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1 Introduction

The engineering of gauge theories in different dimensions by means of branes probing
Calabi-Yau (CY) singularities in string and M-theory has received considerable attention.
Among its multiple applications, this approach: provides a way to construct interesting
gauge theories and study their dynamics and dualities, is a framework for local model
building [1-4] and it is at the heart of the gauge/gravity correspondence [5-7].

The well-known connection between CY (m+2)-folds and gauge theories on the world-
volume of D(5 — 2m)-branes for m = 0,...,3 (see e.g. [8-20] for the widely studied case



of D3-branes on CY 3-folds) can be extended to arbitrary m in terms of the topological
B-model. In this context, the open string sector of the B-model on CY (m + 2)-folds is
described by m-graded quivers with superpotentials (see [21-24] and references therein).

This correspondence is particularly well understood in the case of toric CYs. For
m = 1, brane tilings (a.k.a. dimer models), significantly simplify the map between CY
3-folds and 4d N = 1 gauge theories [17, 19, 25]. Progress in this area has considerably ac-
celerated in recent years, initially fueled by a desire to develop brane constructions for lower
dimensional gauge theories [26-31]. Lately, the scope of these investigations expanded to
developing tools for toric CYs of arbitrary dimension. These efforts culminated in [32] with
the introduction of m-dimers, which fully encode the m-graded quivers with superpoten-
tials associated to toric CY (m + 2)-folds and streamline the connection between quivers
and geometry.

The m-dimers associated to specific geometries can be determined via a variety of
traditional approaches, such as partial resolution and mirror symmetry, which have been
extended to general m [26]. Despite the considerable simplifications brought by m-dimers,
their determination can sometimes become practically challenging and additional tools are
desirable. Examples of such methods include orbifold reduction [33] and 3d printing [34]
which were originally developed in the context of CY 4-folds but can be applied more
broadly [24].

In this paper we introduce a substantially more powerful approach, which we denote
Calabi-Yau product. This algorithm starts from the known quiver theories! for a pair of
toric CY 42 and CY 42 and produces the quiver theory for a related CY,,4n+3. In doing
S0, it enables the computation of quiver theories that were previously out of practical reach.

This paper is organized as follows. Section 2 presents a review of m-graded quivers.
Section 3 introduces the basics of the CY product, in particular the input data for the
construction and how the parent geometries give rise to the product geometry. Section 4
explains how to construct the periodic quiver for the product theory. Section 5 discusses
the superpotential. The construction is illustrated in section 6 with explicit examples.
Section 7 considers the relation between the CY product and other constructions. We
conclude and present ideas for future work in section 8. Additional details are provided in
two appendices.

2 A brief review of m-graded quiver theories

In order to make our presentation self-contained, in this section we present a brief review
of m-graded quivers and their dualities. We refer the interested reader to [23, 24, 32] for
further details.
Given an integer m > 0, an m-graded quiver is a quiver with a grading for every arrow
®;; by a quiver degree:
@] € {0,1,--- ,m}. (2.1)

Throughout this paper, we will use the term quiver theory to indicate the combination of a quiver and
its superpotential.



Every node i corresponds to a unitary “gauge group” U(N;). Arrows connecting nodes
correspond to bifundamental or adjoint “fields”.
The conjugate of every arrow ®;; has the opposite orientation and degree m — |®;;|:

(@), (2.2)

where we use a superindex in parenthesis to explicitly indicate the degree of the corre-

3\

(c
sponding arrow, i.e. |;; ] =c.
The integer m determines the possible degrees, i.e. the different types of fields, which
can be restricted to the range:

2
cbz(j) :i—>j7 CZO,].,"',TLC—]., ncz{rrl;»J7 (23)

since other degrees can be obtained by conjugation. We refer to degree 0 fields as chiral
fields.

Graded quivers for m = 0, 1,2, 3 describe d = 6,4, 2,0 supersymmetric gauge theories
with 237™ supercharges, respectively. Different degrees correspond to different types of
superfields. These theories can be engineered in terms of Type IIB D(5 — 2m)-branes
probing CY (m + 2)-folds.

Superpotential. Graded quivers admit superpotentials, which are linear combinations
of gauge invariant terms of degree m — 1:

W =W(®), W[ =m—1. (2.4)

Gauge invariant terms correspond to closed oriented cycles in the quiver, which may require
conjugation of some of the fields.

Kontsevich bracket condition. The superpotential must also satisfy
{(W,W}=0. (2.5)
Here {f, g} denotes the Kontsevich bracket, which is defined as follows

0F 09 . |\ @ (lgl+ )0l 11 OF 39)
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2.1 The toric case

The CY,,42 associated to an m-graded quiver arises as its classical moduli space which,
generalizing the standard notion for m < 3, is defined as the center of the Jacobian algebra
with respect to fields of degree m — 1 [23]. Namely, it is obtained by imposing the relations:

ow
aq>(m71)
plus gauge invariance. Since the superpotential has degree m — 1, the terms that contribute

to the relations in (2.7) are of the general form ®(™=1) J(®(9) with J(®(®) a holomorphic
function of chiral fields. We will refer to such terms as J-terms. The relations (2.7)

=0, Vvomb (2.7)

therefore comprise only chiral fields.



Toric superpotential. FEvery toric CY,, 12 has at least one toric phase, which is a quiver
theory satisfying the following properties. First, the ranks for all nodes can be equal. In
addition, the superpotential of a toric phase has a special structure, which is referred to
as the toric condition [32]. The toric condition implies that every field of degree m — 1
appears in exactly two superpotential terms, with opposite signs. Namely,

W = a1 @0y — e = () 4 (2.8)
where dots stand for terms that do not contain @ém‘”. The relations (2.7) then take
the form:

JH(@9) = g7 (@), (2.9)

Due to this special structure, toric phases can be encoded in m-dimers or, equivalently,
by periodic quivers on T™*! [32].

Generalized perfect matchings. We define a generalized perfect matching, or perfect
matching for short, p as a collection of fields satisfying:

1) p contains precisely one field from each term in W.
2) For every field ® in the quiver, either ® or ® is in p.

Perfect matchings provide variables that automatically satisfy the relations (2.9).
Therefore, there is a one-to-one correspondence between them and GLSM fields in the
toric description of the CY,, 2. Perfect matchings indeed substantially simplify the deter-
mination of the toric diagram (see [32] for details).

Since for every field a perfect matching contains either the field or its conjugate, a
perfect matching determines a polarization of the quiver. We define polarization as a
choice of orientation for every field in the quiver, i.e. a choice of what we regard as the
original field and its conjugate. In what follows, we will adopt a convention for defining
the polarization such that, given a perfect matching, we orient the fields in the quiver
such that the fields in the perfect matching are the only ones that appear conjugated in
the superpotential.? This choice of polarization implies that the corresponding perfect
matching consists of the conjugates of all the fields in the quiver.

2.2 Dualities

m-graded quivers admit order (m + 1) mutations. For m < 3, they correspond to the
dualities of the corresponding gauge theories: no duality for 6d N' = (0, 1), Seiberg duality
for 4d N' = 1 [35], triality for 2d N = (0,2) [36] and quadrality for 0d N = 1 [30].
Interestingly, these mutations generalize these dualities to m > 3. We refer the reader
to [23, 24] for detailed discussions on the transformation of quiver theories under mutations.

2Notice that while every perfect matching defines a polarization, not every polarization corresponds to
a perfect matching. For a quiver with Ny fields, there are 2Ns possible polarizations, arising from the two
choices of orientation for every field.



2.3 Generalized anomaly cancellation

Under a mutation at a node %, its rank transform as:
N, = Ny — Ny, (2.10)

where Ny is the total number of incoming chiral fields. Invariance of the ranks under
m~+1 consecutive mutations of the same node leads to the generalized anomaly cancellation
conditions. For odd m, these conditions are given by:

ne—1

SN Y (W (@) - N (@) =0, vi, it me2z+1,  (211)
J c=0

with N (@EJC)) denotes the number of arrows from i to j of degree c. For every i, the sum
over j runs over all nodes in the quiver (including i), and n. is given by (2.3).
For even m, the conditions become

2N ncil(—l)c V(o) + N (2))) =2n, v, i me2z.  (212)
7 c=0

For m = 0,1, 2, 3, these conditions reproduce the cancellation of non-abelian anomalies in
the corresponding d = 6,4, 2,0 gauge theories.

