


This paper presents a system called PaSh and outlined in
Fig. 1 for parallelizing POSIX shell scripts that benefits both
programmer groups, with emphasis on shell users. Com-
mand developers are given a set of abstractions, akin to
lightweight type annotations, for expressing the paralleliz-
ability properties of their commands: rather than expressing
a command’s full observable behavior, these annotations fo-
cus primarily on its interaction with state. Shell users, on the
other hand, are provided with full automation: PaSh analyzes
their scripts and extracts latent parallelism. PaSh’s transfor-
mations are conservative, in that they do not attempt to
parallelize fragments that lack sufficient informationÐi.e., at
worst, PaSh will choose to not improve performance rather
than risking breakage.
To address cold-start issues, PaSh comes with a library

of parallelizability annotations for commands in POSIX and
GNU Coreutils. These large classes of commands serve as
the shell’s standard library, expected to be used pervasively.
The study that led to their characterization also informed
PaSh’s annotation and transformation components.

These components are tied together with PaSh’s runtime
component. Aware of the Unix philosophy and abstractions,
it packs a small library of highly-optimized data aggregators
as well as high-performance primitives for eager data split-
ting and merging. These address many practical challenges
and were developed by uncovering several pathological situ-
ations, on a few of which we report.
We evaluate PaSh on 44 unmodified scripts including (i)

a series of smaller scripts, ranging from classic Unix one-
liners to modern data-processing pipelines, and (ii) two large
and complex use cases for temperature analysis and web
indexing. Speedups range between 0.89ś61.1× (avg: 6.7×),
with the 39 out of 44 scripts seeing non-trivial speedups.
PaSh’s runtime primitives add to the base speedup extracted
by PaSh’s program transformationsÐe.g., 8.83× over a base
5.93× average for 10 representative Unix one-liners. PaSh ac-
celerates a large program for temperature analysis by 2.52×,
parallelizing both the computation (12.31×) and the prepro-
cessing (2.04×) fragment (i.e., data download, extraction, and
cleanup), the latter traditionally falling outside of the focus of
conventional parallelization systemsÐeven though it takes
75% of the total execution time.

The paper is structured as follows. It starts by introducing
the necessary background on shell scripting and present-
ing an overview of PaSh (§2). Sections 3ś5 highlight key
contributions:

• §3 studies the parallelizability of shell commands, and in-
troduces a lightweight annotation language for commands
that are executable in a data-parallel manner.

• §4 presents a dataflow model and associated transforma-
tions that expose data parallelism while preserving the
semantics of the sequential program.

• §5 details PaSh’s runtime component, discussing the cor-
rectness and performance challenges it addresses.

After PaSh’s evaluation (§6) and comparison with related
work (§7), the paper concludes (§8).

2 Background and Overview

This section reviews Unix shell scripting through an exam-
ple (§2.1), later used to explore parallelization challenges (§2.2)
and how they are addressed by PaSh (§2.3).

2.1 Running Example: Weather Analysis

Suppose an environmental scientist wants to get a quick
sense of trends in the maximum temperature across the U.S.
over the past five years. As the National Oceanic and Atmo-
spheric Administration (NOAA) has made historic tempera-
ture data publicly available [38], answering this question is
only a matter of a simple data-processing pipeline.
Fig. 2’s script starts by pulling the yearly index files and

filtering out URLs that are not part of the compressed dataset.
It then downloads and decompresses each file in the remain-
ing set, extracts the values that indicate the temperature,
and filters out bogus inputs marked as 999. It then calcu-
lates the maximum yearly temperature by sorting the values
and picking the top element. Finally, it matches each maxi-
mum value with the appropriate year in order to print the
result. The effort expended writing this script is low: its data-
processing core amounts to 12 stages and, when expressed
as a single line, is only 165 characters long. This program
is no toy: a Java program implementing only the last four
stages takes 137 LoC [59, §2.1]. To enable such a succinct
program composition, Unix incorporates several features.

Unix Features Composition in Unix is primarily achieved
with pipes (|), a construct that allows for task-parallel ex-
ecution of two commands by connecting them through a
character stream. This stream is comprised of contiguous
character lines separated by newline characters (NL) delin-
eating individual stream elements. For example, Fig 2’s first
grep outputs (file-name) elements containing gz, which are
then consumed by tr. A special end-of-file (EOF) condition
marks the end of a stream.
Different pipeline stages process data concurrently and

possibly at different ratesÐe.g., the second curl produces
output at a significantly slower pace than the grep commands
before and after it. The Unix kernel facilitates scheduling,
communication, and synchronization behind the scenes.

