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gSSTA: A Statistical Static Timing Analysis Tool for
Superconducting Single-Flux-Quantum Circuits

Bo Zhang

Abstract—Superconducting single flux quantum (SFQ) technol-
ogy is an ultra-high performance and low power technology. The
technology, however, lacks many of the design automation tools
and capabilities that are commonplace in CMOS technology. This
article describes methods to efficiently find the conditional prob-
ability density function (PDF) of the minimum workable clock
period of SFQ circuits in view of manufacturing-induced process
variations and presents gSSTA, a statistical static timing analysis
tool targeting SFQ circuits. Following a grid-based correlation
model, gSSTA represents spatial correlation of SFQ gates at differ-
ent positions with respect to process parameters. By approximating
timing characteristics of SFQ gates in a linear model, gSSTA is able
to estimate the clock period as a normal random variable. Fur-
thermore, process variations that generally result in extra delays
in CMOS circuits can result in functional errors in SFQ circuits.
qSSTA derives the closed form of the conditional PDF of the clock
period under the scenario where all SFQ gates in the circuit work
correctly. Compared to Monte Carlo simulations on look-up tables,
experimental results show that the average percentage errors are
0.89 % for the mean values, 8.04 % for the standard deviation, and
0.61% for the 98-percentile point, whereas the runtime of qSSTA
is 83% faster on average.

Index Terms—Path pruning, single flux quantum (SFQ),
statistical static timing analysis.

1. INTRODUCTION

UPERCONDUCTING single flux quantum (SFQ) technol-

ogy is a promising beyond-CMOS technology, which is
promising to achieve much higher performance and lower power
consumption even compared to 5 nm complementary metal ox-
ide semiconductor (CMOS) technology. Unfortunately, the state
of electronic design automation tools for SFQ circuits far lacks
that of CMOS. It is thus necessary to adopt and appropriately
modify many of the analysis and design optimization tools from
CMOS to SFQ domains.
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Static timing analysis (STA) tools are necessary to enhance
the circuit design and optimization. These tools help determine
the timing parameters of a circuit based on static (closed-form or
lookup table (LUT)-based) models of the gate and interconnect
delays under different process corners. A process corner is
a set of process parameter values that determine the circuit
performance with respect to one figure of merit, e.g., processing
speed, energy efficiency, etc. In this way, they eliminate the
dependency of the circuit timing estimation on input patterns
and thereby avoid expensive dynamic (input pattern-based)
timing analysis done by circuit simulators such as Spice. STA
has many advantages [1], [2], such as exhibiting linear time
complexity with respect to the circuit size and producing
deterministic timing analysis results. The nominal delay of an
SFQ clocked gate is small (in the order of picoseconds) such that
the delay deviation due to process variations can be a significant
percentage of this nominal delay value. The result has been
low accuracy (often hugely pessimistic) estimations done by
corner-based STA tools, which is mainly due to worst-case
estimations of low-probability scenarios.

Statistical static timing analysis (SSTA) has thus emerged as
the standard industry-adopted solution to handle sources of vari-
ability (including manufacturing-induced process variations) by
modeling them as random variables (RVs). The propagation
delays of logic gates, which are typically nonlinear functions
of physical parameters and the context in which they are instan-
tiated, are also modeled as RVs. Using such a formalism, SSTA
then attempts to estimate the PDFs of various circuit timing
parameters like the clock period. However, very few studies [3]
have focused on the development of SSTA for SFQ technology.

The basic gate behaviors in the SFQ technology [4] are
different than those of the CMOS technology. Instead of using
voltage levels, SFQ circuit technology represents logic one with
the presence of a magnetic flux quantum, which is seen as
a voltage pulse whose integral over time yields 2.07 * 10715
mV - ps of magnetic flux). A logic zero is then represented by
the absence of a magnetic flux quantum on a timing window
of interest, T. Generic SFQ gates like AND, OR, XOR, and NOT
are clocked gates, which process their inputs by changing the
states of their internal interferometer and produce their outputs
only in response to a clock pulse. Each SFQ clocked gate is thus
equivalent to a combination of a logical gate and D flip-flop(s) in
CMOS technology. Therefore, the direct application of existing
SSTA to SFQ circuits is not possible. In CMOS circuits, input
patterns that are held steady need not be reapplied, whereas in
SFQ circuits the input patterns have to be reapplied because
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the input patterns are “consumed” after the clock comes in and
resets the internal state of the SFQ logic gate. While this is
true, it is not an effect that we are exploiting in this article, and
hence, our equivalence (which is simply meant to signify the
clock-synchronized output behavior of SFQ gates) holds.

