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Sub-Cycle Dynamic Phasors With Adjustable
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Abstract—We extend in several directions the study of our fast
sparse alternative to the standard (FFT-based) evaluation of dy-
namic phasors. We present analysis for an arbitrary shift be-
tween the waveform samples used to construct sub-cycle dynamic
phasors. Next, we show that the transient response of sub-cycle
dynamic power metrics can be improved by using a small num-
ber of waveform samples and adjusting the uniform inter-sample
shift. Our real-life examples demonstrate that reduction of the
inter-sample shift can be quite effective in the presence of fast
transients (wide-band in frequency). We use a synthetic example
to demonstrate that a metric obtained from a sub-cycle scheme
provides surprisingly accurate information about the duration and
onset-time of a transient. We also identify a range of shift values for
which the steady-state error remains near-optimal, and we derive
conditions for a superior performance for slow transients. Finally,
our results suggest that in practical real-time implementations it
may be advantageous to calculate at least two sets of phasors to
cover both slow and fast transients: the computational cost of such
a scheme is still significantly lower than that of a standard full-cycle
calculation.

Index Terms—Structured sparse Fourier transform, sub-cycle,
dynamic phasors, dynamic power metrics, fast power system
transients, slow power system transients.

I. INTRODUCTION

PHASOR Measurement Units (PMUs) are an example of
the new generation of high-bandwidth sensor that holds

the promise to enable operation of future hybrid energy grids
combining inverter-connected and conventional electromechan-
ical sources. One novel aspect that such sensors bring into AC
grids is the generation of large, continuous data streams. For
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example, a typical PMU generates a phasor once every cycle
of the fundamental, yielding 100 Gb a year [1] of data. There
are likely more than 10,000 PMUs installed today [2] producing
more that 1,000 Tb every year. For certain detailed analyses of
transients, it would be desirable to record the input data into
PMUs, which would result in another increase of more than two
orders of magnitude, as the sampling frequency is typically of
the order of 10 kHz [3].

Pre-processing and possible compression of the input- and
output-data sets for PMUs is thus a growing research endeavor.
The goal is to retain advantages of fast sampling, such as precise
and timely detection of events, while reducing the data set by
pruning away the less-relevant content. A general real-time data
compression is applied in [4] to wide-area measurement system,
while a tailored compressed sensing algorithm is applied to PMU
data in [5]. The principal component analysis (PCA) is tested
on PMU data in [6], while data streaming aspects are explored
and quantified in [2].

A pertinent body of theoretical work is known in the literature
as sparse Fourier Transform [7]. When analyzing large data
sets, the sparse Fourier transform (SFT) computes a compressed
Fourier transform from only a small subset of the input data. It
turns out that our approach introduced in [8] can be described as
a highly structured SFT. Our method leverages the strong prior
information about the nominal fundamental frequency ω0, and
the likely harmonic content of energy system waveforms (e.g.,
odd waveforms, near absence of triplen harmonics), and uses it to
devise algorithms that are simpler and computationally cheaper.

The key idea here is that using the (very inexpensive) sub-
cycle scheme as a front end processor that facilitates reduced
storage. In other words, instead of storing many full-cycle
phasors, we propose to store a few sub-cycle phasors or, alterna-
tively, a few sub-cycle dynamic power quality metrics (DPQMs).
Our algorithms achieve a major reduction of computational
cost, as compared with both SFT (which is not designed to
be dynamic), and full-cycle (which uses a large set −128 to
256 samples per cycle). In contrast, we only use a few samples
at each time instant to evaluate dynamic sub-cycle phasors. In
addition, the dynamic phasors and sub-cycle DPQMs can prove
useful for detecting, classifying and monitoring faults.

While this paper is conceptually in the same vein as [8],
it extends it in several key ways: (1) We present analysis for
an arbitrary shift Δ between the M waveform samples used
to construct sub-cycle dynamic phasors. The scheme presented
in [8] relied on the special choice Δ = T

2 M (where T = 2π
ω0

),
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which ensures low steady-state error, and induces a Parseval
relation between waveform samples and sub-cycle dynamic
phasors. (2) We show in this paper that the transient response of
sub-cycle dynamic power metrics can be improved by reducing

the value of the normalized shift ξ
�
= Δ/T towards 1

4 M , and
using a small number of waveform samples. (3) Our real-life
examples demonstrate that reduction of the normalized shift
ξ can be quite effective in the presence of short transients (fast,
wide-band in frequency): the N -metric (derived in Section VI
from power flows, i.e., nonlinear in terms of voltage and cur-
rent phasors) obtained from a 4-sample sub-cycle scheme with
ξ = 1

16 provides accurate information about the duration and
onset-time of a transient. (4) We identify a range of ξ values for
which steady-state error remains near-optimal, and (5) We show
that settingM = 8 and ξ = 1

2 M results in excellent performance
for slow transients. Taken together, our results suggest that in
practical real-time implementations it may be advantageous to
calculate at least two sets of phasors to cover the possibility
of both slow and fast transients. Given the low cost of each
calculation, the overall computational effort is still significantly
below that of full-cycle calculations, while providing improved
metrics for various classes of transients.