Command flags, used pervasively in Unix, are configura-
tion options that the command’s developer has decided to
expose to its users to improve the command’s general appli-
cability. For example, by omitting sort’s -r flag that enables
reverse sorting, the user can easily get the minimum temper-
ature. The shell does not have any visibility into these flags;
after it expands special characters such as ~ and *, it leaves
parsing and evaluation entirely up to individual commands.
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base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";

for y in {2015..2019}; do

curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |

sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |

cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |

sed "s/^/Maximum temperature for $y is: /"

done

Fig. 2. Calculatingmaximum temperatures per year. The script down-
loads daily temperatures recorded across the U.S. for the years 2015ś2019
and extracts the maximum for every year.

Finally,Unix provides an environment for composing com-
mands written in any language. Many of these commands
come with the systemÐe.g., ones defined by the POSIX stan-
dard or ones part of the GNU CoreutilsÐwhereas others
are available as add-ons. The fact that commands are de-
veloped in a variety of languagesÐincluding shell scriptsÐ
provides users with significant flexibility. For example, one
could replace sort and headwith ./avg.py to get the average
rather than the maximumÐthe pipeline still works, as long
as ./avg.py conforms to the interface outlined earlier.

2.2 Parallelization Challenges

While these features aid development-effort economy through
powerful program composition, they complicate shell script
parallelization, which even for simple scripts such as the one
in Fig. 2 create several challenges.

Commands In contrast to restricted programming frame-
works that enable parallelization by supporting a few careful-
ly-designed primitives [6, 9, 16, 62], the Unix shell provides
an unprecedented number and variety of composable com-
mands. To be parallelized, each command may require spe-
cial analysis and treatmentÐe.g., exposing data parallelism
in Fig. 2’s tr or sort would require splitting their inputs,
running them on each partial input, and then merging the
partial results.1 Automating such an analysis is infeasible, as
individual commands are black boxes written in a variety of
programming languages and models. Manual analysis is also
challenging, due to the sheer number of commands and the
many flags that affect their behaviorÐe.g., Fig. 2’s program
invokes cut with two separate sets of flags.

Scripts Another challenge is due to the language of the
POSIX shell. First, the language contains constructs that
enforce sequential execution: The sequential composition
operator (;) in Fig. 2 indicates that the assignment to base

must be completed before everything else. Moreover, the lan-
guage semantics only exposes limited task-based parallelism
in the form of constructs such as &. Even though Fig. 2’s for
focuses only on five years of data, curl still outputs thou-
sands of lines per year; naive parallelization of each loop

1 As explained earlier (§1), commands such as sort may have ad hoc flags
such as --parallel, which do not compose across commands and may risk
breaking correctness or not exploiting performance potential (§6.5).

iteration will miss such opportunities. Any attempt to au-
tomate parallelization should be aware of the POSIX shell
language, exposing latent data parallelism without modify-
ing execution semantics.

Implementation On top of command and shell semantics,
the broader Unix environment has its own set of quirks. Any
attempt to orchestrate parallel execution will hit challenges
related to task parallelism, deadlock prevention, and runtime
performance. For example, forked processes piping their
combined results to Fig. 2’s headmay not receive a PIPE signal
if head exits prior to opening all pipes. Moreover, several
commands such as sort and uniq require specialized data
aggregators in order to be correctly parallelized.

2.3 PaSh Design Overview

At a high level, PaSh takes as input a POSIX shell script
like the one in Fig. 2 and outputs a new POSIX script that
incorporates data parallelism. The degree of data parallelism
sought by PaSh is configurable using a --width parameter,
whose default value is system-specific. Fig. 3 highlights a
few fragments of the parallel script resulting from applying
PaSh with --width=2 to the script of Fig. 2Ðresulting in 2
copies of {grep, tr, cut, etc.}.
PaSh first identifies sections of the script that are poten-

tially parallelizable, i.e., lack synchronization and scheduling
constraints, and converts them to dataflow graphs (DFGs).
It then performs a series of DFG transformations that ex-
pose parallelism without breaking semantics, by expanding
the DFG to the desired width. Finally, PaSh converts these
DFGs back to a shell script augmented with PaSh-provided
commands. The script is handed off to the user’s original
shell interpreter for execution. PaSh addresses the aforemen-
tioned challenges (§2.2) as below.