This article further considers that an SFQ clocked gate could
have a functional failure under process variations although it
can work with the nominal design values. The distribution of
the clock period thus becomes a (conditional) RV conditioned
on the case that all SFQ gates in the circuit are working correctly.
This new condition makes the computation of the clock period
distribution for SFQ circuits more complex. On the other hand,
the gate-level deep pipeline nature of SFQ circuits allows us to
use path-oriented timing analysis, which yields higher accuracy
with lower computation time compared to the block-oriented
analysis that is common in CMOS-based circuits.

In this article, we propose a new SSTA method to compute the
clock period distribution of SFQ circuits efficiently. The main
contribution of this article is thus to implement a SSTA tool,
called qSSTA, which have characteristics as follows.

1) Consider functional failure of an SFQ gate under process

variations.

2) Extract linear models for propagation delay calculation

and functional success determination of an SFQ gate.

3) Account for spatial and topological correlations to make

the clock period distribution less pessimistic.

4) Formulate and solve the problem to find the distribution

of the clock period.

5) Efficiently derive the closed form of the PDF of the clock

period for an SFQ circuit.

6) Prune noncritical paths to speed up the computation.

1I. BACKGROUND
A. Circuit Topology

In our design framework, an SFQ circuit is a netlist that
typically connects all SFQ gates by passive transmission lines
(PTLs). Another way to design an SFQ circuit is to connect
all SFQ gates by Josephson transmission lines (JTLs). Straight-
forwardly, a JTL-wiring based SFQ circuit is a particular case
when PTL lengths are O pm. This article assumes PTL is ideal
with a constant propagation velocity of 100 pum/ps. To ensure
the functionality of the SFQ circuit, we must guarantee that
an SFQ clocked gate can successfully capture the signals at
its input ports that are generated by its upstream SFQ clocked
gates. In addition, each SFQ clocked gate must also generate its
output upon arrival of a clock pulse at its clock port. Therefore,
an SFQ circuit can be decomposed into (data) signal paths
and clock paths for timing analysis. A signal path refers to an
interconnection from a source clocked gate to a sink clocked
gate, whereas a clock path refers to an interconnection from
the clock source to an SFQ clocked gate. Because each signal
path has two clocked gates, we call the clock path associated
with the source clocked gate the launch path and the clock path
associated with the sink clocked gate the capture path. A clock
path can serve as the launch path for one signal path and the
capture path for another signal path.
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SFQ clocked gates have a fan-out capability of one. An SFQ
splitter, a combinational gate with a fan-out capability of two, is
thus needed to provide the multiple fan-out capabilities for SFQ
clocked gates. Thus, (data) signal paths and clock paths may
comprise one or more splitters and PTLs. The SFQ technology
follows many of the timing definitions that are commonplace in
the CMOS technology [5] (e.g., setup and hold times, clock-to-Q
propagation delays, clock skew) albeit with some differences. So
although it is possible to develop SSTA for SFQ circuits starting
from the existing SSTA tools for CMOS circuits, a number of
changes and augmentations are required. Because of the gate-
level deep pipeline nature of SFQ circuits, the number of signal
paths in an SFQ circuit is linear in the number of SFQ clocked
gates in the circuit.

Depending on internal methodology to check timing con-
straints, SSTA falls into two categories of SSTA: block-based
SSTA and path-based SSTA. Block-based SSTA computes ar-
rival time of a gate output based on the latest arrival times of
its input signals and delay through the gate, and subsequently
uses this output arrival time for downstream gates, whereas
path-based SSTA computes the arrival times of all signal paths
first and determines the latest arrival time among all such paths
in the end. Compared with block-based SSTA, path-based SSTA
is more accurate because it avoids arrival time approximation of
gate inputs. Because of the linearity of the number of paths in an
SFQ circuit, path-based SSTA is thus the right choice for SFQ
circuits.

