

a given gauge group (i, j) of Pp ⇥ Qq and their contributions to anomaly. These arise

from

1. Product of incoming fields at i in P with gauge group j of Q.

(a) If X̄
(c)
i0i is in p then it gives rise to one field Z̄

(c+n+1)
(i0,j)(i,j) incoming at (i, j) which

contributes (�1)c+n+1 to anomaly.

(b) If Xi0i is not in p then it gives rise to one field Z
(c)
(i0,j)(i,j) incoming at (i, j)

which contributes (�1)c to anomaly.

2. Product of incoming field at j in Q with the gauge group i of P .
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Figure 4. Field × field.

P Q Pp ×Qq

i j (i, j)

i Ȳ
(d)

j1j2
Z̄

(d+m+1)
(i,j1)(i,j2)

X̄
(c)
i1i2

j Z̄
(c+n+1)
(i1,j)(i2,j)

X̄
(c)
i1i2

Ȳ
(d)

j1j2
Z̄

(c+d)
(i1,j1)(i2,j2)

Table 1. Summary of the construction of the periodic quiver for Pp ×Qq.

Field × field. The product of a field X̄
(c)
i1i2

of P in p with a field Ȳ
(d)

j1j2
of Q in q gives

rise to a field Z̄
(c+d)
(i1,j1)(i2,j2). Figure 4 represents this operation.

Table 1 summarizes the product construction. This procedure not only generates
the quiver for Pp × Qq but also constructs its periodic quiver. This is because given an
embedding of the periodic quiver P in Tm+1 and of Q in Tn+1, these rules result in an
embedding of Pp ×Qq in Tm+n+2.

For the sake of completeness we also describe the conjugates of the fields we have
written above. Their origin can be understood as follows:

• The conjugate of Z̄
(d+m+1)
(i,j1)(i,j2) is Z

(n−d)
(i,j2)(i,j1). It arises from the product between the node

i and the field Y
(n−d)

j2j1
which is not in q.

• The conjugate of Z̄
(c+n+1)
(i1,j)(i2,j) is Z

(m−c)
(i2,j)(i1,j). It comes from the product between X

(m−c)
i2i1

which is not in p and node j.

• The conjugate of Z̄
(c+d)
(i1,j1)(i2,j2) is Z

(m+n+1−c−d)
(i2,j2)(i1,j1) . It comes from the product between

X
(m−c)
i2i1

and Y
(n−d)

j2j1
.

It is important to note that at the end of this process there is no field that comes from
the product of an X̄

(c)
i1i2
∈ p and a Y

(d)
j2j1

/∈ q or vice versa. This makes the choice of p and
q central to this construction.

4.1 Anomaly cancellation

Let us begin checking the consistency of the CY product construction we have just intro-
duced. In this section we will show that if P and Q satisfy the corresponding anomaly
cancellation conditions, then so does Pp ×Qq. We assume that the ranks of all nodes are
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equal to N and normalize the anomaly by this number. We first enumerate all the fields
that are charged under a given node (i, j) of Pp × Qq and consider their contributions to
the anomaly. These fields are given by:

1. Product of incoming fields at i in P with node j of Q.

(a) If X̄
(c)
i′i ∈ p, then it gives rise to a field Z̄

(c+n+1)
(i′,j)(i,j) incoming at (i, j) which con-

tributes (−1)c+n+1 to the anomaly.
(b) If Xi′i /∈ p, then it gives rise to a field Z

(c)
(i′,j)(i,j) incoming at (i, j) which con-

tributes (−1)c to the anomaly.

2. Product of incoming field at j in Q with node i of P .

(a) If Ȳ
(d)

j′j ∈ q, then it gives rise to a field Z̄
(d+m+1)
(i,j′)(i,j) incoming at (i, j) which con-

tributes (−1)d+m+1 to the anomaly.
(b) If Yj′j /∈ q, then it gives rise a field Z

(c)
(i,j′)(i,j) incoming at (i, j) which contributes

(−1)d to the anomaly.

3. Product of a field X̄
(c)
i′i that is in p with a field Ȳ

(d)
j′j that is in q. This gives rise to

the incoming field Z̄
(c+d)
(i′,j′)(i,j) which contributes (−1)c+d to the anomaly. This is just

the product of the contribution to anomaly at i of the incoming field X̄
(c)
i′i and the

contribution to the anomaly at j of the incoming field Ȳ
(d)

j′j .

4. Product of an outgoing field X̄
(c)
ii′ at i that is in p with an outgoing field Ȳ

(d)
jj′ at j that is

in q. This gives rise to the outgoing field Z̄
(c+d)
(i,j)(i′,j′) at (i, j). Its conjugate contributes

(−1)m+n+1−c−d to the anomaly. This is minus the product of the contributions to
the anomaly at i of the incoming field X

(m−c)
i′i and the contribution to the anomaly

at j of the incoming field Y
(n−d)

j′j .

Adding all these contributions, the anomaly at node (i, j) becomes

A = a
�p

+ (−1)n+1ap + b
�q

+ (−1)m+1bq + apbq − a
�p
b
�q

, (4.1)

where ap is the contribution to the anomaly at node i by incoming fields that are in p and
a
�p
is the contribution to the anomaly by incoming fields that are not in p. Similarly, bq is

the contribution to the anomaly at node j by incoming fields that are in q, while b
�q
is the

contribution from the fields that are not in q.
At this point we distinguish three cases depending on the parity on m and n.

Odd m and n. In this case A becomes

A = a
�p

+ ap + b
�q

+ bq + apbq − a
�p
b
�q

. (4.2)

For odd m and n, the anomaly cancellation conditions for i in P and j in Q respectively are

a
�p

= −ap b
�q

= −bq (4.3)

Plugging these back into the expression for A results in A = 0, which is the anomaly
cancellation condition, since m + n + 1 is odd.
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Even m and even n. In this case A becomes

Anet = a
�p
− ap + b

�q
− bq + apbq − a

�p
b
�q

. (4.4)

The anomaly cancellation conditions for i and j respectively are

a
�p

= 2− ap b
�q

= 2− bq (4.5)

Plugging these back also results in A = 0, which is again the anomaly cancellation condition
since m + n + 1 is odd in this case, too.

Odd m and even n. Lastly, in this case

A = a
�p
− ap + b

�q
+ bq + apbq − a

�p
b
�q

. (4.6)

The anomaly cancellation conditions at i and j are

a
�p

= −ap b
�q

= 2− bq (4.7)

which gives A = 2, i.e. the anomaly cancellation condition is satisfied since m + n + 1 is
even for this case.

5 Superpotential

The construction introduced in section 4, produces the periodic quiver for Pp × Qq from
which, in principle, its superpotential can be read off. In general, this can be rather
challenging. Therefore, in this section we introduce explicit rules for the direct construction
of the superpotential.

The superpotential of the product theory takes the general form

W =WP +WQ +WC +WP Q . (5.1)

WP and WQ descend from the superpotentials of P and Q, respectively. WC consists of
new cubic interactions. Finally, WP Q depends on superpotentials of both P and Q. We
now describe each of them in detail.

WP : terms descending from the superpotential of P . Let us consider a single
term TP in the superpotential WP of the parent theory P . It has the general form

TP = X
(c1)
i1i2

X
(c2)
i2i3
· · ·X(ck−1)

ik−1ik
X̄

(ck)
iki1

, (5.2)

where ∑n cn = m− 1 due to degree constraint. Our convention for the polarization makes
the perfect matching p manifest. The fields in p appear as a single conjugated field per
term in WP . Furthermore, we will order the fields in every term such that the fields in p

occur last.
Every term TP gives rise to various terms in WP , as we now discuss. First, some of

these terms correspond to the product between the fields in this term and a node j of Q.
They take the form∑

j∈J

Z
(c1)
(i1,j)(i2,j)Z

(c2)
(i2,j)(i3,j) · · ·Z

(ck−1)
(ik−1,j)(ik,j)Z̄

(ck+n+1)
(ik,j)(i1,j) , (5.3)

– 10 –



J
H
E
P
0
2
(
2
0
2
1
)
1
7
4

where the sum is over the set J of nodes j of Q. After this operation, the degree of the
superpotential changes by n + 1 and becomes m + n, as required for the superpotential of
an (m + n + 1)-graded quiver.

The additional terms descending from TP are constructed as follows. We first pick a
field X

(c)
i′i from those in TP . Since this field does not appear conjugated, it is obviously

not contained in p. We also pick a field Y
(d)

j′j that is not in q. We then replace X
(c)
i′i in TP

by its product with Y
(d)

j′j , i.e. by Z
(c+d+1)
(i′,j′)(i,j). This operation increases the degree by d + 1.

