IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

1301814

Postrouting Optimization of the Working Clock
Frequency of Single-Flux-Quantum Circuits

Ting-Ru Lin ¥, Bo Zhang

Abstract—With the emergence of large-scale single-flux-
quantum (SFQ) circuits, it is desirable to offload heavy routing
tasks to automated electronic design automation (EDA) tools. The
unique characteristic of SFQ circuits is that large clock distribution
networks are generally required to pass the clock signal to clocked
cells subject to limited fanout drive capability of the intervening
clock buffers. This scenario results in a huge challenge to control
the clock skew and minimize the signal path delays in an SFQ
circuit during the routing step. Values of the clock skew and path
delays determine not only the maximum working frequencies but
also whether or not there are hold time violations. However, it is
not necessary to develop a timing-driven routing tool specifically
for SFQ circuits from scratch because the number of the paths
that set the maximum clock frequencies or give rise to hold time
violations is generally very small. Thus, we present a novel postrout-
ing optimization framework that augments standard maze routing
tools by adding the capability of reducing path lengths to maximize
the working frequency of the chip and meandering paths to avoid
hold time violations. A framework is developed in which machine
learning is applied to analyze wire distributions and a maze routing
algorithm is used to reroute targeted paths. Based on the MIT-LL
SFQ5ee process technology, we demonstrate that our framework
can improve the minimum working frequency by 7% on average
over the state-of-the-art EDA routing tool for a suite of 14 SFQ
circuits while fixing all hold time violations.

Index Terms—Electronic design automation (EDA), machine
learning, routing, single flux quantum (SFQ), superconducting
integrated circuits.

1. INTRODUCTION

ESEARCH on superconductive electronics is flourishing

because of government and commercial interest in the
technology [1]-[3]. The goal is to build ultra energy-efficient
and high-speed computational systems using superconductive
single-flux-quantum (SFQ) technology and its variants [4]. Ac-
tive elements of SFQ designs are Josephson junctions (JJs),
which propagate SFQ pulses through a logic cell in the order
of ~1 ps and dissipate only ~10~9 J or lower per JJ switching
action [5], [6]. Rapid SFQ (RSFQ) designs are known for their

Manuscriptreceived December 18, 2019; revised May 25, 2020; accepted May
29,2020. Date of publication June 29, 2020; date of current version July 25, 2020.
The work was supported by the Office of the Director of National Intelligence,
Intelligence Advanced Research Projects Activity, via the U.S. Army Research
Office under Grant WO11NF-17-1-0120. This article was recommended by
Associate Editor I. V. Vernik. (Corresponding author: Ting-Ru Lin.)

The authors are with the Department of Electrical Engineering, University of
Southern California, Los Angeles, CA 90007 USA (e-mail: tingruli@usc.edu;
zhan254 @usc.edu; pedram @usc.edu).

Color versions of one or more of the figures in this article are available online
at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASC.2020.3005584

, and Massoud Pedram

high working frequencies but require a bias current for JJs,
which contributes to large static power dissipation. Energy-
efficient RSFQ (ERSFQ) [7]-[10] and efficient SFQ [11], [12]
have been proposed to eliminate the static power dissipation
of RSFQ designs through the implementations of alternative
biasing schemes. As a result, the static power dissipation of an
ERSFQ cell is almost zero. The dynamic energy dissipation of a
static minimume-size inverter in Global Foundries 14-nm FinFET
process operating at 0.7-V supply and driving a fanout load
of four is approximately 1 fJ (1 x 10~'%), whereas the energy
dissipation of an RSFQ inverteris only 2 aJ (2 x 107'8), whichis
500x lower. In the limit of CMOS scaling, this energy efficiency
advantage still stays at 200X or higher [7].

SFQ fabrication technologies have evolved for over two
decades and the number of the JJs in an SFQ die has increased
from 1000 to more than 800 000 [13], [14]. The advancement
of SFQ fabrication technologies has thus enabled large-scale
SFQ circuits. However, it was not until recently that powerful
and RSFQ-specific electronic design automation (EDA) tools
were developed to facilitate the design of large-scale SFQ cir-
cuits [15]. It is still under study to enhance these EDA tools with
specialized timing optimization strategies [13], [16] because,
unlike CMOS cells, most SFQ cells, including combinational
and synchronous cells, are clocked cells with a clock input.
Routing tools determine the exact values of data signal path
delays and clock skew. Advanced routing tools are expected
to optimize the routing process for critical paths that limit the
maximum working frequency based on data signal path delays
and clock skew. Another challenge for advanced routing tools
is that of resolving hold time violations, which are prominent
sources of timing failure in RSFQ circuits.

We present a postrouting optimization framework that reduces
the delay of the critical paths of large-scale SFQ circuits while
controlling the clock skew. Furthermore, hold time violations are
resolved by meandering routing paths. The whole optimization
framework consists of machine learning, critical path optimiza-
tion, and path rectification. Machine learning observes local wire
deployments and conducts a full-chip wire distribution analysis.
Equipped with the distribution knowledge, critical paths are
identified and then rerouted with alternative short wires during
critical path optimization. Finally, path rectification refines clock
skew for frequency maximization and builds detour paths for
hold time violations. Given 14 SFQ circuits routed by a state-
of-the-art routing tool, the proposed router not only improved
the maximum working frequency by 7% on average but also
resolved all hold time violations in 180 s for all circuits.

1051-8223 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7272-4070
https://orcid.org/0000-0003-3215-8745
https://orcid.org/0000-0002-2677-7307
mailto:tingruli@usc.edu
mailto:zhan254@usc.edu
mailto:pedram@usc.edu
https://ieeexplore.ieee.org

1301814

Splitter Tree

CLK; CLK;
| |
A4 A4
Cell; Cell;

Fig. 1. Cell;, Cell;, and Cell, are SFQ logic cells with a clock input, such as
AND, OR, or DFF. S stands for a splitter.

MO
Input T T i
Clock = ?[\ R
¢ clk t
CLK; <« i ¥ /\ .
clk t
CLK; b
- Lyt
c2q, t
Cell; Li)
hold setup t ’
Cell, b R
P
Fig. 2. Timing diagram of two connected clocked cells, denoted by Cell; and
Cell;.

The remainder of this article is organized as follows. Section IT
provides background on SFQ timing concepts. Section III de-
scribes our motivation based on the progress of routing tools for
SFQ circuits. Section IV elaborates our proposal for postrouting
optimization. Section V specifies the standard SFQ cell library
for framework evaluation. Section VI provides our experiment
results and discussions. Finally, Section VII concludes this
article.

II. BACKGROUND

Timing behaviors of SFQ circuits are principally governed by
the same rules and constraints as CMOS circuits [17]. Successful
data exchanges between a pair of connected clocked SFQ cells
must satisfy two conditions: a setup time condition and a hold
time condition. Figs. 1 and 2 are used to explain and derive
the conditions. In Fig. 1, a pair of clocked cells are connected
by a data signal path and clock signals are forwarded from a
global clock input to these connected cell. Fig. 2 illustrates a
timing diagram to represent the SFQ pulses in Fig. 1 in the time
domain. Note that an interconnection between two cells in an
SFQ circuit can consist of multiple Josephson transmission lines
(JTLs)/passive transmission lines (PTLs) and splitters for fanout
requirements. Since the splitters in SFQ circuits are added for
fanout requirements, they are clockless cells by default.

Referring to Fig. 2, a clock period 7" denotes the time interval
between two consecutive clock pulses and the interval is mea-
sured between the peak of two pulses. We define clock skew as
the time difference of receiving the clock signal between two
cells. The clock skew skew; ; between a clocked cell + and a
clocked cell 7 in Fig. 1 is expressed as

skew; ; = 5 — 5 (D

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

where £ (%) is the arrival time of the clock signal at the
clock input of a cell 7 (j) from the primary clock input. A data
signal path delay denotes the pulse propagation time from the
first clocked cell of a path to the last clocked cell and it includes
the clock-to-q delay of the first cell and the cell delays of the
splitters along the path. We term the first cell as the launch cell
and the last cell as the capture cell. In Fig. 1, the data signal path
delay A,; ; of forwarding a signal from a cell 7 to a cell j through
N; ; splitters is given by

N j+1
5 .
Ai,j = tf g + Ni,j X tsplitler + Z t\]g/lre (2)
k=1

where t;ﬁq is the clock-to-q delay of a cell 4; typiuer is the cell
delay of a clockless splitter; and ¢}™ is the wire propagation
delay of the kth JTL/PTL of the path.

With (1) and (2), we can specify setup and hold timing
conditions [17], [18]

Setup: — skew; ; + A, ; + t;_emp <T 3)
Hold: hO]dj < —skewm» + Ai,j (4)
where 5" and hold; are the setup time and the hold time

of a cell j, respectively. These two conditions apply to any
data signal paths with cells ¢ and j as the launch cell and the
capture cell of each path. The first condition ensures no signal
loss by capture cells during the circuit operation, whereas the
second condition ensures signal integrity of output pulses from
launch cells. Referring to Fig. 2, the SFQ pulse from Cell; in
the fourth row should arrive ahead the second gray time interval
of Cell; in the fifth row. As we can see, the characteristics of
clocked cells and clockless cells in SFQ circuits revise the details
of both conditions, which encourages the development of new
timing optimization strategies rather than the direct utilization
of conventional CMOS strategies.