3 Product of toric Calabi-Yaus: the geometry

In this paper we will introduce the CY product. Before explaining the details of this novel
algorithm, let us discuss its main ingredients and basics of the resulting geometry.

Initial data. The input for this procedure is given by:

e An m-graded quiver theory P for a toric phase associated with a toric Calabi-Yau
(m + 2)-fold CY 2. The toric diagram Tcy
polytope consisting of points u;. We also pick a perfect matching p of P, which

myo 18 an (m + 1)-dimensional convex

corresponds to the point ug of Ty, -

e An n-graded quiver theory @ for a toric phase associated with a toric Calabi-Yau
(n + 2)-fold CY,42. The toric diagram Tcy, ., is an (n + 1)-dimensional convex
polytope consisting of points v; in it. We also pick a perfect matching ¢ of ), which
corresponds to the point vg of Tcy,, . ,-

The product geometry. The output of this algorithm is an (m + n + 1)-graded quiver
theory that we will call P, x Q4. This theory is a toric phase for the (m+mn+3)-dimensional
toric Calabi-Yau CY,, 43 whose toric diagram Tcy,, ., , is the convex hull of points

{(uisvo)|ui € Ty, o} U {(uo,vi)|vi € Tey,, o} (3.1)

TCY,ines is a lattice polytope in Z™T"+2. In this lattice, the Tcy,,,, gets embedded in
a hyperplane spanned by the first m + 1 coordinates, while Ty, ,, gets embedded in a
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Figure 1. Two examples of the action of the Calabi-Yau product on toric diagrams. The first line
is an example of CY3xCYy =CY3. The second line is CY3xCYy =CYy.

hyperplane spanned by the last n + 1 coordinates. These two hyperplanes are orthogonal
and meet at a single point (ug,vp). In other words, the final toric diagram Tcy,, inys 18 the
convex hull of the set of points obtained by “interlacing” Tcy,,,, and Ty, ., at the point
(ug,vp). Figure 1 shows two examples of this construction. Higher dimensional examples
are straightforward although, obviously, difficult to visualize.

At first sight, the use of the term “product” to refer to the operation that acts on the
geometry as described above, might be slightly confusing. The resulting geometry is not
the product of the two parent CYs. In particular, its dimension is not equal to the sum
of the dimensions of the starting CYs. However, we feel that the term captures various
aspects of the process and its sufficiently simple to justify its adoption.

It is clear that the product of CYs can very easily produce quiver theories for extremely
complicated geometries. Moreover, iterating the process, it becomes straightforward to deal
with high dimensional geometries. We will present explicit examples in section 6.

There is substantial freedom in this construction. Given a desired CY ,,1pn43, it can
generally be decomposed into other CY,,1+2 and CY,, 19 geometries in multiple ways (even
with different values of m and n), there is a choice of toric phase for each of the parent
geometries and of perfect matchings for the points ug and vg. Therefore, generically, the
CY product method can generate a large number of quiver theories for a given CY ,4n4+3,
reflecting the rich space of theories related by the corresponding order (m+mn—+2) dualities.

4 Product of toric Calabi-Yaus: the periodic quiver

Having discussed the connection between the parent and product geometries, we now ex-
plain how to construct the periodic quiver for the product. The periodic quiver contains
all the information defining the quiver theory, namely not only the quiver but also the
superpotential. Having said that, in section 5 we will present explicit rules for constructing
the superpotential directly, without having to read it from the periodic quiver.
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Figure 2. Node x node.
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Figure 3. Field x node.

The starting point of the construction is the initial data discussed in the previous sec-
tion. As already mentioned, choosing different toric phases for the two parent geometries
and/or using different perfect matchings for the ug and vy points can result in different
phases for the same product geometry. Similar freedom has been observed in other con-
structions such as 3d printing [34] and it is natural to expect such different phases to be
related by duality.

As discussed in section 2.1, in order to simplify the product construction, given a
perfect matching it is convenient to pick the polarization of the quiver in which the perfect
matching turns out to simply consist of the conjugates of all the fields in the quiver. We
will do so here. Using the polarization of P given by p and the polarization of @ given
by ¢, we will define a polarization of the periodic quiver for P, x @Q,. As we will see
later, this polarization in fact corresponds to a perfect matching of the product theory and
corresponds to the point (ug, vg).

The periodic quiver of the product theory P, x @, can be elegantly defined in terms
of the action of the product operation on the basic elements of the parent quivers: nodes
and fields. Below, we will use the following convention to denote nodes and fields in the
different quivers: ¢ and X for P, j and Y for @ and (7,j) and Z for P, x Q,. We have
three possible products:

Node X node. The product of nodes i of P and j of @ gives rise to a node (i,7) of
P, x @Q)4. This process is illustrated in figure 2.

Field X node. The product of a field X () of P which is in p with a node j of ) gives

11,02
rise to a field Z((:;,F;;?;;,)j) in P, x Qg. Similarly, the product of a node ¢ of P and a field

}7](1‘?2 of @ which is in ¢ gives rise to a field Z((Z;F&ZJZ)) in P, x Qq.3 Figure 3 represents
this operation. The horizontal and vertical directions encode the T™*+! and T™*! tori,

respectively.

3For clarity, we have emphasized that we go over the fields X Z(f)lz of P which are in p and the fields Yj(l‘?z

of @ in q. However, given our choice of polarization determined by p and ¢, these are simply the conjugates
of all the fields in P and Q.
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Figure 4. Field x field.
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Table 1. Summary of the construction of the periodic quiver for P, x Q.

Field x field. The product of a field X( ) of P in p with a field Y( o of @ in ¢ gives

2
rise to a field 2T
(i1,41) (42,42)
Table 1 summarizes the product construction. This procedure not only generates

Figure 4 represents this operation.

the quiver for P, x (), but also constructs its periodic quiver. This is because given an
embedding of the periodic quiver P in T™*! and of @ in T"*!, these rules result in an
embedding of P, x @, in T™"+2,

For the sake of completeness we also describe the conjugates of the fields we have
written above. Their origin can be understood as follows:
((1d ZT)?;ZIQ)) is Z((Zj;gi:jl)'
1 and the field Y](2 i 9 Wwhich is not in q.

e The conjugate of Z It arises from the product between the node

(ctn+1) . Z(m—c)

e The conjugate of Z(z Ning) 8 Zin 1)) x(m=<)

It comes from the product between X; ;.

which is not in p and node 7.

~(c+d) . (m+n+1—c—d)

* The conjugate of Z(Zl ) (iz,j2) 18 Z(inz)(ilJl)

(m c) an dY(n d)‘

Z211 J2J1

. It comes from the product between

It is important to note that at the end of this process there is no field that comes from
the product of an x© ¢ pandaY

1112
q central to this construction.

j i gé q or vice versa. This makes the choice of p and

4.1 Anomaly cancellation

Let us begin checking the consistency of the CY product construction we have just intro-
duced. In this section we will show that if P and @) satisfy the corresponding anomaly
cancellation conditions, then so does P, x ;. We assume that the ranks of all nodes are



equal to N and normalize the anomaly by this number. We first enumerate all the fields
that are charged under a given node (i,j) of P, x @4 and consider their contributions to
the anomaly. These fields are given by:

1. Product of incoming fields at ¢ in P with node j of Q.

(a) If XZ-(/CZ-) € p, then it gives rise to a field Z((ZC,JZ%F i)) incoming at (7,j) which con-

tributes (—1)¢*"*! to the anomaly.

(2 9 ! V(1.1 Y
(b) If Xy; ¢ p, then it gives rise to a field 2/ jyi,j) ncoming at (,7) which con

tributes (—1)¢ to the anomaly.
2. Product of incoming field at j in ) with node ¢ of P.

(a) If }7].(,?) € ¢, then it gives rise to a field Z (

+m+1)
(i,
tributes (—1)4*™+! to the anomaly.

")(ij) incoming at (,7) which con-

(b) If Yji; ¢ g, then it gives rise a field Z((ic)j,) (i,j) Incoming at (4,7) which contributes

(—=1)? to the anomaly.

3. Product of a field )_(Z-(,CZ-) that is in p with a field %@?) that is in ¢. This gives rise to
(c+d)

(#,3") (i B
the product of the contribution to anomaly at ¢ of the incoming field X Z.(,? and the

contribution to the anomaly at j of the incoming field Yj(,;l.) .