We also replace X̄
(ck)
iki1

by its product with Ȳ
(n−d)

jj′ , i.e. by Z̄
(ck+n−d)
(ik,j)(i1,j′). This changes the

degree by n − d. Finally, we simply replace the remaining fields in TP by their product
with appropriate node in Q, which does not change the degrees since these fields are not
in p. When combined, all these replacements change the degree of the superpotential term
by n + 1, as desired. Explicitly these terms are∑
Ȳ

(n−d)
jj′ ∈q

[
Z

(c1+d+1)
(i1,j′)(i2,j)Z

(c2)
(i2,j)(i3,j)Z

(c3)
(i3,j)(i4,j) · · ·Z

(ck−1)
(ik−1,j)(ik,j)Z̄

(ck+n−d)
(ik,j)(i1,j′)

+ (−1)c1Z
(c1)
(i1,j′)(i2,j′)Z

(c2+d+1)
(i2,j′)(i3,j)Z

(c3)
(i3,j)(i4,j) · · ·Z

(ck−1)
(ik−1,j)(ik,j)Z̄

(ck+n−d)
(ik,j)(i1,j′) + · · ·

+ (−1)c1+···+ck−2Z
(c1)
(i1,j′)(i2,j′)Z

(c2)
(i2,j′)(i3,j′)Z

(c3)
(i3,j′)(i4,j′) · · ·Z

(ck−1+d+1)
(ik−1,j′)(ik,j)Z̄

(ck+n−d)
(ik,j)(i1,j′)

]
(5.4)

To obtainWP , we repeat this process for all the terms in WP . In addition to the signs writ-
ten above, we must include the signs with which the parent superpotential terms enter WP .

WQ: terms descending from the superpotential in Q. These terms are determined
by the same procedure, after the exchange (P, p)↔ (Q, q). Let us present the final result.
Every term TQ in the superpotential WQ of Q is of the form:

TQ = Y
(d1)

j1j2
Y

(d2)
j2j3
· · ·Y (dk−1)

jk−1jk
Ȳ

(dk)
jkj1

. (5.5)

As before, TQ gives rise to superpotential terms of two types, analogous to (5.3) and (5.4).
The first set of terms is∑

i∈I

Z
(d1)
(i,j1)(i,j2)Z

(d2)
(i,j2)(i,j3) · · ·Z

(dl−1)
(i,jl−1)(i,jk)Z̄

(dl+m+1)
(i,jl)(i,j1) , (5.6)

with I the set of nodes of P .
The second set of terms is∑

X̄
(m−c)
ii′ ∈p

[
Z

(c+d1+1)
(i′,j1)(i,j2)Z

(d2)
(i,j2)(i,j3)Z

(d3)
(i,j3)(i,j4) · · ·Z

(dl−1)
(i,jl−1)(i,jl)Z̄

(m−c+dk)
(i,jl)(i′,j1)

+ (−1)d1Z
(d1)
(i′,j1)(i′,j2)Z

(c+d2+1)
(i′,j2)(i,j3)Z

(d3)
(i,j3)(i,j4) · · ·Z

(dl−1)
(i,jl−1)(i,jl)Z̄

(m−c+dl)
(i,jl)(i′,j1) + · · ·+

+ (−1)d1+···+dl−2Z
(d1)
(i′,j1)(i′,j2)Z

(d2)
(i′,j2)(i′,j3)Z

(d3)
(i′,j3)(i′,j4) · · ·Z

(m−c+dl−1)
(i′,jl−1)(i,jl)Z̄

(m−c+dl)
(i,jl)(i′,j1)

]
(5.7)

Repeating this process for all the terms in WP , we obtain WP . Once again, we need to
include the signs of the parent terms in WP .
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WC : new cubic interactions. This part of the superpotential consists of new cubic
interactions. For every pair of fields X̄

(c)
i1i2
∈ p and Ȳ

(d)
j1j2
∈ q we have a pair of cubic terms

(−1)c+d
[
Z

(n−d)
(i2,j2)(i2,j1)Z

(m−c)
(i2,j1)(i1,j2)Z̄

(c+d)
(i1,j1)(i2,j2) − Z

(m−c)
(i2,j2)(i1,j2)Z

(n−d)
(i1,j2)(i1,j1)Z̄

(c+d)
(i1,j1)(i2,j2)

]
(5.8)

where the fields involved are descendants of X̄
(c)
ii′ and Ȳ

(d)
jj′ via the rules in table 1, or their

conjugates. Namely,

Z
(m−c)
(i2,j1)(i1,j1) = X

(m−c)
i2i1

× j1 , Z
(n−d)
(i1,j2)(i1,j1) = i1 × Y

(n−d)
j2j1

, Z̄
(c+d)
(i1,j1)(i2,j2) = X̄

(c)
i1i2
× Ȳ

(d)
j1j2

.

(5.9)
WC is the sum of (5.8) over all the pairs of X̄

(c)
i1i2

and Ȳ
(d)

j1j2
.

WP Q: mixed terms. The last part of the superpotential involves contributions coming
from P and Q. A term TP in the superpotential of P and a term TQ in the superpotential
of Q give rise to a number of terms in the superpotential of the product theory. WP Q is
the sum of all such terms. To describe them, let us first consider the special case in which
both TP and TQ are cubic terms, i.e.

TP = X
(c1)
i1i2

X
(c2)
i2i3

X̄
(m−1−c1−c2)
i3i1

, TQ = Y
(d1)

j1j2
Y

(d2)
j2j3

Ȳ
(n−1−d1−d2)

j3j1
. (5.10)

In this case, they give rise to a single term that involves the pairwise product of fields,4 i.e.

(−1)m+n+c2+d2Z
(c1+d1+1)
(i1,j1),(i2,j2)Z

(c2+d2+1)
(i2,j2),(i3,j3)Z̄

(n+m−2−c1−c2−d1−d2)
(i3,j3),(i1,j1) . (5.11)

If TP and/or TQ are of order greater than 3, no such simple terms can be written. The
reason is that the pairwise product of fields is only possible if they have the same order
and the resulting terms will have correct degree, i.e. m + n, if and only if TP and TQ are
cubic.5

One way of addressing this issue is to turn TP and TQ into a sum of cubic terms and
mass terms, by integrating in auxiliary massive fields. Then we can construct WP Q as
described above, consisting exclusively of terms descending from the cubic terms. The
final quiver and superpotential can then be obtained by integrating out the massive fields.

Naively, it might seem that this procedure dramatically changes our construction. A
massive field in P gives rise to one descendant for every field or node of Q and vice versa.
Nevertheless, it can be verified that all these descendants are massive, resulting in the same
quiver we would have obtained without integrating in massive fields. Therefore, we can
use the rule for cubic terms above as the starting point to efficiently compute the rules for
higher order terms. The result is that there are

(k−1
2
)(l−1

2
)
terms in WP Q descending from

4It is useful to reflect on why we obtain a single term. First of all, we defined the polarizations of the
parent theories such that every term in their superpotentials contains a single conjugated field. In addition,
following the rules introduced in section 4, we cannot multiply unbarred and barred fields. As a result,
there are not multiple possibilities associated to cyclic permutations of the fields in (5.10).

5It is interesting to compare this to the B-model computation of the superpotential: cubic terms are
special in that they correspond to m2 of the A∞ algebra, which is composition of maps, while higher order
terms correspond to higher mk, which are more involved.
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terms TP of order k and TQ of order l. All these terms are of order k + l− 3. We provide a
thorough discussion of these terms and the first few steps of this iteration in appendix A.

The four types of contributions to the superpotential interplay non-trivially in the
Kontsevich bracket condition. This issue is studied in detail in the coming section.

The geometry of the product theory. It is relatively straightforward, yet quite la-
borious, to show that the desired geometry (3.1) arises as the classical moduli space of the
Pp ×Qq theory we have constructed.6 We present the proof in appendix B.

5.1 Kontsevich bracket

As another consistency check of our construction, let us verify that the superpotential we
have written satisfies {W, W} = 0, where

{W, W} = 2
∑

Z̄
(b)
(i,j)(i′,j′)

∂W

∂Z
(b)
(i′,j′)(i,j)

∂W

∂Z̄
(m+n+1−b)
(i,j)(i′,j′)

. (5.12)

To do this, we divide {W, W} into eight pieces,

{W, W} = 2(KBP + KBQ + KBP C + KBQC + KBP Q + KBP QP + KBP QQ + KBP QC) ,

(5.13)
each of which vanishes individually.

KBP = 1
2{WP ,WP } is the contribution that arises exclusively due to WP . Explicitly,

its nontrivial terms are

KBP =
∑
j∈J

∑
X̄

(c)
i1i2
∈p

∂WP

∂Z
(m−c)
(i2,j)(i1,j)

∂WP

∂Z̄
(c+n+1)
(i1,j)(i2,j)

+
∑

Ȳ
(d)

j1j2
∈q

∑
X̄

(c)
i1i2
∈p

∂WP

∂Z
(m+n+1−c−d)
(i2,j2)(i1,j1)

∂WP

∂Z̄
(c+d)
(i1,j1)(i2,j2)

.

(5.14)
It is straightforward to show that KBP vanishes if the superpotential WP of P satisfies
{WP , WP } = 0. The reason is that the terms in KBP descend from the terms of {WP , WP }
in a manner that is analogous to how terms in WP descend from terms in WP and the
signs in (5.4) are such that the required cancellations still occur.

Similarly, KBQ = 1
2{WQ,WQ} is

KBQ =
∑
i∈I

∑
Ȳ

(d)
j1j2
∈q

∂WQ

∂Z
(n−d)
(i,j2)(i,j1)

∂WQ

∂Z̄
(d+m+1)
(i,j1)(i,j2)

+
∑

X̄
(c)
i1i2
∈p

∑
Ȳ

(d)
j1j2
∈q

∂WQ

∂Z
(m+n+1−c−d)
(i2,j2)(i1,j1)

∂WQ

∂Z̄
(c+d)
(i1,j1)(i2,j2)

,

(5.15)
and it vanishes if the superpotential WQ of Q satisfies {WQ, WQ} = 0.

