
1

Online Signal Monitoring with Bounded Lag
Konstantinos Mamouras and Zhifu Wang

Abstract—An essential approach for guaranteeing the safety
of a cyber-physical system is to monitor its execution in real
time. The execution trace of such a system typically consists of
one or more signals, and a key computational task for safety
monitoring is the online processing of these signals in order to
identify events that need to be acted upon in a timely manner.
There are several existing proposals for the specification of
signal monitors: temporal logics, reactive languages, and dataflow
formalisms. A shared feature of most of these proposals is that
they describe online signal transformations that are causal. The
causality requirement enables a real-time implementation, where
the input and output signals are perfectly synchronized.

We propose a new specification formalism for signal monitors
that relaxes the causality restriction and allows the output to
depend on a bounded amount of future input. It follows that an
online implementation of such a monitor must have a certain
amount of lag in the computation. We introduce a formal
framework for signal transformations that allow bounded lag (the
output has fallen behind the input) and bounded lead (the output
is running ahead of the input), and we propose a type discipline
for classifying these transformations according to their lead/lag.
We show that this typed framework provides a modular approach
for succinctly specifying: (1) monitors for temporal properties
that involve both past and bounded-future connectives, and (2)
complex signal processing computations, such as those arising
in the monitoring of physiological signals in medical devices.
We have implemented the proposed specification formalism and
we have compared it against state-of-the-art tools for the online
monitoring of temporal properties: MonPoly, StreamLAB, Aerial,
and Reelay.

Index Terms—Cyber-physical systems, online monitoring, run-
time verification, Metric Temporal Logic (MTL), Signal Temporal
Logic (STL), quantitative properties, data streams, transducers,
automata.

I. INTRODUCTION

As a motivating application domain for this work, consider

implantable medical devices, such as cardiac pacemakers and

implantable cardioverter defibrillators (ICDs). A pacemaker

is meant to detect an abnormal heart rhythm by continuously

monitoring the electrical heart signal of the patient and deliver

therapy upon detection in order to restore a normal rhythm.

The response of the pacemaker has to be in real time in order

to fulfill its purpose of patient treatment.

Cyber-physical systems, such as the one described previ-

ously, require algorithms for the online monitoring of signals.

These algorithms must run in real time using a small amount

of resources such as memory space and time to process each

sample. One approach for developing such online algorithms

The authors are with the Department of Computer Science, Rice University,
Houston, TX, 77005 (e-mail: mamouras@rice.edu; zfwang@rice.edu).

Manuscript received April 17, 2020; revised June 17, 2020; accepted July 6,
2020. This article was presented in the International Conference on Embedded
Software 2020 and appears as part of the ESWEEK-TCAD special issue.

This research was supported in part by US National Science Foundation
award 2008096.

is to use a low-level programming language. Another common

approach is to use a logical specification formalism, such as

Metric Temporal Logic (MTL) [1] or Signal Temporal Logic

(STL) [2], which can then be compiled to an executable online

monitor. There is a large body of work on monitoring various

classes of properties: past-time temporal [3], past-time first-

order temporal [4], metric first-order temporal (past-time and

bounded future-time) [5], and timed regular [6]. Quantitative

variants of Boolean monitoring have also been considered:

using a robustness semantics for temporal logic [7], [8],

[9], [10], [11], [12], and using domain-specific languages for

stream processing [13], [14].

Closely related to online monitoring are the languages

for programming reactive systems: (1) the synchronous lan-

guages [15], [16], [17], [18] have been used successfully

for specifying embedded controllers, (2) the formalisms for

synchronous dataflow [19], [20] have been used for specifying

signal processing systems, and (3) the languages for reactive

programming [21], [22], [23] are useful for developing event-

driven applications.

Our goals here overlap with those of the aforementioned

works: we want to provide language support for conveniently

specifying complex but efficient monitors for signals that arise

in cyber-physical systems. We are interested in properties that

are not only Boolean, but also encompass the calculation

of statistical measures (e.g., averages) and signal processing

computations (e.g., low-pass and high-pass filters).

A key difference from most prior work is that we focus on

relaxing the notion of causal online signal computations, by

allowing the output at a timepoint t to depend on a bounded

amount of future input, e.g., over the interval [t, t + u]. This

implies that the computation of the output happens with some

bounded lag: the monitor has to wait until all the relevant

input is seen before it can emit its output. This relaxation of

causality is useful for several practical computations. Consider,

for example, the detection of the peaks in the ECG signal. In

order to correctly identify that a peak is present at time t, the

monitor has to first receive some of the input ahead of t in

order to witness the falling slope after the peak.

We introduce a new formal framework for specifying on-

line signal transformations that are not necessarily causal,

but are instead only required to have a bounded lag (the

amount by which the output has fallen behind the input)

and a bounded lead (the amount by which the output is

running ahead of the input). This class of transformations

lies strictly between the causal transformations (where the

output is completely synchronized with the input, e.g., as is

typical in synchronous languages) and the asynchronous signal

transformations of Kahn [24] (where there is no requirement

regarding if and when output is emitted). We call these

transformations lead/lag-bounded transductions. For brevity,

2

we also call them `-bounded transductions. We introduce a

corresponding model of online computation, which we call

lead/lag-bounded transducer (or `-bounded transducer). Both

transductions (semantic objects) and transducers (machine

models) are classified using types of the form (A,B, [m,n]),
where A is the type of the input samples, B is the type of

the output samples, and [m,n] is an interval of the integers.

The lead/lag of the transformation must fall within the interval

[m,n]. In other words, these lead/lag types indicate the allow-

able skew between the output and the input. In Section VII

we discuss the relationship between lead/lag types and other

notions of types for synchronous computations, such as the

clocks of Lustre [15], [25] and its extensions (e.g., Lucid

Synchrone [26], [27] and Lucy-n [28]), which in turn are also

related to types that characterize the input/output rate of a

transformation [19], [20].

The `-bounded transducers and tranductions can be com-

posed using several combinators: (1) the dataflow combinators

of serial composition, parallel composition, and feedback com-

position; (2) tranformations such as map, running aggregation

(fold), and sliding windows; (3) the ignore combinator that

disregards a prefix of the signal; and (4) the emit combinator

that generates output without consuming input. These combi-

nators give rise to a domain-specific language for describing `-
bounded transformations. Every `-bounded transformation that

is specified using only these combinators satisfies a crucial

efficiency guarantee: it can be implemented with an online

monitor that uses constant memory space, i.e., space that is

independent of the length of the signal seen so far.

In order to illustrate the usability of our typed framework of

`-bounded transformations, we use it to prototype a constant-

space monitoring algorithm for MTL with past-time and

bounded future-time temporal connectives. The monitor for

a formula of this logic is encoded as an expression that only

involves the combinators of the previous paragraph. This gives

rise to a compositional monitoring algorithm: the monitor for

a composite formula (e.g., ϕU[a,b]ψ) is given by a construction

on the monitors for the immediate subformulas (e.g., ϕ and ψ).

This is different from existing non-compositional approaches

(e.g., the one described in [9]), where a global analysis of the

formula takes place initially in order to pre-allocate a table

whose width is at least as large as the amount of lookahead

(into the future) that the monitor requires.

As a case study, we use our framework to prototype a

complex quantitative monitor for ECG peak detection. Peak

detection algorithms [29], [30], [31], [32] are a crucial part

of software that runs on implantable medical devices such as

pacemakers and defibrillators [33], [34]. This monitor detects

the peaks in the ECG signal (which correspond to heart

beats) using a complex online algorithm that (1) removes high

frequencies with a low-pass filter, (2) calculates the slope of

the signal using derivatives, (3) computes the length of the

signal curve over a window centered around each timepoint,

and (4) identifies the peaks with a decision rule that uses the

calculated quantities.

We provide an implementation of `-bounded transductions

and their combinators using the Rust programming language.

In order to evaluate the efficiency of the implementation we

TABLE I
TRANSDUCTIONS OF STREAMS AND SIGNALS.

Category & Description

SF(A,B): signal functions of type Aω → Bω

CSF(A,B) ⊆ SF(A,B): causal signal functions

IMT(A,B): (incremental) Mealy transductions, i.e., functions A+ → B

MT(A,B): (cumulative) Mealy transductions, i.e., monotone and length-
preserving functions A+ → B+

IST(A,B): (incremental) stream transductions, i.e., functions A∗ → B∗

ST(A,B): (cumulative) stream transductions, i.e., monotone functions
of type A∗ → B∗

KT(A,B): Kahn transductions, i.e., ω-continuous functions of type
A∞ → B∞, where A∞ = A∗ ∪Aω

ST♦(A,B) ⊆ ST(A,B): stream transductions that satisfy the progress
property

KT♦(A,B) ⊆ KT(A,B): Kahn transductions that satisfy the progress
property

STb(A,B) ⊆ ST♦(A,B): stream transductions with bounded lead/lag,
STb(A,B, [m,n]) ⊆ STb(A,B) contains those with lead in [m,n]

compare our prototype MTL monitor against the state-of-the-

art tools MonPoly [35], StreamLAB [36], Aerial [37], and

Reelay [38]. We chose these tools for comparison because they

provide support for MTL monitoring. The experimental results

show that our monitor performs well on several microbench-

marks and on the recently proposed Timescales benchmark

[39].