)

the incoming field Z ) which contributes (—1)t? to the anomaly. This is just

4. Product of an outgoing field X i(; at ¢ that is in p with an outgoing field }7j(]§f) at j that is

in ¢. This gives rise to the outgoing field Z((f;)tz, ;v at (i,7). Its conjugate contributes
(—1)mtntl=c=d 5 the anomaly. This is minus the product of the contributions to

the anomaly at ¢ of the incoming field X Z.(,T_C)
at j of the incoming field Yj(,?_d).

and the contribution to the anomaly

Adding all these contributions, the anomaly at node (i, j) becomes
A= ay + (—1)”“% + b% + (—1)m+1bq + apby — aP/b}{, (4.1)

where a,, is the contribution to the anomaly at node i by incoming fields that are in p and
ay is the contribution to the anomaly by incoming fields that are not in p. Similarly, b, is
the contribution to the anomaly at node j by incoming fields that are in ¢, while b;{ is the
contribution from the fields that are not in q.

At this point we distinguish three cases depending on the parity on m and n.

Odd m and n. In this case A becomes
A= ay + ap + by/ + by + apby — a%b}[. (4.2)
For odd m and n, the anomaly cancellation conditions for ¢ in P and j in @) respectively are
ay = —ap b7/ = -0y (4.3)

Plugging these back into the expression for A results in A = 0, which is the anomaly
cancellation condition, since m + n + 1 is odd.



Even m and even n. In this case A becomes
Apet = ay — ap + b;{ — by + apby — apzb;j. (4.4)
The anomaly cancellation conditions for ¢ and j respectively are
ay =2 —ay b%:Q—bq (4.5)

Plugging these back also results in A = 0, which is again the anomaly cancellation condition
since m +n + 1 is odd in this case, too.

Odd m and even n. Lastly, in this case
A= ay — ap + by/ + by + apyby — a%by/. (4.6)
The anomaly cancellation conditions at ¢ and j are
ay = —ap by/ =2—10 (4.7)

which gives A = 2, i.e. the anomaly cancellation condition is satisfied since m +n + 1 is
even for this case.

5 Superpotential

The construction introduced in section 4, produces the periodic quiver for P, x @, from
which, in principle, its superpotential can be read off. In general, this can be rather
challenging. Therefore, in this section we introduce explicit rules for the direct construction
of the superpotential.

The superpotential of the product theory takes the general form

W =Wp+Wq+Wec+Wpq. (5.1)

Wp and Wg descend from the superpotentials of P and @, respectively. Wc¢ consists of
new cubic interactions. Finally, Wpg depends on superpotentials of both P and Q). We
now describe each of them in detail.

Wp: terms descending from the superpotential of P. Let us consider a single
term Tp in the superpotential Wp of the parent theory P. It has the general form

Tp = x( x(e2) . xlon-1) (o) (5.2)

1192 <1213 Tg—1%k ikt )

where ), ¢, = m — 1 due to degree constraint. Our convention for the polarization makes
the perfect matching p manifest. The fields in p appear as a single conjugated field per
term in Wp. Furthermore, we will order the fields in every term such that the fields in p
occur last.

Every term Tp gives rise to various terms in Wp, as we now discuss. First, some of
these terms correspond to the product between the fields in this term and a node j of Q.
They take the form

Z Zler) 7(e2) . zler=1) Z(er+ntl) (5.3)

(i1,5) (i2,5) < (i2,9) (i3,5) * 7 (tk—1,0) (ksd) “ (iterd) (i1,5) *
jeJ

~10 -



where the sum is over the set J of nodes j of Q). After this operation, the degree of the
superpotential changes by n + 1 and becomes m + n, as required for the superpotential of
an (m +n+ 1)-graded quiver.

The additional terms descending from Tp are constructed as follows. We first pick a
field Xz(,ci) from those in Tp. Since this field does not appear conjugated, it is obviously

not contained in p. We also pick a field Yj(,(j) that is not in q. We then replace X i(,ci) in Tp

by its product with Yj(,?), ie. by Z ((571;(@12) This operation increases the degree by d + 1.

We also replace )_(Z-(Iffl) by its product with Yj(;,l_d), i.e. by Z((f:j)?z_ld]),) This changes the
degree by n — d. Finally, we simply replace the remaining fields in Tp by their product
with appropriate node in @), which does not change the degrees since these fields are not
in p. When combined, all these replacements change the degree of the superpotential term

by n + 1, as desired. Explicitly these terms are

(c1+d+1) (c2) (e3) (ck—1) —(cx+n—d)
Z (z'lJ’)(ia,j)Z(iz,j)u‘s,j)Z(z‘s,j)(z’4,j) o Z(z‘zHJ)(z'k,j)Z(z'k,j)(il,j')
yn=deq
7 c1 rr(c1) (c24d+1)  (c3) (ck-1) ~(cp+n—d)
(D20 500,50 D) s ) s ) iad) " L) i) D)) T
c14-Acp_o rr(c1) (c2) (c3) (ek—1t+d+1) Z(cp+n—d)
+ (=1 * 2Z(z‘l,j’)(z‘z,j’) (i2,5") (i3,5") 7 (i3,3") (4,3") * " 7 (ik—1,3") (iksd) “ (ks (31,57)

(5.4)

To obtain Wp, we repeat this process for all the terms in Wp. In addition to the signs writ-
ten above, we must include the signs with which the parent superpotential terms enter Wp.

Wq: terms descending from the superpotential in Q. These terms are determined
by the same procedure, after the exchange (P, p) +» (Q, q). Let us present the final result.
Every term Tp in the superpotential Wg of @ is of the form:
_ y(di)y(d2) (dr—1)y-(dy)
Ig = Y}1j2 Yij3 h 'ij_ljk ijjl : (5.5)
As before, Tpy gives rise to superpotential terms of two types, analogous to (5.3) and (5.4).
The first set of terms is

(dy) (d2) (di-1) >(di+m+1)
D 26 i Zligm i) Lo 2 i) (5.6)

el
with I the set of nodes of P.
The second set of terms is

(ctdit1) (ds) (ds) 1) o(m—ctdy)
» Z) [Z (@0 Z032) ) D)) Lidien) @) 2 a0 @)
X Yep
i dr () (ctdot1) (ds) (@o1)  plm—ctd)
+ DM 2650 w5 20 o) g L egs)idn) ™ Lligin i Zeanagn T
di+-—+dj_o 7(d1) (d2) (ds) (m—ctdi—1) 7(m—c+dp)
+ () T T @) Z o) @d) 2 ga) @ da) L) ) Z g @)

(5.7)

Repeating this process for all the terms in Wp, we obtain Wp. Once again, we need to
include the signs of the parent terms in Wp.

- 11 -



We: new cubic interactions. This part of the superpotential consists of new cubic

) € p and v e q we have a pair of cubic terms

interactions. For every pair of fields X (c 1jo

(i) (i21) 2 i,1) (inj2) 2 (1,31 i)~ Plizsga) (insga) 2 (inj2) (i1,31) 2 1.1 ) iz

(_1)c+d [Z(n*d) Z(mfc) Z(CJFd) (m—c) (n—d) 7(ctd) )} (58)

where the fields involved are descendants of X'i(ﬁ) and }7}(]-05) via the rules in table 1, or their
conjugates. Namely,

(m—c) (m—c) _ (n—d) (nd)  s(ctd) <) L @
Ging) i) = Nizin X T Ly g = X Vg0 i) (i) = Nivia X szp .)
5.9

We is the sum of (5.8) over all the pairs of X' and Y%¥

1112 .71]2

Wpq: mixed terms. The last part of the superpotential involves contributions coming
from P and @. A term Tp in the superpotential of P and a term T in the superpotential
of @ give rise to a number of terms in the superpotential of the product theory. Wpq is
the sum of all such terms. To describe them, let us first consider the special case in which
both T’p and Ty are cubic terms, i.e.

— X(Cl)X(C2)X(m_1_Cl_C2) — Y(dl)Y(dZ)Y(” 1—di— d2) (5.10)

112 “Ti213 <13t ’ Jij2 " Jj2J3 T J3j1
In this case, they give rise to a single term that involves the pairwise product of fields,*

(= 1)m+n+62+d2 Z((flljltgl(—tzl,)h) ((5227;65?:{317)3'3) ((Z;Z:;,(i Jil) ) (5.11)

If Tp and/or Ty are of order greater than 3, no such simple terms can be written. The
reason is that the pairwise product of fields is only possible if they have the same order
and the resulting terms will have correct degree, i.e. m + n, if and only if Tp and Ty are
cubic.”