The maximum working frequency of an SFQ circuit is the
inverse of the minimum clock period T,;,, which is given by
setup. (5)

Tinin = max j

0

— skewi,j + A,‘J’ +1

This equation indicates that the maximum working frequency
is limited by the paths with the worst setup time condition.
These paths are known as critical paths, including critical data
signal paths related to data signal path delays and launch clock
signal paths related to clock skew. A net refers to a direct
connection between two SFQ cells and there can be multiple
nets included in a path due to clockless splitters, as shown in
Fig. 1. A physical interconnection of a net in an SFQ circuit is
built with a physical wire.

The hold time condition specified in (4) prevents signal race
errors during circuit operation. A signal race error happens when
the pulse fired from the launch cell undermines the pulse from
the capture cell within one clock period. Referring to Fig. 2, a
signal race error arises when the arrival time of the SFQ pulse
from Cell; in the fourth row is within the first gray time interval
of Cell; in the fifth row. To quantify the hold time violations, we

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: POSTROUTING OPTIMIZATION OF THE WORKING CLOCK FREQUENCY OF SINGLE-FLUX-QUANTUM CIRCUITS

define hold slack as
Slack!)! = —skew; ; + A; j — hold;. (6)

If hold slack is no less than zero, the race error will not happen.
Otherwise, the signal integrity of this path may be severely com-
promised during the operation. Timing margins can be added to
the right-hand side of both (5) and (6) if more factors, such as
process variations [19], are considered.

III. MOTIVATION

The high working frequency of SFQ circuits is one reason
for the large interest in SFQ circuits as the building blocks
of superconductive supercomputers. The working frequency,
however, has been decreasing with the scaling of SFQ circuits
because of the need to sacrifice clock speed in order to cope
with manufacturing process-induced sources of variability [19].
Even worse, the propagation delays along long wires that may
be created by routing tools can significantly reduce the peak
working frequencies (note that SFQ cell delays are typically
around 10 ps (< 14 psinour cell library), which is the same delay
as sending an SFQ pulse on a PTL of length 1 mm (assuming
an SFQ pulse propagation speed of 100 pm/ps).

To the best of our knowledge, the development of many SFQ
routing tools [20], [21] follow that of CMOS routing tools,
which search and place wires for nets one at a time based on
complex cost functions. In [21], a router based on A* algorithm
sequentially routes SFQ circuits with hundreds of nets, whereas
qGDR proposed in [20] completes routing large-scale circuit
with thousands of nets sequentially through a maze routing
algorithm. The drawback of both routing tools is the weak
guarantee that valuable routing resources are reserved for critical
timing nets. Indeed, if the routing resource allocation is not done
carefully, noncritical nets may use up all the shortest routing
paths, leaving critical nets with scarce routing resources. In [22],
the routing tool realizes a consistent delay of all paths in the same
stage by exploiting integer programming solvers. However, the
feasible solution for a consistent delay for each stage is unlikely
to result in the minimum delay for all stages because again no
priority is given to timing critical paths and nets. Moreover,
the scalability problem occurs when we apply the routing tool
proposed in [22] to large-scale SFQ circuits. As a result, none
of the aforementioned routing tools can utilize the available
SFQ timing information in order to maximize the chip working
frequencies and resolve any hold time violations.

To improve the routing results generated by state-of-the-art
SFQ routing tools, we present in this article a postrouting op-
timization framework, which increases the maximum operating
frequencies and resolves all hold time violations in large-scale
SFQ circuits. Our framework explores alternative short wires for
both critical data signal paths and launch clock signal paths in
order to improve the working frequency of a target chip. Next,
the postrouting optimization framework targets paths with hold
time violations and generates wire meanderings by using a maze
routing algorithm. Our main contributions may be summarized
as follows.

1301814

1) Machine learning that efficiently evaluates arbitrary wire
distributions of diverse SFQ circuits.

2) Routing algorithms that account for wire distribution
while routing critical paths.

3) Detour path creations that increase path delays to resolve
hold time violations.

4) Results of improvements over extensive SFQ routing re-
sults generated by state-of-the-art routing tools.

Notice that our postrouting optimization must satisfy all de-

sign rules since it is the last stage of the physical design process.

IV. POSTROUTING OPTIMIZATION

We present a postrouting optimization framework consisting
of three steps: machine learning, critical path optimization, and
path rectification. The proposed framework is depicted in Fig. 3.
We will provide details about each step in the next section.
The advantage of our proposed postrouting framework is to
efficiently improve the working frequency of an SFQ circuit
while maintaining most of the already deployed routing wires.

The objective of the machine learning step is to analyze the
distributions of the irregular routing wires in routing regions.
Given the analysis results, a subsequent ripup-and-reroute pro-
cess chooses nets that have a low likelihood of dramatically
changing existing wire distributions to be ripped up. We thus
overcome the shortcoming of sequential routing procedures,
which are typically strongly net ordering-dependent.

The critical path optimization step aims at reducing the delay
of critical data signal paths of a given SFQ circuit in order to
minimize the operating clock period. In this step, we identify
critical data signal and clock signal paths by using a graph search
algorithms and apply a ripup-and-reroute process to the identi-
fied paths. To achieve the best ripup-and-reroute result, we utilize
an intelligent maze routing tool, which can reallocate alternative
short wires to the critical nets while evaluating the risk of causing
aripup-and-reroute cycle based on the machine learning results.
The run time of the whole framework is therefore kept rather low.

There are two goals for the path rectification. The first goal is
to refine the launch clock signal paths for clock skew adjustment
and the other is to minimize the number of the hold timing
violations. To start with, clock nets in the clock distribution
topology are targeted to appropriately set the clock skew of the
critical data signal paths through the ripup-and-reroute process.
To cope with the hold timing violations of the SFQ circuit,
data signal paths with hold time violations are identified and
are replaced with detour wires with large delays.

Next, we provide details about optimization procedures used
in each of the aforesaid steps. Our explanations focus on two-pin
nets but our ideas can be extend to multipin nets through focusing
on the longest interconnection of each multipin net. To simplify
the explanations, we assume there are only two available metal
layers for routing, which applies to general SFQ technologies.

A. Machine Learning

A significant reallocation of routing resources is likely to
occur when rerouting timing critical nets in a design. The change
in allocated routing resources should, however, be kept to a

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

1301814

Critical Path Optimization

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

Comprehensive Path Rectification

Machine Learning

Transformation of
=4 Continuous Routing Wires

Critical Path Identification
using Breadth-first Search

i

into Discrete Points l

N ()
Critical Path No [Critical Clock Path
Improvement? Refinement

|

Density Based Spatial RipL!p‘-and-reroute for
Clustering of Applications [+ Critical Data Paths

Critical Path

Rerouting Ripped-up nets Improvement?

with Noise (DBSCAN) - 1

1

Freezing Critical Paths

Ripup-and-reroute for

Critical Clock Paths Fixing Hold Time Violations =

N

)k J

Fig. 3.

Workflows of the postrouting optimization.

Fig. 4.
result.

minimum because it may create convergence issues and undo
optimizations that had done previously, e.g., to minimize the
total wire lengths or the total via count [20]. To evaluate the
degree of potential resource reallocation, we utilize a well-
known machine learning method, called density-based spatial
clustering of applications with noise (DBSCAN) to analyze the
wire distributions [3]. DBSCAN is an unsupervised learning
method, which groups distributed points within a space based
on the local point densities, as shown in Fig. 4. More precisely,
given a set of points in some space, DBSCAN groups together
points that are closely packed together (points with many nearby
neighbors), marking as outliers points that lie alone in low-
density regions (those points in which nearest neighbors are far
away).

1) Transformation of Continuous Routing Wires: The input
of DBSCAN is discrete set of data points. Therefore, we trans-
form routing wires of an SFQ circuit (which comprise contigu-
ous wire segments) into a set of discrete points as follows. To
begin with, the whole routing area is cut into bins, as shown in
Fig 4(a). The width and the length of a bin are set to the wire
pitch size in the x- and y-direction, respectively. Next, contiguous
wire segments going over these bins are transformed into a set
of discrete points by assigning an unlabeled point to the center
of the bin, which is under the wire segment. White empty circles
in Fig. 4(b) denote these points.

2) Density-Based Spatial Clustering of Applications With
Noise: The discrete point representation empowers DBSCAN to
perform wire distribution analysis based on local point densities
without tracing irregular continuous wires. Distributed unla-
beled points are grouped by DBSCAN. There are two required

—————,
Z

Y b
P v
) ©
ROROK
*gez

OO ‘.
A A
EIL=5 Search <--<-~

<
(c) Window

DBSCAN algorithm in the machine learning stage. (a) Routing area partition. (b) Routing wire transformation. (c) Density-based search. (d) Grouping

parameters for grouping points: radius of a search window (R)
and a grouping threshold (MinPts).

Algorithm 1 describes details of DBSCAN [23]. There are
four main steps that are repeated until all points are labeled,
which are as follows.

1) Select any unlabeled point as the center point of a search
window of radius R and count the number of points
enclosed within the search window (including the initial
unlabeled point).

2) If the aforesaid count is equal to or higher than MinPts,
label the selected point with a cluster ID (/D) and group
all enclosed points within the search window as a seed set.
Otherwise, label the selected point as NOISE and go back
to Step 1.