II. TRANSDUCTIONS OF SIGNALS

This section is an exploration of various denotational se-

mantic models for online signal transformations. The classes

of models that we consider are summarized in Table I. Most

of the definitions in the table are provided to motivate and

give context for our proposal, but it is sufficient for the reader

to only remember STb (`-bounded stream transductions).

We identify the class of lead/lag-bounded (`-bounded) trans-

ductions as an extension of causal (synchronous) signal trans-

formations that allows a bounded amount of lookahead into

the future. The class of `-bounded transductions is contained

in the class of Kahn transductions [24], which allows complete

asynchrony between input and output.

Let A be a set. A signal over A is a function Aω = ω → A,

where ω = {0, 1, 2, . . .} is the set of natural numbers. In other

words, a signal over A is an infinite sequence over A. We will

be using the common notation i < ω to mean i ∈ ω. A signal

function is an element of SF(A,B) = Aω → Bω . For i < ω
we define the equivalence relation ∼i on Aω as follows: u ∼i v
iff u(j) = v(j) for all j ≤ i. That is, u ∼i v iff u, v agree

on all timepoints up to (and including) i. A signal function

f : SF(A,B) is causal if u ∼i v implies f(u)(i) = f(v)(i)
for every i < ω and all u, v ∈ Aω . Intuitively, f is causal if at

every timepoint i the output of f depends only on the input

values at timepoints j ≤ i. We write CSF(A,B) for the set of

signal functions of SF(A,B) that are causal.

The operation of serial composition, denoted �, is mean-

ingful in the context of various kinds of signal transformations.

For signal functions, we take � to be composition of func-

tions: (f � g)(u) = g(f(u)) for every u ∈ Aω , f : SF(A,B)

3

and g : SF(B,C). We write idSFA : SF(A,A) for the identity

function. SF is a typed monoid, i.e., a category [40].

In a causal signal function f : Aω → Bω the output

at some timepoint i depends only on the finite prefix of

the input signal from 0 up to i. So, we can describe the

same transformation with a function H(f) : A+ → B,

where A+ is the set of all nonempty finite sequences over

A. The idea is that for an input signal u ∈ Aω the output

f(u)(i) is equal to H(f)(u≤i), where u≤i is the prefix of

u from the beginning up to timepoint i. We say that an

element of IMT(A,B) = A+ → B is a Mealy trans-

duction (in incremental form). For f : A+ → B, we

define lift(f)(a0a1 . . . an) = f(a0)f(a0a1) · · · f(a0a1 . . . an)
for every a0a1 . . . an ∈ A+. Serial composition is then

given by (f � g)(u) = g(lift(f)(u)) for every u ∈ A+,

f : IMT(A,B) and g : IMT(B,C). The identity transduction

idIMT
A : IMT(A,A) sends a1 . . . an ∈ A+ to an. It can be easily

checked that CSF and IMT are isomorphic. So, causal signal

transformations can be described by Mealy transductions,

which involve only the finite prefixes of the signals.

A transduction in incremental form gives the output incre-

ment when the last item of an input prefix is consumed. For a

function f : IMT(A,B) we see that g = lift(f) : A+ → B+

satisfies the following: (1) g is monotone, i.e., u ≤ v implies

g(u) ≤ g(v) for all u, v ∈ A+; and (2) g is length-preserving,

i.e., |f(u)| = |u| for every u ∈ A+. We write MT(A,B) to

denote the set of monotone and length-preserving functions

of type A+ → B+. An element of MT(A,B) is said to be a

Mealy transduction in cumulative form. Serial composition is

composition of functions, and idIMT
A : MT(A,A) is the identity

function. The mapping lift witnesses the isomorphism between

the categories IMT and MT.

If we think of a Mealy transduction f : MT(A,B) op-

erationally, it describes a transformation that consumes the

input stream item by item and produces exactly one output

item for every consumed input item. If this restriction is

lifted to allow an arbitrary (but finite) number of output items

per input item, we need to consider a stream transduction,

which is a monotone function g : A∗ → B∗. We write

ST(A,B) to denote the set of all such functions. As for

MT, serial composition is composition of functions, and the

identity idSTA : ST(A,A) is the identity function. For the

incremental viewpoint, we define IST(A,B) = A∗ → B∗ and

lift(f)(a1 . . . an) = f(ε) · f(a1) · · · f(a1 . . . an) for every f :
IST(A,B) and a1 . . . an ∈ A∗. Serial composition is given by

(f � g)(u) = g(lift(f)(u)) for every u ∈ A∗, f : IST(A,B)
and g : IST(B,C). The identity idISTA : IST(A,A) is given by

idISTA (ε) = ε and idISTA (a1 . . . an) = an. The mapping lift is an

isomorphism from IST to ST. The isomorphism from ST to

IST is given by the differentiation function, denoted ∂, which

sends a function f : ST(A,B) to a function ∂(f) : IST(A,B),
where ∂(f)(ε) = f(ε) and ∂(f)(ua) = f(u)−1f(ua).

If the restriction of finite output per input item is lifted, we

need to consider the set A∞ = A∗ ∪Aω of finite and infinite

words over A. Notice that A∞ is an ω-CPO: it is partially

ordered by the prefix relation, and every countable chain has a

supremum. A Kahn transduction is a function f : A∞ → B∞

which is ω-continuous: f(supi<ω xi) = supi<ω f(xi) for ev-

ti
m

e
←
−
−
−
−
−
−
−
−
−−

item input history output increment output history

f : IST(A,B) g : ST(A,B)

ε f(ε)

a0 a0 f(a0) g(a0)

a1 a0 a1 f(a0 a1) g(a0 a1)

a2 a0 a1 a2 f(a0 a1 a2) g(a0 a1 a2)

· · ·

Fig. 1. The transductions f : IST(A,B) and g : ST(A,B) with f = ∂(g)
and g = lift(f) describe the same transformation.

ery chain x0 ≤ x1 ≤ x2 ≤ . . . in A∗. We denote the set of all

these functions by KT(A,B). Informally, a Kahn transduction

can describe computations where the consumption of a single

input item can trigger the production of an infinite sequence

of output items. As in ST, serial composition is composition

of functions and idKTA : KT(A,A) is the identity function.

The extension of a stream transduction f : ST(A,B) to a

Kahn transduction ext(f) : KT(A,B) is defined as follows:

ext(f)(a0a1 . . .) = supi<ω f(a0 . . . ai). This is well-defined

because f is monotone and therefore f(a0), f(a0a1), . . . is a

chain. The mapping ext embeds ST into KT.

One problem with stream transductions and Kahn transduc-

tions is that they describe computations that can potentially

stop producing output. We are interested here in computations

over unbounded signals, which describe (in the limit) the

transformation of an infinite input signal to an infinite output

signal. We call this requirement the progress property. It

is formulated easily for Kahn transductions as follows: a

function f : KT(A,B) satisfies the progress property if

f(u) ∈ Bω for every u ∈ Aω . Intuitively, this says that

f never stops producing output while processing the input

signal u ∈ Aω . This property says nothing about when the

output is produced, only that there is no point at which f stops

producing output. We write KT♦(A,B) to denote the subset

of KT(A,B) that contains those transductions that satisfy

the progress property. The operation of serial composition

preserves the progress property, and every idKTA satisfies the

progress property. So, KT♦ is a subcategory of KT. A stream

transduction f : ST(A,B) is said to satisfy the progress

property if ext(f) : KT(A,B) satisfies the progress property.

ST♦ is the subcategory of ST that consists of the stream

transductions satisfying the progress property.

Mealy transductions correspond to signal transformations

where the input and output streams are perfectly synchronized:

upon receipt of the input item for timepoint t, the output item

for timepoint t is produced. Stream transductions relax this

synchronicity requirement: they allow the output to fall behind

relative to the input or to run ahead of it. When the output

falls behind we say that the computation has lag, and when

the output runs ahead we say that the computation has lead.

The main class of transductions that we consider here are the

ones with bounded lead and lag, since they are very useful

in the specification of signal processing algorithms. We define

the lead of a transduction f : ST(A,B) at u ∈ A∗ to be

the integer lead(f)(u) = |f(u)| − |u|. Similarly, the lag of

a transduction f : ST(A,B) at u ∈ A∗ is defined as the

4

integer lag(f)(u) = |u| − |f(u)|. So, lead(f) and lag(f) are

are functions of type A∗ → Z. We also define Lead(f) =
{lead(f)(u) | u ∈ A∗}. We say that f is lead/lag-bounded or

`-bounded when Lead(f) is finite. We write STb(A,B) for

the set of all `-bounded stream transductions. If f : STb(A,B)
and g : STb(B,C), then it also holds that f � g : STb(A,C).
It follows that STb is a subcategory of ST♦.

We think of each STb(A,B) as a type that can be re-

fined according to the magnitude of the lead/lag. We write

f : STb(A,B, [m,n]), where m ≤ n are integers, when

Lead(f) ⊆ [m,n]. The following hold: STb(A,B, [m,n]) ⊆
STb(A,B) ⊆ ST♦(A,B).

Lemma 1. If f : STb(A,B, [m,n]) and g : STb(B,C, [o, p])
then f � g : STb(A,C, [m+ o, n+ p]).