One way of addressing this issue is to turn Tp and T into a sum of cubic terms and
mass terms, by integrating in auxiliary massive fields. Then we can construct Wpg as
described above, consisting exclusively of terms descending from the cubic terms. The
final quiver and superpotential can then be obtained by integrating out the massive fields.

Naively, it might seem that this procedure dramatically changes our construction. A
massive field in P gives rise to one descendant for every field or node of ) and vice versa.
Nevertheless, it can be verified that all these descendants are massive, resulting in the same
quiver we would have obtained without integrating in massive fields. Therefore, we can
use the rule for cubic terms above as the starting point to efficiently compute the rules for

k—1

higher order terms. The result is that there are (%, )(l 1) terms in Wpg descending from

41t is useful to reflect on why we obtain a single term. First of all, we defined the polarizations of the
parent theories such that every term in their superpotentials contains a single conjugated field. In addition,
following the rules introduced in section 4, we cannot multiply unbarred and barred fields. As a result,
there are not multiple possibilities associated to cyclic permutations of the fields in (5.10).

5Tt is interesting to compare this to the B-model computation of the superpotential: cubic terms are
special in that they correspond to ma of the A algebra, which is composition of maps, while higher order
terms correspond to higher myg, which are more involved.
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terms Tp of order k and T of order [. All these terms are of order k41 — 3. We provide a

thorough discussion of these terms and the first few steps of this iteration in appendix A.
The four types of contributions to the superpotential interplay non-trivially in the

Kontsevich bracket condition. This issue is studied in detail in the coming section.

The geometry of the product theory. It is relatively straightforward, yet quite la-
borious, to show that the desired geometry (3.1) arises as the classical moduli space of the
P, x Q)4 theory we have constructed. We present the proof in appendix B.

5.1 Kontsevich bracket

As another consistency check of our construction, let us verify that the superpotential we
have written satisfies {W, W} = 0, where

ow ow
{Ww} =2 i Z 570 §zmFnt1=b) - (5.12)
20 @A) TR )

To do this, we divide {W, W} into eight pieces,

{W,W} =2(KBp+ KBg + KBpc + KBgc + KBpg + KBpgp + KBpgg + KBpgc) ,
(5.13)
each of which vanishes individually.
KBp = %{Wp, Wp} is the contribution that arises exclusively due to Wp. Explicitly,
its nontrivial terms are

ow OWp
KBp= Z Z aZ(m c) YA (c+n+1 Z Z (m+n+1 c—d) q7(ct+d)
IS X(©) ey Y ig,5)(i,5) ¥ (11,5) (2, 5) Y(d) cq X9 ep U9 i2,52) (F1,51) (i1,91) (32,52)

112 J132 112

(5.14)
It is straightforward to show that K Bp vanishes if the superpotential Wp of P satisfies
{Wp,Wp} = 0. The reason is that the terms in K Bp descend from the terms of {Wp, Wp}
in a manner that is analogous to how terms in Wp descend from terms in Wp and the
signs in (5.4) are such that the required cancellations still occur.

Similarly, KBg = ${Wg, Wg} is

KBo=Y, ¥ —mid——mln s ¥ Y e
i€l Yj(ldj)2 (4,52)(4,51) ~ 7 (4,51) (4,52) XZ(;Z2 ep Yj(ld])2 eq ~ T (i2,52)(41,51) (41,91)(32,52)
(5.15)
and it vanishes if the superpotential Wy of @ satisfies {Wg, Wp} = 0.
K Bpc and KBgc involve the Kontsevich bracket between Wp and Wg with We.

Explicitly, K Bpc = 5({Wp, Wt +{Wc, We}) and K Boe = 5({Wq, Wo +{We, Wo}l).

®The notion of moduli space has been extended to general m in [23].
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They reduce to

We
KBpc = Z Z 6Z(m c) 9 c+n+1 Z Z (m+n+1 c—d) o7 (ct+d)
JEJXffEQ ep 7 (i2,5)(1,9) (1173)(12 i) Y(ldj)2 eq Xffo ep 7 (i2,52)(11,51) (11,91) (32,52)
We ow Wqg We
KBqc = Z Z 97— (d+m+1 Z Z (mA+n+1l—c—d) 45 (ct+d)
iely J<1J)26q (@, 32)( J1) 77 (1) (6,52) XflcfZ €p Y]<1dj)26q (12,52) (i1,51) (i1,41) (i2,52)
(5.16)

Both K Bpc and K Bgc vanish independently of any conditions on Wp and Wy. This can
be verified directly using the explicit form of We.
Let us now consider K Bpg = %{WPQ, Wpq}. Its non-trivial part is

OWpq OWpq
KBpq = Z Z (mtn+l—c—d) 57 (ct+d) : (5.17)
X ep¥,Y) eq 7 (iz,2) (i1.1) (11,1)(42,52)

First, let us consider the case in which Wp and Wy, are cubic, since in this case Wpg comes
just from the pairwise product of fields, as explained earlier. In this case, both {Wp, Wp}
and {Wg, Wg} are entirely quartic and a term in K Bpg comes from the pairwise product
of fields from a term in {Wp, Wp} and a term in {Wg, Wg}, As result, K Bpg vanishes.

To show that K Bpg vanishes even when Wp and W are not cubic, we can rewrite Wp
and Wg as sums of cubic terms and mass terms by appropriately integrating in massive
fields and using the argument above. There is an added subtlety: after integrating in these
massive fields, {Wp, Wp} and {Wq, Wp} vanish only after using the equations of motion
for massive fields. This is enough for our purposes, and it can be shown that KBpg
vanishes once we integrate out massive fields from the product theory.

All the remaining contributions, KBpgp, KBpgg and K Bpgc, involve Wpg and
therefore it is convenient to express Wp and Wy as a sum of cubic terms and mass terms.
Explicitly, they are

1
KBpgr =5 ({Wpq@, Wp} +{Wp, Wpq})
1
KBqrq = 5 ({Wp@, Wq}t +{Wq, Weq})
1
KBpgc = 5({Wp, WQ} + {WQ, Wp} + {WPQ, Wet + {We, WPQ}) (5.18)

A lengthy but straightforward bookkeeping calculation shows that all of these contributions
vanish up to the equations of motion for massive fields. K Bpgp vanishes as a result of
{Wp,Wp} = 0, while vanishing of K Bpgq follows from {Wg, Wg} = 0. Lastly, KBpgc
vanishes independently of any restriction on Wp and Wy,.

5.2 Toric condition

To conclude our discussion of the superpotential, we now show that our construction is
such that if P and () satisfy the toric condition then P, x Q4 also does so. We do so by
considering the different ways a field of degree m + n can arise in the superpotential of
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P, x Qq. It is useful to note that all such terms must come from Wp, Wg and We, but not
from Wpg. As explained in appendix A, every term in Wpg contains two fields coming
from the product of a field not in p and a field not in ¢q. The degrees of such fields are
greater than or equal to 1, so none of these terms can contain a degree m + n field. The
different scenarios are:

e A field of degree m — 1, x =1

1112

field Z((m+)782 i) of degree m + n. This field only appears in Wp, in the form shown

€ p. Its product with a node j of ) gives rise to a

n (5.3). Therefore, if XZ(” 1 participates in two terms with opposite signs, then so

does Z((Z;)TEZQ g Similarly, if there is a field Yj(lnj2 D¢ q, its product with a node ¢ of
7 (m-+n)

P gives rise to Z( i) (g2)" It only participates in Wp, as shown in (5.6), namely in
two terms with opposite sign.

(m)

o The product of a conjugate chiral X, € p and a conjugate chiral field v ¢ q

1112 J1J2
gives rise to a field Z((:T;T;)(ZQ i) of degree m + n. Since conjugate chiral fields do not
appear in the superpotential, Z((Z':;T;)(ZQ ) does not appear in Wp or Wg. It only

appears in two terms of W¢ with opposite sign as shown in (5.8).

e The product of a field XZ(ZLQ 2 ¢ p and a conjugate chiral field Y
(m+n) -1
(41,41) (42,52)

in Wp, Z((Z?j:;)(w j,) appears in two terms of the final superpotential with opposite

signs. These terms arise as described by (5.4). Since Y( ") s a conjugate chiral, it

Jij2
((:11;17;)(12 Ja) does not appear in Wg. It

]1 i gé q gives a field

of degree m 4 n. Since X| (m appears in two terms with opposite sings

1112

does not appear in Wy, which implies that Z
does not appear in We, either.
(n—

31J2
which only appears in two terms with opposite signs. These terms

Similarly, the product of a conjugate chiral field Xz(lng ¢ pand Y §é q gives rise
(m+n)

(i1,51) (i2,j2)°
are in Wy, specifically among those described in (5.7).

to Z

The discussion above covers all the fields of degree m + n. We conclude that the
product between an m-graded toric phase P and an n-graded toric phase () using arbitrary
perfect matchings is an (m + n + 1)-graded toric phase.