Commands To understand standard commands available
in any shell, PaSh groups POSIX and GNU commands into a
small but well-defined set of parallelizability classes (§3.1).
Rather than describing a command’s full observable behavior,
these classes focus on information that is important for data
parallelism. To allow other commands to use its transforma-
tions, PaSh defines a light annotation language for describing
a command’s parallelizability class (§3.2). Annotations are
expressed once per command rather than once per script
and are aimed towards command developers rather than
its users, so that they can quickly and easily capture the
characteristics of the commands they develop.

Scripts To maintain sequential semantics, PaSh first ana-
lyzes a script to identify dataflow regions containing com-
mands that are candidates for parallelization (§4.1). This
analysis is guided by the script structure: some constructs
expose parallelism (e.g., &, |); others enforce synchroniza-
tion (e.g., ;, ||). PaSh then converts each dataflow region
to a dataflow graph (DFG) (§4.2), a flexible representation
that enables a series of local transformations to expose data
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mkfifo $t{0,1...}

curl $base/$y > $t0 & cat $t0 | split $t1 $t2 &

cat $t1 | grep gz > $t3 &

cat $t2 | grep gz > $t4 &

...

cat $t9 | sort -rn > $t11 & cat $t10 | sort -rn > $t12 &

cat $t11 | eager > $t13 & cat $t12 | eager > $t14 &

sort -mrn $t13 $t14 > $t15 &

cat $t15 | head -n1 > $out1 &

wait $! && get-pids | xargs -n 1 kill -SIGPIPE

Fig. 3. Output of pash --width=2 for Fig. 2 (fragment). PaSh orches-
trates the parallel execution through named pipes, parallel operators, and
custom runtime primitivesÐe.g., eager, split, and get-pids.

parallelism, converting the graph into its parallel equiva-
lent (§4.3). Further transformations compile the DFG back to
a shell script that uses POSIX constructs to guide parallelism
explicitly while aiming at preserving the semantics of the
sequential program (§4.4).

Implementation PaSh addresses several practical chal-
lenges through a set of constructs it providesÐi.e., modular
components for augmenting command composition (§5). It
also provides a small and efficient aggregator library target-
ing a large set of parallelizable commands. All these com-
mands live in the PATH and are addressable by name, which
means they can be used like (and by) any other commands.

3 Parallelizability Classes

PaSh aims at parallelizing data-parallel commands, i.e., ones
that can process their input in parallel, encoding their char-
acteristics by assigning them to parallelizability classes. PaSh
leans towards having a few coarse classes rather than many
detailed onesÐamong other reasons, to simplify their under-
standing and use by command developers.

This section starts by defining these classes, along with a
parallelizability study of the commands in POSIX and GNU
Coreutils (§3.1). Building on this study, it develops a light-
weight extensibility framework that enables light-touch par-
allelization of a command by its developers (§3.2). PaSh in
turn uses this language to annotate POSIX and GNU com-
mands and generate their wrappers, as presented in later
sections.

3.1 Parallelizability of Standard Libraries

Broadly speaking, shell commands can be split into four
major classes with respect to their parallelization character-
istics, depending on what kind of state they mutate when
processing their input (Tab.1). These classes are ordered in
ascending difficulty (or impossibility) of parallelization. In
this order, some classes can be thought of as subsets of the
nextÐe.g., all stateless commands are pureÐmeaning that
the synchronization mechanisms required for any superclass
would workwith its subclass (but foregoing any performance
improvements). Commands can change classes depending
on their flags, which are discussed later (§3.2).

Tab. 1. Parallelizability Classes. Broadly, Unix commands can be
grouped into four classes according to their parallelizability properties.