Consider a function f : STb(A,B, [m,n]). We claim that

m ≤ 0 implies n ≥ 0. Equivalently, the interval [m,n] must

contain at least one non-negative number. In other words,

the set STb(A,B, [m,n]) is empty when m,n < 0. This is

because lead(f)(ε) = |f(ε)| − |ε| = |f(ε)| ≥ 0. So, when

STb(A,B, [m,n]) is nonempty then [m,n] should intersect N.

Equivalently, we require that n ≥ 0. We define a lead interval

to be a subset [m,n] = {i ∈ Z | m ≤ i ≤ n} of the integers

with m ≤ n and n ≥ 0. If [m,n] and [o, p] are lead intervals,

then so is [m+ o, n+ p].

Example 2. Consider the transductions f, g, h, k : ST(N,N),
all of which represent the identity function on infinite streams.

We write ∂(f), ∂(g), ∂(h), ∂(k) : IST(N,N) for the corre-

sponding incremental versions, which are given as follows:

∂(f)(x0 . . . xn) = xn

∂(g)(x0 . . . xn) =

{

ε, if n is even

xn−1xn, if n is odd

∂(h)(x0 . . . xn) =

{

n/2, if n is even

ε, otherwise

∂(k)(x0 . . . xn) =

{

log2(n), if n is a power of 2

ε, otherwise

The following table illustrates f, g, h, k with an example:

input: 0 1 2 3 4 5 6 7 8
f output: 0 1 2 3 4 5 6 7 8
g output: 0 1 2 3 4 5 6 7
h output: 0 1 2 3 4
k output: 0 1 2 3

We observe the following: (1) f is a Mealy transduction; (2) g
has bounded lead/lag, in particular g : STb(N,N, [−1, 0]), but

it is not a Mealy transduction; (3) h and k both satisfy the

progress property, but they do not have bounded lead/lag.

The denotational models that we have considered in this

section describe the transformation of discrete signals, which

are typically uniformly sampled. These models can be varied

and/or extended in several ways. It is possible to consider

timed traces [41] to represent non-uniformly sampled discrete

signals and dense-time (or continuous-time) signals [2]. The

online transformation of signals can be presented in the

broader context of data stream processing. A generalization

of the notion of data streams to partial orders is considered

in [42], [43]. An algebraic semantic framework that encom-

passes several concrete stream models (including discrete and

continuous signals) is proposed in [44].

III. TRANSDUCERS WITH DELAY

In this section we introduce a class of transducers (au-

tomata) that compute the lead/lag-bounded transductions of

section II. These transducers are more general than Mealy

machines [45] and Moore machines [46]. They are more

similar to the so-called sequential transducers [47], [48], but

there are two key differences: (1) we do not restrict attention to

finite-state transducers, and (2) we consider a type discipline

for ensuring that the transducers have bounded lead/lag.

Definition 3 (Stream Transducer). Let A and B be sets. A

stream transducer of type SA(A,B) is a deterministic trans-

ducer G = (St, init, o, next, out), where St is a set of states,

init ∈ St is the initial state, o ∈ B∗ is the initial output, next :
St×A→ St is the transition function, out : St×A→ B∗ is

the output function. The transition function extends to gnext :
St × A∗ → St, given by gnext(s, ε) = s and gnext(s, ua) =
next(gnext(s, u), a). Similarly, the output function extends

to gout : St × A∗ → B∗, given by gout(s, ε) = ε and

gout(s, ua) = gout(s, u) · out(gnext(s, u), a). The denotation

of G is the stream transduction JGK : ST(A,B) given by

JGK(ε) = o and JGK(ua) = JGK(u) · out(gnext(init, u), a).
We say that G implements the transduction f if JGK = f .

Let A,B be sets and G = (St, init, o, next, out) : SA(A,B)
be a stream transducer. A lead labeling for G is a pair 〈λ, µ〉
of functions λ, µ : St → Z such that

(LL1) λ(s) ≤ µ(s) for every s ∈ St,

(LL2) λ(next(s, a)) ≤ λ(s) + |out(s, a)| − 1 for every s, a,

(LL3) µ(s) + |out(s, a)| − 1 ≤ µ(next(s, a)) for all s, a, and

(LL4) λ(init) ≤ |o| ≤ µ(init).

For integers m ≤ n, we say that 〈λ, µ〉 is a [m,n]-lead labeling

if m ≤ λ(s) and µ(s) ≤ n for all s ∈ St.

Lemma 4 (Lead Labeling). Let G : SA(A,B) be a trans-

ducer. If G has a lead labeling 〈λ, µ〉 then λ(gnext(init, u)) ≤
lead(JGK)(u) ≤ µ(gnext(init, u)) for every u ∈ A∗.

Lemma 4 says that a lead labeling 〈λ, µ〉 of a transducer

G provides lower bounds (with λ) and upper bounds (with µ)

for the lead of the transduction that G implements.

Lemma 5 (Lead/Lag Boundedness). Let A,B be sets and

m ≤ n be integers. The denotation of a stream transducer

G : SA(A,B) belongs to STb(A,B, [m,n]) iff G has a [m,n]-
lead labeling 〈λ, µ〉.

Lemma 5 says that the existence of a bounded lead labeling

for a transducer G is equivalent to G implementing a transduc-

tion with bounded lead/lag. This allows us to prove the latter

semantic property with a simple annotation of the transducer.

We write G : SA(A,B, [m,n]) when G has a [m,n]-lead

labeling, and we say that it is lead/lag bounded. We write

SA(A,B, n) as an abbreviation for SA(A,B, [n, n]).

5

id : STb(A,A, 0) id(u) = u

op : A→ B

f = map(op) : STb(A,B, 0)

∂(f)(ε) = ε

∂(f)(ua) = op(a)

in : A→ B op : B ×A→ B

f = aggr(in, op) : STb(A,B, 0)

∂(f)(ε) = ε

∂(f)(ua) = fold(init, op, ua)

integer n ≥ 1

f = wnd(n) : STb(A,A
n, [−(n− 1), 0])

∂(f)(u) = ε, if |u| < n

∂(f)(uv) = v, if |v| = n

integer n ≥ 1

f = ignore(n) : STb(A,A, [−n, 0])

f(u) = ε, if |u| < n

f(uv) = v, if |u| = n

n : N val : B

f = emit(n, val) : STb(A,B, n)
f(u) = valn · u

f : STb(A,B, [m,n]) g : STb(B,C, [o, p])

f � g : STb(A,C, [m+ o, n+ p]

(f � g)(u) = g(f(u))

f : STb(A,B, [m,n]) g : STb(A,C, [o, p])

h = par(f, g) : STb(A,B × C, [min(m, o),min(n, p)])

h(u) = zip(f(u), g(u))

f : STb(A×B,B, [m,n]) m ≥ 1

g = loop(f) : STb(A,B, [m,n])

g(u) = lfp(τu), where τu(v) = f(zip(u, v)) for v ∈ B∗

Fig. 2. Combinators for lead/lag-bounded transductions.

Example 6 (Sliding Window). We define the stream trans-

ducer wnd(n) : SA(A,An) that partitions the input into

overlapping segments of n elements, as shown below:

input: 0 1 2 3 4 5
wnd(2) output: [0,1] [1,2] [2,3] [3,4] [4,5]
wnd(3) output: [0,1,2] [1,2,3] [2,3,4] [3,4,5]

The idea is to maintain a buffer that remembers the last n− 1
elements. So, we define the transducer as follows:

wnd(n) = (St, init, o, next, out) : SA(A,A
n)

St =
⋃n−1

i=0 A
i
, init = [] and o = ε

next(s, b) = s · [b], if |s| < n− 1

next([a] · s, b) = s · [b], if |s| = n− 2

out(s, b) = ε, if |s| < n− 1

out(s, b) = s · [b], if |s| = n− 1

Now, we will define a [−(n − 1), 0]-labeling 〈λ, µ〉 for the

transducer. We put λ(s) = µ(s) = −|s| for every s ∈ St.

Observe that λ(next(s, a)) = λ(s) + |out(s, a)| − 1 for every

s ∈ St and a ∈ A. So, wnd(n) : SA(A,An, [−(n− 1), 0].

IV. COMBINATORS

In this section we introduce a collection of combinators

for stream transductions (semantic objects) and stream trans-

ducers (model of computation). These combinators constitute

a domain-specific language (DSL) for programming signal

transductions of bounded lead/lag. This language satisfies a

key efficiency guarantee: every transducer that is defined in it

requires a constant amount of memory space and a constant

amount of computation time to process each input sample.

id : SA(A,A, 0)
op : A→ B

map(op) : SA(A,B, 0)

in : A→ B op : B×A→ B

aggr(in, op) : SA(A,B, 0)

integer n ≥ 1

wnd(n) : SA(A,An, [−(n−1), 0])

n : N

ignore(n) : SA(A,A, [−n, 0])

n : N val : B

emit(n, val) : SA(A,B, n)

f : SA(A,B, [m,n]) g : SA(B,C, [o, p])

f >> g : SA(A,C, [m+ o, n+ p])

f : SA(A,B, [m,n]) g : SA(A,C, [o, p])

par(f, g) : SA(A,B×C, [min(m, o),min(n, p)])

f : SA(A×B,B, [m,n]) m ≥ 1

loop(f) : SA(A,B, [m,n])

Fig. 3. Combinators for lead/lag-bounded transducers.

In Figure 2 we show several combinators on stream trans-

ductions. The map(op) combinator describes a signal trans-

formation that applies the function op : A→ B elementwise.