6 Examples

In this section we illustrate the product construction with two explicit examples. The first
theory we will construct is the well-known phase 2 of Fy [14].” The second example is a
product of the conifold quiver theory with itself, which results in a 0d N/ = 1 matrix model.
While, to our knowledge, this the first time the second theory appears in the literature,
our primary goal is to demonstrate the simplicity of this procedure.

"By phase 2, we mean the phase whose quiver is shown in 8. Various papers label the two phases of Fy
in different ways.
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Figure 5. The periodic quiver for C?/Z,.

Xo =

Figure 6. The toric diagram of Fy can be obtained as the product of two copies of the toric
diagram of C2?/Z,. In both cases we use the central point of the toric diagram to take the product.

6.1 Fp

Let us consider the complex cone over Fy CY 3-fold, or Fy for short. The m = 1, i.e. 4d
N = 1, quiver theories for this geometry have been extensively studied in the literature
(see e.g. [14]). The toric diagram for Fj can be constructed as the product of two copies
of C2?/Zs using one of the two perfect matchings for the central point in each case, as
illustrated in figure 6.

The m = 0, i.e. 6d N' = (1,0), quiver theory of the parent C2/Zy geometry consists
of two U(IV) gauge groups with two hypermultiplets stretching between them, as shown in
figure 5.

This theory has 4 perfect matchings, which translate into the 4 ways in which we can
orient the 2 hypermultiplets. Two of them correspond to the two endpoints of the toric
diagram (shown on the left of figure 6) while the other 2 correspond to the central point.
As a result, we have 2 perfect matching choices for the central point of each of the C?/Zs
factors. But the 2 central perfect matchings are conjugates of each other and as a result
any choice of perfect matchings gives the same theory up to chiral conjugation.®

The product of the periodic quivers is presented in figure 7. The first step shows the
two parent 6d N' = (1,0) quivers. The arrows are oriented to indicate the choice of perfect
matchings. The second step shows the nodes of Fy that arise from the product of nodes in
the parent theories. In the third step, we add vertical fields (which come from the product
of a node in the first parent and a field in the second one) and horizontal fields (which
come from the product of a field in the first parent and a node in the second one). The
last step adds the diagonal fields that arise from the product of a field in the first parent
with a field in the second one.

The result is the phase 2 of Fj [14]. Since in this the parent theories do not have
superpotentials, the final superpotential only consists of the new cubic terms that arise in
the product. These terms can be straightforwardly read from the minimal plaquettes of

the quiver.

8We note that m = 0 is the only case for which the conjugates of the field in a perfect matching also
form a perfect matching. This is only possible because there is no superpotential.
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Figure 7. A product of periodic quivers resulting in phase 2 of Fj.

For completeness, in figure 8 we show the standard quiver for this theory. Its super-
potential is

W = Xg000X0n00Xan00 ~ XoownXionnXa oo
+ X0000X100nX 1000 ~ X00onX 000X 100
+ X000.0X 100X 1000 ~ XooonXonayXaneo
+ X0000%0000X 0000 ~ X0.000X 100X 11000 (6.1)

An infinite family: Fém). The process discussed above can be continued inductively
to get an infinite family of toric CY (m + 2)-folds indexed by m. The toric diagram for
Fo(m) is

(0,...,0,41)

This family was first introduced in [24], where the corresponding quiver theories were also
constructed.
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Figure 8. The quiver for phase 2 of Fj.

Roughly speaking the periodic quiver for Fém) corresponds to

(@] ~(D< @) (6.3)

This is of course not a complete description except for m = 1 because, at every step, to
construct a periodic quiver for Fén) we need to choose a perfect matching for Fonfl). This
freedom hints at the existence of multiple phases of Fo(m) for m > 1 and it is natural to
expect that different choices of perfect matching lead to different phases related by the
dualities discussed in section 2.2.°

The quiver theory Q"™ of one particular phase of Fém) can be constructed inductively

as follows
Q" =@ ® © P =@ (D ©
Q(m+1) = Q,(I% X Qz(o((]())) p(m+1) = p(m) x pl¥ (6.4)

where we use the product perfect matching p x ¢ of P, x @), as defined in appendix B. This
phase of Fém) was discussed at length in [24, 32], to which we refer for details.

6.2 Conifold X conifold

The conifold is one of the most thoroughly studied toric CY 3-folds. Its toric diagram
is shown in figure 9. The corresponding gauge theory was constructed in the seminal
work [37]. It consists of two U(N) gauge groups and four bifundamental chiral fields Xy,
Xo1, X10, and X1, as shown in figure 9. The superpotential is

Weon = Xo01X10X01 X10 — X01X10X01 X10 (6.5)

This theory has 4 perfect matchings, each of them consists of one of the chiral fields
and corresponds to a corner of the toric diagram. Given the symmetry between the perfect
matchings, the result is independent of which perfect matching we use for the product, up
to relabeling. We will therefore drop the reference to the perfect matching and refer to this
theory as conifold x conifold. Without loss of generality, we choose the toric diagrams of
the two conifolds to coincide at the origin. The conifold x conifold is therefore a toric CY

9For example, FO(Q) is also known as Ql’l‘l/Zg. This theory has 14 toric phases, which were classified
in [34].
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Figure 9. a) Toric diagram and b) quiver for the conifold.

0 1 XY XY x) Xy
0 [(©0.0~0 (01)~1 2 ZV z{ Af
Loy~ (L)~3 2y 2z AL
x$ |z z AR S OAY s
x| Zy AV VAN R N
x| 2z z) Ay =AY =R
X5 | AR Ayl o )z

Table 2. Summary of how the nodes and fields in the conifold x conifold theory descend from the
two parents. For simplicity, we converted the pairs of indices labeling nodes in the product to single
indices. We also indicate the degree of the fields as a superindex. We use Latin and Greek letters
to indicate chiral and Fermi fields, respectively.

5-fold with toric diagram

(0,0,0,0) (1,0,0,0) (0,1,0,0) (1,1,0,0)
(0,0,0,1)
(0,0,1,0)

)

(0,0,1,1 (6.6)

where we have indicated the two conifold factors as the row and column. Table 2 summa-
rizes the nodes and fields in the product 0d N = 1 matrix model.' The corresponding
quiver is shown in figure 10.

Superpotential. Since the periodic quiver in this case lives on T4 we cannot display it
diagrammatically. Instead, we can construct the superpotential explicitly using prescription
given in section 5. We divide the total superpotential into four parts

W =W +Ws + We + Wia, (6.7)

where Wi and W, come from the first and second conifold factors respectively, W contains
the new cubic terms and W;o contains the mixed terms. Recall that in table 2 we used

10See e.g. [30] for the basics of 0d N = 1 gauge theories.
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Figure 10. Quiver for the conifold xconifold. Black arrows have degree 0 and red arrows have
degree 2. They correspond to 0d A/ = 1 chiral and Fermi fields, respectively.