3) Count the enclosed points within the search window cen-
tered at every point in the seed set. If there are at least
MinPts such enclosed points, then the chosen point will
be labeled with the same cluster ID as in Step 2 and other
enclosed points without a label are added to the seed set
of Step 2.

4) Repeat Step 3 until all points in the seed set are chosen
[this loop is illustrated in Fig. 4(c)]. Next, increment /D
by 1 and go back to Step 1 if any points are unlabeled.

Fig. 4(d) illustrates a grouping result in which all points are
labeled with ID = 1, ID = 2, or NOISE. The grouping result
can be used to identify congested (layout) regions in the layout
because regions occupied by points with the same ID tend to
experience higher routing resource pressure than other regions.
The time complexity of DBSCAN is O(N x log(NN)), where N
is the number of points in the complete layout space.

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: POSTROUTING OPTIMIZATION OF THE WORKING CLOCK FREQUENCY OF SINGLE-FLUX-QUANTUM CIRCUITS

Algorithm 1: DBSCAN.
1: Input: Points, R, MinPts
2: ID=1
3: for p in Points do

4. if p is unlabeled then
5: enclosed Pts = RangeQuery(Points, p, R)
6: if |enclosedPts| < MinPts then
7 label p as NOISE
8: continue
9: end if
10: label p with 1D
11: seeds = enclosedPts\{p} do
12: for p; in seeds
13: enclosedPts = RangeQuery(Points, ps, R)
14: if |enclosed Pts| > MinPts then
15: label p with I D
16: for p,, in enclosedPts do
17: if p,, is unlabeled then
18: seeds = seeds | {pn}
19: label p,, with 1D
20: else if p,, is NOISE then
21: label p,, with I D
22: end if
23: end for
24: end if
25: end for
26: ID=ID+1
27: end if
28: end for

B. Critical Path Optimization

The objective of critical path optimization is to reduce the
wire lengths of critical nets without violating any design rules.
The wire length reduction is expected to be realized without
having to rip up many noncritical nets. This section describes
the proposed critical path optimization following Fig. 3.

1) Critical Path Identification Considering Data and Clock
Propagation Delays: Breadth-first search (BFS) is a graph
search algorithm that explores outward from a source node in
all possible directions, adding nodes one layer at a time (a node
is visited only if all of its input nodes have been visited) [24].
In this article, the nodes refer to the primary inputs, clocked
cells, clockless cells, and primary outputs of a given SFQ circuit.
The BES produces a BFS tree with a source node as the root to
connect other nodes reachable from the source node. The source
node in a BFS tree is a primary input and the leaf nodes should be
primary outputs unless there is a cell with no output connection.
Since there are multiple primary inputs in the SFQ circuits, we
create adummy source node that connects directly to the primary
inputs of the SFQ circuit via direct edges. Similarly, we create
a dummy sink node that receives direct inputs from all primary
outputs of the SFQ circuit. In this way, we run BFS from the
dummy source and continue exploring the circuit graph until
the dummy sink is reached. Next, by examining the resulting
BFS tree, we identify all data signal paths—note that in SFQ

1301814

circuits, a data signal path is one that goes from a primary input
to a clocked logic cell, or from a clocked logic cell to another
clocked logic cell, or from a clocked logic cell to a primary output
without going through any intervening clocked logic cells. We
call the set of all such paths, the data signal path set. Based on
the found data signal paths as well as SFQ cell and PTL delay
information, we can easily calculate the maximum propagation
delay for a target data signal path comprising a clock cell driver
and a clocked cell receiver (possibly going through multiple
clockless cells and PTL connections).

We can similarly do a BFS on the clock distribution tree,
where the clock input to the SFQ circuit acts as the source node
and all clocked cells in the circuit act as the clock sinks. Again
we create a dummy clock sink node that receives direct inputs
from all clocked cells in the circuit. The BFS starts from the
clock source and continues until the dummy clock sink is visited.
Note that this stopping criterion is based on the assumption that
the clock signal is totally absorbed by a sink clocked cell [6].
To our knowledge, this assumption is true for standard SFQ
designs. Note that a clock signal path refers to the complete clock
propagation path starting from the source node (the primary
clock input) to the leaf node (the reached clocked cell), possibly
going through splitters and buffers as well as PTL connections.
Based on the found clock signal paths as well as SFQ cell
and PTL delay information, we calculate the clock skew for
a target data signal path comprising a clock cell driver and a
clocked cell receiver. Now then, from (5), we find the critical
data and clock signal path combination that set the minimum
clock period of the SFQ circuit. The following procedures of
the critical path optimization is to reduce the path delay of
the critical data and clock signal paths by a ripup-and-reroute
process.

2) Ripup-and-Reroute for Critical Data Signal Paths: The
primary target of the critical path optimization is the critical data
signal path in an SFQ circuit because, in general, the magnitude
of the clock skew of two launch clock signal paths is much
smaller than that of the path delay of the critical data signal
path. As discussed in previous sections, the critical data signal
path can be formed either by a very long wire or multiple wires
with clockless splitters in between. The number of the critical
data nets of the critical data signal path is one in the first case
and is more than one in the latter case.

The objective of the ripup-and-reroute process is to efficiently
reduce the wire lengths of the critical data nets in a large-scale
SFQ circuit without ripping up many noncritical nets. Notice
that we rip up and reroute the critical data net one by one instead
of ripping up all critical data nets at the same time so as to
avoid significant layout changes. In the rerouting process, a
maze routing algorithm is utilized to find an alternative short
wire for each ripped-up critical net [20]. There are three main
steps in the maze routing algorithm: bounding box formation,
wave propagation, and trace back. We explain these steps on
a 7 by 7 bin array, as depicted in Fig. 5, in which the maze
routing algorithm creates a wire connection for a net with two
pins labeled by b.

To begin with, a search space is specified by forming a
minimal rectangular bounding box that fully encompasses the

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

1301814

r—————-—l =T =
I b : b[1]2[3]4]! b[1]2[3]4]!
X X[] M1 x[3]x[5], x| [x[5];
XX b} [2]x|X|b/6] M Ix[X[b/6]
X X I M3x| [X] X T[] (X
it asle| | | | |
(a) (b) (c)
Fig. 5. Maze routing algorithm. (a) Bounding box formation. The dotted line

represents the previous routing wire. b: source vertex. X: blockage. (b) Fanout
wave propagation. (c) Trace back.

previous routing wire of a target (data) net, as shown in Fig. 5(a).
This bounding box guarantees that an alternative wire for this net
is either the original routing wire with the same wire length or
preferably a shorter wire. Next, the maze routing algorithm starts
searching for a solution with a minimum routing cost. Routing
costs of creating a wire are calculated from the bin where the
source pin of the net is located to other reachable bins using a
wave (frontier) propagation method. Note that the routing cost
calculation is skipped for bins, which are occupied by blockages.

The cost of a wire that reaches a bin bél in the [1th layer
starting from the source bin of net n; is

(bl ni) = r?lizn SO 02) + g0 ng) + C (02, na) (7
k

where bff is the adjacent bin of bgl. Values in the grid cells
in Fig. 5(b) represent the routing cost. The value of f (b, b?)
depends on three parameters [20]: SegCost, JogCost, and Via-
Cost. The initial value of f(b%!,b}?) is 0. SegCost is added to
SO, bj2) if 11 = 12 and b%! is aligned with b} following the
preferred direction of the [1th routing layer. JogCost is added to
SO b2)if 11 = 12 and b!} is not aligned with b}? following the
preferred direction of the [1th routing layer. ViaCost is added to
S(BE, bj2) if 11 is not equal to 12. g(b%,n;) is zero if b%! is not
occupied by a routing wire. Otherwise, g(bé-l, n;) is given by
WL (b4

MaxWL

1
1y exp(1 — PreWL(n;)/MaxWL)

9(b§17 ni) = c1 * IDCount(bél) + c9 %

+cs3

®)

where ¢1, ¢o, and c3 are weight coefficients. IDCount(bé»l) re-
turns the number of bins that are labeled with the same cluster
ID as bi' and the return is zero if b! is labeled with NOISE.
For example, if bél is occupied by a blue point marked with
ID2 in Fig. 4(d), IDCount(bé-l) returns 27 for cost calculation.
WL (b4!) is the length of the wire that passes b}' and MaxWL
is the maximal wire length of all nets in Manhattan distance.
PreWL(n;) is the previous physical wire length of the given net
n; before the rip-up.

We provide more details about (8). The first term in the
equation helps our router predict the number of bins that may
be affected in the worst case if the net in bé-l is ripped up
because IDCount(bé»l) returns the number of bins sharing the
same cluster ID as bél. Specifically, rerouting nets using wires
that pass through congested regions is challenging because the

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

routing algorithm must create alternative wires for these nets
using scarce routing resources. The price of allowing such a
rerouting is the potentially significant change of the routing
layout compared to the initial routing layout. To minimize the
probability of a massive routing resource reallocation, we make
IDCount(*) the dominant factor in (8). WL(bél) in (8) is divided
by MaxWL for normalization because WL(bé»l) of long wires
is generally larger than that of short wires. If we do not divide
WL (b)) by MaxWL, the value of g (bl , n;) for the bin occupied
by along wire could be much larger than that for the bin occupied
by a short wire. The third term in (8) adds a constant cost of
utilizing an occupied bin for rerouting n;. The constant cost for
rerouting a large net is bigger than that of rerouting a small net
because we want to limit the bin count for net rerouting. The
cost is not (linearly) proportional to the previous physical wire
length of the net n; because we want to play down the previous
routing result.