Class Key Examples Coreutils POSIX

Stateless S○ tr, cat, grep 13 (12.5%) 19 (12.7%)
Parallelizable Pure P○ sort, wc, head 17 (16.3%) 13 (8.7%)
Non-parallelizable Pure N○ sha1sum 13 (12.5%) 11 (7.3%)
Side-effectful E○ env, cp, whoami 61 (58.6%) 105 (70.4%)

Stateless Commands The first class, S○, contains com-
mands that operate on individual line elements of their in-
put, without maintaining state across invocations. These are
commands that can be expressed as a purely functional map

or filterÐe.g., grep filters out individual lines and basename

removes a path prefix from a string. They may produce mul-
tiple elementsÐe.g., tr may insert NL tokensÐbut always
return empty output for empty input. Workloads that use
only stateless commands are trivial to parallelize: they do
not require any synchronization to maintain correctness, nor
caution about where to split inputs.
The choice of line as the data element strikes a conve-

nient balance between coarse-grained (files) and fine-grained
(characters) separation while staying aligned with Unix’s
core abstractions. This choice can affect the allocation of
commands in S○, as many of its commands (about 1/3) are
stateless within a stream elementÐe.g., tr transliterates char-
acters within a line, one at a timeÐenabling further paral-
lelization by splitting individual lines. This feature may seem
of limited use, as these commands are computationally in-
expensive, precisely due to their narrow focus. However, it
may be useful for cases with very large stream elements (i.e.,
long lines) such as the .fastq format used in bioinformatics.

Parallelizable Pure Commands The second class, P○,
contains commands that respect functional purityÐi.e., same
outputs for same inputsÐbut maintain internal state across
their entire pass. The details of this state and its propagation
during element processing affect their parallelizability char-
acteristics. Some commands are easy to parallelize, because
they maintain trivial state and are commutativeÐe.g., wc
simply maintains a counter. Other commands, such as sort,
maintain more complex invariants that have to be taken into
account when merging partial results.
Often these commands do not operate in an online fash-

ion, but need to block until the end of a stream. A typical
example of this is sort, which cannot start emitting results
before the last input element has been consumed. Such con-
straints affect task parallelism, but not data parallelism: sort
can be parallelized significantly using divide-and-conquer
techniquesÐi.e., by encoding it as a group of (parallel)map

functions followed by an aддreдate that merges the results.

Non-parallelizable Pure Commands The third class, N○,
contains commands that, while purely functional, cannot
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be parallelized within a single data stream.2 This is because
their internal state depends on prior state in non-trivial ways
over the same pass. For example, hashing commands such
as sha1sum maintain complex state that has to be updated
sequentially. If parallelized on a single input, each stage
would need to wait on the results of all previous stages,
foregoing any parallelism benefits.

It is worth noting that while these commands are not paral-
lelizable at the granularity of a single input, they are still par-
allelizable across different inputs. For example, a web crawler
involving hashing to compare individual pages would allow
sha1sum to proceed in parallel for different pages.

Side-effectful Commands The last class, E○, contains
commands that have side-effects across the systemÐfor ex-
ample, updating environment variables, interacting with the
filesystem, and accessing the network. Such commands are
not parallelizable without finer-grained concurrency control
mechanisms that can detect side-effects across the system.
This is the largest class, for two main reasons. First, it

includes commands related to the file-systemÐa central ab-
straction of the Unix design and philosophy [46]. In fact,
Unix uses the file-system as a proxy to several file-unrelated
operations such as access control and device driving. Second,
this class contains commands that do not consume input
or do not produce outputÐand thus are not amenable to
data parallelism. For example, date, uname, and finger are all
commands interfacing with kernel- or hardware-generated
information and do not consume any input from user pro-
grams.

3.2 Extensibility Framework

To address the challenge of a language-agnostic environ-
ment (§2.2), PaSh allows communicating key details about
their parallelizability through a lightweight extensibility
framework comprising two components: an annotation lan-
guage, and an interface for developing parallel command
aggregators. The framework can be used both by develop-
ers of new commands as well as developers maintaining
existing commands. The latter group can express additions
or changes to the command’s implementation or interface,
which is important as commands are maintained or extended
over long periods of time.
The extensibility framework is expected to be used by

individuals who understand the commands and their par-
allelizability properties, and thus PaSh assumes their cor-
rectness. The framework could be used as a foundation for
crowdsourcing the annotation effort, for testing annotation
records, and for generating command aggregators. We use
this extension framework in a separate work to synthesize
command aggregators automatically [57].

2 Note that these commands may still be parallelizable across different data
streams, for example when applied to different input files.