Latin and Greek letters to indicate chiral and Fermi fields, respectively. With this in mind
the various parts of superpotential are:

Ws. Since there are only two terms in the superpotential of the conifold we write the
descendants of each of them separately. We thus write Wy = Wi+ — W, with Wi and
Wi _ the descendants of the positive and negative terms, respectively. We get

Wiy = Zo1Z10Z01 Mo+ Za3 Z32 Zaz Asa + Moz Z32 Za3 %30 + Zo1 M 12 Z23 %30 + Zo1 Z10Z03 30
+T 03739 Z23 830+ Zo1 M2 Za3 Az + Zo1 Z10 D03 A 30+ Ao Z10 Zo1 Z12 + Zoa Az Zo1 12
+ Z93 739501 %19+ 103 232 Zo3 Z30+ Z01T12 Z93 Z30 + Zo1 Z1003 Z30 (6.8)

and

Wi_ = Zo1 Z10Z01 M 10+ Za3 Z32 Zaz M3+ Y03 Z32 Z23 E30 + Zo1 M2 Z23 30 + Zo1 Z10 Aoz X0
+A03 732 Z23A30+ Z1 T12 Z23A30 + Zo1 Z10T 03 A30 + A1 Z10 Zo1 212+ Zo3A30 Zo1 212
+ Z93 73901 Y12+ Q03 Z32 Z23 Z30 + Zo1T'12 Z23 Z30 + Zo1 Z10T 03 Z30 (6.9)

Ws. Similarly, Wy = Way — W,_ | with the two parts being

Way = Zoo Zoo ZoaNao+ Z13Z31 Z13M31 + No3 Z31 Z131 30+ Zoa Mo1 Z13T 30+ Zo2 ZooT 03T 30
+ Y03 731 Z13030 + Z02 21 Z13Q30 + Z01 Z10A 03230 + A2 Z20 ZoaT 21 + Z13A30 Zo2T' 21
+Z13731T 12T 91+ Y30 Z31 213 Z30 + Z02 521 Z13 Z30 + Zo2 Z20 203 Z30

Wi = Zos Zoo Zoa Moo+ Z13Z31 Z13N31 + L3 Zs1 Z13T 30+ Zo2 M1 Z13T 30+ Zoa Zao AosT 30
+ Y03 731 Z13030 + Zo2 Y01 Z13Q30 + Z02 Z20 L0330 + T'12 Z20 Zo2L21 + Z13A30 ZoaTa1
+Z13 731 M12T 21 + D03 Z31 Z13 Z30 + Zoa Y21 Z13 Z30 + Zo2 Z20X03 Z30 (6.10)
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We. As explained in section 5 there are two cubic terms in the superpotential of P, x @,

for every pair of fields X (e)

v (d) .
i1 ED and Y, € (. In the present case, these terms are:

12,72

Xo1 Xo1 X10 Xo1
Xot| ZonZishso| ZoZisTso| ZasZsiMia| ZoiAisTso
— Zy2Zag 30| — Zoa Z23T30 | — Z20 Zo1 M2 | —No2 ZosT 30
Xot| Zo1Z13Ss0| ZonZisDso| ZasZsnSiz| ZorMisQso
— Z2 Za3 Y30 | — Zo2 223 D30 | — Zao Zot X2 | — Noa Z23Q030 (6.11)
Xio| Z10Zo2Aa1| ZioZoaT21| Zs2ZooMos| ZioAoolan
—Zh3Z39Mon | — Z13Z35T 91 | —Z31 Z1oAos | —A13 23202
Xot| Ao1Z13830| Ao1ZizAso| AssZaiTra| AorAizZao
— Zo2N\a3Es0| — Zoa MasAgo | — Za0Mo1 512 | — Aoz Aas Zso

We is the sum of all these terms.

Wi2. As explained in section 5 and appendix A, for every pair of terms Tp and Tp,
there are terms in the product superpotential that combine them. For every pair of quartic
terms, there are 9 quintic terms. As in the case of Wy and Ws, we write the corresponding
terms separately. So we decompose Wis as

W12 — W++ + W+7 + Wer +W__ 5 (612)

where the signs correspond to the signs of the parent terms in the two conifolds. The
individual contributions are:

Wit = Zo2Za3M30003 730 — ZoaMo1T19 703730 — ZoaAa1 Z10M03 Z30
— Zo1M2Y21 Z13 730 + M3 Z32%21 Z13Z30 — Zo1 M2 Za0 D03 Z30
+ N3 Z32 220803 Z30 + MozA30Z02Z93Z30 + Moz Z31T 12723 730

Wi = —ZyaZozA30T03Z30 + ZoaXo1T12 203230 + Zo2%21 Z10T 03 Z30
+ Zo1 M2 Moy Z13 730 — Y03 739001 Z13 730 + Zo1 M2 ZaoT 03 Z30
— %03Z32Z20T03Z30 — L0330 202723730 — L03Z31T12Z23 730
W = —Z0aZo3A30%03Z30 + ZoaMa1 M2 293730 + ZoaAa1 Z10%03 Z30
+ ZnT19521 213730 — D03 732521 Z13Z30 + Z011'12 22003 Z30
— T03Z32Z20%03Z30 — To3A30Z02 223 Z30 — To3 Z31M12 223 Z30
W__ = Zo2Za3M30M03Z30 — ZoaXo1M 12723730 — ZoaXo1 Z10M03 Z30
— Zo1T19M91 Z13Z30 + Doz Z3aMo1 Z13 730 — Zo1T 12 Z20 Moz Z3o
+ Ao3Z32 22003230 + DNo3A30 2022423230 + No3Z31M12 223730 (6.13)

This completes our description of the superpotential. All in all, it consists of 124 terms.
Of these, 38 are J-terms, i.e. they contain precisely one degree m — 1 field (namely degree
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Figure 11. The periodic quiver for C? and its perfect matchings, represented here as orientations

of the quiver.

2 in this case) and the rest are chiral fields. Each one of the 19 degree m — 1 fields (see the
quiver in figure 10) appear in two of these terms with opposite sign, so the superpotential
satisfies the toric condition. Finally, with some effort we can verify that the Kontsevich
bracket {W, W} vanishes.

7 Relation to other constructions

We now briefly discuss how the product construction relates to other known methods for
determining the quiver theories corresponding to a given geometry.

7.1 Algebraic dimensional reduction

Algebraic dimensional reduction is an algorithm for constructing the quiver theory for
CYt2 x C starting from the quiver theory for CY,,42 [23]. It generalizes dimensional
reduction from 6d N = (1,0) theories to 4d N = 2 theories (m = 0 — m = 1), from 4d
N =1 theories to 2d N' = (2,2) theories (m = 1 — m = 2) and from 2d N' = (0,2)
theories to 0d N = 2 theories (m = 2 — m = 3)!! to arbitrary m.

Algebraic dimensional reduction is indeed a specific instance of products and corre-
sponds to the product of the quiver theory for CY 12 with the simplest m = 0 quiver
theory, the one for C2. This theory is shown in figure 11 and has two perfect matchings.
We can use any of them and get the same result. Similarly any perfect matching used for
the CY 12 theory gives the same quiver theory for CY,,4+2 X C up to a relabeling of fields.

7.2 Orbifold reduction

Orbifold reduction is a generalization of dimensional reduction that constructs a quiver
theory for a toric CY4 from a that of a toric CY3 [33].12 It adds a third dimension to the
toric diagram Ty, by adding images of one of its points up to some height k above the
central plane containing the Tcy, and some depth k_ below it (see figure 12).

This process again corresponds to a specific case of a product. The orbifold reduction
of a 4d N = 1 quiver theory with periodic quiver P using a perfect matching ¢ corresponds
to the product P, x A((Ik++k_). Here A®) is the 6d N = (1,0) quiver theory for C?/Zy, i.c.
the affine necklace quiver of type A with k nodes. A perfect matching of an m = 0 quiver

is just a choice of orientation of its edges, so the perfect matching p is such that k; arrows

k4+k—
k_

all realize theories corresponding to the same geometry and are related by a sequence of

point up while k_ arrows point down. There are ( ) such perfect matchings. They

trialities.

11n all these cases, the dimensionally reduced theories have more than 22~™ supercharges.
12This corresponds to going from m = 1 to m = 2. The procedure can be naturally extended to higher m.
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Figure 12. Toric diagrams for: a) the dimensional reduction of dPs to dP3 x C, b) a (dP3 x C)/Zj,
orbifold with k£ = 2 and ¢) an orbifold reduction of dP; with k; =2 and k_ = 1.

7.3 3d printing

Another algorithm for efficiently constructing quiver theories for toric CYs starting from
simpler parent geometries is 3d printing. 3d printing allows one to add images of multiple
points in the toric diagram (we refer to [34] for details). 3d printing is indeed more general
than the CY product in two senses:

e All the geometries that can be addressed with CY products can also be reached by a
sequence of 3d printings that increase m by one at a time. The converse is not true;
there are geometries that can be realized by 3d printing but not as CY products. The
simplest such example is the conifold. As it is evident from its toric diagram, shown
in figure 9, it can be constructed by lifting both the points in the toric diagram of
C2. On the other hand, it is clear that it is not possible to produce it by a product.

e Even if the same geometry can be realized by both processes, there might be phases
of the quiver theories that can be obtained via 3d printing but not via a product. A
simple example of this phenomenon is Fy. Phase 2 of Fy can be obtained using either
construction but only 3d printing is able to construct phase 1.