The rest of the paper is organized as follows: in Section II
we introduce sub-cycle dynamic phasors for arbitrarily-shifted
waveform samples; in Section III we analyze the uniform-shift
sample pattern, and in Section IV we provide conditions for
orthogonality of the waveform-to-phasor map. In Section V we
present some relevant dynamic power quality metrics, and in
Section VI we use real-life transient examples to illustrate the
tradeoff between accuracy and agility provided by adjusting the
inter-sample shift Δ.

II. SUB-CYCLE DYNAMIC PHASORS

In general, we consider a set of M arbitrarily-spaced
polyphase (i.e., 1×m vector) samples, viz.,

{
x(t) ; x(t−Δ1) ; . . . ; x(t−ΔM−1)

}

whereΔ1 < Δ2 < . . . < ΔM−1. These include the most recent
waveform sample x(t), as well as several previous (stored)
samples, located at the time instants t−Δ1, t−Δ2, etc.
We use these samples to generate a set of L polyphase pha-
sors with harmonic indices k1, k2, . . . , kL. As in [8], we
propose to use the sample matching constraint x(t−Δi) =√
2
∑L

�=1 �{X̂k�
(t) ejk�ω0(t−Δi)

}
, namely,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(t)

x(t−Δ1)

x(t−Δ2)

...

...

x(t−ΔM−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

√
M

2
WM

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̂k1
(t) ejk1ω0t

...

X̂kL
(t) ejkLω0t

X̂∗
k1
(t) e−jk1ω0t

...

X̂∗
kL

(t) e−jkLω0t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

as an implicit characterization of the polyphase dynamic sub-
cycle phasors { X̂k1

(t), X̂k2
(t), . . . X̂kL

(t) }. Here WM is

a constant M × 2 L matrix, viz.,

WM
�
=
[
ψk1

ψk2
. . . ψkL

|ψ∗
k1

ψ∗
k2

. . . ψ∗
kL

]
(2a)

with columns given by

ψk =
1√
M

[
1 e−jkω0Δ1 e−jkω0Δ2 . . . e−jkω0ΔM−1

]�

(2b)
We use the superscript � to denote transposition, while ∗ denotes
conjugation without transposition. This formulation relies on
two sets of design parameters: the set of waveform time-shifts

Δ
�
= {Δ1,Δ2, . . . ,ΔM−1} and the set of harmonic indices

S �
= {k1, k2, . . . , kL}. Together, these parameter sets deter-

mine the properties of the sub-cycle dynamic phasors X̂k(t)
and of the associated power metrics.

The set of equations (1) has a unique solution for the phasors
{X̂k ; k ∈ S} only when M ≥ 2 L, and WM has full column
rank. However, since transient performance always improves
when M is decreased (as we demonstrate in Section VI) we
propose to use in the sequelM = 2 L. This choice also reduces
implementation complexity (i.e., minimal number of waveform
samples is used for a given L). Assuming that Δ and S have
been chosen to make the square matrix WM non-singular, we
obtain the explicit expression

⎛
⎜⎜⎜⎜⎜⎝

X̂k1
(t) ejk1ω0t

X̂k2
(t) ejk2ω0t

...

X̂kL
(t) ejkLω0t

⎞
⎟⎟⎟⎟⎟⎠

=
1√
L

[
IL 0L

]
W−1

M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(t)

x(t−Δ1)

x(t−Δ2)

...

...

x(t−ΔM−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3a)

This waveform-to-phasor map is, in fact, a linear-time-invariant
system, with a single (polyphase) input x(t) and L (polyphase)
outputs. Notice that each phase of the row vector x(t) is mapped
into its own phasor (i.e. there is no coupling between phases),
and the corresponding set of filters is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hk1
(s)

Hk2
(s)

...

...

HkL
(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1√
L

[IL 0L] W−1
M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

e−s Δ1

e−s Δ2

...

e−s ΔM−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3b)

In other words, for every k ∈ S, the filter Hk(s) maps x(t)

into X̂k(t) e
jkω0t (see Fig. 1). This property of Hk(s) is a

consequence of the harmonics-blocking property.
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Fig. 1. Filtering interpretation of the waveform-to-phasor map (3a).

Theorem 2.1 (Harmonics-blocking property): Consider the
transfer function Hk(s) defined by (3b), for some k ∈ S. The
corresponding frequency response Hk(jω) satisfies the con-
straints, for every � ∈ S.

Hk(j�ω0) =

{
0 � 	= k
√
2 � = k

(4a)

Hk(−j�ω0) = 0 (4b)

Proof: see Appendix. �
In summary, for every k ∈ S , the filter Hk(s) passes the har-
monic k, blocks the harmonic −k, and blocks all ±� harmonics
for every � ∈ S , � 	= k.