Key Concerns PaSh’s annotations focus on three crucial
concerns about a command: (C1) its parallelizability class,
(C2) its inputs and outputs, and the characteristics of its input
consumption, and (C3) how flags affect its class, inputs, and
outputs. The first concern was discussed extensively in the
previous section; we now turn to the latter two.
Manipulating a shell script in its original form to expose

parallelism is challenging as each command has a different
interface. Some commands read from standard input, while
others read from input files. Ordering here is important, as
a command may read several inputs in a predefined input
order. For example, grep "foo" f1 - f2 first reads from f1,
then shifts to its standard input, and finally reads f2.

Additionally, commands expose flags or options for allow-
ing users to control their execution. Such flags may directly
affect a command’s parallelizability classification as well as
the order in which it reads its inputs. For example, cat de-
faults to S○, but with -n it jumps into P○ because it has to
keep track of a counter and print it along with each line.
To address all these concerns, PaSh introduces an anno-

tation language encoding first-order logic predicates. The
language allows specifying the aforementioned informa-
tion, i.e., correspondence of arguments to inputs and out-
puts and the effects of flags. Annotations assign one of the
four parallelizability class as a default class, subsequently
refined by the set of flags the command exposes. Addition-
ally, for commands in S○ and P○, the language captures how
a command’s arguments, standard input, and standard out-
put correspond to its inputs and outputs. Annotations in
these classes can also express ordering information about
these inputsÐeffectively lifting commands into a more con-
venient representation where they only communicate with
their environment through a list of input and output files.
The complete annotation language currently contains 8

operators, one of which supports regular expressions. It was
used to annotate 47 commands, totaling 708 lines of JSONÐ
an effort that took about 3ś4 hours. Annotation records are
by default conservative so as to not jeopardize correctness,
but can be incrementally refined to capture parallelizabil-
ity when using increasingly complex combinations of flags.
The language is extensible with more operators (as long
as the developer defines their semantics); it also supports
writing arbitrary Python code for commands whose proper-
ties are difficult to captureÐe.g., higher-order xargs, whose
parallelizability class depends on the class of the first-order
command that it invokes.

Example Annotations Two commands whose annota-
tions sit at opposing ends of the complexity spectrum are
chmod and cut. The fragment below shows the annotation
for chmod.

{ "command": "chmod",

"cases": [ { "predicate": "default",

"class": "side-effectful" } ] }
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This annotation is simple, but serves as an illustration of
the annotation structure. Each annotation is a JSON record
that contains the command name, and a sequence of cases.
Each case contains a predicate that matches on the argu-
ments of the command invocation. It assigns a paralleliz-
ability class (C1) to a specific command instance, i.e., the
combination of its inputs-output consumption (C2) and its in-
vocation arguments (C3). In this case, chmod is side-effectful,
and thus the "default" predicate of its single cases value
always matchesÐindicating the presence of side-effects.

The annotation for cut is significantly more complex, and
is only shown in part (the full annotation is in Appendix B).
This annotation has two cases, each of which consists of
a predicate on cut’s arguments and an assignment of its
parallelizability class, inputs, and outputs as described above.
We only show cut’s first predicate, slightly simplified for
clarity.
{ "predicate": {"operator": "exists", "operands": [ "-z" ]},

"class": "n-pure",

"inputs": [ "args[:]" ],

"outputs": [ "stdout" ] }

This predicate indicates that if cut is called with -z as an
argument, then it is in N○, i.e., it only interacts with the
environment by writing to a file (its stdout) but cannot be
parallelized. This is because -z forces cut to delimit lines
with NUL instead of newline, meaning that we cannot paral-
lelize it by splitting its input in the line boundaries. The case
also indicates that cut reads its inputs from its non-option
arguments.
Experienced readers will notice that cut reads its input

from its stdin if no file argument is present. This is expressed
in the "options" part of cut’s annotation, shown below:
{ "command": "cut",

"cases": [ ... ],

"options": [ "empty-args-stdin",

"stdin-hyphen" ] }

Option "empty-args-stdin" indicates that if non-option ar-
guments are empty, then the command reads from its stdin.
Furthermore, option "stdin-hyphen" indicates that a non-
option argument that is just a dash - represents the stdin.

The complete annotation in Appendix B) shows the rest of
the cases (including the default case for cut, which indicates
that it is in S○).