B. Setup Time Checks

Path-based SSTA needs to check the setup time constraints
for all signal paths to determine a workable clock period for
the target SFQ circuit. Inequality (1) is the setup time check
for the ith signal path. DP; denotes delay of the data signal from
the source clocked gate to the sink clocked gate of the i-th path,
including the clock-to-output propagation delay of the source
clocked gate. LP; and CP; denote delays of the clock signal
from the clock source to the source clocked gate and to the
sink clocked gate of the ith path, respectively. Moreover, Setup;,
denotes the setup time of the sink clocked gate. Then, we define
SetupCheck; = LP; + DP; — CP; + Setup,. Clearly,

SetupCheck; < T (D)

The optimum clock period T' for a circuit is defined as the
minimum value of the clock period so that setup time checks
for all N signal paths in the circuit are successful. Equivalently,
the optimum clock period 7" is equal to the maximum of all
SetupCheck;.

T = max, SetupCheck;. )
III. PROBLEM FORMULATION
A. Spatial Correlations

Spatial correlations are typically used to capture small
changes of circuit parameters that arise from imprecision and
uncertainties associated with the chip manufacturing processes.
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Chips in both SFQ and CMOS technology are manufactured
layer by layer. Circuits in both SFQ and CMOS technology
are gates connected by metal connections. Those similarities
support the presumption that the spatial correlation model de-
veloped and used successfully in CMOS circuits can also be
used in SFQ circuits. In the SFQ technology, resistances (R),
inductances (L), and areas of Josephson junction (B) are three
critical physical parameters affecting propagation delays. All of
these parameters are subject to manufacturing induced process
variations [6], [7] and are, therefore, modeled as normal RVs
based on the central limit theorem. Therefore, as functions of
R, L, and B, variables DP;, LP;, CP;, Setup,, and even 7" are
all RVs.

Generally, SSTA is a technology-independent technique de-
signed to model parameter variations. Therefore, as a spatial
correlation model, reference [8], which provides a multilevel
quad-tree model, also applies to the SFQ technology. A multi-
level quad-tree model can be extended to partition the die into
nrow rows and ncol columns, resulting in nrow * ncol = m grid
cells. The physical parameter variation within each grid cell
(specified as a percentage change around the nominal value of
the physical parameter) is the same, but this variation value is
possibly different for different grid cells. There are specified
correlation parameters that describe the relationship between
variation sources of any pair of grid cells. Strictly speaking,
the correlation between two physical parameters depends on
the distance of their corresponding logic gates. However, this
distance-based spatial correlation model is computationally ex-
pensive for a large-scale circuit, since we need to consider the
distances of each pair of gates, regardless of whether they are
logically connected or not. The grid-based model is a coarsely
grained version of the distance-based model where two physical
parameters are correlated if their corresponding gates are located
in nearby grid cells. Obviously, the accuracy of the grid-based
spatial correlation model approaches that of its distance-based
counterpart as the number of grid cells approaches the number
of logic gates. The grid-based model is, however, much more
scalable and useful than the distance-based one because of its
bounded complexity (regardless of the number of logic gates in a
circuit which may in tens or even hundreds of thousands of gates,
the 2-D grids that define the spatial correlations may be limited
in size). This bounded model size enables us to statistically
analyze a circuit without running into computational complexity
issues.

The mathematical representation of RVs for R, L, and B can be
explained by an example of four gird cells shown in Fig. 1. AR,
ALj, and AB; denote the normalized process variations of R,
L, and B in the grid cell j (they are specified as a percentage
of the corresponding nominal parameter values). Considering
a resistance R in grid cell 1, its RV is decomposed into a
nominal base value Ry, | and a normalized process variation
component AR; in (3). By applying the central limit theorem,
AR; can be assumed to be a normal RV with a mean 0 and
a standard deviation or. Note that any other resistance R} in
grid cell 1 can also be modeled similarly with its nominal value
R} o 1 and spread AR;. In this article, we assume the process
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Grid 1 Grid 2
AR,, AL}, AB;|AR,, AL,, AB,

Grid 3 Grid 4
ARj;, AL;, AB3| ARy, ALy, ABy

Fig. 1. Example of spatial correlation.

variation will not change during the program execution once a
chip is manufactured.