Consequently, when S matches the harmonic content of a
periodic x(t), namely, x(t) =

∑
�∈S

√
2�{X� e

jω0t}, the re-
sulting sub-cycle phasors match perfectly with the true phasors
contained in x(t), i.e., they satisfy X̂k(t) = Xk. However, if the
input waveform x(t) contains harmonics that do not belong to
S, the filter will pass each such harmonic, say r /∈ S , with a gain
of Hk(jr ω0). The resulting sub-cycle phasor will be given by
the (passband) expression

X̂k(t) e
jkω0t = Xk e

jkω0t

√
2

2

+
∑
r/∈S

[
Hk(jr ω0) Xr e

jrω0t+Hk(−jr ω0) X
∗
r e

−jrω0t
]

(5)

Clearly, the average value of X̂k(t) is precisely Xk, while
its instantaneous value fluctuates around this average. Thus,
increasing the size of the harmonic index set S, which reduces
the number of spurious harmonics, results in lowering the level
of X̂k(t) fluctuation, at the expense of an increased implemen-
tation cost. This steady-state fluctuation of X̂k(t), and its effect
on dynamic power metrics, are discussed in further detail in
Section III.

III. UNIFORM-SHIFT SAMPLE PATTERN

The complexity and implementation cost of the general ex-
pression (3a) can be significantly reduced by using uniformly-
shifted waveform samples, namely,

Δi = iΔ, i = 0, 1, 2, . . . ,M − 1 (6)

with the inter-sample shift Δ used as a design parameter. Our
interest in improving the transient characteristics of the sub-
cycle phasors X̂k(t) implies a preference for small values of
Δ: we will be primarily interested in the range 0 < Δ ≤ T

2 M ,
whereT = 2π

ω0
, as defined in Section I. The uniform-shift pattern

(6) makes WM into a Vandermonde matrix: its columns are

given by

ψk =
1√
M

[
1 αk α2

k . . . αM−1
k

]�
(7)

where αk
�
= e−jk2πξ, with ξ

�
= Δ

T > 0, a normalized inter-
sample shift. This rectangular Vandermonde matrix is non-
singular if, and only if, its columns are all distinct. This
constraint limits the selection of harmonic indices for S
because:
� When ξ is rational (i.e., ξ = m

D for some integersm andD),
which is always the case in a sampled-data implementation,
the expression (7) for ψk is periodic in k with period D.
Thus the only distinct choices for the parameters αk are
obtained when 0 ≤ k ≤ D − 1.

� In addition, ψ∗
k = ψD−k for every 0 ≤ k ≤ D − 1. To

avoid duplicate columns in WM we must impose the
constraint k + � 	= D for every k ∈ S and every � ∈ S
(including the case k = �).

Choices of {S, ξ} that results in a non-singular WM will be
called feasible.

Since typical power system (voltage and current) waveforms
contain primarily odd harmonics, it makes sense to choose S as
a subset (of size L) of the odd harmonic indices in the range
[0 D − 1], subject to the constraint that for every k ∈ S, the
complementary value D − k cannot be included in S . In
addition, the index set S should always include the fundamental
harmonic. There is a limited number of such choices, which
we call primary. For instance consider the case M = 4, with
the special choice ξ = 1

2 M , so that D = 2 M = 8, and the
collection of possible (odd) index choices is {1, 3, 5, 7}. The set
S = {k1, k2} is constructed by selecting two of these, subject
to the constraint k1 + k2 	= 8. Thus the only feasible primary
choices for S are {1, 3} or {1, 5}.

The transfer function Hk(s) associated with a uniform-shift
pattern is a polynomial in e−sΔ (recall (3b)), with roots specified
by Theorem 2.1. This observation leads to compact explicit
expressions for both Hk(s) and Hk(jω).

Theorem 3.1 (Polynomial property): When Δi = iΔ, the
transfer function Hk(s) is a polynomial of degree M − 1 in
e−sΔ (for every k ∈ S), viz.,

Hk(s) = Ck (1− e−jkω0Δ e−sΔ)

×
∏

�∈S, � 	=k

(
1− ej�ω0Δ e−sΔ

) (
1− e−j�ω0Δ e−sΔ

)

(8a)

where the value of the scaling coefficient Ck can be deter-
mined from the constraintHk(jkω0) =

√
2. The corresponding

frequency response is

Hk(jω) =
√
2 e−j( ω

ω0
−k)(M−1)πξ

× sin( ω
ω0

+ k)πξ

sin(2 kπξ)