Despite these relative disadvantages, the CY product is a superior method for geome-
tries that can be reached via both methods for several reasons:

e The CY product is much more efficient. This is true even for simple geometries. As an
example, let us consider the construction of a quiver theory for the conifold x conifold.
In order to 3d print this theory starting from the conifold, we first need to produce
an intermediate CY 4-fold that is the dimensional reduction of the conifold, i.e.
conifoldxC. Then two points of its toric diagram must be lifted to produce the
conifold x conifold. To carry out this process we will have to compute the perfect
matchings not only for the conifold but also for the intermediate conifold xC theory.
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The difficulties of constructing the necessary quiver blocks and computing perfect
matchings at every intermediate step makes 3d printing impractical if the difference
between the dimensions of the input and target geometries is large.

e The CY product always produces reduced theories, which is not the case with 3d
printing which often results in reducible, also known as inconsistent, theories which
need to be reduced [34].

e Unlike 3d printing the CY product does not generate mass terms in the superpo-
tential. This not only reduces the computational burden but it also means that CY
product provides a more direct way of arriving to the final quiver theory, without the
need to integrate out massive fields at the end.

e More importantly, in addition to these computational advantages, the CY product
provides us with a concise and much clearer relationship between the input and target
geometries. This becomes more striking as the difference between the dimensions of
the input and target geometries increases.

Having considered the relative merits of the two constructions we turn to some spec-
ulation about their relation. While we have restricted ourselves to the case in which the
periodic quivers for both theories are embedded in tori, more generally we can regard the
product construction as a method for producing a quiver embedded in S x T given two
quivers embedded in manifolds S and 7. We can also consider cases where the manifolds
have a boundary. Imagine T" has a boundary 07. In that case the resulting quiver will
be embedded in a manifold S x T" with boundary S x 0T. Arguably the simplest case of
this situation is when T' is the line segment I. The basic building block of 3d printing,
a quiver block Qj(omﬂ), is a graph embedded in T™ x I and indeed can be regarded as a
product of an m-graded periodic quiver QM using a perfect matching p with a simple

quiver embedded in a line segment as follows'?
®
Q) = Qim) x (7.1)

As usual, we have indicated the perfect matching of the m = 0 quiver by specifying an
orientation of its fields. This construction realizes both the field content and the superpo-
tential of the quiver block.

It is therefore natural to expect that 3d printing and product are two instances of a
single overarching construction. Such procedure would include both the products of m-
graded quivers embedded in manifolds, possibly with boundaries, and an operation to glue
two such manifolds along their boundaries under suitable conditions. We leave the task
of understanding this construction in complete generality and its physical realization to a
future work.

13The notation in the figure is inspired by the one used for quiver blocks in 3d printing in [34]. In that
context, the nodes x and x would correspond to the two images of a node x at the two endpoints of a
line segment.
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8 Conclusions

Over the years, there has been tremendous progress in the map between the geometry
of singularities and the corresponding quiver theories on branes. This started with a few
isolated examples of CY 3-folds and evolved into the development of brane tilings, tools that
vastly simplify that study of infinite classes of geometries. Similar tools were later developed
for higher dimensional CYs. We regard the CY product as a significant development in the
arsenal of tools to connect geometry and quiver theories. It allows us to straightforwardly
compute quiver theories in cases that were previously out of practical reach.
We envision multiple directions for future research. To name a few:

e The CY product will help investigating the order (m + 1) dualities of the m-graded
quiver theories associated to CY (m + 2)-folds. There is a large amount of freedom
in this construction: choice of phases for the quiver theories of the parent geometries
and choice of perfect matchings for the interlacing points.'* Therefore, given a target
CY, there are multiple possible decompositions into CY factors. In fact, different
decompositions can even differ in the dimension of the components. It is therefore
worthwhile to study the interplay between this vast landscape of possibilities and the
intricate space of dual theories.

e The CY product is particularly amenable to automatic computer implementation.
It is therefore ideally suited for generating large datasets of CYs/quiver theories.
Such datasets would provide valuable insights into the structure of these theories.
Moreover, they can be used to test the applicability of modern ideas such as machine
learning to problems involving quiver theories, such as the classification of duals for
general m. Initial explorations of these ideas have been undertaken in [38].

e As mentioned in section 6.1 in the case of Fém), the CY product can be applied

iteratively, equivalently using multiple factors. In this way, it is possible to build
quiver theories for complicated, higher dimensional geometries using very simple, low
dimensional building blocks. A similar approach has been exploited to build some of
the infinite classes of theories in [24].

e From a first principle perspective, we can calculate the quivers associated with a
CY 12 via the topological B-model [21-24]. However, this approach requires knowl-
edge of the fractional branes as a starting point, which is often challenging. It would
be interesting to investigate the correspondence between the B-model and CY prod-
uct approaches.
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Figure 13. The three terms in Wpg coming from a quartic Tp and a cubic Tg. Red arrows
represent the products of a field in p and a field in q. Black arrows descend from fields that are not
in p or q.

A Some details about Wpq

In this appendix we expand our discussion of the mixed terms Wpg that we introduced
in section 5. For simplicity, let us first consider the next to simplest case, namely terms
coming from a quartic term Tp and a cubic term Tg:

Tp = X&) x(e2) x(e) glm—l-ci—co— 03) Ty = y(d1)y (d2)y-(n—1—di~d2) (A.1)

1112 2213 1314 241 J1J2 ~J233 T J3J1

We can reduce the order of the terms in Tp by introducing two auxiliary massive fields
Mte) gng ppimoime—e) , with the following superpotential

1113 1311

CP - X’L(f;Q)XZ(;ZZB)Ml(?ZZ - 0 62) —"_ MZ(10113+02)Xi(;g4))?2(;ll_1_61 _62_63) Ml(lc113+62)M1(32 0 02)
(A.2)
It is straightforward to verify that integrating out the two massive fields, C'p gives back
the quartic term Tp.

It is now easy to construct the terms in the product superpotential coming from Cp
and Tp. After integrating out the massive fields, most of the terms correspond to those
in Wp due to Tp, Wg due to Ty or in We due to fields in Tp and Tp. In addition, we
get three extra quartic terms coming from the contributions of Tp and Ty to Wpg. These

terms are:
(_1)m+n+1+02+d12(01) (co+d1+1) (c3+d2+1)  S(n+m—2—ca—cz—d1—dz)
(41,1) (32,51) 7 (32,51),(43,32) 7 (i3,52),(14,73) 7 (14,53),(41,51)
+(71)m+n+1+01+02+d1Z(01+d1+1) (c2) (e3+da+1)  H(n+m—2—c1—c3—d1—dz)
(i1,51) (i2:52) 7 (i2,52),(i3,32) 7 (i3,52),(i4,33) " (44,73),(i1,51)
m4n+c1+dy r(c1+di+1)  (cat+da+1) (e3) ~(n+m—2—co—cz—d1—dz)
+(=1) T 2 ) i2,02) i) i ) i) (i) L ianis) (i) (A-3)

These terms are depicted graphically in figure 13, which shows them on a torus whose
fundamental cycles are the two terms Tp and TQ.15

Similarly, we can go one step further and consider the case in which Tp and T are
quartic. Proceeding as before, we can integrate in massive fields, turning 7p into a sum
of cubic terms and a mass term. Next, we use the previous result for a quartic and cubic
terms.'0  After integrating out the massive fields we obtain standard terms in Wp, Wy
and W¢. In addition, we get nine terms in Wpq, all of order 5. These terms are shown

15Notice that these should not be confused with the fundamental cycles of the periodic quivers.
16This procedure accounts to reducing both Tp and Tg to cubic and mass terms by integrating in massive
fields.
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in figure 14, which reveals an unexpected feature of the resulting terms. Surprisingly, they
are not symmetric under the exchange of Tp and Tg. This can be seen by exchanging
horizontal and vertical arrows in these terms. The images of three of the terms under this
operation are absent in figure 14. This might be puzzling at first sight, since the procedure
we described seems to treat Tp and Ty symmetrically. It turns out that the symmetry is
actually broken by the order in which we integrate out the massive fields.

It may seem possible to restore the symmetry between Tp and T(, i.e. between the
horizontal and vertical directions, by adding the missing terms. However, there is no way
to do this while satisfying the Kontsevich bracket condition. Therefore, in this case we are
left with two choices, which lead to different superpotentials.!” It is natural to expect that
these two theories are related by duality.