The aggr(in, op) combinator is a running aggregation, which

is specified by the initialization function in : A → B
(applied to the first element) and the aggregation function

op : B ×A→ B. The definition uses the fold operation:

fold : (A→ A)× (B ×A→ B)×A+ → B

fold(in, op, a) = in(a), for a ∈ A

fold(in, op, ua) = op(fold(in, op, u), a)

The wnd(n) combinator describes the transformation that

partitions the input signal into a sequence of overlapping

windows, so that the i-th output is a list of the last n
elements from i to i + n − 1. The ignore(n) combinator

skips the first n elements and echoes the rest of the input.

The emit(n, val) combinator emits n copies of val at the

beginning and then continues to echo the input. The serial

composition combinator � is used to stream the output of

one transduction as input to another one. The parallel com-

position combinator describes the simultaneous application

of two transformations. In order to define this, we consider

the function zip : A∗ × B∗ → (A × B)∗, which is

given by zip(a1 . . . am, b1 . . . bn) = 〈a1, b1〉 . . . 〈ak, bk〉 where

k = min(m,n). It follows that |zip(u, v)| = min(|u|, |v|) for

all u ∈ A∗ and v ∈ B∗. For the feedback combinator loop,

we consider a transduction f : STb(A × B,B, [m,n]) with

m ≥ 1 and we want to define loop(f) : STb(A,B) as a

solution to the equation par(id, g) � f = g. We can rewrite

this equivalently as f(zip(u, g(u))) = g(u) for every u ∈ A∗.

The function τu : B∗ → B∗, given by τu(v) = f(zip(u, v)),
has a least fixpoint lfp(τu) = supi<ω vi where v0 = ε and

vi+1 = τu(vi).
Figure 3 contains the corresponding combinators for stream

transducers, i.e., the implementations. In Figure 4 we show

the implementation of the serial composition combinator

(f1 >> f2) using a product construction on f1 and f2.

The idea is that the output of f1 is propagated as input

to f2. The parallel composition combinator par(f1, f2) is

implemented with a modified product construction on f1 and

f2, as shown in Figure 5. Observe that the state space is

6

f1 = (St1, init1, o1, next1, out1) : SA(A,B)

f2 = (St2, init2, o2, next2, out2) : SA(B,C)

(f1 >> f2) = (St1 × St2, init, o, next, out) : SA(A,C)

init = 〈init1, gnext2(init2, o1)〉 and o = o2 · out2(init2, o1)

next(〈s1, s2〉, a) = 〈next1(s1, a), gnext2(s2, out1(s1, a))〉

out(〈s1, s2〉, a) = out2(s2, out1(s1, a))

Fig. 4. Implementation of the >> combinator.

f1 = (St1, init1, o1, next1, out1) : SA(A,B1)

f2 = (St2, init2, o2, next2, out2) : SA(A,B2)

par(f1, f2) = (St, init, o, next, out) : SA(A,B1 ×B2)

St = St1 × St2 ×B∗
1 ×B∗

2

init = 〈init1, init2, remn1(o1, o2), remn2(o1, o2)〉

o = zip(o1, o2)

next(〈s1, s2, u1, u2〉, a) = 〈t1, t2, w1, w2〉

out(〈s1, s2, u1, u2〉, a) = zip(u1v1, u2v2)

t1 = next(s1, a) and t2 = next(s2, a)

v1 = out(s1, a) and v2 = out(s2, a)

w1 = remn1(u1v1, u2v2) and w2 = remn2(u1v1, u2v2)

Fig. 5. Implementation of the par combinator.

f = (St, init, o, next, out) : SA(A×B,B)

loop(f) = (St×B+, 〈init, o〉, o, next′, out′) : SA(A,B)

next′(〈s, bv〉, a) = 〈next(s, 〈a, b〉), v · out(s, 〈a, b〉)〉

out′(〈s, bv〉, a) = out(s, 〈a, b〉)

Fig. 6. Implementation of the loop combinator.

defined as St = St1 × St2 × B∗
1 × B∗

2 . This is because

the transducer has to properly align the output emitted by

f1 and f2, and therefore it has to remember the additional

output given by f1 when f1 runs ahead of f2, and similarly

for the symmetric case when f2 runs ahead of f1. Every

reachable state 〈s1, s2, u1, u2〉 satisfies the following invariant:

u1 = ε or u2 = ε. The functions remn1 : A∗ × B∗ → A∗

and remn2 : A∗ × B∗ → B∗ are used in Figure 5. For

u = a1 . . . am ∈ A∗ and v = b1 . . . bn ∈ B∗, we put

remn1(u, v) = ak+1 . . . am and remn2(u, v) = bk+1 . . . bn
where k = min(m,n). In particular, m ≤ n implies that

remn1(u, v) = ε, and n ≤ m implies that remn2(u, v) = ε.
So, remn1(u, v) = ε or remn2(u, v) = ε. In Figure 6 we give

the implementation of the feedback composition combinator

loop(f), where f : SA(A × B,B) is a transducer with two

input channels (one of type A and one of type B). The idea

is that the output of f is given as input to the second input

channel of f. In order for this to be well-defined, it is essential

that f has lead in [m,n] with m ≥ 1.

Example 7 (FIR filtering). For an odd natural number w =
2k + 1 and coefficients c−k, . . . , c−1, c0, c1, . . . , ck we define

the output signal by y(n) =
∑k

i=−kci · x(n+ i). We consider

that x(n) = 0 for n < 0.

k ≥ 0 coefficients c̄ = c−k, . . . , c−1, c0, c1, . . . , ck

FIR(c̄) : SA(R,R, [−k, 0])

An FIR filter can be used to smooth a signal. For example,

FIR([0.1, 0.2, 0.4, 0.2, 0.1]) is a weighted average around each

p : A→ Bool

atomic(p) : MTL(A)

ϕ,ψ : MTL(A)

¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ : MTL(A)

ϕ : MTL(A) integers 0 ≤ a ≤ b

Yϕ, Pϕ, Hϕ, P[a,∞)ϕ, H[a,∞)ϕ, P[a,b]ϕ, H[a,b]ϕ : MTL(A)

ϕ,ψ : MTL(A) integers 0 ≤ a ≤ b

ϕ S ψ, ϕ S[a,∞) ψ, ϕ S[a,b] ψ : MTL(A)

ϕ,ψ : MTL(A) integers 0 ≤ a ≤ b

Nϕ, Naϕ, F[a,b]ϕ, G[a,b]ϕ, ϕ U[a,b] ψ : MTL(A)

Fig. 7. The syntax of typed metric temporal logic (MTL).

point. We can express FIR in terms of emit, wnd and map:

FIR([c−1, c0, c1]) = emit(1, 0) >> wnd(3) >> map(op),

where op = (x−1, x0, x1) -> c−1x−1 + c0x0 + c1x1.

Theorem 8. The transducer combinators of Figure 3 imple-

ment the corresponding transduction combinators of Figure 2.

Moreover, every implementation constructed with these com-

binators is an online algorithm that uses constant space (i.e.,

independent of the length of the input stream).

Proof. First, we show that each combinator id, map(op),
aggr(in, op), wnd(n), ignore(n) and emit(n, val) imple-

ments id, map(op), aggr(in, op), wnd(n), ignore(n) and

emit(n, val) respectively. Now, for serial composition it suf-

fices to show the following: if f : SA(A,B) implements

f : ST(A,B) and g : SA(B,C) implements g : ST(A,B),
then f >> g : SA(A,C) implements f � g : ST(A,C).
Similar claims can be established for parallel composition and

feedback composition.

We will show now that the implementation of each combi-

nator requires a constant amount of space for the transducer

memory. First, we observe that every transducer built with the

combinators of Figure 3 is lead/lag-bounded. The combinators

id and map(op) do not require any memory, i.e., they are

memoryless. The running aggregation aggr(in, op) requires

one memory location for storing the running aggregate. The

windowing transducer wnd(n) requires n − 1 memory lo-

cations for the buffer of the last n − 1 elements. As seen

in Figure 4, the serial composition f >> g does not require

any additional memory locations. For the case of parallel

composition g = par(f1, f2), the argument relies crucially

on the assumption that f1 and f2 are lead/lag-bounded. In

this case, the skew between f1 : SA(A,B1, [m1, n1]) and

f2 : SA(A,B2, [m2, n2]) is bounded above by a = max(|m1−
n2|, |m2−n1|). So, g requires a buffer with at most a memory

locations. For the case of feedback composition loop(f) with

f : SA(A × B,B, [m,n]), a buffer with at most n memory

locations is required, in order to store the elements that are

sent back to the input channel B and await to be matched with

elements of the input channel A.