KBP C and KBQC involve the Kontsevich bracket between WP and WQ with WC .
Explicitly, KBP C = 1

2({WP ,WC}+{WC ,WP }) and KBQC = 1
2({WQ,WC}+{WC ,WQ}).

6The notion of moduli space has been extended to general m in [23].
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They reduce to

KBP C =
∑
j∈J

∑
X̄

(c)
i1i2
∈p

∂WC

∂Z
(m−c)
(i2,j)(i1,j)

∂WP

∂Z̄
(c+n+1)
(i1,j)(i2,j)

+
∑

Ȳ
(d)

j1j2
∈q

∑
X̄

(c)
i1i2
∈p

∂WP

∂Z
(m+n+1−c−d)
(i2,j2)(i1,j1)

∂WC

∂Z̄
(c+d)
(i1,j1)(i2,j2)

KBQC =
∑
i∈I

∑
Ȳ

(d)
j1j2
∈q

∂WC

∂Z
(n−d)
(i,j2)(i,j1)

∂WQ

∂Z̄
(d+m+1)
(i,j1)(i,j2)

+
∑

X̄
(c)
i1i2
∈p

∑
Ȳ

(d)
j1j2
∈q

∂WQ

∂Z
(m+n+1−c−d)
(i2,j2)(i1,j1)

∂WC

∂Z̄
(c+d)
(i1,j1)(i2,j2)

(5.16)

Both KBP C and KBQC vanish independently of any conditions on WP and WQ. This can
be verified directly using the explicit form of WC .

Let us now consider KBP Q = 1
2{WP Q,WP Q}. Its non-trivial part is

KBP Q =
∑

X̄
(c)
i1i2
∈p

∑
Ȳ

(d)
j1j2
∈q

∂WP Q

∂Z
(m+n+1−c−d)
(i2,j2)(i1,j1)

∂WP Q

∂Z̄
(c+d)
(i1,j1)(i2,j2)

. (5.17)

First, let us consider the case in which WP and WQ are cubic, since in this caseWP Q comes
just from the pairwise product of fields, as explained earlier. In this case, both {WP , WP }
and {WQ, WQ} are entirely quartic and a term in KBP Q comes from the pairwise product
of fields from a term in {WP , WP } and a term in {WQ, WQ}, As result, KBP Q vanishes.

To show that KBP Q vanishes even when WP and WQ are not cubic, we can rewrite WP

and WQ as sums of cubic terms and mass terms by appropriately integrating in massive
fields and using the argument above. There is an added subtlety: after integrating in these
massive fields, {WP , WP } and {WQ, WQ} vanish only after using the equations of motion
for massive fields. This is enough for our purposes, and it can be shown that KBP Q

vanishes once we integrate out massive fields from the product theory.
All the remaining contributions, KBP QP , KBP QQ and KBP QC , involve WP Q and

therefore it is convenient to express WP and WQ as a sum of cubic terms and mass terms.
Explicitly, they are

KBP QP = 1
2 ({WP Q,WP }+ {WP ,WP Q})

KBQP Q = 1
2 ({WP Q,WQ}+ {WQ,WP Q})

KBP QC = 1
2({WP ,WQ}+ {WQ,WP }+ {WP Q,WC}+ {WC ,WP Q}) (5.18)

A lengthy but straightforward bookkeeping calculation shows that all of these contributions
vanish up to the equations of motion for massive fields. KBP QP vanishes as a result of
{WP , WP } = 0, while vanishing of KBP QQ follows from {WQ, WQ} = 0. Lastly, KBP QC

vanishes independently of any restriction on WP and WQ.

5.2 Toric condition

To conclude our discussion of the superpotential, we now show that our construction is
such that if P and Q satisfy the toric condition then Pq × Qq also does so. We do so by
considering the different ways a field of degree m + n can arise in the superpotential of
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Pp×Qq. It is useful to note that all such terms must come from WP ,WQ andWC , but not
from WP Q. As explained in appendix A, every term in WP Q contains two fields coming
from the product of a field not in p and a field not in q. The degrees of such fields are
greater than or equal to 1, so none of these terms can contain a degree m + n field. The
different scenarios are:

• A field of degree m − 1, X̄
(m−1)
i1i2

∈ p. Its product with a node j of Q gives rise to a
field Z̄

(m+n)
(i1,j)(i2,j) of degree m + n. This field only appears in WP , in the form shown

in (5.3). Therefore, if X̄
(m−1)
i1i2

participates in two terms with opposite signs, then so
does Z̄

(m+n)
(i1,j)(i2,j). Similarly, if there is a field Ȳ

(n−1)
j1j2

∈ q, its product with a node i of
P gives rise to Z̄

(m+n)
(i,j1)(i,j2). It only participates in WP , as shown in (5.6), namely in

two terms with opposite sign.

• The product of a conjugate chiral X̄
(m)
i1i2
∈ p and a conjugate chiral field Ȳ

(n)
j1j2
∈ q

gives rise to a field Z̄
(m+n)
(i1,j1)(i2,j2) of degree m + n. Since conjugate chiral fields do not

appear in the superpotential, Z̄
(m+n)
(i1,j1)(i2,j2) does not appear in WP or WQ. It only

appears in two terms of WC with opposite sign as shown in (5.8).

• The product of a field X
(m−1)
i1i2

/∈ p and a conjugate chiral field Y
(n)

j1j2
/∈ q gives a field

Z
(m+n)
(i1,j1)(i2,j2) of degree m + n. Since X

(m−1)
i1i2

appears in two terms with opposite sings
in WP , Z

(m+n)
(i1,j1)(i2,j2) appears in two terms of the final superpotential with opposite

signs. These terms arise as described by (5.4). Since Y
(n)

j1j2
is a conjugate chiral, it

does not appear in WQ, which implies that Z
(m+n)
(i1,j1)(i2,j2) does not appear in WQ. It

does not appear in WC , either.

Similarly, the product of a conjugate chiral field X
(m)
i1i2

/∈ p and Y
(n−1)

j1j2
/∈ q gives rise

to Z
(m+n)
(i1,j1)(i2,j2), which only appears in two terms with opposite signs. These terms

are in WQ, specifically among those described in (5.7).

The discussion above covers all the fields of degree m + n. We conclude that the
product between an m-graded toric phase P and an n-graded toric phase Q using arbitrary
perfect matchings is an (m + n + 1)-graded toric phase.

6 Examples

In this section we illustrate the product construction with two explicit examples. The first
theory we will construct is the well-known phase 2 of F0 [14].7 The second example is a
product of the conifold quiver theory with itself, which results in a 0d N = 1 matrix model.
While, to our knowledge, this the first time the second theory appears in the literature,
our primary goal is to demonstrate the simplicity of this procedure.

7By phase 2, we mean the phase whose quiver is shown in 8. Various papers label the two phases of F0

in different ways.
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0 1 0

Figure 5. The periodic quiver for C2/Z2.

Figure 6. The toric diagram of F0 can be obtained as the product of two copies of the toric
diagram of C2/Z2. In both cases we use the central point of the toric diagram to take the product.

6.1 F0

Let us consider the complex cone over F0 CY 3-fold, or F0 for short. The m = 1, i.e. 4d

N = 1, quiver theories for this geometry have been extensively studied in the literature
(see e.g. [14]). The toric diagram for F0 can be constructed as the product of two copies
of C2/Z2 using one of the two perfect matchings for the central point in each case, as
illustrated in figure 6.

The m = 0, i.e. 6d N = (1, 0), quiver theory of the parent C2/Z2 geometry consists
of two U(N) gauge groups with two hypermultiplets stretching between them, as shown in
figure 5.

This theory has 4 perfect matchings, which translate into the 4 ways in which we can
orient the 2 hypermultiplets. Two of them correspond to the two endpoints of the toric
diagram (shown on the left of figure 6) while the other 2 correspond to the central point.
As a result, we have 2 perfect matching choices for the central point of each of the C2/Z2
factors. But the 2 central perfect matchings are conjugates of each other and as a result
any choice of perfect matchings gives the same theory up to chiral conjugation.8

The product of the periodic quivers is presented in figure 7. The first step shows the
two parent 6d N = (1, 0) quivers. The arrows are oriented to indicate the choice of perfect
matchings. The second step shows the nodes of F0 that arise from the product of nodes in
the parent theories. In the third step, we add vertical fields (which come from the product
of a node in the first parent and a field in the second one) and horizontal fields (which
come from the product of a field in the first parent and a node in the second one). The
last step adds the diagonal fields that arise from the product of a field in the first parent
with a field in the second one.

The result is the phase 2 of F0 [14]. Since in this the parent theories do not have
superpotentials, the final superpotential only consists of the new cubic terms that arise in
the product. These terms can be straightforwardly read from the minimal plaquettes of
the quiver.

8We note that m = 0 is the only case for which the conjugates of the field in a perfect matching also
form a perfect matching. This is only possible because there is no superpotential.
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0 1 0

0

1

0

(0,0)

(0,1)

(0,0)

(1,0)

(1,1)

(1,0)

(0,0)

(0,1)

(0,0)

(0,0)

(0,1)

(0,0)

(1,0)

(1,1)

(1,0)

(0,0)

(0,1)

(0,0)

(0,0)

(0,1)

(0,0)

(1,0)

(1,1)

(1,0)

(0,0)

(0,1)

(0,0)

Figure 7. A product of periodic quivers resulting in phase 2 of F0.