Finally, the wire connecting pins of n; and having the min-
imum routing cost is identified by performing trace back from
the terminal pin to the source pin in a backward propagation
manner, as shown in Fig. 5(c). To control the number of the nets
to be ripped up, the routing cost of creating a wire for n; cannot
be larger than an upper bound, which is given by

Ubound(n;) = ¢4 * PreWL(n;) * SegCost)
where c; is another weight coefficient. As an example if
Ubound(n;) of the shown net in Fig. 5(c) is 6 or higher, we
will accept the traced wire; otherwise, we will reject it. The
accepted wire is committed to be a physical routing wire for n;
and the nets that overlap (short) this committed wire are ripped
up and rerouted in a subsequent ripup-and-reroute process for
noncritical nets.

3) Freezing Rerouted Critical Paths: Alternative wires for
the rerouted critical nets should not be modified during the
ripup-and-reroute process for noncritical nets. A straightforward
strategy to hinder invalidating the wire length reduction results
is to add a huge penalty to the routing cost for ripping up any
critical nets. However, a huge penalty can still be an acceptable
penalty when a large upper bound is set for exploring feasible
wires in a large-scale SFQ circuit. Thus, we propose a rigorous
control strategy. The wires of the rerouted critical data nets are
temporarily frozen as blockages (we call the condition of the
wires as frozen because it is not a permanent condition). The
frozen wires can be thawed under some conditions. We first
describe how the wires are frozen and then explain when the
frozen wires can be thawed.

We realize freezing the wires of the rerouted critical nets by
placing temporary blockages along these wires. Take Fig. 5(c)
as an example. If the bins fond by trace back step are utilized
to create a wiring solution for a critical data net, these bins are
marked with “X” (denoting fixed blockages in our routing frame-
work). As a result, the ripup-and-reroute process for noncritical
nets cannot touch the wires of any rerouted critical data nets. A
side benefit of this freeze strategy is that the proposed frame-
work avoids potential convergence problems due to repetitive
ripup-and-reroute processes.

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: POSTROUTING OPTIMIZATION OF THE WORKING CLOCK FREQUENCY OF SINGLE-FLUX-QUANTUM CIRCUITS

@) ’) ‘ @

Fig. 6. Plowing operations. (a) An exploration space with barricades. Inter.
bin: intersection bin. (b) Barricade plowing. (¢) Routing wire connection.

A lane of temporary blockages can be viewed as a barricade
that, unfortunately, can hinder the routing algorithm from finding
a wiring solution for a target net. Fig. 6(a) depicts the effective
exploration space for a net with two bins but there are two parallel
barricades in the middle of the space for both bottom and top
routing layers. Given this scenario, the routing algorithm cannot
create a wire connecting pins of the target net without going
through the barricades. When this special condition (or other
similar conditions) is observed, we thaw a small segment of
the frozen wire and then move the thawed segment. Similar
to prior work [25], we call the movement a plowing operation
that sweeps the frozen wire segment while maintaining the wire
connection. The special condition is not limited to the scenario
in which the top barricade is just placed above the bottom one.
Any parallel barricades that hinder the rerouting process are
recognized as the special condition. We provide more details
below.

The plowing operation is called when the exploration space
for rerouting a net is partitioned by parallel barricades. To begin
with, a L-shape wire for this net is deployed temporarily in the
top routing layer and this L-shaped wire will intersect the bin(s)
that are occupied by the frozen wire. The bin shared by both
the L-shaped and frozen wire is called an intersected bin, as
shown in Fig. 6(a). The plowing operation thaws a short wire
segment centered at the intersected bin and then moves the
thawed wire segment to the direction, which is orthogonal to
the barricades. The wire segment in the top layer is considered
first because the wire density of the top layer is usually less
than that of the bottom layer [20]. The plowing operation is
applied to the wire segment in the bottom layer when there
is no free space to move the segment located in the top layer.
Notice that the plowing operation will be called several times if
there are multiple parallel barricades, which partition the whole
exploration space into several parts.

4) Ripup-and-Reroute for Launch Clock Signal Paths: The
proposed critical path optimization reduces the path delay of the
critical data signal paths but it may also increase the clock skew
(skew; j = 5% — #£') of the launch clock signal paths. There are
two possible ways to increase the clock skew: first, increase the
arrival time of the clock signal at the input of the capture cell and
second, decrease the arrival time of the clock signal at the input of
the launch cell. If we are only allowed to control the wire length
of SFQ circuits, the first method requires increasing the wire
length of the critical clock nets, which is counter-intuitive and
generally undesirable. Thus, the second method is pursued in this
article. We locate the critical clock nets for wire length reduction
by the assumption that the clock distribution topologies in large-
scale SFQ circuits are built with clockless cells (e.g., splitters
and buffers). Applicable clock distribution topologies can be

1301814
[| l L
vV vV vV vV vV
Cell; Cell; Cell; [Cell, [| Cell,
@)

Fig. 7. Interconnections between clocked cells. (a) Interconnection between
two clocked cells. The black triangles represent clockless cells for forwarding
clock signals. (b) Three interconnections between pairs of clocked cells.

found in [2], [3], [20], and [26]. The assumption can be relaxed
for other topologies but details will not be addressed here.

Each clock signal travels from a primary clock input to a
clocked cell after passing several clock nets and clockless cells.
The complete travel path constitutes the clock signal path of the
clocked cells. Fig. 7(a) illustrates an interconnection between
two clocked cells and the clock signal paths of these two clocked
cells. The black triangles represent the clockless cells along the
clock signal path. In most SFQ clock distribution topologies,
clock nets are shared between clock signal paths because the
fanout of the clockless cells is typically more than 1. Thus, we
only apply the ripup-and-reroute process to the clock net, which
directly connects to the launch cell of the critical data signal
path. Let the interconnection in Fig. 7(a) be the critical path, the
targeted clock net is the net connecting the clock input of the left
clocked cell. The applied ripup-and-reroute process is the same
as the one used for the critical data nets. However, we apply
a conservative optimization strategy here because minor wire
length reduction in some clock nets can result in many hold time
violations due to clock skew increase. Aggressive clock skew
improvements for launch clock signal paths are attempted in the
path rectification stage (see below) to minimize the likelihood
of hold time violation growth.

5) Ripup-and-Reroute Process for Noncritical Nets: The ob-
jective of the ripup-and-reroute process for noncritical nets is to
create wiring solutions for the nets whose wires were previously
ripped up in order to enable the rerouting of critical nets. Again
we use the maze routing algorithm to find feasible new wires for
these nets. Unlike prior work [20], we do not use a comparison
function to decide the routing order of the nets because our net
count is small. The routing order of the nets is simply the order
in which these nets were ripped up.

Since the wire length control is not necessary for noncritical
nets, we do not construct an explicit bounding box to limit the
exploration space. Note, however, that the exploration space is
implicitly limited by the upper bound of the routing cost because
wires with routing costs that are higher than the upper bound will
not be accepted. Equation (7) is modified by replacing g(bél, n;)
with h(bé-l, n;) in order to calculate the routing cost of a wiring
solution for a noncritical net n; and rewritten as

O, ni) = min f(O5,b2) + (b}, ni) + C (b2, n;) (10)
: pa

where f (bé»l7 bi%) remains the same as that in (7). h(bgl, n;) is
zero if b'! is not used by a routing wire. Otherwise, h(b%, n;) is

WL(b)

WLEO;) (11)
MaxWL @

h(bé»l7 ni) =cy* IDCount(bg»l) + cg %

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

1301814

where ¢ and co are the same weight coefficients used in (8) and
c5 is a new coefficient. Given (10), the maze routing algorithm
is run for ten passes to find a feasible wire for a net. The upper
bound of the routing cost in the kth pass for routing a net n; is

Ubound(n;, k) = 2 * Ubound(n;, k — 1) (12)

Ubound(n;, 1) = ¢ + ¢7 * ViaCost

13)
+ ¢s * min(width(n;), length(n;)) * SegCost

where cg, ¢7, and cg are coefficients. width(n;) and length(n;)
denote the Manhattan distance of two pins in the y-direction and
x-direction, respectively.

The ripup-and-reroute process for noncritial nets is repeated
until there are no unrouted nets. If the path length of the critical
paths is improved, the ripup-and-reroute process for the critical
data signal path will be executed again. Otherwise, the frame-
work proceeds to the path rectification step.

C. Path Rectification

The objective of path rectification is to reduce the delay of the
launch clock signal path and resolve any hold time violations.
The launch clock signal path| denotes to the clock signal path
that forward a clock signal to the launch cell of the critical path.
All clock nets of the launch clock signal path are considered
for wire length reduction to achieve aggressive clock skew
improvements. We fix hold time violations at the end because
we can reserve as many routing resources as possible for critical
paths.