Knowing the terms arising from an order £k — 1 term and an order ! term, we can
recursively derive the terms arising from an order k term and an order [ term. To do so,
we can simply split the order k term into an order k — 1 term, a cubic term and a mass
term. Continuing this iterative process for a few more steps we can infer the structure of
the general case, which is depicted graphically in figure 15. Every term in WWpg contains
one field that is the product of a field in p and a field in ¢, and two fields that are the
product of a field not in p and a field not in ¢q. They correspond the red and two black
diagonal arrows. There is exactly one term for every choice of two diagonal black arrows.
Every one of the three blue boxes contains a path between two of these fields composed
exclusively of horizontal and vertical arrows, i.e. of fields that are the product of a field
and a node. The precise path depends on the breaking of the order £ term into an order
k — 1 term, a cubic term and a mass term.

B Products and geometry

Here we explain how the product theory gives rise to the desired geometry, which arises as
its classical moduli space. To do so, we show how the perfect matchings of P, x @, result
in the toric diagram described by (3.1).

First, we note that the collection of all the conjugated fields forms a perfect matching.'®
This is the perfect matching that corresponds to the “central point” (ug,vo) of Tcy,, .. s-

Given a perfect matching p of P we can construct a perfect matching that we will call
p x q of Py x Qq. If p corresponds to the point u; in Tcy,,,, then p x ¢ corresponds to
the point (u;,vo) of Ty, ,.5- In order to construct p x ¢, we divide the fields in p into
two sets. The first set py contains the fields in p that are also in p, while the second set p,
contains the fields in p that are not in p, namely

Po=PpNp, P«=DP\p. (B.1)

"1t would to interesting to see if and how this choice is present in the B-model computation of the
superpotential. We suspect this is related to the choice of explicit representatives of cohomology classes
needed for computations of the products my with & > 2.

18Recall that our convention is that the polarization of the P, x Qq quiver and hence the identity of the
conjugated fields is determined by the choice of p and q.
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Figure 14. The 9 terms in YWpg coming from both T» and T quartic. Red arrows represent the
products of a field in p and a field in ¢q. Black arrows descend from fields that are not in p or q.
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Figure 15. The general structure of a term in Wpg descending from an order k and an order [
terms. The blue boxes contain paths involving horizontal and vertical fields, i.e. products of a field
and a node. The multiplicity of terms corresponds to the different ways of choosing the two black
diagonal fields.
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Then, p x q is

pxg=Ixq)U(pxJ)U(poxq)U(pxx4), (B.2)
where ¢ is the set of all fields in ) that are not in g, i.e. it is the set of the conjugates of
fields in ¢. Let us now define the sets that participate in the union (B.2). The first two of
these are defined as

o (d+m+1) ( )
qu_{ (3,91)( 7J2)‘ EI’ J1,J2 Eq}

Slebntl) |50 e ()
pxJ = {2 Xy € ho.d € Ty U{Z() 5, )| XLy €Puie T) (B3)

i.e. I x ¢ is just the set of fields that result from the product between a node ¢ of P and

a field in ¢, while p x J is the set of fields that result from the product between a field in

p and a node j of (). We have separated p x J into two pieces because the degree of the

resulting field behaves differently depending on whether the original field is in p or not.
The set pg X ¢ is defined as

- [ 7(ctd) c) (d)
Po xq= {Z(ilﬁjl)(m 32)’ (1112) = pO’YJU2 € q} (B.-4)
This set has a simple interpretation: it consists of all the fields in P, x @, that arise from
a product between a field that is common to p and p and a field in q.
The interpretation of p. x ¢ is similar. It consists of the fields that come from the
product of a field that is in p but not in p with a field of @ that is not in ¢, i.e.

. o (c+d+1) (¢) ~ (d)
P> = {Z(llﬂl (i2 Jz)‘Xllm € P, V5, € g} : (B.5)
Analogously, given a perfect matching ¢ of Q corresponding to the point v; we can
define a perfect matching p x ¢ that corresponds to the point (uo,v;) in Tcy,, ,.5- It is
defined as
pxd=(IxQ)U(pxJ)U(pxd)UFxa). (B.6)

As for p, we define §o = GN g and Gx = G\ ¢, while p is the set of fields conjugate to those

in p. The four sets in (B.6) are defined as follows
- (d+m+1) (d) (d) (d)
Ixq= { (i,31) (192)‘ te I’Yﬂl g2 © QO} Y {Z(ih )(@:52) ‘Z € 1Y) € q*}
pxJ= { zletntl). |X() EijJ}
7(

N

(41,5)(i2,3) 177 (41i2)
o = ctd) () (d)
pxqo= { (Zl’Jl)(lz,j2)|X(1112) € p’YJuz < QO}
_ [ (ctd+1) (c @
Prpe= {Z(il»jl)(i27j2)|X2112 €YY € q*} (B.7)

It is clear that with these definitions both p x ¢ and p X § contain either the field or its
conjugate for every field in P, x Q);. We will now show that the fields in them also cover
every term in the superpotential exactly once.

We begin with p x ¢ and consider Wp, Wg and We and Wpg separately. Starting
with Wp let us consider a term Tp in the superpotential of P. This term gives rise to a
number of terms in Wp as shown in (5.3) and (5.4). Since p is a perfect matching of P,
then Tp contains exactly one field from p. There are three possibilities for how such field
appears in a term of Wp descending from Tp:
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o It gets replaced by its product with a node of ). The resulting field is in p x J so
this term is covered exactly once by p X q.

e This field is common to p and p and gets replaced by its product with a field in gq.
The result is a field in pg X q.

e This field is in p but not in p and gets replaced by its product with a field not in q.
The result is a field in p, x q-

We conclude that in the three cases the field in p that covers the term Tp gives rise to
exactly the field in a term descending from Tp that is in p X q.

Similarly, for W we consider the terms in it descending from 7. Such a term in Wy
always contains a field with one of its parents in q. There are three cases for what happens
to this field in a term coming from Tg:

o It gets replaced by its product with a node i of P. The resulting field is in I X ¢ so
P X q covers this term exactly once.

o It gets replaced by its product with a field that is common to p and ¢. In this case,
this replacement is in pg X ¢ so p X ¢ again covers this term once.

o It gets replaced by its product with X Z(Z,n 70), a field in p that is not in p. Unlike the
previous case this replacement is not in pg X q. Since )_(i(;%c) is not in p, its conjugate
X i(,? is in p. As (5.7) shows, such a term also contains another field that comes from
the product of X i(,cl.) with a field not in q. This field is in p. X ¢ and hence p x g covers
this term exactly once.
Let us now show that p X g covers every term in Wy exactly once. For this we

inspect (5.8) and consider the following cases:

o If Xi(,ci) is in p then both Z ((i,%j) (i.d) and Z((;{j/) (i,j7) 2r€ in p x J. Therefore, in this case
P X q covers the two terms in (5.8) exactly once.
(m+n—c—d)

(i1,i2)(J1,52)
Po X ¢ and in this case p X ¢ also covers the two terms in (5.8) exactly once.

o If Xi(,ci) is not p then X Z(Z/n =9 is in p and hence in py. As a result Z is in

Finally, let us focus on Wpg. A term in Wpg has Tp and T as parents. The field in
p that covers Tp gives rise to exactly one field that is in p x ¢ and covers this term.

This completes our proof that p x g is a perfect matching. The same argument,
exchanging the roles of P and () along with p and ¢, shows that p x ¢ is also a perfect
matching. It is important to note that we cannot use this process to construct p x § for
arbitrary perfect matchings p of P and ¢ of (). We must have either p = p or § = ¢. This is
consistent with the fact that Tcy,,,, is embedded in the plane spanned by the first m + 1
coordinates with the last n + 1 coordinates fixed to vg. Similarly this also realizes the fact
that Tcy,,,, is embedded in the plane spanned by the last n + 1 coordinates with the first
m + 1 coordinates fixed to ug. These positions for the perfect matchings give rise to the
expected toric diagram.

— 30 —



Generically, the perfect matchings we have described are not all the perfect matchings
of P, x Q4. First, the final theory might have additional perfect matchings for the same
points in T¢y,,,,.5- Moreover, there might be new points in the toric diagram, which is
the convex hull of the points corresponding to the perfect matchings we have constructed
(see figure 1 for an example). Perfect matchings associated to these points are generated
but do not descend from a pair of perfect matchings p of P and ¢ of Q.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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