V. ONLINE TEMPORAL MONITORING

In this section we show how our framework of lead/lag-

bounded transducers (and the corresponding combinators) can

be used to easily prototype an efficient monitoring algorithm

7

u, i |= atomic(p) ⇔ p(u(i)) = true

u, i |= ¬ϕ⇔ u, i 6|= ϕ

u, i |= ϕ ∧ ψ ⇔ u, i |= ϕ and u, i |= ψ

u, i |= ϕ ∨ ψ ⇔ u, i |= ϕ or u, i |= ψ

u, i |= Yϕ⇔ i ≥ 1 and u, i− 1 |= ϕ

u, i |= Pϕ⇔ u, j |= ϕ for some j ∈ [0, i]

u, i |= Hϕ⇔ u, j |= ϕ for every j ∈ [0, i]

u, i |= ϕ S ψ ⇔ there is j ∈ [0, i] s.t. u, j |= ψ

and u, k |= ϕ for all k with j < k ≤ i

u, i |= P[a,∞)ϕ⇔ u, j |= ϕ for some j ∈ [0, i− a]

u, i |= H[a,∞)ϕ⇔ u, j |= ϕ for every j ∈ [0, i− a]

u, i |= ϕ S[a,∞) ψ ⇔ there is j ∈ [0, i− a] s.t. u, j |= ψ

and u, k |= ϕ for all k with j < k ≤ i

u, i |= P[a,b]ϕ⇔ u, j |= ϕ for some j ∈ [i− b, i− a]

u, i |= H[a,b]ϕ⇔ u, j |= ϕ for every j ∈ [i− b, i− a]

u, i |= ϕ S[a,b] ψ ⇔ there is j ∈ [i− b, i− a] s.t. u, j |= ψ

and u, k |= ϕ for all k with j < k ≤ i

u, i |= Nϕ⇔ u, i+ 1 |= ϕ

u, i |= Naϕ⇔ u, i+ a |= ϕ

u, i |= F[a,b]ϕ⇔ u, j |= ϕ for some j ∈ [i+ a, i+ b]

u, i |= G[a,b]ϕ⇔ u, j |= ϕ for every j ∈ [i+ a, i+ b]

u, i |= ϕ U[a,b] ψ ⇔ there is j ∈ [i+ a, i+ b] s.t. u, j |= ψ

and u, k |= ϕ for all k with i ≤ k < j

Fig. 8. The satisfaction relation for temporal formulas.

for Metric Temporal Logic (MTL) with past and future-

bounded temporal connectives. The monitoring algorithm is

specified in a modular way: the monitor for a composite for-

mula is built from the monitors of its immediate subformulas

by applying the combinators of section IV.

We consider a language of typed temporal formulas. We

write ϕ : MTL(A) to indicate that ϕ is a temporal formula

that is meant to be interpreted over traces in Aω . The type

MTL(A) is defined inductively in Figure 7. We use the

abbreviation Xa = X[a,a], where X can be any of the

temporal connectives P,H, S,F,G,U. The satisfaction relation

|= ⊆ Aω × ω ×MTL(A) is defined by induction as shown in

Figure 8. For a trace u ∈ Aω , an index i < ω and a formula

ϕ, we write u, i |= ϕ to denote that the formula ϕ is satisfied

in u at index i. The satisfaction of the formulas Paϕ and Haϕ
can be expressed as follows:

u, i |= Paϕ⇔ (i ≥ a and u, i− a |= ϕ), and

u, i |= Haϕ⇔ (i < a or u, i− a |= ϕ),

because Pa = P[a,a], Ha = H[a,a], and [a, a] = {a}. We say

that the formulas ϕ, ψ : MTL(A) are equivalent, and we write

ϕ ≡ ψ, if for every trace u ∈ Aω and index i < ω we have

u, i |= ϕ iff u, i |= ψ. The equivalences of Figure 9 can be

proved from the definition of the satisfaction relation.

We define the interpretation of ϕ w.r.t. the trace u ∈ Aω ,

denoted I(u, ϕ) : Boolω , as shown in Figure 10 (past-time

fragment) and Figure 11 (future-time fragment). We omit H

and G from the figures, as they are dual to P and F respectively.

Lemma 9 (Interpretation). Let ϕ : MTL(A) be a formula,

u ∈ Aω be a trace, and i < ω be a timepoint. Then,

I(u, ϕ)(i) = true iff u, i |= ϕ.

ϕ S ψ ≡ ψ ∨ (ϕ ∧ Y(ϕ S ψ)) (1)

P[a,∞)ϕ ≡ PaPϕ (2)

ϕ S[a,∞) ψ ≡ Pa(ϕ S ψ) ∧ H[0,a−1]ϕ, for a ≥ 1 (3)

P[a,b]ϕ ≡ PaP[0,b−a]ϕ (4)

ϕ S[a,b] ψ ≡ Pa(ϕ S[0,b−a] ψ) ∧ H[0,a−1]ϕ, for a ≥ 1 (5)

F[0,b]ϕ ≡ NbP[0,b]ϕ (6)

F[a,b]ϕ ≡ NaF[0,b−a]ϕ ≡ NbP[0,b−a]ϕ (7)

ϕ U[a,b] ψ ≡ Na(ϕ U[0,b−a] ψ) ∧ G[0,a−1]ϕ, for a ≥ 1 (8)

Fig. 9. Equivalences between temporal formulas.

I(u, atomic(p))(i) = p(u(i))

I(u,¬ϕ)(i) = ¬I(u, ϕ)(i)

I(u, ϕ ∧ ψ)(i) = I(u, ϕ)(i) ∧ I(u, ψ)(i)

I(u, ϕ ∨ ψ)(i) = I(u, ϕ)(i) ∨ I(u, ψ)(i)

I(u,Yϕ)(0) = false

I(u,Yϕ)(i+ 1) = I(u, ϕ)(i)

I(u,Pϕ)(i) = fold(x -> x,∨, I(u, ϕ)≤i)

I(u, ϕ S ψ)(i) = fold((x, y) -> y, opSince, wi), where

wi = zip(I(u, ϕ)≤i, I(u, ψ)≤i) : (Bool2)∗

opSince = (z, (x, y)) -> y ∨ (x ∧ z)

I(u,Paϕ)(i) = false, if i < a

I(u,Paϕ)(i+ a) = I(u, ϕ)(i)

I(u,P[a,∞)ϕ) = I(u,PaPϕ)

I(u, ϕ S[a,∞) ψ) = I(u,Pa(ϕ S ψ) ∧ H[0,a−1]ϕ)

I(u,P[0,b]ϕ)(i) = (fold(inP, opP, I(u, ϕ)
≤i) 6= ⊥)

inP : Bool → {⊥} ∪ [0, b]

inP(x) = ⊥, if x = false

inP(x) = 0, if x = true

opP : ({⊥} ∪ [0, b])× Bool → {⊥} ∪ [0, b]

opP(⊥, x) = inP(x)

opP(k, x) = 0, if x = true

opP(k, x) = k + 1, if k < b and x = false

opP(b, x) = ⊥, if x = false

I(u, ϕ S[0,b] ψ)(i) = (fold(inS, opS, wi) 6= ⊥)

wi = zip(I(u, ϕ)≤i, I(u, ψ)≤i) : (Bool2)∗

inS : Bool2 → {⊥} ∪ [0, b]

inS(x, y) = ⊥, if y = false

inS(x, y) = 0, if y = true

op : ({⊥} ∪ [0, b])× Bool2 → {⊥} ∪ [0, b]

opS(⊥, (x, y)) = inS(x, y)

opS(k, (x, y)) = 0, if y = true

opS(k, (x, y)) = k + 1, if k < b, y = false and x = true

opS(k, (x, y)) = ⊥, if k < b, y = false and x = false

opS(b, (x, y)) = ⊥, if y = false

I(u,P[a,b]ϕ) = I(u,PaP[0,b−a]ϕ)

I(u, ϕ S[a,b] ψ) = I(u,Pa(ϕ S[0,b−a] ψ) ∧ H[0,a−1]ϕ)

Fig. 10. Interpretation function: past-time formulas.

Lemma 9 implies that the formulas ϕ, ψ are equivalent iff

I(u, ϕ) = I(u, ψ) for every trace u ∈ Aω .

An online monitor for a formula ϕ : MTL(A) is a

transducer G : SA(A, Bool) s.t. the extension f = ext(JGK) :
KT(A, Bool) of its denotation satisfies f(u) = I(u, ϕ) for

8

I(u,Nϕ)(i) = I(u, ϕ)(i+ 1)

I(u,Naϕ)(i) = I(u, ϕ)(i+ a)

I(u,F[0,b]ϕ) = I(u,NbP[0,b]ϕ)

I(u, ϕ U[0,b] ψ)(i) = (fold(inU, opU, w) = yes)

w = zip(I(u, ϕ)[i,i+b], I(u, ψ)[i,i+b]) : (Bool2)∗

inU : Bool2 → S, where S = {yes,wait, no}

inU(x, y) = yes, if y = true

inU(x, y) = wait, if y = false and x = true

inU(x, y) = no, if y = false and x = false

opU : S × Bool2 → S

opU(s, (x, y)) = s, if s ∈ {yes, no}

opU(wait, (x, y)) = in(x, y)

I(u,F[a,b]ϕ) = I(u,NaF[0,b−a]ϕ) = I(u,NbP[0,b−a]ϕ)

I(u, ϕ U[a,b] ψ) = I(u,Na(ϕ U[0,b−a] ψ) ∧ G[0,a−1]ϕ)

Fig. 11. Interpretation function: bounded future-time formulas.

every trace u ∈ Aω . We describe a construction for efficient

online MTL monitors in Figure 12. We omit the connectives

∧, H and G because they are dual to ∨, P and F respectively.

Proposition 10 (Online Monitor). Let ϕ : MTL(A). The

transducer TL(ϕ) : SA(A, Bool), defined in Figure 12, has

bounded lead/lag and is an online monitor for ϕ.