Custom Aggregators For commands in S○, the annota-
tions are enough to enable parallelization: commands are
applied to parts of their input in parallel, and their outputs
are simply concatenated.

To support the parallelization of arbitrary commands in P○,
PaSh allows supplying custom map and aggregate functions.
In line with the Unix philosophy, these functions can be
written in any language as long as they conform to a few
invariants: (i)map is in S○ and aggregate is in P○, (ii)map can
consume (or extend) the output of the original command and
aggregate can consume (and combine) the results of multiple

map invocations, and (iii) their composition produces the
same output as the original command. PaSh can use themap

and aggregate functions in its graph transformations (§4) to
further expose parallelism.
Most commands only need an aggregate function, as the

map function for many commands is the sequential com-
mand itself. PaSh defines a set of aggregators formany POSIX
and GNU commands in P○. This set doubles as both PaSh’s
standard library and an exemplar for community efforts tack-
ling other commands. Below is the Python code for one of
the simplest aggregate functions, the one for wc:
#!/usr/bin/python

import sys, os, functools, utils

def parseLine(s):

return map(int, s.split())

def emitLine(t):

f = lambda e: str(e).rjust(utils.PAD_LEN, ' ')

return [" ".join(map(f, t))]

def agg(a, b):

# print(a, b)

if not a:

return b

az = parseLine(a[0])

bz = parseLine(b[0])

return emitLine([ (i+j) for (i,j) in zip(az, bz) ])

utils.help()

res = functools.reduce(agg, utils.read_all(), [])

utils.out("".join(res))

The core of the aggregator, function agg, takes two input
streams as its arguments. The reduce function lifts the aggre-
gator to arity n to support an arbitrary number of parallel
map commands. This lifting allows developers to think of
aggregators in terms of two inputs, but generalize them to
operate on many inputs. Utility functions such as read and
help, common across PaSh’s aggregator library, deal with
error handling when reading multiple file descriptors, and
offer a -h invocation flag that demonstrates the use of each
aggregator.
PaSh’s library currently contains over 20 aggregators,

many of which are usable by more than one command or flag.
For example, the aggregator shown above is shared among
wc, wc -lw, wc -lm, etc.

4 Dataflow Graph Model

PaSh’s core is an abstract dataflow graph (DFG) model (§4.2)
used as the intermediate representation on which PaSh per-
forms parallelism-exposing transformations. PaSh first lifts
sections of the input script to the DFG representation (§4.1),
then performs transformations to expose parallelism (up to
the desired --width) (§4.3), and finally instantiates each DFG
back to a parallel shell script (§4.4). A fundamental charac-
teristic of PaSh’s DFG is that it encodes the order in which
a node reads its input streams (not just the order of input
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Low-level Parallelization There exists significant work
on automating parallelization at the instruction level, start-
ing with explicit DOALL and DOACROSS annotations [7, 30] and
continuing with compilers that attempt to automatically ex-
tract parallelism [19, 40]. These efforts operate at a lower
level than PaSh (e.g., that of instructions or loops rather than
the boundaries of programs that are part of a script), within
a single-language or single-target environments, and require
source modifications.

More recent work focuses on extracting parallelism from
domain-specific programming models [13, 15, 28] and inter-
active parallelization tools [24, 26]. These tools simplify the
expression of parallelism, but still require significant user
involvement in discovering and exposing parallelism.

Correct Parallelization of Dataflow Graphs The DFG
is a prevalent model in several areas of data processing, in-
cluding batch- [9, 62] and stream-processing [8, 37]. Systems
implementing DFGs often perform optimizations that are
correct given subtle assumptions on the dataflow nodes that
do not always hold, introducing erroneous behaviors. Re-
cent work [21, 25, 31, 47] attempts to address this issue by
performing optimizations only in cases where correctness is
preserved, or by testing that applied optimizations preserve
the original behavior. PaSh draws inspiration from these
efforts, in that it delegates the satisfaction of assumptions
to the annotation writers, who are expected to be command
developers rather than shell users (§1), ensuring that trans-
formations preserve the behavior of the original dataflow. Its
DFG model, however, is different from earlier efforts in that
it explicitly captures and manipulates ordering constraints.
The constraints are due to the intricacies of the UnixmodelÐ
e.g., FIFO streams, argument processing, and concatenation
operators.