For completeness, in figure 8 we show the standard quiver for this theory. Its super-
potential is

W = X+
(0,0)(0,1)X

+
(0,1)(1,1)X

−−
(1,1)(0,0) −X+

(0,0)(1,0)X
+
(1,0)(1,1)X

−−
(1,1)(0,0)

+ X+
(0,0)(1,0)X

−
(1,0)(1,1)X

−+
(1,1)(0,0) −X−(0,0)(0,1)X

+
(0,1)(1,1)X

−+
(1,1)(0,0)

+ X−(0,0)(1,0)X
+
(1,0)(1,1)X

+−
(1,1)(0,0) −X+

(0,0)(0,1)X
−
(0,1)(1,1)X

+−
(1,1)(0,0)

+ X−(0,0)(0,1)X
−
(0,1)(1,1)X

++
(1,1)(0,0) −X−(0,0)(1,0)X

−
(1,0)(1,1)X

++
(1,1)(0,0) (6.1)

An infinite family: F
(m)
0 . The process discussed above can be continued inductively

to get an infinite family of toric CY (m + 2)-folds indexed by m. The toric diagram for
F

(m)
0 is

(0, . . . , 0)
(±1, 0, . . . , 0)

...
(0, . . . , 0,±1)

(6.2)

This family was first introduced in [24], where the corresponding quiver theories were also
constructed.
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(0,0) (1,0)

(0,1) (1,1)

2

2 2

2

4

Figure 8. The quiver for phase 2 of F0.

Roughly speaking the periodic quiver for F
(m)
0 corresponds to

( 0 1 0 )m+1 (6.3)

This is of course not a complete description except for m = 1 because, at every step, to
construct a periodic quiver for F

(n)
0 we need to choose a perfect matching for F

(n−1)
0 . This

freedom hints at the existence of multiple phases of F
(m)
0 for m > 1 and it is natural to

expect that different choices of perfect matching lead to different phases related by the
dualities discussed in section 2.2.9

The quiver theory Q(m) of one particular phase of F
(m)
0 can be constructed inductively

as follows

Q(0) = 0 1 0 p(0) = 0 1 0

Q(m+1) = Q
(m)
p(m) ×Q

(0)
p(0) p(m+1) = p(m) × p(0) (6.4)

where we use the product perfect matching p× q of Pp×Qq as defined in appendix B. This
phase of F

(m)
0 was discussed at length in [24, 32], to which we refer for details.

6.2 Conifold × conifold

The conifold is one of the most thoroughly studied toric CY 3-folds. Its toric diagram
is shown in figure 9. The corresponding gauge theory was constructed in the seminal
work [37]. It consists of two U(N) gauge groups and four bifundamental chiral fields X01,
X̃01, X10, and X̃10, as shown in figure 9. The superpotential is

Wcon = X01X10X̃01X̃10 − X̃01X10X01X̃10 (6.5)

This theory has 4 perfect matchings, each of them consists of one of the chiral fields
and corresponds to a corner of the toric diagram. Given the symmetry between the perfect
matchings, the result is independent of which perfect matching we use for the product, up
to relabeling. We will therefore drop the reference to the perfect matching and refer to this
theory as conifold×conifold. Without loss of generality, we choose the toric diagrams of
the two conifolds to coincide at the origin. The conifold×conifold is therefore a toric CY

9For example, F
(2)
0 is also known as Q1,1,1/Z2. This theory has 14 toric phases, which were classified

in [34].
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6.2 Conifold ⇥ Conifold

The conifold is one of the most thoroughly studied toric CY 3-folds. Its toric diagram

is shown in Figure 9. The corresponding gauge theory was constructed in the seminal

work [37]. It consists of two U(N) gauge groups and four bifundamental chiral fields

X01, X̃01, X10, and X̃10, as shown in Figure 9. The superpotential is

Wcon = X01X10X̃01X̃10 � X̃01X10X01X̃10 (6.5)

6.2 Conifold ⇥ Conifold

The conifold is one of the most thoroughly studied toric CY 3-folds. Its toric diagram

is shown in Figure 9. The corresponding gauge theory was constructed in the seminal

work [37]. It consists of two U(N) gauge groups and four bifundamental chiral fields

X01, X̃01, X10, and X̃10, as shown in Figure 9. The superpotential is

Wcon = X01X10X̃01X̃10 � X̃01X10X01X̃10 (6.5)

(a)

0 1
2

2

(b)

Figure 9: a) Toric diagram and b) quiver for the conifold.

This theory has 4 perfect matchings, each of them consists of one of the chiral fields

and corresponds to a corner in the toric diagram. Given the symmetry between the

perfect matchings, the result is independent of which perfect matching we use for the

product, up to relabeling. We will therefore drop the reference to the perfect matching

and refer to this theory as conifold⇥conifold. Without loss of generality, we choose the

toric diagrams of the two conifolds to coincide at the origin. The conifold⇥conifold is

therefore a toric CY 5-fold with toric diagram

(0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0)

(0, 0, 0, 1)

(0, 0, 1, 0)

(0, 0, 1, 1) (6.6)

where we have indicated the two conifold factors as the row and column. Table 2 sum-

marizes the nodes and fields in the product 0d N = 1 matrix model. The corresponding

quiver is shown in Figure 10.

Superpotential. Since the periodic quiver in this case leaves on T4 we cannot dis-

play it diagrammatically. Instead, we can construct the superpotential explicitly using

prescription given in §5. We divide the total superpotential into four parts

W = W1 +W2 +WC +W12 , (6.7)
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0 1 X
(0)
01 X̃

(0)
01 X

(0)
10

¯̃X(1)
01

0 (0, 0) ∼ 0 (0, 1) ∼ 1 Z
(0)
01 Z̃

(0)
01 Z

(0)
10 Λ̄(1)

01

1 (1, 0) ∼ 2 (1, 1) ∼ 3 Z
(0)
23 Z̃

(0)
23 Z

(0)
32 Λ̄(1)

23

X
(0)
01 Z

(0)
02 Z

(0)
13 Λ̄(1)

03 Σ̄(1)
03 Λ̄(1)

12 Σ(2)
03

X̃
(0)
01 Z̃

(0)
02 Z̃

(0)
13 Γ̄(1)

03 ∆̄(1)
03 Γ̄(1)

12 ∆(2)
03

X
(0)
10 Z

(0)
20 Z

(0)
31 Λ̄(1)

21 Σ̄(1)
21 Λ̄(1)

30 Σ(2)
21

¯̃X(1)
01 Λ̄(1)

02 Λ̄(1)
13 Γ(2)

03 Ω(2)
03 Γ(2)

12 Z̄
(3)
03

Table 2. Summary of how the nodes and fields in the conifold×conifold theory descend from the
two parents. For simplicity, we converted the pairs of indices labeling nodes in the product to single
indices. We also indicate the degree of the fields as a superindex. We use Latin and Greek letters
to indicate chiral and Fermi fields, respectively.

5-fold with toric diagram

(0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0)
(0, 0, 0, 1)
(0, 0, 1, 0)
(0, 0, 1, 1) (6.6)

where we have indicated the two conifold factors as the row and column. Table 2 summa-
rizes the nodes and fields in the product 0d N = 1 matrix model.10 The corresponding
quiver is shown in figure 10.

Superpotential. Since the periodic quiver in this case lives on T4 we cannot display it
diagrammatically. Instead, we can construct the superpotential explicitly using prescription
given in section 5. We divide the total superpotential into four parts

W =W1 +W2 +WC +W12 , (6.7)

whereW1 andW2 come from the first and second conifold factors respectively,WC contains
the new cubic terms and W12 contains the mixed terms. Recall that in table 2 we used

10See e.g. [30] for the basics of 0d N = 1 gauge theories.
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Figure 10. Quiver for the conifold×conifold. Black arrows have degree 0 and red arrows have
degree 2. They correspond to 0d N = 1 chiral and Fermi fields, respectively.

Latin and Greek letters to indicate chiral and Fermi fields, respectively. With this in mind
the various parts of superpotential are:

W1. Since there are only two terms in the superpotential of the conifold we write the
descendants of each of them separately. We thus write W1 = W1+ −W1−, with W1+ and
W1− the descendants of the positive and negative terms, respectively. We get

W1+ = Z01Z10Z̃01Λ10+Z23Z32Z̃23Λ32+Λ̄03Z32Z̃23Σ̄30+Z01Λ̄12Z̃23Σ̄30+Z01Z10Σ̄03Σ30

+Γ̄03Z32Z̃23∆̄30+Z01Λ̄12Z̃23∆̄30+Z01Z10∆̄03∆̄30+Λ̄21Z10Z̃01Σ̄12+Z23Λ̄30Z̃01Σ̄12

+Z23Z32Σ̄21Σ̄12+Γ03Z32Z̃23Z30+Z01Γ12Z̃23Z30+Z01Z10Ω03Z30 (6.8)

and

W1−= Z̃01Z10Z01Λ10+Z̃23Z32Z23Λ32+Σ̄03Z32Z23Σ̄30+Z̃01Λ̄12Z̃23Σ̄30+Z̃01Z10Λ̄03Σ̄30

+∆̄03Z32Z23∆̄30+Z̃01Γ̄12Z23∆̄30+Z̃01Z10Γ̄03∆̄30+Λ̄21Z10Z01Σ̄12+Z̃23Λ̄30Z01Σ̄12

+Z̃23Z32Λ̄21Σ̄12+Ω03Z32Z23Z30+Z̃01Γ12Z23Z30+Z̃01Z10Γ03Z30 (6.9)