1) Critical Clock Net Selection: Clock net optimization is
a delicate optimization process because clock delay changes
can result in clock skew increase for a pair of cells and clock
skew decrease for another pair of cells, simultaneously. Take
Fig. 7(b) as an example in which a cell ¢ and a cell k share all
clock nets except the clock nets that directly connect to their
respective clock inputs. Let the interconnection between a cell
1 and a cell j be the critical data signal path. To improve the
working frequency, we decrease the clock arrival time of a cell
1 by reducing the wire length of multiple nets along the launch
clock signal path. At the same time, the clock skew between
a cell k and a cell [also increases. However, if the clock skew
increase is too large, the hold time condition between a cell k& and
a cell [may be violated. To avoid possible hold time violations,
we estimate the risk of optimizing a clock net n; by

CurWL(n;)

risk(n;) = ChildNetCnt(n;) + ¢g * WLL ()

(14)
where ChildNetCnt(n;) denotes the number of the child nets of
n; in the clock tree, CurWL(n;) is the current wire length of
n;, WLL(n;) is the wire length lower bound of n;, and c¢q is
another weight coefficient. We select the critical clock nets with
the lowest risk and apply the ripup-and-reroute process for the
selected nets.

2) Ripup-and-Reroute for Selected Clock Nets: The objec-
tive of the ripup-and-reroute process for selected clock nets re-
mains the wire length reduction. Therefore, the same ripup-and-
reroute process for critical nets is applied to the selected clock

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

X X
X X
b b b+—%—b b+ [X| “b
X X
X X
(a) (b) (c)
Fig. 8. Fixing hold time violations by temporary blockage placement. (a)

A connection with a hold time violation. (b) Blockage placement. (c) A new
connection without a hold time violation.

nets. The critical clock net selection and the ripup-and-reroute
process are repeated a few times. The critical data and clock
signal paths in an SFQ circuit are re-evaluated each time because
the critical paths may change after the wire length reduction of
the clock nets. The selected clock nets will not be reselected.

3) Fixing Hold Time Violations: There are three possible
approaches to fix any hold time violations in an SFQ circuit:
decreasing clock skew, inserting clockless cells, and increasing
data signal path delays. The first approach must increase the path
length of the clock signal path connecting to the launch cell or
decrease the path length of the clock signal path connecting to
the capture cell. This approach, however, has a high risk of losing
control of the clock skew when the magnitude of the negative
hold slack is very large. The cell insertion approach is usually
implemented before or during the placement step. Moreover,
timing adjustments using extra clockless cells, such as JTLs can
cause margin reduction and even yield rate drop [22]. Therefore,
we resort to data signal path delay increase even though it is
counter-intuitive. The main reason is that with this method, we
can fix significant number of hold time violations in the circuit
while having a low risk of adversely affecting the clock skews
and operation margins.

We present a novel strategy for resolving hold time violations
given an SFQ circuit. Following are four steps in the strategy
that we explain with the aid of Fig. 8.

1) Identifying a data signal path with negative hold slack and
selecting the shortest wire of the identified data signal path
for rerouting. Fig. 8(a) illustrates a wire as the selected
wire.

2) Finding the midpoint of the selected wire and creating a
temporary blockage lane orthogonal to the wire segment
going through the mid point, as shown in Fig. 8(b). If
the mid point is a turning point, the segment closer to the
launch cell is chosen.

3) Ripping up the selected wire and performing a maze
routing algorithm to rebuild a new wire for the original
connection, as shown in Fig. 8(c). If the hold time violation
is not fixed, we will repeat Steps 2 and 3 for up to ten times.

4) Removing the temporary blockages lanes created in Step 2
and repeating Step 1 until all data signal paths with nega-
tive hold slack are identified.

The length of the blockage lane created in Step 2 is the
equivalent bin length of the hold slack minus one bin length. In
Fig. 8, the hold slack is equivalent to 6 bin length, so a blockage
lane of length 5 is created and placed in the space. The length of

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: POSTROUTING OPTIMIZATION OF THE WORKING CLOCK FREQUENCY OF SINGLE-FLUX-QUANTUM CIRCUITS

TABLE I
STANDARD SFQ CELL LIBRARY

Cells SplitterCLK ~ Splitter ~ NOT DFF AND OR XOR NDRO
Height (um) 40 120 120 120 120 120 120 120
Width (um) 40 30 30 40 50 50 50 50
#Inputs (+Clk) 0D L) TED 1D 2D 2D 2&D) 1 (+1)
#0utpus (+Clk) 0 (+2) 2 (+1) LD 1D 1D 1D 1+ 1 (+1)
Clock-to-q Delay (ps) 5.7 5.7 13.0 6.8 8.7 6.0 6.3 10.0
Setup Time (ps) - - 39 1.1 0.0 2.6 4.8 10.0
Hold Time (ps) - - 6.1 4.0 4.7 3.1 4.8 10.0

a rebuilt wire is expected to be 6 if the rebuilt wire goes around
the blockage lane. The maze routing algorithm performed in the
third step follows (10) and (11) except that c5 is increased by
a factor of ten. The optimized routing result with a given SFQ
circuit is generated in the design exchange format (DEF) after
the path rectification step.

V. STANDARD SFQ CELL LIBRARY

Referring to the MIT-LL SFQ5ee process technology [13], we
only have two (Nb) metal layers for signal routing, denoted as
a bottom-layer M1 (connections on this layer are created using
striplines that are sandwiched between grounded MO and M2
layers) and a top-layer M3 (connections on this layer are created
using striplines that are sandwiched between grounded M2 and
M4 layers). Both routing layers, M1 and M3, are reserved for
deploying PTLs. M5 is used for the biasing, whereas M6 is used
to implement connections (and inductors) inside the cells.

We follow the design rules of the MIT-LL SFQ5ee process
technology [27] to build our standard SFQ cell library and
test our postrouting optimization framework. The standard SFQ
cell library used in this article is also used in prior work [2],
[20]. There are two parts in each SFQ cell: a logic design part
realizing a Boolean function and a built-in clock distribution part
splitting and/or passing clock pulses. There are eight types of the
standard cells: SplitterCLK, Splitter, NOT, DFF, AND, OR, and
XOR. SplitterCLK without the logic part is used for clock tree
synthesis and the tree topology is the H-tree. The height of the
clock part is 40 pm and that of logic part is 80 m. Therefore, the
height of all cells is 120 pum except that the height of SplitterCLK
is 40 pm. The pins for the signal input and output of the logic
part are in the M1 layer, whereas the pins for the signal input
and output of the clock part are in the M3 layer. All cells are dc
biased and each bias pillar is of size 2.5 ym x 2.5 pm. Details
for timing parameters are listed in Table I.

Our postrouting optimization framework deploys PTLs with
a propagation speed of 100 pm/ps for interconnections. We do
not use JTLs for routing because JTLs require special routing
when they cross in an orthogonal direction to one another [21],
[28]. Moreover, long JTLs introduce a significant delay (JTL’s
tend to be ten times or so slower than PTLs), which goes against
the objective of maximizing the working frequency of the SFW
circuit. Notice that each PTL requires a PTL driver at the driving
point and a PTL receiver at the receiving point. The PTL driver
and receiver are embedded in each standard cell with matching
characteristic impedances for the used PTL connections. The
length of PTLs can reach 5 mm with negligible signal loss. More

1301814

details can be found in [29]. The width and the pitch of PTLs
are 5 and 10 pm, respectively. PTLs between two layers connect
with each other through a via and the size of a via is 5 ym x
5 pm.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

We have implemented the postrouting optimization frame-
work in about 6000 lines in C language. The hardware environ-
ment for the experimental results is a Linux machine with the
Intel(R) Xeon(R) CPU E7-8837 @2.67 GHz.

To evaluate the proposed optimization framework for two
layer routing, we synthesize Kogge—Stone adders (KSAs), ar-
ray multipliers (Muls), and an integer divider (IntDiv) using
state-of-the-art SFQ EDA tools. These SFQ EDA tools covers
the steps of logic synthesis [30], cell placement [2], clock tree
generation [26], and net routing [20], [31]. Moreover, a number
of the ISCAS c-series benchmarks with different net counts are
generated by the same EDA tools. The synthesized SFQ circuits
are path-balanced, and splitters are inserted during the logic
synthesis step. We run the placement tool to place SFQ cells
in rows with routing channels in between. An optimized H-tree
with minimum clock skew is generated as the clock distribution
topology of each SFQ circuit. All netlists of SFQ cells, including
both data nets and clock nets, are routed using a general router,
Qrouter, and an SFQ router, qGDR. Neither Qrouter nor qGDR is
empowered with the relevant knowledge to optimize SFQ timing
behaviors. Input file formats of the proposed framework are open
standard library exchange format (LEF) and DEF files. LEF
elaborates design rules and cell layouts, whereas DEF describes
circuit netlists and corresponding circuit layouts.

Table II reports the routing results generated by Qrouter with-
out and with the postrouting optimization for the test circuits.
Qrouter with the postrouting optimization is marked as Qrouter*.
IdealTotal WL denotes the ideal total wire length obtained by
routing all nets with L-shaped wires regardless of any blockages
or routing resource limitations. ActualTotal WL is the actual total
wire length of PTLs. Values of ActualTotalWL in the seventh
column are nearly the same as those in the sixth column, which
suggests that the routing wires of most nets are not changed
after the postrouting optimization. ViaCnt denotes the total
number of vias used for routing. When we compare the values of
ViaCnt between the eighth and the ninth columns, we observe a
minor increase in ViaCnt for most circuits after the postrouting
optimization. This increase is reasonable because extra vias
are needed for building wires that must detour. For example,
building the detour wire in Fig. 8(c) requires four vias because
there are four turn points.