Parallel Userspace Environments By focusing on sim-
plifying the development of distributed programs, a plethora
of environments additionally assist in the construction of par-
allel software. Such systems [1, 36, 39], languages [27, 48, 58],
or system-language hybrids [11, 43, 56] hide many of the
challenges of dealing with concurrency as long as developers
leverage the provided abstractionsÐwhich are strongly cou-
pled to the underlying operating or runtime system. Even
shell-oriented efforts such as Plan9’s rc are not backward-
compatible with the Unix shell, and often focus primarily
on hiding the existence of a network rather than automating
parallel processing.

Parallel Frameworks Several frameworks [2, 6, 12, 16, 51]
offer fully automated parallelism as long as special primitives
are usedÐe.g., map-reduce-style primitives for Phoenix [51].
These primitives make strong assumptions about the nature
of the computationÐe.g., commutative and associative ag-
gregation functions that can be applied on their inputs in
any order. By targeting specific classes of computation (viz.
PaSh’s parallelizability), these primitives are significantly

optimized for their target domains. PaSh instead chooses an
approach that is better tailored to the shell: it does not require
rewriting parts of a shell script using specific parallelization-
friendly primitives, but rather lifts arbitrary commands to
a parallelization-friendly space using an annotation frame-
work.

Dryad [23] is a distributed system for dataflow graphs.
Dryad offers a scripting language, Nebula, that allows us-
ing shell commands such as grep or sed in place of indi-
vidual dataflow nodes. The main difference with PaSh is
that in Dryad the programmer needs to explicitly express
the dataflow graph, which is then executed in a distributed
fashion, whereas PaSh automatically parallelizes a given
shell script by producing a parallel script that runs on an
unmodified shell of choice.

8 Conclusion

Shell programs are ubiquitous, use blockswritten in a plethora
of programming languages, and spend a significant fraction
of their time interacting with the broader environment to
download, extract, and process dataÐfalling outside the focus
of conventional parallelization systems. This paper presents
PaSh, a system that allows shell users to parallelize shell
programs mostly automatically. PaSh can be viewed as (i) a
source-to-source compiler that transforms scripts to DFGs,
parallelizes them, and transforms them back to scripts, cou-
pled with (ii) a runtime component that addresses several
practical challenges related to performance and correctness.
PaSh’s extensive evaluation over 44 unmodified Unix scripts
demonstrates non-trivial speedups (0.89ś61.1×, avg: 6.7×).
PaSh’s implementation, as well as all the example code

and benchmarks presented in this paper, are all open source
and available for download: github.com/andromeda/pash.
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A Annotation for the Command cut

The code below shows the full annotation for cut.
{ "command": "cut",

"cases": [

{ "predicate": {

"operator": "or",

"operands": [

{ "operator": "val_opt_eq",

"operands": [ "-d", "\n" ] },

{ "operator": "exists",

"operands": [ "-z" ] }

]

},

"class": "pure",

"inputs": [ "args[:]" ],

"outputs": [ "stdout" ]

},

{ "predicate": "default",

"class": "stateless",

"inputs": [ "args[:]" ],

"outputs": [ "stdout" ]

}

],

"options": [ "stdin-hyphen", "empty-args-stdin" ],

"short-long": [

{ "short": "-d", "long": "--delimiter" },

{ "short": "-z", "long": "--zero-terminated" }

]

}

B Artifact Appendix

Summary The artifact consists of several parts: (i) a mirror
of PaSh’ GitHub repository (git commit e5f56ec, available
permanently in branch eurosys-2021-aec-frozen) includ-
ing annotations, the parallelizing compiler, and the runtime
primitives presented in this paper; (ii) instructions for pulling
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Tab. 3. Major experiments presented in the paper. There are four
major experiments presented in the paper: (i) Common Unix one-liners, (ii)
Unix50 from Bell Labs, (iii) NOAA Weather Analysis, and (iv) Wikipedia
Web Indexing.

Experiment Section Location

Common Unix one-liners §6.1 https://git.io/JYi9m
Unix50 from Bell Labs §6.2 https://git.io/JYi9n
NOAA Weather Analysis §6.3 https://git.io/JYi9C
Wikipedia Web Indexing §6.4 https://git.io/JYi98

code and experiments, building from source, preparing the
environment, and running the experiments; (iii) a 20-minute
video walk-through of the entire artifact; and (iv) instruc-
tions for directly pulling a pre-built Docker container and
building a Docker image from scratch; (v) scripts, descrip-
tions, and instructions to run the experiments (automatically
or manually) to reproduce the graphs and results presented
in the paper.