W2. Similarly, W2 =W2+ −W2−, with the two parts being

W2+ = Z02Z20Z̃02Λ20+Z13Z31Z̃13Λ31+Λ̄03Z31Z̃13Γ̄30+Z02Λ̄21Z̃13Γ̄30+Z02Z20Γ̄03Γ̄30

+Σ̄03Z31Z̃13Ω̄30+Z02Σ̄21Z̃13Ω̄30+Z01Z10∆̄03Ω̄30+Λ̄12Z20Z̃02Γ̄21+Z13Λ̄30Z̃02Γ̄21

+Z13Z31Γ̄12Γ̄21+Σ30Z31Z̃13Z30+Z02Σ21Z̃13Z30+Z02Z20∆03Z30

W2−= Z̃02Z20Z02Λ20+Z̃13Z31Z13Λ31+Γ̄03Z31Z13Γ̄30+Z̃02Λ̄21Z13Γ̄30+Z̃02Z20Λ̄03Γ̄30

+Σ̄03Z31Z13Ω̄30+Z̃02Σ̄21Z13Ω̄30+Z̃02Z20Σ̄03Ω̄30+Γ̄12Z20Z02Γ̄21+Z̃13Λ̄30Z02Γ̄21

+Z̃13Z31Λ̄12Γ̄21+∆03Z31Z13Z30+Z̃02Σ21Z13Z30+Z̃02Z20Σ03Z30 (6.10)
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WC . As explained in section 5 there are two cubic terms in the superpotential of Pp×Qq

for every pair of fields X̄
(c)
i1,j1
∈ p and Ȳ

(d)
i2,j2
∈ Q. In the present case, these terms are:

X01 X̃01 X10
¯̃X01

X01 Z01Z13Λ30 Z01Z̃13Γ30 Z23Z31Λ12 Z01Λ̄13Γ̄30

−Z02Z23Λ30 −Z̃02Z23Γ30 −Z20Z01Λ12 −Λ̄02Z23Γ̄30

X̃01 Z̃01Z13Σ30 Z̃01Z̃13∆30 Z̃23Z31Σ12 Z̃01Λ̄13Ω̄30

−Z02Z̃23Σ30 −Z̃02Z̃23∆30 −Z20Z̃01Σ12 −Λ̄02Z̃23Ω̄30

X10 Z10Z02Λ21 Z10Z̃02Γ21 Z32Z20Λ03 Z10Λ̄02Γ̄21

−Z13Z32Λ21 −Z̃13Z32Γ21 −Z31Z10Λ03 −Λ̄13Z32Γ̄21
¯̃X01 Λ̄01Z13Σ̄30 Λ̄01Z̃13∆̄30 Λ̄23Z31Σ̄12 Λ̄01Λ̄13Z30

−Z02Λ̄23Σ̄30 −Z̃02Λ̄23∆̄30 −Z20Λ̄01Σ̄12 −Λ̄02Λ̄23Z30

(6.11)

WC is the sum of all these terms.

W12. As explained in section 5 and appendix A, for every pair of terms TP and TQ,
there are terms in the product superpotential that combine them. For every pair of quartic
terms, there are 9 quintic terms. As in the case of W1 and W2, we write the corresponding
terms separately. So we decompose W12 as

W12 =W++ +W+− +W−+ +W−− , (6.12)

where the signs correspond to the signs of the parent terms in the two conifolds. The
individual contributions are:

W++ = Z02Z23Λ̄30∆̄03Z30 − Z02Λ̄21Γ̄12Z̃23Z30 − Z02Λ̄21Z10∆̄03Z30

− Z01Λ̄12Σ̄21Z̃13Z30 + Λ̄03Z32Σ̄21Z̃13Z30 − Z01Λ̄12Z20∆̄03Z30

+ Λ̄03Z32Z20∆̄03Z30 + Λ̄03Λ̄30Z̃02Z̃23Z30 + Λ̄03Z31Γ̄12Z̃23Z30

W+− = −Z02Z̃23Λ̄30Γ̄03Z30 + Z02Σ̄21Γ̄12Z23Z30 + Z02Σ̄21Z10Γ̄03Z30

+ Z̃01Λ̄12Λ̄21Z̃13Z30 − Σ̄03Z32Λ̄21Z̃13Z30 + Z̃01Λ̄12Z20Γ̄03Z30

− Σ̄03Z32Z20Γ̄03Z30 − Σ̄03Λ̄30Z̃02Z23Z30 − Σ̄03Z31Γ̄12Z23Z30

W−+ = −Z̃02Z23Λ̄30Σ̄03Z30 + Z̃02Λ̄21Λ̄12Z̃23Z30 + Z̃02Λ̄21Z10Σ̄03Z30

+ Z01Γ̄12Σ̄21Z13Z30 − Γ̄03Z32Σ̄21Z13Z30 + Z01Γ̄12Z20Σ̄03Z30

− Γ̄03Z32Z20Σ̄03Z30 − Γ̄03Λ̄30Z02Z̃23Z30 − Γ̄03Z31Λ̄12Z̃23Z30

W−− = Z̃02Z̃23Λ̄30Λ̄03Z30 − Z̃02Σ̄21Λ̄12Z23Z30 − Z̃02Σ̄21Z10Λ̄03Z30

− Z̃01Γ̄12Λ̄21Z13Z30 + ∆̄03Z32Λ̄21Z13Z30 − Z̃01Γ̄12Z20Λ̄03Z30

+ ∆̄03Z32Z20Λ̄03Z30 + ∆̄03Λ̄30Z02Z23Z30 + ∆̄03Z31Λ̄12Z23Z30 (6.13)

This completes our description of the superpotential. All in all, it consists of 124 terms.
Of these, 38 are J-terms, i.e. they contain precisely one degree m− 1 field (namely degree
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0 0 0 0 0 0

Figure 11. The periodic quiver for C2 and its perfect matchings, represented here as orientations
of the quiver.

2 in this case) and the rest are chiral fields. Each one of the 19 degree m− 1 fields (see the
quiver in figure 10) appear in two of these terms with opposite sign, so the superpotential
satisfies the toric condition. Finally, with some effort we can verify that the Kontsevich
bracket {W, W} vanishes.

7 Relation to other constructions

We now briefly discuss how the product construction relates to other known methods for
determining the quiver theories corresponding to a given geometry.

7.1 Algebraic dimensional reduction

Algebraic dimensional reduction is an algorithm for constructing the quiver theory for
CYm+2 × C starting from the quiver theory for CYm+2 [23]. It generalizes dimensional
reduction from 6d N = (1, 0) theories to 4d N = 2 theories (m = 0 → m = 1), from 4d

N = 1 theories to 2d N = (2, 2) theories (m = 1 → m = 2) and from 2d N = (0, 2)
theories to 0d N = 2 theories (m = 2→ m = 3)11 to arbitrary m.

Algebraic dimensional reduction is indeed a specific instance of products and corre-
sponds to the product of the quiver theory for CYm+2 with the simplest m = 0 quiver
theory, the one for C2. This theory is shown in figure 11 and has two perfect matchings.
We can use any of them and get the same result. Similarly any perfect matching used for
the CYm+2 theory gives the same quiver theory for CYm+2×C up to a relabeling of fields.

7.2 Orbifold reduction

Orbifold reduction is a generalization of dimensional reduction that constructs a quiver
theory for a toric CY4 from a that of a toric CY3 [33].12 It adds a third dimension to the
toric diagram TCY3 by adding images of one of its points up to some height k+ above the
central plane containing the TCY3 and some depth k− below it (see figure 12).

This process again corresponds to a specific case of a product. The orbifold reduction
of a 4d N = 1 quiver theory with periodic quiver P using a perfect matching q corresponds
to the product Pp ×A

(k++k−)
q . Here A(k) is the 6d N = (1, 0) quiver theory for C2/Zk, i.e.

the affine necklace quiver of type A with k nodes. A perfect matching of an m = 0 quiver
is just a choice of orientation of its edges, so the perfect matching p is such that k+ arrows
point up while k− arrows point down. There are

(k++k−
k−

)
such perfect matchings. They

all realize theories corresponding to the same geometry and are related by a sequence of
trialities.

11In all these cases, the dimensionally reduced theories have more than 23−m supercharges.
12This corresponds to going from m = 1 to m = 2. The procedure can be naturally extended to higher m.
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k+= 2 

k-= 1 

k = 2 

(a) (b) (c) 

Figure 12. Toric diagrams for: a) the dimensional reduction of dP3 to dP3×C, b) a (dP3×C)/Zk

orbifold with k = 2 and c) an orbifold reduction of dP3 with k+ = 2 and k− = 1.

7.3 3d printing

Another algorithm for efficiently constructing quiver theories for toric CYs starting from
simpler parent geometries is 3d printing. 3d printing allows one to add images of multiple
points in the toric diagram (we refer to [34] for details). 3d printing is indeed more general
than the CY product in two senses:

• All the geometries that can be addressed with CY products can also be reached by a
sequence of 3d printings that increase m by one at a time. The converse is not true;
there are geometries that can be realized by 3d printing but not as CY products. The
simplest such example is the conifold. As it is evident from its toric diagram, shown
in figure 9, it can be constructed by lifting both the points in the toric diagram of
C2. On the other hand, it is clear that it is not possible to produce it by a product.