∏
�∈S, � 	=k

sin( ω
ω0

+ �)πξ

sin(�+ k)πξ
· sin(

ω
ω0

− �)πξ

sin(�− k)πξ

(8b)

where ξ
�
= Δ

T is the normalized delay parameter.
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Proof: see Appendix. �
Corollary: The group-delay associated with Hk(jω) is con-

stant and proportional to ξ (equivalently to Δ), viz.,

group-delay
�
= − d

dω
argHk(jω) = ξ

(
M − 1

2

)
T (9)

�
It is evident from (5) that the sub-cycle phasor X̂k(t) fluctu-

ates in steady-state around its true value Xk. The mean-square
level of this fluctuation is given by

1

T

∫ T

0

∣∣ X̂k(t)−Xk

∣∣2 dt

=
∑
r/∈S

[ |Hk(jr ω0) |2 + |Hk(−jr ω0 |2
]

2

∣∣Xr

∣∣2 (10a)

where (recall (8b))
∣∣Hk(jrω0)

∣∣

=
√
2
sin(r + k)πξ

sin(2πk ξ)

∏
�∈S, � 	=k

sin(r + �)πξ sin(r − �)πξ

sin(�+ k)πξ sin(�− k)πξ

(10b)

Thus, the level of fluctuation depends on the value of ξ, the
selection of the harmonic index set S, and the magnitudes
|Xr| of the spurious harmonics of x(t), i.e., those harmonics
that are excluded from S. Since the group-delay of Hk(jω) is
Δ
(
M−1
2

)
= ξ (M−1)T

2 , the expression (10b) suggests that ξ can
be used as a design parameter that controls a tradeoff between
transient response and steady-state error (= level of fluctuation):
as ξ increases from zero, the group-delay of Hk(jω) increases
(linearly in ξ), while the rms fluctuation tends to decrease (see,
e.g., Fig. 2).

IV. ORTHOGONAL WAVEFORM-TO-PHASOR MAP

A particularly simple waveform-to-phasor map is obtained
when the square matrix WM is orthogonal, namely W−1

M =
WH

M . Under orthogonality, the expression (3b) reduces to

Hk(s) =
1√
L

ψH
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

e−sΔ

e−2sΔ

...

e−s (M−1)Δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(11)

This orthogonal waveform-to-phasor map was discussed in de-
tail in [8], where we setΔ = T

2 M or, equivalently, ξ = 1
2 M . The

following theorem establishes the fact that orthogonality ofWM

cannot be achieved when 0 < ξ < 1
2 M .

Theorem 4.1 (Orthogonal WM ): When the harmonic index
set S consists of odd harmonics, including the fundamental har-

monic, the matrix WM is orthogonal for ξ = ξorth(M)
�
= 1

2 M ,
but is never orthogonal for 0 < ξ < ξorth(M).

Proof: see Appendix. �

Setting Δ = T
2 M in (11) results in a very simple expression

forHk(jω), withHk(jrω0) = 0 for most odd r values, as shown
in the following Theorem.

Theorem 4.2 (Special Hk(s)): Consider the transfer func-
tion Hk(s) defined by (11). A more compact expression for
the frequency response Hk(jω), for any k ∈ S , is

Hk(jω) =
√
2

sin( ω
ω0

− k) π
2

M sin( ω
ω0

− k) π
2 M

e−j( ω
ω0

−k) (M−1
M )π

2 (12)

Proof: see Appendix.
This expression for the frequency response is periodic, with

period 2 M , and results in |Hk(jrω0)| = 0 for all odd values
of r, except those that are periodic copies of k. We conclude
that orthogonality results in suppression of many odd harmonics,
significantly beyond those specified in Theorem 2.1.

Theorems 4.1 and 4.2 underscore the basic dichotomy in
selecting the value of ξ: choosing ξ = 1

2 M ≡ ξorth(M) makes
WM orthogonal, inducing a Parseval property (see discussion
in Section V), and it also results in reduced steady-state error.
This is so because, for most odd r values

∣∣Hk(jrω0)
∣∣ = 0, as

discussed above, leading to a significant reduction in steady-state
fluctuation of sub-cycle phasors. On the other hand, choosing a
smaller value for ξ is desirable in applications where achieving
a fast transient response is the primary objective, and a mod-
erate steady-state error can be tolerated. The tradeoff between
transient response and steady-state error is discussed in further
detail in Section VI.