Proof. The proof is by induction on ϕ. It is immediate from

the construction of Figure 12 that TL(ϕ) has bounded lead/lag.

We focus on some representative cases and we leave the rest

to the reader. Consider an arbitrary trace u ∈ Aω . Case Pϕ:

w = ext(JTL(Pϕ)K)(u)

= (ext(JTL(ϕ)K) � ext(aggr(x -> x,∨)))(u)

= ext(aggr(x -> x,∨))(ext(JTL(ϕ)K)(u))

= ext(aggr(x -> x,∨))(I(u, ϕ))

and therefore w(i) = fold(x -> x,∨, v≤i). This implies that

w = I(u,Pϕ). For the case Paϕ, we obtain similarly that

w = ext(JTL(Paϕ)K)(u) = ext(emit(a, false))(I(u, ϕ)).

It follows that w(i) = false if i < a, and w(i + a) =
I(u, ϕ)(i) for every i < ω. So, w = I(u,Paϕ). As before, for

the case Naϕ we get that

w = ext(JTL(Naϕ)K)(u) = ext(ignore(a))(I(u, ϕ)).

This means that w(i) = I(u, ϕ)(i + a) for every i < ω, and

therefore w = I(u,Naϕ). The rest of the cases are similar.

We describe now our implementation and present an ex-

perimental evaluation. From Theorem 8 we know that the

online monitors of Figure 12 require a constant amount of

space (in the size of the input stream). In order to examine

empirically this efficiency guarantee, we have implemented

the combinators of Figure 3 as an embedded domain-specific

language in Rust and we have used it to specify the MTL

monitors. We compare our implementation against the state-of-

the-art tools MonPoly [35] (OCaml), StreamLAB [36] (Rust),

Reelay [38] (C++) and Aerial [49] (OCaml). All tools are

implemented in native code (i.e., no bytecode).

p : A→ Bool

TL(atomic(p)) = map(p) : SA(A, Bool, 0)

TL(ϕ) : SA(A, Bool, [m,n])

TL(¬ϕ) = TL(ϕ) >> map(¬) : SA(A, Bool, [m,n])

TL(ϕ) : SA(A, Bool, [m,n]) TL(ψ) : SA(A, Bool, [o, p])

TL(ϕ ∨ ψ) = par(TL(ϕ), TL(ψ)) >> map(∨)

: SA(A, Bool, [min(m, o),min(n, p)])

TL(ϕ) : SA(A, Bool, [m,n])

TL(Yϕ) = TL(ϕ) >> emit(1, false) : SA(A, Bool, [m+1, n+1])

TL(Pϕ) = TL(ϕ) >> aggr(x -> x,∨) : SA(A, Bool, [m,n])

TL(Paϕ) = TL(ϕ) >> emit(a, false) : SA(A, Bool, [m+a, n+a])

TL(P[a,∞)ϕ) = TL(PaPϕ) : SA(A, Bool, [m+ a, n+ a])

TL(P[0,b]ϕ) = TL(ϕ) >> aggr(inP, opP, x -> x 6= ⊥)

: SA(A, Bool, [m,n])

TL(P[a,b]ϕ) = TL(PaP[0,b−a]ϕ) : SA(A, Bool, [m+ a, n+ a])

TL(ϕ) : SA(A, Bool, [m,n]) TL(ψ) : SA(A, Bool, [o, p])

TL(ϕ S ψ) = par(TL(ϕ), TL(ψ)) >> aggr((x, y) -> y, opSince)

: SA(A, Bool, [min(m, o),min(n, p)])

TL(ϕ S[a,∞) ψ) = TL(Pa(ϕ S ψ) ∧ H[0,a−1]ϕ)

: SA(A, Bool, [min(m, o) + a,min(n, p) + a])

TL(ϕ S[0,b] ψ) = par(TL(ϕ), TL(ψ)) >> aggr(inS, opS, x -> x 6= ⊥)

: SA(A, Bool, [min(m, o),min(n, p)])

TL(ϕ S[a,b] ψ) = TL(Pa(ϕ S[0,b−a] ψ) ∧ H[0,a−1]ϕ)

: SA(A, Bool, [min(m, o) + a,min(n, p) + a])

TL(ϕ) : SA(A, Bool, [m,n])

TL(Nϕ) = TL(ϕ) >> ignore(1) : SA(A, Bool, [m− 1, n])

TL(Naϕ) = TL(ϕ) >> ignore(a) : SA(A, Bool, [m− a, n])

TL(F[a,b]ϕ) = TL(NbP[0,b−a]ϕ) : SA(A, Bool, [m− b, n])

TL(ϕ) : SA(A, Bool, [m,n]) TL(ψ) : SA(A, Bool, [o, p])

TL(ϕ U[0,b] ψ) = par(TL(ϕ), TL(ψ)) >> wnd(b+ 1, inU, opU)

: SA(A, Bool, [min(m, o)− b,min(n, p)])

TL(ϕ U[a,b] ψ) = TL(Na(ϕ U[0,b−a] ψ) ∧ G[0,a−1]ϕ)

: SA(A, Bool, [min(m, o)− b,min(n, p)])

Fig. 12. Online monitor for bounded-future MTL formulas.

In Figure 13, we compare our approach (DSL) with Mon-

Poly, StreamLAB, Reelay and Aerial on two sets of for-

mulas, both of which contain a single past-time temporal

connective (bounded or unbounded). The formulas for the top

plot (P1 to P17) are: Y, P, P[0,1], P[0,10], P[0,100], P[0,1000],

P[0,10000], P[1,∞), P[10,∞), P[100,∞), P[1000,∞), P[10000,∞),

P[1,2], P[10,20], P[100,200], P[1000,2000], P[10000,20000]. The

formulas for the bottom plot (P1 to P16) are: S, S[0,1],

S[0,10], S[0,100], S[0,1000], S[0,10000], S[1,∞), S[10,∞), S[100,∞),

S[1000,∞), S[10000,∞), S[1,2], S[10,20], S[100,200], S[1000,2000],

S[10000,20000]. We observe that DSL is 10-200 times faster

than MonPoly and StreamLAB, and 80-1300 times faster

than Reelay. The performance of DSL, StreamLAB, Reelay

and MonPoly is not affected by the size of intervals. Aerial

performs well when the size of intervals is small, but its

throughput decreases sharply as the size of the intervals grows.

Aerial’s space and time-per-element complexity is linear in the

sum of the numeric constants and the formula size [50].

10

Smooth with
low-pass filter

Derivative
with filter

Curve length
transformation

Decision
rule

x(n) y(n) z(n) L(n)

Fig. 16. The high-level structure of an online algorithm for peak detection in the ECG signal.

smooth = FIR([0.1, 0.2, 0.4, 0.2, 0.1]) : SA(V,V, [−n, 0])

FIR([c−n, . . . , cn]) = emit(n, 0) >> wnd(2n+ 1) >>

map((x−n, . . . , xn) -> c−nx−n + · · ·+ cnxn)

slope = FIR([−0.5, 0, 0.5]) : SA(V,V, [−1, 0])

length = emit(w, 0) >>

map(x -> sqrt(1 + x2)) >> wnd(2w + 1) >>

map((x−w, . . . , xw) ->
∑w

i=−w xi)

detect = (St, A, ε, δ, out) : SA(VL, Bool, [−2w, 0])

St = {A} ∪ {C(i) | i ∈ [1, 2w]}

∪ {B(i,m, j) | i ∈ [1, 2w],m ∈ V, j ∈ [1, i]}

δ(A, (v, `)) = A, if ` < Threshold

δ(A, (v, `)) = B(1, v, 1), if ` ≥ Threshold

δ(B(i,m, j), (v, `)) = B(i+ 1,m, j), if v ≤ m and i < 2w

δ(B(i,m, j), (v, `)) = B(i+ 1, v, i+ 1), if v > m and i < 2w

δ(B(i,m, j), (v, `)) = C(j), if i = 2w

δ(C(i), (v, `)) = C(i− 1), if i > 1

δ(C(i), (v, `)) = A, if i = 1

out(A, (v, `)) = false, if ` < Threshold

out(A, (v, `)) = ε, if ` ≥ Threshold

out(B(i,m, j), (v, `)) = ε, if i < 2w

out(B(i,m, j), (v, `)) = falsej−1 · true · false2w+1−j , if i = 2w

out(C(i), (v, `)) = false

preprocess = par(id, smooth >> slope >> length)

main = preprocess >> detect : SA(V, Bool)

Fig. 17. Peak detection for cardiac (ECG) signal.

problem is one of the most widely studied detection problems

in the area of biomedical engineering [29], [30], [31], [32], as

it forms the basis of many analyses over cardiac data. We will

see that our domain-specific language can be used to easily

specify the detection algorithm. Similar in spirit are the works

[33] and [34], where the problem of arrhythmia detection is

considered.

A simple algorithm for detecting the peaks consists of four

stages: (1) smoothing the signal to eliminate high-frequency

noise, (2) taking the derivative of the smoothed signal to

calculate the slope, (3) computing a nonlinear curve length

transformation, and (4) detecting the peaks using both the

raw measurements and the curve lengths. This algorithm is

described in [32] and its implementation is found in [51].