• Even if the same geometry can be realized by both processes, there might be phases
of the quiver theories that can be obtained via 3d printing but not via a product. A
simple example of this phenomenon is F0. Phase 2 of F0 can be obtained using either
construction but only 3d printing is able to construct phase 1.

Despite these relative disadvantages, the CY product is a superior method for geome-
tries that can be reached via both methods for several reasons:

• The CY product is much more efficient. This is true even for simple geometries. As an
example, let us consider the construction of a quiver theory for the conifold×conifold.
In order to 3d print this theory starting from the conifold, we first need to produce
an intermediate CY 4-fold that is the dimensional reduction of the conifold, i.e.
conifold×C. Then two points of its toric diagram must be lifted to produce the
conifold×conifold. To carry out this process we will have to compute the perfect
matchings not only for the conifold but also for the intermediate conifold×C theory.
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The difficulties of constructing the necessary quiver blocks and computing perfect
matchings at every intermediate step makes 3d printing impractical if the difference
between the dimensions of the input and target geometries is large.

• The CY product always produces reduced theories, which is not the case with 3d

printing which often results in reducible, also known as inconsistent, theories which
need to be reduced [34].

• Unlike 3d printing the CY product does not generate mass terms in the superpo-
tential. This not only reduces the computational burden but it also means that CY
product provides a more direct way of arriving to the final quiver theory, without the
need to integrate out massive fields at the end.

• More importantly, in addition to these computational advantages, the CY product
provides us with a concise and much clearer relationship between the input and target
geometries. This becomes more striking as the difference between the dimensions of
the input and target geometries increases.

Having considered the relative merits of the two constructions we turn to some spec-
ulation about their relation. While we have restricted ourselves to the case in which the
periodic quivers for both theories are embedded in tori, more generally we can regard the
product construction as a method for producing a quiver embedded in S × T given two
quivers embedded in manifolds S and T . We can also consider cases where the manifolds
have a boundary. Imagine T has a boundary ∂T . In that case the resulting quiver will
be embedded in a manifold S × T with boundary S × ∂T . Arguably the simplest case of
this situation is when T is the line segment I. The basic building block of 3d printing,
a quiver block Q(m+1)

p , is a graph embedded in Tm × I and indeed can be regarded as a
product of an m-graded periodic quiver Q(m) using a perfect matching p with a simple
quiver embedded in a line segment as follows13

Q(m+1)
p = Q(m)

p ×

?

?

(7.1)

As usual, we have indicated the perfect matching of the m = 0 quiver by specifying an
orientation of its fields. This construction realizes both the field content and the superpo-
tential of the quiver block.

It is therefore natural to expect that 3d printing and product are two instances of a
single overarching construction. Such procedure would include both the products of m-
graded quivers embedded in manifolds, possibly with boundaries, and an operation to glue
two such manifolds along their boundaries under suitable conditions. We leave the task
of understanding this construction in complete generality and its physical realization to a
future work.

13The notation in the figure is inspired by the one used for quiver blocks in 3d printing in [34]. In that
context, the nodes ? and ? would correspond to the two images of a node ? at the two endpoints of a
line segment.

– 24 –



J
H
E
P
0
2
(
2
0
2
1
)
1
7
4

8 Conclusions

Over the years, there has been tremendous progress in the map between the geometry
of singularities and the corresponding quiver theories on branes. This started with a few
isolated examples of CY 3-folds and evolved into the development of brane tilings, tools that
vastly simplify that study of infinite classes of geometries. Similar tools were later developed
for higher dimensional CYs. We regard the CY product as a significant development in the
arsenal of tools to connect geometry and quiver theories. It allows us to straightforwardly
compute quiver theories in cases that were previously out of practical reach.

We envision multiple directions for future research. To name a few:
• The CY product will help investigating the order (m + 1) dualities of the m-graded

quiver theories associated to CY (m + 2)-folds. There is a large amount of freedom
in this construction: choice of phases for the quiver theories of the parent geometries
and choice of perfect matchings for the interlacing points.14 Therefore, given a target
CY, there are multiple possible decompositions into CY factors. In fact, different
decompositions can even differ in the dimension of the components. It is therefore
worthwhile to study the interplay between this vast landscape of possibilities and the
intricate space of dual theories.

• The CY product is particularly amenable to automatic computer implementation.
It is therefore ideally suited for generating large datasets of CYs/quiver theories.
Such datasets would provide valuable insights into the structure of these theories.
Moreover, they can be used to test the applicability of modern ideas such as machine
learning to problems involving quiver theories, such as the classification of duals for
general m. Initial explorations of these ideas have been undertaken in [38].

• As mentioned in section 6.1 in the case of F
(m)
0 , the CY product can be applied

iteratively, equivalently using multiple factors. In this way, it is possible to build
quiver theories for complicated, higher dimensional geometries using very simple, low
dimensional building blocks. A similar approach has been exploited to build some of
the infinite classes of theories in [24].

• From a first principle perspective, we can calculate the quivers associated with a
CYm+2 via the topological B-model [21–24]. However, this approach requires knowl-
edge of the fractional branes as a starting point, which is often challenging. It would
be interesting to investigate the correspondence between the B-model and CY prod-
uct approaches.
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Figure 13. The three terms in WP Q coming from a quartic TP and a cubic TQ. Red arrows
represent the products of a field in p and a field in q. Black arrows descend from fields that are not
in p or q.

A Some details about WP Q

In this appendix we expand our discussion of the mixed terms WP Q that we introduced
in section 5. For simplicity, let us first consider the next to simplest case, namely terms
coming from a quartic term TP and a cubic term TQ:

TP = X
(c1)
i1i2

X
(c2)
i2i3

X
(c3)
i3i4

X̄
(m−1−c1−c2−c3)
i4i1

, TQ = Y
(d1)

j1j2
Y

(d2)
j2j3

Ȳ
(n−1−d1−d2)

j3j1
. (A.1)

We can reduce the order of the terms in TP by introducing two auxiliary massive fields
M

(c1+c2)
i1i3

and M̄
(m−1−c2−c2)
i3i1

, with the following superpotential

CP = X
(c1)
i1i2

X
(c2)
i2i3

M̄
(m−1−c1−c2)
i3i1

+ M
(c1+c2)
i1i3

X
(c3)
i3i4

X̄
(m−1−c1−c2−c3)
i4i1

−M
(c1+c2)
i1i3

M̄
(m−c1−c2)
i3i1

.

(A.2)
It is straightforward to verify that integrating out the two massive fields, CP gives back
the quartic term TP .

It is now easy to construct the terms in the product superpotential coming from CP

and TQ. After integrating out the massive fields, most of the terms correspond to those
in WP due to TP , WQ due to TQ or in WC due to fields in TP and TQ. In addition, we
get three extra quartic terms coming from the contributions of TP and TQ to WP Q. These
terms are:

(−1)m+n+1+c2+d1Z
(c1)
(i1,j1)(i2,j1)Z

(c2+d1+1)
(i2,j1),(i3,j2)Z

(c3+d2+1)
(i3,j2),(i4,j3)Z̄

(n+m−2−c2−c3−d1−d2)
(i4,j3),(i1,j1)

+(−1)m+n+1+c1+c2+d1Z
(c1+d1+1)
(i1,j1)(i2,j2)Z

(c2)
(i2,j2),(i3,j2)Z

(c3+d2+1)
(i3,j2),(i4,j3)Z̄

(n+m−2−c1−c3−d1−d2)
(i4,j3),(i1,j1)

+(−1)m+n+c1+d1Z
(c1+d1+1)
(i1,j1)(i2,j2)Z

(c2+d2+1)
(i2,j2),(i3,j3)Z

(c3)
(i3,j3),(i4,j3)Z̄

(n+m−2−c2−c3−d1−d2)
(i4,j3),(i1,j1) (A.3)

These terms are depicted graphically in figure 13, which shows them on a torus whose
fundamental cycles are the two terms TP and TQ.15

Similarly, we can go one step further and consider the case in which TP and TQ are
quartic. Proceeding as before, we can integrate in massive fields, turning TP into a sum
of cubic terms and a mass term. Next, we use the previous result for a quartic and cubic
terms.16 After integrating out the massive fields we obtain standard terms in WP , WQ

and WC . In addition, we get nine terms in WP Q, all of order 5. These terms are shown
15Notice that these should not be confused with the fundamental cycles of the periodic quivers.
16This procedure accounts to reducing both TP and TQ to cubic and mass terms by integrating in massive

fields.
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in figure 14, which reveals an unexpected feature of the resulting terms. Surprisingly, they
are not symmetric under the exchange of TP and TQ. This can be seen by exchanging
horizontal and vertical arrows in these terms. The images of three of the terms under this
operation are absent in figure 14. This might be puzzling at first sight, since the procedure
we described seems to treat TP and TQ symmetrically. It turns out that the symmetry is
actually broken by the order in which we integrate out the massive fields.

It may seem possible to restore the symmetry between TP and TQ, i.e. between the
horizontal and vertical directions, by adding the missing terms. However, there is no way
to do this while satisfying the Kontsevich bracket condition. Therefore, in this case we are
left with two choices, which lead to different superpotentials.17 It is natural to expect that
these two theories are related by duality.