V. DYNAMIC POWER QUALITY METRICS (DPQMS)

We determine the sub-cycle (polyphase) voltage phasors
{V̂k(t); k ∈ S} from an acquired m-phase voltage waveform
v(t), and similarly for the current waveform i(t). In order to
facilitate compact presentation of our results, we now introduce
the 1×mL phasor arrays

V(t)
�
=
[
V̂k1

(t) V̂k2
(t) . . . V̂kL

(t)
]

I(t)
�
=
[
Îk1

(t) Îk2
(t) . . . ÎkL

(t)
]

(13)

where {V̂ki
(t); 1 ≤ i ≤ L} are the sub-cycle (polyphase) volt-

age phasors and {Îki
(t); 1 ≤ i ≤ L} are the sub-cycle current

phasors (recall that S = {k1, k2, . . . , kL}).
Motivated by the definitions of real power and rms voltage

and current in terms of full-cycle phasors (see, e.g., [9]–[11])
we have introduced in [8] their sub-cycle counterparts, viz.,

P (t)
�
= �{V(t) IH(t)

}
=
∑
k∈S

�
{
V̂k(t) Î

H
k (t)

}
(14a)

V 2
rms(t)

�
= V(t)VH(t) =

∑
k∈S

V̂k(t) V̂
H

k (t) (14b)

I2rms(t)
�
= I(t) IH(t) =

∑
k∈S

Îk(t) Î
H
k (t) (14c)

and defined the sub-cycle apparent power

S(t)
�
= Vrms(t) Irms(t)
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A statistics-based approach was used in [8] to construct a 4-
component decomposition of S2(t), viz.,

S2(t) = P 2(t) +N2
g (t) +Q2(t) +N2

b (t) (15)

A detailed derivation is provided in [8]. The key step is the
introduction of the equivalent load admittance

I(t)

V(t)
= G(t)− jB(t)

where the division of I(t) over V(t) is an element-by-element
operation (equivalent to “./” division in MATLAB). The mean
and variance of the 1×mL parameter sets G(t) and B(t) are
then used to determine the four components in (15). In particular,
the metric Ng(t) (resp. Nb(t)) captures the variation of the
elements of G(t) (resp. elements of B(t)) across harmonics
and phases. A similar approach was used in the full-cycle case to
obtain a 7-component decomposition of apparent power [11].

In the special case ξ = 1
2 M ≡ ξorth(M) the matrix WM is

orthogonal (recall Theorem 4.1), which induces a Parseval-type
relation between the time-domain waveform samples and the
associated sub-cycle phasors: when WM WH

M = I , we obtain
from (1) the identity

1

2
tr

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V̂k1
(t) ejk1ω0t

...

V̂kL
(t) ejkLω0t

V̂ ∗
k1
(t) e−jk1ω0t

...

V̂ ∗
kL

(t) e−jkLω0t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Îk1
(t) ejk1ω0t

...

ÎkL
(t) ejkLω0t

Î∗k1
(t) e−jk1ω0t

...

Î∗kL
(t) e−jkLω0t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1

M
tr

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v(t)

v(t−Δ1)

...

...

v(t−ΔM−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

i(t)

i(t−Δ1)

...

...

i(t−ΔM−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

where tr { } denotes the trace of a square matrix. The
left-hand-side of this identity reduces to the expression∑

k∈S �{ V̂k(t) ÎH
k (t) } which, by definition, is the sub-cycle

power P (t). The right-hand-side of the same identity yields
the time-averaged expression 1

M

∑M−1
i=0 v(t−Δi) i

�(t−Δi).
Recalling that the product p(t) = v(t)i�(t) is the instantaneous
power, we conclude that, under the orthogonality constraint,

P (t)
�
=
∑
k∈S

�{ V̂k(t) ÎH
k (t) } =

1

M

M−1∑
i=0

p(t−Δi) (17)

In other words, the phasor-based sub-cycle power P (t) can also
be determined by averaging the instantaneous power samples
{ p(t−Δi) ; 0 ≤ i ≤M − 1 }. Similar Parseval relations hold

for Vrms(t) and Irms(t), viz.,

V 2
rms(t)

�
=
∑
k∈S

V̂k(t) V̂
H
k (t) =

1

M

∑
v(t−Δi) v

�(t−Δi)

I2rms(t)
�
=
∑
k∈S

Îk(t) Î
H
k (t) =

1

M

∑
i(t−Δi) i

�(t−Δi)

These results generalize to any value of M the Parseval relations
that were established in [8] for the special case M = 4.

The special choice ξ = 1
2 M results in good performance

in the presence of slow-transients (as well as in steady-state
operation): see Example 1 in the following section. However,
accurate estimation of the duration and moment of onset of
fast wide-band transients requires a reduced value of ξ, as
we demonstrate in Examples 2 and 3 in the following section.

VI. TRADEOFF BETWEEN ACCURACY AND AGILITY

We have observed in Section III that the presence of spuri-
ous harmonics causes steady-state fluctuations in all sub-cycle
phasors, which tend to increase in strength as the value of ξ de-
creases away from ξorth(M) ≡ 1

2 M . The sub-cycle real power
Psc(t) exhibits similar behavior, since it inherits the steady-state
fluctuations of the (sub-cycle) V̂k(t) and Îk(t) phasors. We
can use the dependence on ξ of the overall (rms) steady-state
error

ΔPss
�
=

√〈(
Psc(t)− Pfc,ss

)2〉

to characterize the tradeoff between accuracy (=steady-state
error) and agility (=transient response) of a chosen sub-cycle
scheme, because both the group-delay and the bandwidth of the
sub-cycle waveform-to-phasor map Hk(s) are controlled by
the value of ξ. Here we use the notation Psc(t) for the sub-
cycle real power to distinguish it from its full-cycle counterpart,
which we denote by Pfc(t). Also, Pfc,ss =

∑∞
k=1 Vk I

H
k is the

standard (full-cycle) real power in steady-state operation, and
〈 · 〉 denotes averaging over a single cycle.