Codebase information Below is a summary of key infor-
mation about PaSh’s repository:

• Repository: https://github.com/andromeda/pash

• License: MIT

• Stats: 2,278 commits, from 14 contributors

Artifact requirements Below is a summary of require-
ments for running PaSh and its evaluation experiments:

• CPU: a modern multi-processor, to show performance
results (the more cpus, the merrier)

• Disk: about 10GB for small-input (quick) evaluation, about
100GB+ for full evaluation

• Software: Python 3.5+, Ocaml 4.05.0, Bash 5+, and GNU
Coreutils (details below)

• Time: about 30min for small-input, about 24h for full eval-
uation

Dependencies The artifact depends on several packages;
on Ubuntu 18.04: libtool, m4, automake, opam, pkg-config,
libffi-dev, python3, python3-pip, wamerican-insane, bc, bs-
dmainutils, curl, and wget. PaSh and its experimental and
plotting infrastructure make use of the following Python
packages: jsonpickle, PyYAML, numpy, matplotlib. Exper-
iments and workloads have their own dependenciesÐe.g.,
pandoc-2.2.1, nodejs, and npm (Web indexing), or p7zip-full
(Wikipedia dataset).

Access PaSh is available via several means, including:

• Git: git clone git@github.com:andromeda/pash.git

• Docker: curl img.pash.ndr.md | docker load

• HTTP: wget pkg.pash.ndr.md

• Shell: curl -s up.pash.ndr.md | sh

Code Structure This repo hosts the core PaSh develop-
ment. The artifact’s directory structure is as follows:

• annotations: Parallelizability study and associated com-
mand annotations.

• compiler: Shell-dataflow translations and associated par-
allelization transformations.

• docs: Design documents, tutorials, installation instruc-
tions, etc.

• evaluation: Shell pipelines and example scripts used in the
evaluation of PaSh.

• runtime: Runtime componentÐe.g., eager, split, and asso-
ciated aggregators.

• scripts: Scripts related to installation, continuous integra-
tion, deployment, and testing.

CallingPaSh To parallelize a script hello-world.shwith
a parallelization degree of 2, from the top-level directory of
the repository run:

./pa.sh hello-world.sh

PaSh will compile and execute hello-world.sh on the fly.

Tutorial To go through a longer tutorial, see docs/tutorial.

Available subcommands Run ./pa.sh --help to getmore
information about the available PaSh subcommands:

Usage: pa.sh [-h] [--preprocess_only] [--output_preprocessed]

[-c COMMAND] [-w WIDTH] [--no_optimize]

[--dry_run_compiler] [--assert_compiler_success]

[-t] [-p] [-d DEBUG] [--log_file LOG_FILE]

[--no_eager] [--speculation {no_spec,quick_abort}]

[--termination {clean_up_graph,drain_stream}]

[--config_path CONFIG_PATH] [-v] [input]

Positional arguments:

input The script to be compiled and executed.

optional arguments:

-h, --help

Show this help message and exit.

--preprocess_only

Pre-process (not execute) input script.

--output_preprocessed

Output the preprocessed script.

-c COMMAND, --command COMMAND

Evaluate the following COMMAND as a

script, rather than a file.

-w WIDTH, --width WIDTH

Set degree of data-parallelism.

--no_optimize

Not apply transformations over the DFG.

--dry_run_compiler

Not execute the compiled script, even

if the compiler succeeded.

--assert_compiler_success

Assert that the compiler succeeded

(used to make tests more robust).

-t, --output_time

Output the time it took for every step.

-p, --output_optimized
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Output the parallel script for inspection.

-d DEBUG, --debug DEBUG

Configure debug level; defaults to 0.

--log_file LOG_FILE

Location of log file; defaults to stderr.

--no_eager

Disable eager nodes before merging nodes.

--termination {clean_up_graph,drain_stream}

Determine the termination behavior of the

DFG. Defaults to cleanup after the last

process dies, but can drain all streams

until depletion.

--config_path CONFIG_PATH

Determine the config file path, by

default 'PASH_TOP/compiler/config.yaml'.

-v, --version Show program's version number and exit
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