MaxViaCnt denotes the maximum number of vias used for
routing any net in a test circuit. Similar to the prior work [20],
values of MaxViaCnt in the tenth and the eleventh columns are
rather large because there are only two routing layers. However,
MaxViaCnt is prone to increase after the optimization for some
circuits because a few of the nets are redone with many vias so
as to reduce their wire length. However, a significant increase in
MaxViaCnt is observed for some circuits. We explain the reason
for this large increase in the context of the 16-b KSA but the

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

1301814

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

TABLE II
ROUTING RESULTS OF KSAS, ARRAY MULTIPLIERS, INTEGER DIVIDERS, AND C-SERIES CIRCUITS OF ISCAS BENCHMARKS BY STANDARD QROUTER AND
QROUTER WITH POSTROUTING OPTIMIZATION (DENOTED BY QROUTER*)

Circuit Spec. ActualTotal WL (pm) ViaCnt Max ViaCnt Frequency (GHz) Running

#Cells #Nets Area (mm?) IdealTotal WL (wm) | Qrouter Qrouter* (Ratio) | Qrouter Qrouter* (Ratio) | Qrouter — Qrouter® (Ratio) | Qrouter Qrouter* (Ratio) | Time (s)
4-bit KSA 171 258 1.75 4.83e4 5.72e4 5.64e4 (0.99) 375 367 (0.99) 8 6 (0.75) 224 27.1 (1.22) 0.55
8-bit KSA 534 776 3.87 1.44e5 1.76e5 1.77e5 (1.00) 1185 1199 (1.01) 12 11 (0.91) 239 29.3 (1.23) 13.70
16-bit KSA 1215 1847 8.88 4.03e5 5.12e5 5.32e5 (1.03) 3776 3999 (1.05) 20 34 (1.70) 18.7 18.7 (1.00) 519.4
32-bit KSA 3753 5311 30.9 1.62e6 1.86e6 1.88e6 (1.01) 9500 9678 (1.01) 28 28 (1.00) 11.6 12.3 (1.06) 336.0
4-bit Mul 526 771 4.24 1.32e5 1.57e5 1.595 (1.01) 1000 1006 (1.00) 10 14 (1.40) 18.1 21.6 (1.19) 331
8-bit Mul 3458 4815 25.1 9.51e5 1.07e6 1.08e6 (1.00) 5414 5494 (1.01) 16 16 (1.00) 153 17.4 (1.14) 175.8
4-bit IntDiv 1092 1636 9.41 3.68e5 4.35e5 4.49¢5 (1.03) 2578 2708 (1.05) 20 20 (1.00) 17.9 18.8 (1.05) 232.1
8-bit IntDiv 7363 10555 86.0 2.87¢6 3.08e6 3.08e6 (1.00) 11416 11416 (1.00) 24 24 (1.00) 74 7.5 (1.01) 2252
c432 2291 3500 25.0 9.70e5 1.09e6 1.10e6 (1.00) 5346 5446 (1.01) 16 20 (1.25) 11.4 11.7 (1.03) 44.65
499 2091 3045 182 9.52e5 1.11e6 1.12e6 (1.00) 6357 6447 (1.01) 22 32 (1.45) 1.4 12.2 (1.07) 173.0
880 3649 5129 33.8 1.59e6 1.79e6 1.80e6 (1.00) 8317 8491 (1.02) 26 20 (0.76) 10.2 11.9 (1.17) 479.0
c1355 2130 3124 21.5 1.12¢6 1.29¢6 1.29¢6 (1.00) 6424 6470 (1.00) 28 28 (1.00) 113 11.8 (1.04) 75.19
¢1908 3706 5255 30.3 1.45¢6 1.65¢6 1.68e6 (1.01) 8238 8408 (1.02) 22 22 (1.00) 10.4 10.8 (1.04) 208.4
Average Ratio - - - - 1.00 - 1.01 - 1.09 - 1.09

TABLE III

ROUTING RESULTS OF KSAS, ARRAY MULTIPLIERS, INTEGER DIVIDERS, AND C-SERIES CIRCUITS OF ISCAS BENCHMARKS BY STANDARD QGDR AND QGDR
WITH POSTROUTING OPTIMIZATION (DENOTED BY QGDR*)

Circuit Spec. ActualTotal WL (o) ViaCnt MaxViaCnt Frequency (GHz) Running
#Cells #Nets Area (mm?) IdealTotalWL (um) | qGDR qGDR* (Ratio) | qGDR gqGDR* (Ratio) | qGDR qGDR* (Ratio) | qGDR qGDR* (Ratio) | Time (s)
4-bit KSA 171 258 1.75 4.83e4 5.55e4 5.52e4 (0.99) 353 353 (0.98) 6 6 (1.00) 249 26.5 (1.11) 0.14
8-bit KSA 534 776 3.87 1.44e5 1.71e5 1.71e5 (1.00) 1086 1076 (0.99) 14 14 (1.00) 243 24.6 (1.01) 0.56
16-bit KSA 1215 1847 8.88 4.03e5 4.72¢5 4.76e5 (1.00) 3025 3067 (1.01) 16 16 (1.00) 19.7 22.1 (1.12) 597
32-bit KSA 3753 5311 309 1.62e6 1.80e6 1.81e6 (1.00) 7703 7785 (1.01) 26 26 (1.00) 10.5 119 (1.13) 119.1
4-bit Mul 526 771 4.24 1.32e5 1.49e5 1.49¢5 (1.00) 893 887 (0.99) 8 9 (1.12) 212 22.2 (1.05) 0.52
8-bit Mul 3458 4815 25.1 9.51e5 1.04e6 1.04e6 (1.00) 4523 4555 (1.00) 18 18 (1.00) 15.7 16.2 (1.03) 26.95
4-bit IntDiv 1092 1636 9.41 3.68e5 4.15e5 4.18e5 (1.00) 2187 2211 (1.01) 19 19 (1.00) 15.7 17.9 (1.14) 12.49
8-bit IntDiv 7363 10555 86.0 2.87e6 3.05e6 3.05e6 (1.00) 9959 9959 (1.00) 24 24 (1.00) 6.8 7.1 (1.04) 31.32
c432 2291 3500 25.0 9.70e5 1.06e6 1.07e6 (1.00) 4560 4582 (1.00) 16 16 (1.00) 11.9 12.5 (1.05) 14.53
c499 2091 3045 182 9.52e5 1.07e6 1.07e6 (1.00) 5031 5069 (1.00) 24 24 (1.00) 11.7 12.6 (1.08) 84.78
c880 3649 5129 33.8 1.59%6 1.75e6 1.75e6 (1.00) 6969 7071 (1.01) 24 24 (1.00) 10.7 11.9 (1.11) 162.1
c1355 2130 3124 215 1.12e6 1.25¢6 1.25e5 (1.00) 5575 5597 (1.00) 28 28 (1.00) 11.9 12.3 (1.03) 16.79
¢1908 3706 5255 303 1.45¢6 1.60e6 1.60e6 (1.00) 6783 6851 (1.00) 24 24 (1.00) 10.7 11.5 (1.07) 37.78
Average Ratio - - - - - 1.00 - 1.00 - 1.00 - 1.07 -

explanation applies to other circuits (e.g., c499). Referring to
the routing result of the 16-b KSA in the fourth row of Table II,
the large increase in MaxViaCnt is caused by redoing a net with
a large hold time violation. The initial hold slack of this net
is —6.2 ps and the pins of this net are in congested regions of
the chip. Consequently, 34 vias are used to create a detour wire
within the congested regions to fix the hold time violation of this
net.

Frequency in Table II is the maximum working frequency of
an SFQ circuit and is the inverse of the minimum clock period
calculated in (5). The thirteenth column in Table II shows ratio
improvements in Frequency for the test circuits. The frequency
improvements are 9% on average and the maximum working
frequency can be boosted by more than 20% for small circuits
(e.g., 4-b and 8-b KSAs). The improvements confirm the power
of the postrouting optimization framework. The fourteenth col-
umn in Table II shows that the largest execution time is 519 s
(encountered when optimizing the 16-b KSA circuit).

Table III reports the routing results generated by qGDR with-
out and with the postrouting optimization given the testing SFQ
circuits. qGDR with the postrouting optimization is identified
as qGDR*. The values of ActualTotal WL in the seventh column

are almost the same as those in the sixth column. There is no
change in MaxViaCnt for all circuits except the 4-b Mul, which
MaxViaCnt increases by 1 after the postrouting optimization.
Furthermore, the increase in ViaCnt in Table III after the op-
timization is less than 1% of the initial value. If we compare
values of Frequency in the twelfth columns with those in the
thirteen columns, the maximum working frequency of all circuits
is improved. The frequency improvements is 7% on average
instead of 9% because the working frequency enabled by qGDR
is on average 1.02X of that enabled by Qrouter. Therefore, the
absolute magnitudes of frequency improvements achieved by the
postrouting optimizer on the Qrouter and qGDR routing results
are close to each other although the overheads of optimizing
the qGDR results are lower as explained below. The fourteenth
column in Table IIT shows that the whole optimization process
can finish in 180 s for all circuits.