We show how to prototype this algorithm using our typed

framework of `-bounded transducers (section III) and their

combinators (section IV). In Figure 17 we see that the stages

for smoothing and slope calculation can be expressed with the

FIR combinator (recall Example 7), which in turn is a pipeline

of emit, wnd, map. For the curve length transformation, we

consider a window of size w = 65msec · F (where F is the

sampling frequency in Hz), centered at each timepoint. That is,

w is the number of samples that correspond to 65 msec of the

signal. The transducer length : SA(V, L, [−w, 0] describes

this transformation. Notice that is has a maximum lag of w

(lead −w), because it needs to see w samples ahead in order

to calculate the curve length. The decision rule is given by

a customized transducer detect : SA(VL, Bool, [−2w, 0]),
which takes as input the original signal and the signal of

curve length values. Intuitively, detect alternates between

three modes: (1) mode A, during which the transducer searches

for a curve length value exceeding a threshold, (2) mode B,

during which the transducer finds the maximum of the original

signal from the point t that the threshold has crossed until

t + 2w (window of size 130 msec), and (3) mode C, which

ensures that 130 msec pass from the detected peak until the

transducer can enter the search mode (i.e., mode A) again. The

lead interval for detect is [−2w, 0], which is established by

annotating the transducer with the lead labeling 〈λ, λ〉, where:

λ(A) = 0, λ(B(i,m, j)) = −i, and λ(C) = 0. It suffices to

observe that λ(δ(s, x)) = λ(x) + |out(s, x)| − 1 for every

s ∈ St and x ∈ VL.

Finally, we use the ECG peak detector (main in Fig. 17) to

define a transducer for monitoring the heart rate. Let F be the

sampling frequency of the signal.

p = atomic(x -> x) : MTL(Bool)

p̄ = atomic(x -> ¬x) : MTL(Bool)

ϕ = (p→ H[1, 250msec·F]p̄) : MTL(Bool)

ψ = F[1, 1000msec·F]p : MTL(Bool)

mon = par(MTL(ϕ), MTL(ψ)) : SA(Bool, Bool2)

top = main >> mon : SA(V, Bool2)

The transducer top checks whether the heart rate is too slow

or too fast: ϕ checks that no interval is shorter than 250 ms

(i.e., rate faster than 240 bpm), and ψ checks that no interval

is longer than 1000 ms (i.e., rate slower than 60 bpm).

VII. DISCUSSION

In this section, we discuss the relationship between our

framework of `-bounded transductions/transducers and the

established synchronous language Lustre and its descendants.

In Lustre [15] a variable x represents a sequence of values

(i.e., a signal or stream) and has a clock c associated with

it, which specifies the time instants (over some discrete time

domain) for which x is defined. These clocks are used to

type-check expressions. For example, the expression x+ y is

allowed only when x and y have the same underlying clock c.
These clock compatibility checks ensure that combined signals

are perfectly synchronized. This gives rise to a guarantee of

efficient computation: no amount of buffering is required for

storing elements. Lucid Synchrone [26], [27] extends Lustre

with higher-order features, provides inference of the clock

types [52], [53], and supports hierarchical state machines [54].

Other synchronous formalisms such as SDF [19] and CSDF

[20] employ a notion of rate for the consumption and produc-

tion of elements (e.g., a computational element produces 3

11

output elements for every 2 input elements that it consumes).

SDF and CSDF also provide guarantees of efficiency, but they

do so by inserting finite buffers between computing elements.

This provides flexibility in the specification and relegates the

issue of finding the appropriate buffer sizes to the compiler.

The work on n-synchronous Kahn networks [55] studies a

relaxed model of synchrony for a Lustre-based clocked lan-

guage that allows communication over bounded buffers. This

setting requires reasoning about ultimately periodic clocks,

which can be represented canonically in the form u(v)ω , where

u, v ∈ {0, 1}∗ and (v)ω denotes the infinite repetition of v.

The symbol 1 (resp., 0) indicates the presence (resp., absence)

of a value at a given timepoint of the base clock.

Clock envelopes are introduced in [56] as an abstraction of

(not necessarily periodic) clocks. They denote sets of clocks

that almost have a fixed period except for a bounded amount

of allowable jitter. Lucy-n [28] is the implementation of the

n-synchronous model of [55], and it uses a variant of the clock

abstraction of [56] for clock inference. Lucy-n extends Lustre

with a buffering construct, which serves as a placeholder for

a bounded communication buffer whose size is determined by

the compiler. An extension of Lucy-n with a delay operator is

considered in [57]. A more precise clock inference algorithm

for Lucy-n is described in [58].

Observe in the proof of Theorem 8 that the transducer

par(f, g) requires a buffer to accommodate the skew between

the output of f and the output of g. The use of this buffer is

similar in spirit to the bounded buffer insertion that is consid-

ered in SDF [19], CSDF [20], and Lucy-n [28]. Identifying

a precise correspondence between our transducer model and

Lucy-n is an interesting direction for future work. The main

question is to clarify the relationship between the lead/lag

types that we introduce here and the clocks of Lucy-n. A

relevant concept is the domain/rate of Quantitative Regular

Expressions [59], [14], [60] and related formalisms [61], [62],

[63], [64], which is a kind of regular expression that specifies

when output is emitted.

We conclude this section with the remark that synchronous

languages such as Lustre [15] have been used to program

monitors that run alongside synchronous systems. Such mon-

itors check for safety violations and are called synchronous

observers [65]. Relevant to this is the language Lutin [66]

for expressing temporal properties, as well as the translation

of regular expressions (which capture safety properties) to

synchronous networks [67]. An interesting direction for future

work is to provide a translation from our framework to

Heptagon/BZR [68] in order to obtain low-level C code for

deployment on embedded systems.

VIII. CONCLUSION

We have introduced the framework of lead/lag-bounded

signal transformations, which relaxes the causality requirement

and allows a bounded amount of lookahead into the future.

Such transformations can be implemented with a bounded

amount of lag. We classify the transformations with a type

discipline that records the bounds on the allowable lead and/or

lag of the computation. Our framework gives rise to a domain-

specific language (DSL) for signal monitoring with a key

efficiency guarantee: every monitor defined by the DSL can

be executed using a bounded amount of space and processing

time per input sample. We validate the usefulness of our

proposal with two significant case studies: (1) the prototyping

of an efficient monitor for MTL for past-time and bounded

future-time temporal connectives, and (2) the specification

of a complex algorithm for peak detection and heart rate

monitoring over ECG signal. We have also implemented the

proposed DSL and we have compared experimentally our

MTL monitor against state-of-the-art tools.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their constructive comments and suggestions.

REFERENCES

[1] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[2] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Proc. FORMATS/FTRTFT. Springer, 2004, pp.
152–166.

[3] K. Havelund and G. Roşu, “Efficient monitoring of safety properties,”
International Journal on Software Tools for Technology Transfer, vol. 6,
no. 2, pp. 158–173, 2004.

[4] K. Havelund, D. Peled, and D. Ulus, “First-order temporal logic moni-
toring with BDDs,” Formal Methods in System Design, pp. 1–21, 2019.

[5] D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann, “Runtime monitoring
of metric first-order temporal properties,” in Proc. FSTTCS. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2008, pp. 49–60.

[6] D. Ulus, T. Ferrère, E. Asarin, and O. Maler, “Online timed pattern
matching using derivatives,” in Proc. TACAS. Springer, 2016, pp. 736–
751.

[7] Y. Annapureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
Proc. TACAS. Springer, 2011, pp. 254–257.

[8] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka,
“On temporal logic and signal processing,” in Proc. ATVA. Springer,
2012, pp. 92–106.

[9] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for
temporal logic robustness,” in Proc. RV. Springer, 2014, pp. 231–246.

[10] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A.
Seshia, “Robust online monitoring of signal temporal logic,” Formal

Methods in System Design, vol. 51, no. 1, pp. 5–30, 2017.
[11] S. Jakšić, E. Bartocci, R. Grosu, T. Nguyen, and D. Ničković, “Quanti-

tative monitoring of STL with edit distance,” Formal Methods in System

Design, vol. 53, no. 1, pp. 83–112, 2018.
[12] S. Jakšić, E. Bartocci, R. Grosu, and D. Ničković, “An algebraic

framework for runtime verification,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2233–2243, 2018.

[13] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna, “LOLA:
Runtime monitoring of synchronous systems,” in Proc. TIME. IEEE,
2005, pp. 166–174.

[14] K. Mamouras, M. Raghothaman, R. Alur, Z. G. Ives, and S. Khanna,
“StreamQRE: Modular specification and efficient evaluation of quanti-
tative queries over streaming data,” in Proc. PLDI. ACM, 2017, pp.
693–708.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[16] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,” Science of Computer

Programming, vol. 19, no. 2, pp. 87–152, 1992.
[17] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,

and R. de Simone, “The synchronous languages 12 years later,” Pro-

ceedings of the IEEE, vol. 91, no. 1, pp. 64–83, 2003.
[18] T. Bourke and M. Pouzet, “Zélus: A synchronous language with ODEs,”

in Proc. HSCC. ACM, 2013, pp. 113–118.
[19] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-

ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

12

[20] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2, pp.
397–408, 1996.

[21] C. Elliott and P. Hudak, “Functional reactive animation,” in Proc. ICFP.
ACM, 1997, pp. 263–273.

[22] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows, robots,
and functional reactive programming,” in AFP. Springer, 2003, pp.
159–187.

[23] C. M. Elliott, “Push-pull functional reactive programming,” in Proc.