Our ongoing empirical studies demonstrate that increasing
ξ above 1

2 M always results in performance degradation.
Thus we consider in the sequel only the range 0 < ξ ≤ 1

2 M .
The optimal value of ΔPss/Pfc,ss, obtained using M = 4 and
the best S-choice for each value of ξ, is shown in Fig. 2 for
a synthetic example involving a balanced 3-phase RL load,
fed by a balanced voltage containing the 1-st, 5-th, 7-th and
13-th harmonics. We observe that ΔPss tends to increase as
the value of ξ is reduced from ξorth(M) ≡ 1

2 M towards
zero. However, the change in ΔPss is relatively small over the
range 0.06 < ξ < 0.125 ≡ ξorth(4): this observation suggests
that ξ can be reduced by a factor of 2 (at least) without incurring
a significant increase in ΔPss. This is desirable in applications
where the primary concern is a fast transient response, which
can be achieved by reducing the value of ξ.

We illustrate the versatility of our sub-cycle power quality
metrics via one synthetic and two real-life examples: (i) an
extended (15-cycle) slowly-evolving sub-station transient, (ii)
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Fig. 2. Optimal ΔPss/Pfc,ss as a function of ξ.

a short (single-cycle) wide-band capacitor switching transient,
and (iii) a synthetic injected short transient.

Example 1 (Sub-station transient): This real-world transient
was obtained from the collection of data sets recorded at the
20MVA Butantã distribution sub-station belonging to the AES
Eletropaulo utility in Brazil. The sampling frequency of the
recorded transient waveforms is 960 Hz, i.e., 16 samples/cycle.
To facilitate calculation of DPQMs, we resampled voltage and
current waveforms digitally, at 256 samples/cycle.

This extended transient event involves a relatively short
voltage sag in phase “a,” and moderate/long voltage sags in
phases “b” and “c”. These result in current surges of similar
lengths, apparently leading to a shutdown of the sub-station.
The resulting waveforms are shown in Fig. 3. We notice that
the sub-cycle Psc(t) waveforms for ξ = ξorth(M) match their
full-cycle counterpart in the steady-state interval that precedes
the transient. Both waveforms behave similarly also within the
transient interval, and the same observation holds for the other
three DPQMs. Thus the main advantage of the sub-cycle scheme
in this case is the significant reduction in computational cost, as
compared with the full-cycle approach: see [8] for a detailed cost
comparison between the sub-cycle and the full-cycle schemes.
However, in general, sub-cycle metrics provide more accurate
information about the transient, as we demonstrate in the fol-
lowing two examples.

Example 2 (Wind farm oscillatory transient [12]): This real-
world transient case was provided by the National Renewable
Energy Laboratory (NREL), and collected from the Trent Mesa
Wind Farm in Texas. A short (≈one cycle) oscillatory transient is
caused by switching in a bank of shunt capacitors. The sampling
frequency of the recorded transient waveforms is 7.676 kHz,
i.e., 127.9 samples/cycle [12]. As explained in Example 1, we
resampled all waveforms at the rate of 256 samples/cycle.

The resulting dynamic power waveforms are shown in Fig. 4.
The sub-cycle dynamic power Psc(t) matches its full-cycle
counterpart Pfc(t) in the steady-state interval preceding the
onset of the transient (i.e., t ≤ 0.031 sec). However, these two

Fig. 3. Example 1: P -metric waveforms.

Fig. 4. Example 2: P -metric waveforms.

power metrics differ greatly within the transient interval (i.e.,
in 0.031 sec ≤ t ≤ 0.048 sec): the sub-cycle Psc(t) exhibits
a sizeable transient component, comparable to its steady-state
component, while the transient component of the full-cycle
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Fig. 5. Example 2: N -metric waveforms.

Fig. 6. Example 3: N -metric waveforms.

Pfc(t) is barely perceptible (notice the difference in the vertical
scale used in the top plot of Fig. 4).

Since none of the metrics in Fig. 4 provides accurate informa-
tion about the duration of the transient, we propose to use instead

the combinedN -metricN(t)
�
=
√
N2

g (t) +N2
b (t), which can

be viewed as the sub-cycle equivalent of Budeanu’s “distortion
power.” We note that the full-cycle Nfc(t) tends to exaggerate
the duration of the transient interval (Fig. 5). In contrast, the
sub-cycle Nsc(t), obtained with S = {1, 5} and ξ = 1

16 ≡
1
2 ξorth(4), identifies two distinct transient sub-intervals: (i) a
strong transient in 0.031 sec ≤ t ≤ 0.040 sec, and (ii) a decay-
ing weaker transient in 0.040 sec ≤ t ≤ 0.048 sec. The same
two sub-intervals can also be discerned from the bottom plot in
Fig. 4.