Knowing the terms arising from an order k − 1 term and an order l term, we can
recursively derive the terms arising from an order k term and an order l term. To do so,
we can simply split the order k term into an order k − 1 term, a cubic term and a mass
term. Continuing this iterative process for a few more steps we can infer the structure of
the general case, which is depicted graphically in figure 15. Every term in WP Q contains
one field that is the product of a field in p and a field in q, and two fields that are the
product of a field not in p and a field not in q. They correspond the red and two black
diagonal arrows. There is exactly one term for every choice of two diagonal black arrows.
Every one of the three blue boxes contains a path between two of these fields composed
exclusively of horizontal and vertical arrows, i.e. of fields that are the product of a field
and a node. The precise path depends on the breaking of the order k term into an order
k − 1 term, a cubic term and a mass term.

B Products and geometry

Here we explain how the product theory gives rise to the desired geometry, which arises as
its classical moduli space. To do so, we show how the perfect matchings of Pp ×Qq result
in the toric diagram described by (3.1).

First, we note that the collection of all the conjugated fields forms a perfect matching.18

This is the perfect matching that corresponds to the “central point” (u0, v0) of TCYm+n+3 .
Given a perfect matching p̃ of P we can construct a perfect matching that we will call

p̃ × q of Pp × Qq. If p̃ corresponds to the point ui in TCYm+2 then p̃ × q corresponds to
the point (ui, v0) of TCYm+n+3 . In order to construct p̃ × q, we divide the fields in p̃ into
two sets. The first set p̃0 contains the fields in p̃ that are also in p, while the second set p̃∗
contains the fields in p̃ that are not in p, namely

p̃0 = p̃ ∩ p , p̃∗ = p̃ \ p . (B.1)
17It would to interesting to see if and how this choice is present in the B-model computation of the

superpotential. We suspect this is related to the choice of explicit representatives of cohomology classes
needed for computations of the products mk with k > 2.

18Recall that our convention is that the polarization of the Pp ×Qq quiver and hence the identity of the
conjugated fields is determined by the choice of p and q.
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Figure 14. The 9 terms in WP Q coming from both TP and TQ quartic. Red arrows represent the
products of a field in p and a field in q. Black arrows descend from fields that are not in p or q.
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Figure 15. The general structure of a term in WP Q descending from an order k and an order l

terms. The blue boxes contain paths involving horizontal and vertical fields, i.e. products of a field
and a node. The multiplicity of terms corresponds to the different ways of choosing the two black
diagonal fields.
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Then, p̃× q is
p̃× q = (I × q) ∪ (p̃× J) ∪ (p̃0 × q) ∪ (p̃∗ × �q) , (B.2)

where �q is the set of all fields in Q that are not in q, i.e. it is the set of the conjugates of
fields in q. Let us now define the sets that participate in the union (B.2). The first two of
these are defined as

I × q =
{

Z̄
(d+m+1)
(i,j1)(i,j2)|i ∈ I, Ȳ

(d)
j1,j2
∈ q
}

p̃× J =
{

Z̄
(c+n+1)
(i1,j)(i2,j)|X̄

(c)
(i1i2) ∈ p̃0, j ∈ J

}
∪
{

Z
(c)
(i1,j)(i2,j)|X

(c)
(i1,i2) ∈ p̃∗, j ∈ J

}
(B.3)

i.e. I × q is just the set of fields that result from the product between a node i of P and
a field in q, while p̃× J is the set of fields that result from the product between a field in
p̃ and a node j of Q. We have separated p̃ × J into two pieces because the degree of the
resulting field behaves differently depending on whether the original field is in p or not.

The set p0 × q is defined as

p̃0 × q =
{

Z̄
(c+d)
(i1,j1)(i2,j2)|X̄

(c)
(i1i2) ∈ p̃0, Ȳ

(d)
j1j2
∈ q
}

. (B.4)

This set has a simple interpretation: it consists of all the fields in Pp ×Qp that arise from
a product between a field that is common to p and p̃ and a field in q.

The interpretation of p̃∗ × �q is similar. It consists of the fields that come from the
product of a field that is in p̃ but not in p with a field of Q that is not in q, i.e.

p̃∗ × �q =
{

Z
(c+d+1)
(i1,j1)(i2,j2)|X

(c)
i1i2
∈ p̃∗, Y

(d)
j1j2
∈ �q
}

. (B.5)

Analogously, given a perfect matching q̃ of Q corresponding to the point vi we can
define a perfect matching p × q̃ that corresponds to the point (u0, vi) in TCYm+n+3 . It is
defined as

p× q̃ = (I × q̃) ∪ (p× J) ∪ (p× q̃0) ∪ (�p× q̃∗) . (B.6)

As for p̃, we define q̃0 = q̃ ∩ q and q̃∗ = q̃ \ q, while �p is the set of fields conjugate to those
in p. The four sets in (B.6) are defined as follows

I × q̃ =
{

Z̄
(d+m+1)
(i,j1)(i,j2)|i ∈ I, Ȳ

(d)
j1,j2
∈ q0

}
∪
{

Z
(d)
(i,j1)(i,j2)|i ∈ I, Y

(d)
(i1,i2) ∈ q̃∗

}
p̃× J =

{
Z̄

(c+n+1)
(i1,j)(i2,j)|X̄

(c)
(i1i2) ∈ p, j ∈ J

}
p× q̃0 =

{
Z̄

(c+d)
(i1,j1)(i2,j2)|X̄

(c)
(i1i2) ∈ p, Ȳ

(d)
j1j2
∈ q̃0

}
�p× p̃∗ =

{
Z

(c+d+1)
(i1,j1)(i2,j2)|X

(c)
i1i2
∈ �p, Y

(d)
j1j2
∈ q̃∗

}
(B.7)

It is clear that with these definitions both p̃× q and p× q̃ contain either the field or its
conjugate for every field in Pp × Qq. We will now show that the fields in them also cover
every term in the superpotential exactly once.

We begin with p̃ × q and consider WP , WQ and WC and WP Q separately. Starting
with WP let us consider a term TP in the superpotential of P . This term gives rise to a
number of terms in WP as shown in (5.3) and (5.4). Since p̃ is a perfect matching of P ,
then TP contains exactly one field from p̃. There are three possibilities for how such field
appears in a term of WP descending from TP :
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• It gets replaced by its product with a node of Q. The resulting field is in p̃ × J so
this term is covered exactly once by p̃× q.

• This field is common to p̃ and p and gets replaced by its product with a field in q.
The result is a field in p̃0 × q.

• This field is in p̃ but not in p and gets replaced by its product with a field not in q.
The result is a field in p̃∗ × �q.

We conclude that in the three cases the field in p̃ that covers the term TP gives rise to
exactly the field in a term descending from TP that is in p̃× q.

Similarly, for WQ we consider the terms in it descending from TQ. Such a term in WQ

always contains a field with one of its parents in q. There are three cases for what happens
to this field in a term coming from TQ:

• It gets replaced by its product with a node i of P . The resulting field is in I × q so
p̃× q covers this term exactly once.

• It gets replaced by its product with a field that is common to p and q. In this case,
this replacement is in p̃0 × q so p̃× q again covers this term once.

• It gets replaced by its product with X̄
(m−c)
ii′ , a field in p that is not in p̃. Unlike the

previous case this replacement is not in p̃0×q. Since X̄
(m−c)
ii′ is not in p̃, its conjugate

X
(c)
i′i is in p̃. As (5.7) shows, such a term also contains another field that comes from

the product of X
(c)
i′i with a field not in q. This field is in p̃∗× �q and hence p̃× q covers

this term exactly once.

Let us now show that p̃ × q covers every term in WC exactly once. For this we
inspect (5.8) and consider the following cases:

• If X
(c)
i′i is in p̃ then both Z

(c)
(i′,j)(i,j) and Z

(c)
(i′,j′)(i,j′) are in p̃× J . Therefore, in this case

p̃× q covers the two terms in (5.8) exactly once.

• If X
(c)
i′i is not p̃ then X̄

(m−c)
ii′ is in p̃ and hence in p̃0. As a result Z̄

(m+n−c−d)
(i1,i2)(j1,j2) is in

p̃0 × q and in this case p̃× q also covers the two terms in (5.8) exactly once.

Finally, let us focus on WP Q. A term in WP Q has TP and TQ as parents. The field in
p̃ that covers TP gives rise to exactly one field that is in p̃× q and covers this term.

This completes our proof that p̃ × q is a perfect matching. The same argument,
exchanging the roles of P and Q along with p and q, shows that p × q̃ is also a perfect
matching. It is important to note that we cannot use this process to construct p̃ × q̃ for
arbitrary perfect matchings p̃ of P and q̃ of Q. We must have either p̃ = p or q̃ = q. This is
consistent with the fact that TCYm+2 is embedded in the plane spanned by the first m + 1
coordinates with the last n + 1 coordinates fixed to v0. Similarly this also realizes the fact
that TCYn+2 is embedded in the plane spanned by the last n + 1 coordinates with the first
m + 1 coordinates fixed to u0. These positions for the perfect matchings give rise to the
expected toric diagram.
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Generically, the perfect matchings we have described are not all the perfect matchings
of Pp × Qq. First, the final theory might have additional perfect matchings for the same
points in TCYm+n+3 . Moreover, there might be new points in the toric diagram, which is
the convex hull of the points corresponding to the perfect matchings we have constructed
(see figure 1 for an example). Perfect matchings associated to these points are generated
but do not descend from a pair of perfect matchings p̃ of P and q̃ of Q.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: A
Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002
[hep-th/0005067] [INSPIRE].