We achieve comparable frequency improvements with lower
overheads for qGDR routing results because, in general, qGDR
produces routing results with better wire distributions compared
to that produced by Qrouter. We use the 16-b KSA as an example
to illustrate our observations. The top and bottom two figures of
Fig. 9 show the wire density graphs of the 16-b KSA routing

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: POSTROUTING OPTIMIZATION OF THE WORKING CLOCK FREQUENCY OF SINGLE-FLUX-QUANTUM CIRCUITS

Fig.9. Routingresults of a 16-b KSA. (a) M1 wire density graph using Qrouter.
(b) M3 wire density graph using Qrouter. (c) M1 wire density graph using qGDR.
(d) M3 wire density graph using qGDR.

Cell !
Splitter DjaySkew (44

Cell
Delay Skne " Delay \
\
Wire Delay ~
Splitter Delay it Wire Delay
114 116.1
(a) (b)

Fig. 10. Pie charts of the timing factors of a critical path. (a) 4-b KSA.
(b) 8-b IntDiv. The unit of the number is picoseconds.

results generated by Qrouter and qGDR, respectively. If we
compare the M1 wire densities in Fig. 9(a) and (c), we can
see that the total size of high wire density regions in Fig. 9(a)
is much larger than that in Fig. 9(c). These high wire density
regions signify the congested regions of the layout. In addition,
more routing resources in the M3 routing layer are consumed by
Qrouter compared to qGDR, as shown in Fig. 9(b) and (d). The
larger size of congested regions and the overutilization of routing
resources are also observed in other routing results generated by
Qrouter.

We further analyze the importance of each timing factor of a
critical path. Specifically, we illustrate the relative scale of the
timing factors using the smallest and largest SFQ circuits after
optimizing the routing results generated by qGDR. The result is
shown in Fig. 10. The cell delay includes the clock-to-q delay
and the setup time of the critical path, whereas the wire delay is
the summation of delays of all wire segments of the critical data
signal path. Other timing factors are self-evident. The nonzero
skew value in Fig. 10 is due to a minor path length difference
after routing. Fig. 10(a) suggests that the critical timing factor
for small circuits includes the splitter delay and the wire delay
because there could be multiple splitters on a data signal path.

1301814

12000 Time (s) = mp 180

160

- #Nets

10000
140
8000 120

100

6000

4000

AN\

_

-

2000

A\

EAN
A\
A\

w Y

0 % %7 % a7 2 0
4-bit 4-bit 8-bit 16-bit 4-bit 432 c1355 8-bit 1908 c499 32-bit c880
KSA Mul KSA KSA IntDiv Mul IntDiv KSA

Fig. 11. Execution time of benchmark circuits with different numbers of nets.

The former factor becomes less important when the number of
nets increases, as shown in Fig. 10(b). The large value of the
wire delay confirms that the path length minimization for the
critical path is crucial for realizing large-scale SFQ circuits with
high performance.

Given the benchmark results generated by qGDR, we report
the execution time of our postrouting optimization in Fig. 11.
This figure shows that the execution time generally increases
when the number of cells (or nets) increases. However, the
execution time of some circuits can be less than expected (e.g.,
8-b IntDiv) or more than expected (e.g., c499 and c880). We
attribute this irregularity to the large variations of the M1 wire
distribution and explain details using Fig. 12. We emphasize the
M1 wire distribution because the routing resource demand of the
M3 layer (used mainly for vertical wire segments) is far lower
than the demand for the M1 layer (used mainly for horizontal
wire segments). Fig. 12(a), which is the M1 wire density graph
of the 8-b Mul, is used as a typical M1 wire density graph for
comparisons. Fig. 12(b) is the M1 wire density graph of the 8-b
IntDiv. Obviously, the area of high wire density regions is lower
for the 8-b IntDiv compared to that of the 8-b Mul. As a result,
fewer nets are ripped up in the 8-b IntDiv to build alternative
short wires for critical data signal paths, and therefore, the
execution time is lower. Similarly, comparing Figs. 12(a) and (c),
we observe that the number of rerouted nets in Fig. 12(c) is much
higher than that in Fig. 12(a), which explains the large execution
time of ¢499. The execution time of ¢880 is also considerably
increased due to the large area of high wire density regions, as
shown in Fig. 12(d). These results point to the large effect of the
area of high wire density regions on the execution time of the
postrouting optimization.

Next, we report a full timing analysis of all routing results
for the SFQ circuits in Table IV. The postrouting optimization
reduces the number of hold time violations and increases the
hold slack. In practice, hold time violations in some of Qrouter
routing results could not be fixed, as shown in the sixth column
of this table. Let us consider hold time violations of the 16-b
KSA in the fifth row as an example. There are 32 hold time
violations and the worst hold slack is —10.7 ps. If we want to
fix the path with the worst hold slack, we need to increase the
data signal path length of this path by 1070 um. Adding wires
with such a large length increase is undesirable and impractical

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

1301814 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

Fig. 12. M1 wire density graph after qGDR. (a) 8-b Mul. (b) 8-b IntDiv. (c) c499. (d) c880.

Cin LA , A R R N —

o w‘ e ‘.”‘J;—J : ‘“ H t

al |

5 ;_ﬁ;w;_;' v :ﬁ _—— :

3 S e .l"". i g
bof A LA | ——

) N W—— _

0 100 200 300 400 500 600
Time (ps)
Fig. 13. Simulation result of the 4-b KSA by WRspice.
TABLE IV

TIMING ANALYSIS OF KSAS, ARRAY MULTIPLIERS, INTEGER DIVIDERS, AND C-SERIES CIRCUITS OF ISCAS BENCHMARKS

Circuit Spec. #HoldViolations WorstHoldSlack (ps) Frequency (GHz)
#Cells #Nets Area (mm?) | Qrouter Qrouter* qGDR qGDR* | Qrouter Qrouter* ¢GDR ¢GDR* | Qrouter* qGDR* (Ratio)

4-bit KSA 171 258 1.75 1 0 0 0 -0.7 >0 >0 >0 27.1 26.5 (0.98)
8-bit KSA 534 776 3.87 4 0 4 0 -4.3 >0 =22 >0 29.3 24.6 (0.84)
16-bit KSA 1215 1847 8.88 32 2 7 0 -10.7 -2.6 -2.1 >0 18.7 22.1 (1.18)
32-bit KSA 3753 5311 30.9 24 0 16 0 -6.3 >0 -6.8 >0 12.3 11.9 (0.97)
4-bit Mul 526 771 4.24 4 0 1 0 -4.0 >0 -0.1 >0 21.6 17.9 (0.83)
8-bit Mul 3458 4815 25.1 22 0 8 0 -8.4 >0 -4.3 >0 17.4 17.9 (1.03)
4-bit IntDiv 1092 1636 9.41 17 1 8 0 -7.9 -2.6 -3.1 >0 18.8 17.9 (0.95)
8-bit IntDiv 7363 10555 86.0 74 4 14 0 -12.7 -3.8 =32 >0 7.5 7.1 (0.95)
c432 2291 3500 25.0 25 0 12 0 -7.6 >0 -3.3 >0 11.7 12.5 (1.07)
c499 2091 3045 18.2 12 0 1 0 -8.2 >0 -1.0 >0 12.2 12.6 (1.03)
c880 3649 5129 33.8 26 2 13 0 -8.1 -5.7 -6.1 >0 11.9 11.9 (1.00)
c1355 2130 3124 21.5 12 1 4 0 -4.6 -3.6 -1.8 >0 11.8 12.3 (1.04)
c1908 3706 5255 30.3 29 1 12 0 -1.3 >0 -4.6 >0 10.8 11.5 (1.06)
Average Ratio - - - - - - - - - - - - 0.99

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: POSTROUTING OPTIMIZATION OF THE WORKING CLOCK FREQUENCY OF SINGLE-FLUX-QUANTUM CIRCUITS

in the postrouting step because the addition of such elongated
wires will change the routing result significantly, causing design
convergence problems. A better approach is to insert clockless
cells (e.g., JTLs or splitters) on this path in order to increase the
signal path delay [3], [18], and [22]. As explained before, a cell
insertion changes the circuit netlist and necessitates cell replace-
ment and rerouting, which is undesirable in the postrouting step
(although it has been suggested, see for example [21].)

The seventh and the eleventh column in Table IV suggest
that qGDR can effectively control both hold time violations and
the worst hold slack of all SFQ circuits. The largest number
of the hold time violations is 23 and the worst hold slack is
—6.8. Given the qGDR routing results with low routing con-
gestion, our postrouting optimization framework successfully
creates alternative detour wires and, thus, resolves all hold
time violations, as seen in the twelfth column. Moreover, the
overhead of resolving the violations is rather small as we seen in
Table III. Although removing all hold time violations cannot be
guaranteed, the proposed framework can still effectively resolve
most hold time violations and reduce the worst hold slack of SFQ
routing results. The last two columns in Table IV show that we
achieve comparable working frequencies for the two cases of
the optimized Qrouter and the optimized qGDR.