Example 3 (Synthetic short transient [13]): This synthetic
data-set was generated by injecting a decaying 15-th harmonic
component, limited to the short time-interval 0.03 sec ≤ t ≤
0.035 sec, into a steady-state waveform consisting of an unbal-
anced fundamental, and a much smaller 5-th harmonic (about

10% of the fundamental). The sampling frequency of the gener-
ated waveforms is 15.36 kHz, i.e., 256 samples/cycle.

Again we note that in this synthetic example the full-cycle
Nfc(t) greatly exaggerates the duration of the transient interval
(Fig. 6). In contrast, the sub-cycle Nsc(t), obtained with
S = {1, 5} and ξ = 1

16 ≡ 1
2 ξorth(4), identifies correctly both

the duration and the time of onset of the injected transient.
Notice also that the response to the onset of a fast (wide-band)
transient is almost instantaneous: although the group-delay in
this example is about 0.003 sec, the response in Fig. 6, for both
full-cycle and sub-cycle, shows no such delay. This property of
the sub-cycle N -metric could be very desirable in protection
applications.

VII. CONCLUDING REMARKS

We have extended the sub-cycle approach of [8] to allow an ar-
bitrary shift Δ between the waveform samples used to construct
sub-cycle dynamic phasors. The scheme presented in [8] relied
on the special choice ξ = 1

2 M of the normalized shift, which
ensures low steady-state error, and induces a Parseval relation
between waveform samples and sub-cycle dynamic phasors. We
have shown, however, that the transient response of sub-cycle
dynamic power metrics can be improved by reducing the value of
ξ towards 1

4 M , and using fewer waveform samples. Our real-life
examples demonstrate that adjustment of the normalized shift
ξ can be very effective in the presence of short wide-band
transients: the N -metric obtained from a 4-sample sub-cycle
scheme with ξ = 1

16 provides very accurate information about
the duration and onset-time of a transient. We have also derived
a range of ξ-values for which the steady-state error remains
near-optimal, and demonstrated that excellent performance for
slow transients (and in steady-state) is achieved when M = 8
and ξ = 1

2 M .
Taken together, our results suggest that in practical real-time

implementations it may be advantageous to calculate at least
two sets of phasors to adequately cover slow and fast transients.
Given the low cost of each sub-cycle calculation, the overall
computational effort of such a scheme is still significantly below
that of full-cycle calculations, while providing improved metrics
for various classes of transients. The approach presented here
also has advantages vis-a-vis Akagi-type instantaneous power
metrics and their derivatives in terms of a comparable cost, but
much lower steady-state fluctuation; we plan to explore and
quantify this aspect in our future work.

APPENDIX

Proof of Theorem 2.1: Starting with the definition (3b), we
evaluate the frequency response Hki

(jω) at the (harmonic)
frequency ω = �ω0, for any harmonic index � ∈ S, viz.,

Hki
(j�ω0) =

1√
L
ei W−1

M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

e−j�ω0 Δ1

e−j�ω0 Δ2

...

e−j�ω0 ΔM−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, 1 ≤ i ≤ L
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where ei
�
= [ 0 . . . 0 1︸ ︷︷ ︸

i

0 . . . 0 ]. We observe (from (2)) that

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

e−j�ω0 Δ1

e−j�ω0 Δ2

...

e−j�ω0 ΔM−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
√
M ψ� =

√
MWM e�j (18)

where � = kj (i.e., � is the j-th harmonic index in S), and thus

Hki
(jkjω0) =

√
M√
L
ei W−1

M WM e�j =
√
2 ei e

�
j =

√
2 δij

Therefore, for every k ∈ S and every � ∈ S , we have the prop-
erty (4a). Similarly, Hki

(−jkj ω0) involves ψ∗
kj

= WM e�j+L

so thatHki
(−jkj ω0) =

√
2 ei e

�
j+L = 0, which establishes the

property (4b).
�

Proof of Theorem 3.1: Setting Δi = iΔ and esΔ = ζ in
(3b) allows us to interpret Hk(s) as a polynomial of degree
M − 1 in ζ−1, viz.,

Hki
(ζ)

�
=

1√
L
ei W−1

M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

ζ−1

ζ−2

...