[2] D. Berenstein, V. Jejjala and R.G. Leigh, The Standard model on a D-brane, Phys. Rev.
Lett. 88 (2002) 071602 [hep-ph/0105042] [INSPIRE].

[3] H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007)
106 [hep-th/0508089] [INSPIRE].

[4] M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at
Singularities, Compactification, and Hypercharge, JHEP 01 (2007) 107 [hep-th/0610007]
[INSPIRE].

[5] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J.
Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[6] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical
string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[7] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[8] D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1., Adv. Theor. Math. Phys. 3
(1999) 1 [hep-th/9810201] [INSPIRE].

[9] C. Beasley, B.R. Greene, C.I. Lazaroiu and M.R. Plesser, D3-branes on partial resolutions of
Abelian quotient singularities of Calabi-Yau threefolds, Nucl. Phys. B 566 (2000) 599
[hep-th/9907186] [INSPIRE].

[10] B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric
duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].

[11] C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001
[hep-th/0109053] [INSPIRE].

[12] B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric
duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].

[13] B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane
diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].

– 31 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2000/08/002
https://arxiv.org/abs/hep-th/0005067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0005067
https://doi.org/10.1103/PhysRevLett.88.071602
https://doi.org/10.1103/PhysRevLett.88.071602
https://arxiv.org/abs/hep-ph/0105042
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0105042
https://doi.org/10.1088/1126-6708/2007/01/106
https://doi.org/10.1088/1126-6708/2007/01/106
https://arxiv.org/abs/hep-th/0508089
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0508089
https://doi.org/10.1088/1126-6708/2007/01/107
https://arxiv.org/abs/hep-th/0610007
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0610007
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711200
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9802109
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9802150
https://doi.org/10.4310/ATMP.1999.v3.n1.a1
https://doi.org/10.4310/ATMP.1999.v3.n1.a1
https://arxiv.org/abs/hep-th/9810201
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9810201
https://doi.org/10.1016/S0550-3213(99)00646-X
https://arxiv.org/abs/hep-th/9907186
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9907186
https://doi.org/10.1016/S0550-3213(00)00699-4
https://arxiv.org/abs/hep-th/0003085
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0003085
https://doi.org/10.1088/1126-6708/2001/12/001
https://arxiv.org/abs/hep-th/0109053
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0109053
https://doi.org/10.1088/1126-6708/2001/08/040
https://arxiv.org/abs/hep-th/0104259
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0104259
https://doi.org/10.1088/1126-6708/2001/12/035
https://arxiv.org/abs/hep-th/0109063
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0109063


J
H
E
P
0
2
(
2
0
2
1
)
1
7
4

[14] B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002)
076 [hep-th/0205144] [INSPIRE].

[15] M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7
(2003) 1117 [hep-th/0212021] [INSPIRE].

[16] S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An Infinite family of
superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064
[hep-th/0411264] [INSPIRE].

[17] S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver
gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

[18] S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics:
Lp,q|r, JHEP 04 (2006) 033 [hep-th/0505206] [INSPIRE].

[19] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from
toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].

[20] A. Butti, D. Forcella and A. Zaffaroni, The Dual superconformal theory for Lp,q,r manifolds,
JHEP 09 (2005) 018 [hep-th/0505220] [INSPIRE].

[21] P.S. Aspinwall, D-Branes on Toric Calabi-Yau Varieties, arXiv:0806.2612 [INSPIRE].

[22] Y.T. Lam, Calabi-yau categories and quivers with superpotential, Ph.D. Thesis, University of
Oxford (2014).

[23] S. Franco and G. Musiker, Higher Cluster Categories and QFT Dualities, Phys. Rev. D 98
(2018) 046021 [arXiv:1711.01270] [INSPIRE].

[24] C. Closset, S. Franco, J. Guo and A. Hasan, Graded quivers and B-branes at Calabi-Yau
singularities, JHEP 03 (2019) 053 [arXiv:1811.07016] [INSPIRE].

[25] A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149
[INSPIRE].

[26] S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0, 2) Quiver Gauge Theories
and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].

[27] S. Franco, S. Lee and R.-K. Seong, Brane Brick Models, Toric Calabi-Yau 4-Folds and 2d

(0, 2) Quivers, JHEP 02 (2016) 047 [arXiv:1510.01744] [INSPIRE].

[28] S. Franco, S. Lee and R.-K. Seong, Brane brick models and 2d (0, 2) triality, JHEP 05
(2016) 020 [arXiv:1602.01834] [INSPIRE].

[29] S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane Brick Models in the Mirror, JHEP 02
(2017) 106 [arXiv:1609.01723] [INSPIRE].

[30] S. Franco, S. Lee, R.-K. Seong and C. Vafa, Quadrality for Supersymmetric Matrix Models,
JHEP 07 (2017) 053 [arXiv:1612.06859] [INSPIRE].

[31] S. Franco, D. Ghim, S. Lee and R.-K. Seong, Elliptic Genera of 2d (0, 2) Gauge Theories
from Brane Brick Models, JHEP 06 (2017) 068 [arXiv:1702.02948] [INSPIRE].

[32] S. Franco and A. Hasan, Graded Quivers, Generalized Dimer Models and Toric Geometry,
JHEP 11 (2019) 104 [arXiv:1904.07954] [INSPIRE].

[33] S. Franco, S. Lee and R.-K. Seong, Orbifold Reduction and 2d (0, 2) Gauge Theories, JHEP
03 (2017) 016 [arXiv:1609.07144] [INSPIRE].

– 32 –

https://doi.org/10.1088/1126-6708/2002/12/076
https://doi.org/10.1088/1126-6708/2002/12/076
https://arxiv.org/abs/hep-th/0205144
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0205144
https://doi.org/10.4310/ATMP.2003.v7.n6.a6
https://doi.org/10.4310/ATMP.2003.v7.n6.a6
https://arxiv.org/abs/hep-th/0212021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0212021
https://doi.org/10.1088/1126-6708/2005/06/064
https://arxiv.org/abs/hep-th/0411264
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0411264
https://doi.org/10.1088/1126-6708/2006/01/096
https://arxiv.org/abs/hep-th/0504110
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0504110
https://doi.org/10.1088/1126-6708/2006/04/033
https://arxiv.org/abs/hep-th/0505206
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505206
https://doi.org/10.1088/1126-6708/2006/01/128
https://arxiv.org/abs/hep-th/0505211
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505211
https://doi.org/10.1088/1126-6708/2005/09/018
https://arxiv.org/abs/hep-th/0505220
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505220
https://arxiv.org/abs/0806.2612
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.2612
https://doi.org/10.1103/PhysRevD.98.046021
https://doi.org/10.1103/PhysRevD.98.046021
https://arxiv.org/abs/1711.01270
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.01270
https://doi.org/10.1007/JHEP03(2019)053
https://arxiv.org/abs/1811.07016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.07016
https://arxiv.org/abs/hep-th/0503149
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0503149
https://doi.org/10.1007/JHEP09(2015)072
https://arxiv.org/abs/1506.03818
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.03818
https://doi.org/10.1007/JHEP02(2016)047
https://arxiv.org/abs/1510.01744
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.01744
https://doi.org/10.1007/JHEP05(2016)020
https://doi.org/10.1007/JHEP05(2016)020
https://arxiv.org/abs/1602.01834
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.01834
https://doi.org/10.1007/JHEP02(2017)106
https://doi.org/10.1007/JHEP02(2017)106
https://arxiv.org/abs/1609.01723
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.01723
https://doi.org/10.1007/JHEP07(2017)053
https://arxiv.org/abs/1612.06859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.06859
https://doi.org/10.1007/JHEP06(2017)068
https://arxiv.org/abs/1702.02948
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.02948
https://doi.org/10.1007/JHEP11(2019)104
https://arxiv.org/abs/1904.07954
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.07954
https://doi.org/10.1007/JHEP03(2017)016
https://doi.org/10.1007/JHEP03(2017)016
https://arxiv.org/abs/1609.07144
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.07144


J
H
E
P
0
2
(
2
0
2
1
)
1
7
4

[34] S. Franco and A. Hasan, 3d printing of 2d N = (0, 2) gauge theories, JHEP 05 (2018) 082
[arXiv:1801.00799] [INSPIRE].

[35] N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl.
Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

[36] A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818]
[INSPIRE].

[37] I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau
singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

[38] J. Bao, S. Franco, Y.-H.H. He, E. Hirst, G. Musiker and Y. Xiao, Machine Learning Quiver
Gauge Theories, work in progress.

– 33 –

https://doi.org/10.1007/JHEP05(2018)082
https://arxiv.org/abs/1801.00799
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.00799
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(94)00023-8
https://arxiv.org/abs/hep-th/9411149
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9411149
https://doi.org/10.1007/JHEP03(2014)076
https://arxiv.org/abs/1310.0818
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.0818
https://doi.org/10.1016/S0550-3213(98)00654-3
https://arxiv.org/abs/hep-th/9807080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9807080

	Introduction
	A brief review of m-graded quiver theories
	The toric case
	Dualities
	Generalized anomaly cancellation

	Product of toric Calabi-Yaus: the geometry
	Product of toric Calabi-Yaus: the periodic quiver
	Anomaly cancellation

	Superpotential
	Kontsevich bracket
	Toric condition

	Examples
	F(0)
	Conifold x conifold

	Relation to other constructions
	Algebraic dimensional reduction
	Orbifold reduction
	3d printing

	Conclusions
	Some details about W(PQ)
	Products and geometry