Haskell. ACM, 2009, pp. 25–36.

[24] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Information Processing, vol. 74, pp. 471–475, 1974.

[25] P. Caspi, “Clocks in dataflow languages,” Theoretical Computer Science,
vol. 94, no. 1, pp. 125–140, 1992.

[26] M. Pouzet, Lucid Synchrone, Version 3. Tutorial and Reference Manual,
Université Paris-Sud, LRI, 2006.

[27] P. Caspi, G. Hamon, and M. Pouzet, “Synchronous functional program-
ming with Lucid Synchrone,” in Modeling and Verification of Real-Time

Systems: Formalisms and Software Tools. Wiley, 2008, pp. 207–247.

[28] L. Mandel, F. Plateau, and M. Pouzet, “Lucy-n: a n-synchronous
extension of Lustre,” in Proc. MPC. Springer, 2010, pp. 288–309.

[29] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,”
IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp.
230–236, 1985.

[30] P. S. Hamilton and W. J. Tompkins, “Quantitative investigation of
QRS detection rules using the MIT/BIH arrhythmia database,” IEEE

Transactions on Biomedical Engineering, vol. BME-33, no. 12, pp.
1157–1165, 1986.

[31] B.-U. Köhler, C. Hennig, and R. Orglmeister, “The principles of software
QRS detection,” IEEE Engineering in Medicine and Biology Magazine,
vol. 21, no. 1, pp. 42–57, 2002.

[32] W. Zong, G. B. Moody, and D. Jiang, “A robust open-source algorithm
to detect onset and duration of QRS complexes,” in Proc. Computers in

Cardiology. IEEE, 2003, pp. 737–740.

[33] H. Abbas, R. Alur, K. Mamouras, R. Mangharam, and A. Rodionova,
“Real-time decision policies with predictable performance,” Proceedings

of the IEEE, Special Issue on Design Automation for Cyber-Physical

Systems, vol. 106, no. 9, pp. 1593–1615, 2018.

[34] H. Abbas, A. Rodionova, K. Mamouras, E. Bartocci, S. A. Smolka, and
R. Grosu, “Quantitative regular expressions for arrhythmia detection,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 16, no. 5, pp. 1586–1597, 2019.

[35] D. Basin, F. Klaedtke, and E. Zalinescu, “The MonPoly monitoring tool,”
in Proc. RV-CuBES. EasyChair, 2017.

[36] P. Faymonville, B. Finkbeiner, M. Schledjewski, M. Schwenger,
M. Stenger, L. Tentrup, and H. Torfah, “StreamLAB: Stream-based
monitoring of cyber-physical systems,” in Proc. CAV. Springer, 2019,
pp. 421–431.

[37] D. Basin, S. Krstic, and D. Traytel, “AERIAL: Almost event-rate
independent algorithms for monitoring metric regular properties,” in
Proc. RV-CuBES. EasyChair, 2017.

[38] D. Ulus, “The Reelay monitoring tool,” https://doganulus.github.io/
reelay/, 2020, [Online; accessed April 17, 2020].

[39] ——, “Timescales: A benchmark generator for MTL monitoring tools,”
in Proc. RV. Springer, 2019, pp. 402–412.

[40] S. MacLane, Categories for the Working Mathematician. Springer,
1972.

[41] E. Asarin, P. Caspi, and O. Maler, “Timed regular expressions,” Journal

of the ACM, vol. 49, no. 2, pp. 172–206, 2002.

[42] R. Alur, K. Mamouras, C. Stanford, and V. Tannen, “Interfaces for
stream processing systems,” in Principles of Modeling: Essays Dedi-

cated to Edward A. Lee on the Occasion of His 60th Birthday. Springer,
2018, pp. 38–60.

[43] K. Mamouras, C. Stanford, R. Alur, Z. G. Ives, and V. Tannen, “Data-
trace types for distributed stream processing systems,” in Proc. PLDI.
ACM, 2019, pp. 670–685.

[44] K. Mamouras, “Semantic foundations for deterministic dataflow and
stream processing,” in Proc. ESOP. Springer, 2020, pp. 394–427.

[45] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell

System Technical Journal, vol. 34, no. 5, pp. 1045–1079, 1955.

[46] E. F. Moore, “Gedanken-experiments on sequential machines,” in Au-

tomata Studies. Princeton University Press, 1956, pp. 129–153.

[47] G. N. Raney, “Sequential functions,” Journal of the ACM, vol. 5, no. 2,
pp. 177–180, 1958.

[48] S. Ginsburg and G. F. Rose, “A characterization of machine mappings,”
Canadian Journal of Mathematics, vol. 18, pp. 381–388, 1966.

[49] S. Krstic and D. Traytel, “The aerial monitoring tool,” https://bitbucket.
org/traytel/aerial/src/master/, 2020, [Online; accessed June 17, 2020].

[50] D. Traytel, Private communication, June 2020.
[51] W. Zong and G. B. Moody, “wqrs: Single-lead QRS detector based

on length transform,” https://archive.physionet.org/physiotools/wfdb/
app/wqrs.c, 2010, [Online; accessed April 17, 2020].

[52] P. Caspi and M. Pouzet, “Synchronous Kahn networks,” in Proc. ICFP.
ACM, 1996, pp. 226––238.

[53] J.-L. Colaço and M. Pouzet, “Clocks as first class abstract types,” in
Proc. EMSOFT. Springer, 2003, pp. 134–155.

[54] J.-L. Colaço, B. Pagano, and M. Pouzet, “A conservative extension of
synchronous data-flow with state machines,” in Proc. EMSOFT. ACM,
2005, pp. 173––182.

[55] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and
M. Pouzet, “N-synchronous Kahn networks: A relaxed model of syn-
chrony for real-time systems,” in Proc. POPL. ACM, 2006, pp. 180–
193.

[56] A. Cohen, L. Mandel, F. Plateau, and M. Pouzet, “Abstraction of clocks
in synchronous data-flow systems,” in Proc. APLAS. Springer, 2008,
pp. 237–254.

[57] L. Mandel, F. Plateau, and M. Pouzet, “Static scheduling of latency
insensitive designs with Lucy-n,” in Proc. FMCAD, 2011, pp. 171–175.

[58] L. Mandel and F. Plateau, “Scheduling and buffer sizing of n-
synchronous systems,” in Proc. MPC. Springer, 2012, pp. 74–101.

[59] R. Alur, D. Fisman, and M. Raghothaman, “Regular programming for
quantitative properties of data streams,” in Proc. ESOP. Springer, 2016,
pp. 15–40.

[60] R. Alur and K. Mamouras, “An introduction to the StreamQRE lan-
guage,” Dependable Software Systems Engineering, vol. 50, pp. 1–24,
2017.

[61] R. Alur, K. Mamouras, and C. Stanford, “Modular quantitative monitor-
ing,” Proceedings of the ACM on Programming Languages, vol. 3, no.
POPL, 2019.

[62] R. Alur, D. Fisman, K. Mamouras, M. Raghothaman, and C. Stanford,
“Streamable regular transductions,” Theoretical Computer Science, vol.
807, pp. 15–41, 2020.

[63] R. Alur, K. Mamouras, and C. Stanford, “Automata-based stream
processing,” in Proc. ICALP. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017, pp. 112:1–112:15.

[64] R. Alur, K. Mamouras, and D. Ulus, “Derivatives of quantitative regular
expressions,” in Models, Algorithms, Logics and Tools: Essays Dedi-

cated to Kim Guldstrand Larsen on the Occasion of His 60th Birthday.
Springer, 2017, pp. 75–95.

[65] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous observers and
the verification of reactive systems,” in Proc. AMAST. Springer, 1994,
pp. 83–96.

[66] P. Raymond, Y. Roux, and E. Jahier, “Lutin: A language for specifying
and executing reactive scenarios,” EURASIP Journal on Embedded

Systems, vol. 2008, 2008.
[67] P. Raymond, “Recognizing regular expressions by means of dataflow

networks,” in Proc. ICALP. Springer, 1996, pp. 336–347.
[68] G. Delaval, H. Marchand, M. Pouzet, and E. Rutten, “Heptagon/BZR,”

http://heptagon.gforge.inria.fr/, 2020, [Online; accessed June 17, 2020].

Konstantinos Mamouras completed undergraduate studies in electrical and
computer engineering at the National Technical University of Athens, Greece,
received the M.Sc. degree in computer science from the Imperial College
London, London, U.K., and the Ph.D. degree in computer science from Cornell
University, Ithaca, NY, USA.

He is currently an Assistant Professor in the Department of Computer
Science, Rice University, Houston, TX, USA. His research interests lie in the
areas of programming languages and formal methods. His current research
includes the design of domain-specific languages for processing real-time data,
and the runtime verification of cyber-physical systems.

Zhifu Wang received the B.Sc. degree in computer science from Nanjing
University, Nanjing, China, in 2019. She is currently pursuing the Ph.D.
degree with the Department of Computer Science, Rice University, Houston,
TX, USA. Her current research interests include programming languages and
runtime verification.

	Introduction
	Transductions of Signals
	Transducers with Delay
	Combinators
	Online Temporal Monitoring
	Case Study: Peak Detection in ECG Signal
	Discussion
	Conclusion
	References
	Biographies
	Konstantinos Mamouras
	Zhifu Wang