After the postrouting optimization, we run a WRspice circuit
simulator given the 4-b KSA to confirm the correct functional
behaviors of all interconnected cells at a high frequency. This
circuit performs the operation of A + B + Cin and the corre-
sponding output is Sum and Cout. Considering the signal path
delays and operating margins, we opt to test the circuit at 20-GHz
frequency (which is 075% of the maximum clock frequency we
can run this circuit at). Simulation results are reported in Fig. 13.
We give three sets of inputs, which are as follows:

1) A=1101, B=1100, and Cin=1 (the last digit is the least

significant bit);

2) A=0010, B=0001, and Cin=1;

3) A=1111,B=111, and Cin=1.

By observing the signal at the output, we obtain corresponding
correct output sets: Sum=1010 and Cout=1; Sum=0010 and
Cout=0; and Sum=1111 and Cout=1. The simulation result
points to the feasibility of our framework for building high-
performance SFQ circuits with correct functional behaviors
post-place&route.

VII. CONCLUSION

We present a postrouting optimization framework for large
SFQ circuits fabricated in the MIT-LL SFQS5ee process technol-
ogy. Given only two PTL routing layers, the proposed framework
not only enhances the maximum working frequency of a routed
SFQ circuit but also resolves hold time violations. The frame-
work comprises three stages: machine learning, critical path
optimization, and path rectification. Machine learning efficiently
identifies congested regions in a circuit layout through clustering
algorithms. With the congestion analysis result, critical path
optimization reduces the path length of the critical paths in the
circuit by a ripup-and-reroute process for a working frequency
improvement. Path rectification controls the clock skew of the

1301814

critical paths by an aggressive ripup-and-reroute process and
fixes the hold time violations by building detour paths. Given
13 routing results generated by the state-of-the-art SFQ router,
our postrouting optimization framework improves the working
frequency by 7% on average and resolves all hold time violations
with negligible overheads. The execution time of all 13 routing
result is no more than 3 min, including an 8-b integer divider
with 10 555 nets.

ACKNOWLEDGMENT

The authors would like to thank N. Katam and G. Pasandi
for helpful discussions and providing circuit netlists used in this
article.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of the ODNI, IARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
herein.

REFERENCES

[1] J. A. Delport and C. J. Fourie, “A static timing analysis tool for super-
conducting digital circuit applications,” IEEE Trans. Appl. Supercond.,
vol. 28, no. 5, Aug. 2018, Art. no. 1300705.

[2] S.N. Shahsavani, T.-R. Lin, A. Shafaei, C. J. Fourie, and M. Pedram, “An
integrated row-based cell placement and interconnect synthesis tool for
large SFQ logic circuits,” IEEE Trans. Appl. Supercond., vol. 27, no. 4,
Jun. 2017, Art. no. 1302008.

[3] C. J. Fourie, “Digital superconducting electronics design tools—Status
and roadmap,” IEEE Trans. Appl. Supercond., vol. 28, no. 5, Aug. 2018,
Art. no. 1300412.

[4] S. Nishijima et al., “Superconductivity and the environment: A roadmap,”
Supercond. Sci. Technol., vol. 26, Sep. 2013, Art. no. 113001.

[5] T. V. Duzer and C. W. Turner, Principle of Superconducting Devices and
Circuits, 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.

[6] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A new
Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. Appl. Supercond.,vol. 1,no. 1, pp. 3-28, Mar. 1991.

[7]1 O.A.Mukhanov, “Energy-efficient single flux quantum technology,” IEEE
Trans. Appl. Supercond., vol. 21, no. 3, pp. 760-769, Jun. 2011.

[8] A.F.Kirichenko,I. V. Vernik,J. A. Vivalda, R. T. Hunt, and D. T. Yohannes,
“ERSFQ 8-bit parallel adders as a process benchmark,” IEEE Trans. Appl.
Supercond., vol. 25, no. 3, Jun. 2015, Art. no. 1300505.

[9] D. Kirichenko, S. Sarwana, and A. Kirichenko, “Zero static power dissi-

pation biasing of RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 21,

no. 3, pp. 776-779, Jun. 2011.

D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient

superconducting computing—Power budgets and requirements,” /EEE

Trans. Appl. Supercond., vol. 23, no. 3, Jun. 2013, Art. no. 1701610.

M. H. Volkmann, A. Sahu, C.J. Fourie, and O. A. Mukhanov, “Implemen-

tation of energy efficient single flux quantum digital circuits with sub-aJ/bit

operation,” Supercond. Sci. Technol., vol. 26, no. 1, 2013, Art. no. 015002.

M. H. Volkmann, I. V. Vernik, and O. A. Mukhanov, “Wave-pipelined

eSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 25, no. 3, Jun. 2015,

Art. no. 1301005.

S. K. Tolpygo, “Superconductor digital electronics: Scalability and energy

efficiency issues,” Low Temp. Phys.,vol.42,no. 5, pp. 361-379, May 2016.

V. K. Semenov, Y. A. Polyakov, and S. K. Tolpygo, “AC-biased shift

registers as fabrication process benchmark circuits and flux trapping

diagnostic tool,” IEEE Trans. Appl. Supercond., vol. 27, no. 4, Jun. 2017,

Art. no. 1301409.

C. J. Fourie et al., “ColdFlux superconducting EDA and TCAD tools

project: Overview and progress,” IEEE Trans. Appl. Supercond., vol. 29,

no. 5, Aug. 2019, Art. no. 1300407.

[10]

(11]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

1301814

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

B. Zhang and M. Pedram, “qSTA: A static timing analysis tool for super-
conducting single-flux-quantum circuits,” IEEE Trans. Appl. Supercond.,
vol. 30, no. 5, Aug. 2020, Art. no. 1700309.

K. Gaj, E. G. Friedman, and M. J. Feldman, “Timing of multi-gigahertz
rapid single flux quantum digital circuits,” J. VLSI Signal Process. Syst.
Signal, Image, Video Technol., vol. 16, no. 2/3, pp. 247-276, 1997.

K. Takagi, Y. Ito, S. Takeshima, M. Tanaka, and N. Takagi, “Layout-driven
skewed clock tree synthesis for superconducting SFQ circuits,” /EICE
Trans. Electron., vol. E94-C, pp. 288-295, Mar. 2011.

Y. Tukel, A. Bozbey, and C. A. Tunc, “Development of an optimization
tool for RSFQ digital cell library using particle swarm,” IEEE Trans. Appl.
Supercond., vol. 23, no. 3, Jun. 2013, Art. no. 1700805.

T.-R. Lin, T. Edwards, and M. Pedram, “qGDR: A via minimization
oriented routing tool for large-scale superconductive single-flux-quantum
circuits,” IEEE Trans. Appl. Supercond., vol. 29, no. 7, Oct. 2019,
Art. no. 1303412.

M. Tanaka et al., “Automated passive-transmission-line routing tool for
single-flux-quantum circuits based on A* algorithm,” IEICE Trans. Elec-
tron., vol. E93.C, no. 4, pp. 435-439, Apr. 2010.

N. Kito, K. Takagi, and N. Takagi, “Automatic wire-routing of SFQ digital
circuits considering wire-length matching,” IEEE Trans. Appl. Supercond.,
vol. 26, no. 3, Apr. 2016, Art. no. 1300305.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc. 2nd
Int. Conf. Knowl. Discovery Data, Aug. 1996, pp. 226-231.

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

J. Kleinberg and E. Tardos, Algorithm Design. Reading, MA, USA:
Addison-Wesley, 2005.

W. S. Scott and J. K. Ousterhout, “Plowing: Interactive stretching and
compaction in magic,” in Proc. Des. Autom. Conf., Jun. 1984, pp. 166—-172.
S. N. Shahsavani and M. Pedram, “A minimum-skew clock tree synthesis
algorithm for single flux quantum logic circuits,” IEEE Trans. Appl.
Supercond., vol. 29, no. 8, Dec. 2019, Art. no. 1303513.

S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, L. M. Johnson, M. A. Gouker,
and W. D. Oliver, “Fabrication process and properties of fully-planarized
deep-submicro Nb/Al-AlO,/Nb Josephson junctions for VLSI circuits,”
IEEE Trans. Appl. Supercond., vol. 25, no. 3, Jun. 2015, Art. no. 1101312.
T. Jabbari, G. Krylov, S. Whiteley, E. Mlinar, J. Kawa, and E. G. Friedman,
“Interconnect routing for large-scale RSFQ circuits,” IEEE Trans. Appl.
Supercond., vol. 29, no. 5, Aug. 2019, Art. no. 1102805.

H. Suzuki, S. Nagasawa, K. Miyahara, and Y. Enomoto, “Characteristics
of driver and receiver circuits with a passive transmission line in RSFQ
circuits,” IEEE Trans. Appl. Supercond., vol. 10, no. 3, pp. 1637-1641,
Sep. 2000.

G Pasandi and M. Pedram, “A dynamic programming-based, path balanc-
ing technology mapping algorithm targeting area minimization,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des., Nov. 2019, pp. 1-8.
“Open circuit design,” Aug. 2016. [Online]. Available:
opencircuitdesign.com/qrouter/index.html

http://

Authorized licensed use limited to: University of Southern California. Downloaded on May 31,2021 at 16:52:57 UTC from IEEE Xplore. Restrictions apply.

http://opencircuitdesign.com/qrouter/index.html