ζ−(M−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

so that

Hk(s) = Hk(ζ)

∣∣∣∣
ζ=esΔ

(19)

Now, since Hk(j�ω0) = 0 for certain values of � (recall (4)), it
follows that (for every k ∈ S)

Hk(ζ)

∣∣∣∣
ζ=ej�ω0Δ

= 0 (20a)

for the same values of �. Notice that (20a) holds for 2 L− 1 ≡
M − 1 values of �, because
� eq. (4a) holds for the L− 1 distinct values defined by � ∈
S, � 	= k

� eq. (4b) holds for the L distinct values defined by � ∈ S.
Thus the expression (20a) enumerates all M − 1 zeros (=
roots) of the polynomial Hk(ζ). In addition, we have the
constraint

Hk(ζ)

∣∣∣∣
ζ=ejkω0Δ

= Hk(jkω0) =
√
2 (20b)

Since deg Hk(ζ) =M − 1, the constraints (20) provide all the
information needed to obtain an explicit (matrix-free) expression
for the polynomial Hk(ζ), viz.,

Hk(ζ) = Ck (1− e−jkω0Δ ζ−1)

×
∏

�∈S, � 	=k

(1− ej�ω0Δ ζ−1)(1− e−j�ω0Δ ζ−1)

where the value of the scaling coefficient Ck can be determined
from (20b). This establishes the result (8a). In view of (19), it
now follows that (for every k ∈ S)

Hk(jω) = Ck (1− e−jkω0Δ e−jωΔ)

×
∏

�∈S, � 	=k

(1− e−j(ω+�ω0)Δ) (1− e−j(ω−�ω0)Δ)

We can also express the frequency response Hk(jω) in terms
of the normalized shift ξ = Δ

T (so that ω0 Δ = 2πξ) and the
normalized frequency ( ω

ω0
), viz.,

Hk(jω) = Ĉk e−j( ω
ω0

−k) (M−1)πξ sin

(
ω

ω0
+ k

)
πξ

×
∏

�∈S, � 	=k

sin

(
ω

ω0
+ �

)
πξ · sin

(
ω

ω0
− �

)
πξ

with the value of the scaling coefficient Ĉk determined from
(20b), namely

Ĉk =

√
2

sin(2πk ξ)
∏

�∈S, � 	=k sin(k + �)πξ · sin(k − �)πξ

This establishes the result (8b). �
Proof of Theorem 4.1: The matrix WM is orthogonal if (and

only if) every pair of its columns is orthogonal, namely ψH
� ψk =

δk,� and
[
ψ∗
�

]H
ψk = 0 for every k ∈ S and every � ∈ S. It

follows from (7) that

ψH
� ψk =

1

M

M−1∑
i=0

(α∗
� αk)

i =
1

M

1− e−j(k−�)2πMξ

1− e−j(k−�)2πξ

which vanishes for ξ = 1
2 M (when k 	= �) because k − � is

even, and so e−j(k−�)2πMξ| ξ=1/(2 M) = e−j(k−�)π = 1, while
e−j(k−�)2πξ| ξ=1/(2 M) = e−j(k−�)π/M 	= 1. Similarly,

[
ψ∗
�

]H
ψk =

1

M

M−1∑
i=0

(α� αk)
i =

1

M

1− e−j(k+�)2πMξ

1− e−j(k+�)2πξ

which vanishes (for the same reasons) when ξ = 1
2 M , because

k + � is also even. Thus, WM is always orthogonal when
ξ = 1

2 M .
However, when 0 < ξ < 1

2 M , some of the conditions

ψH
� ψk = δk,� and

[
ψ∗
�

]H
ψk = 0 are violated. In particular,

we observe that

[
ψ∗
1

]H
ψ1 =

1

M

M−1∑
i=0

(α1 α1)
i =

1

M

1− e−j4πMξ

1− e−j4πξ
	= 0

because 0 < 4πMξ < 2π, and thus e−j4πMξ 	= 1, leading to
the conclusion that the matrix WM can never be orthogonal for
ξ < 1

2 M .
�

Proof of Theorem 4.2: Using the expression (7) for ψk and
the fact that now α∗

k = ej
kπ
M , the transfer functionHk(s) of (11)
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can be written as

Hk(s) =
1√
L

· 1√
M

M−1∑
i=0

(
ej

kπ
M

)i
e−i sT

2 M

=

√
2

M
·
1−
(
ej

kπ
M e−

sT
2 M

)M

1− ej
kπ
M e−

sT
2 M

Setting s = jω, and using the relation T = 2π
ω0

, we obtain the
expression (12) for the frequency response Hk(jω), viz.,

Hk(jω) =

√
2

M
· 1− ejkπ e−j ω

ω0
π

1− ej
kπ
M e−j ω

Mω0
π

=

√
2

M
· e−j( ω

ω0
−k) π

2

e−j( ω
ω0

−k) π
2 M

· sin( ω
ω0

− k) π
2

sin( ω
ω0

− k) π
2M

�
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to dynamic phasors with application to dynamic power quality metrics,”
IEEE Trans. Power Del., vol. 33, no. 5, pp. 2217–2225, Oct. 2018.
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