R? = zom,l(1 + ARl)
R’i) = zom,l(l + ARl)
E(AR)) =0, Var(AR;)=0%

E(Rllt) = gom,h E(quj) = Rzomﬂ' (3)
Considering another resistance Ry = Ry, (1 + ARy) in

grid cell 2, to model the correlation between AR; and ARs,
they are further decomposed into two parts [1], [2]. For example,
ARy is decomposed into a local variation component \/p 0 r 21
and a global variation component /1T — p crZ, where Z1, Zo,
and Z are independent normal RVs in (4). The parameter p
is used to specify the ratio of the local variance over the total
variance. Hence, the covariance and correlation between AR
and AR5 can be easily derived

ARy =\/porZ; + ﬂ oRrZ

ARy = \/porZs+ m OoRr”Z
Cov(ARy,ARy) = [1 —p+pCov(Zy,Zy)] 0%
Cor(AR1,AR2) =1—p+pCor(Zy, Zs). (€))

All process variations can be collected to form a correlated
multivariate normal random vector X with mean value of 0 and
a covariance matrix of X as shown in (5). X; is the jth RV, and
the dimension of X is 3 m.

X =[AR1,...,AR,,,AL,...,AL,,,AB1,...,AB,,]"
E(X)=0
COV(XZ,X]) if ¢ #]
ij = e (5)
Var(X;) ifi=j.

B. First-Order Model

Although process variations of physical parameters are nor-
mal RVs, the propagation delay of an SFQ gate is not a normal
RV because it is a nonlinear function of process parameters.
The method to deal with the nonnormality of propagation delay
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is to rely on a linear model based on first-order Taylor series
expansion of the nonlinear delay function [9]. The propagation
delay of an SFQ gate becomes a linear combination of two or
more normal RVs. Recall that the summation of two correlated
normal RVs is also a normal RV. The propagation delay is also
modeled as a normal RV. Similarly, clock-to-output delay, setup
time, and hold time are also modeled as normal RVs.

The propagation delay of an SFQ gate is dependent not
only on process variations but also on the context where the
corresponding gate is. Considering gate i in the grid cell j, its
propagation delay pd, is a linear combination of nominal value
nom and process variations AR, AL;, and AB; in (6). pd, can
be further written as a linear combination of X.

pd1 = nom + aRARj + (lLALj + aBABj
= nom + b’ X

aRr lek:ARJ

ay, ikaZALj

ap ika:ABj

0 otherwise.

by (6)

Consequently, delays of signal paths and clock paths, which
are calculated as the summation of the propagation delays of
SFQ gates and PTLs on the corresponding paths, are also written
as a linear combination of X in (7). nom; and each element of
the column vector c; are results of summation or subtraction of
linear combinations for all gates in LP;, DP;, CP;, and Setup,.

SetupCheck; = LP; + DP; — CP; + Setup;,
= nom; + ¢;7 X

T = max SetupCheck;

1<i<N

= 121:2( (nom; + ¢;TX). (7
SSTA based on the first-order model is efficient since the
complexity is linear in the circuit size and number of the process
parameters. The primary source of inaccuracies (errors), of
course, is the approximation of nonlinear delay by a linear
equation. Many recent studies have improved the quality of
SSTA by using more accurate (but also computationally more ex-
pensive) models. References [10] and [11] extend the above-said
first-order model to include quadratic components of the Taylor
series expansion. References [12], [13] assume that propagation
delays follow a skew-normal distribution. These techniques
are, however, greatly increase the computational complexity of
SSTA.

C. Functional Success

Generic SFQ gates like AND, OR, XOR, and NOT are clocked
logic gates. They are in charge of two tasks: compute the com-
binational logic function and generate the corresponding output
in synchrony with a clock pulse. Therefore, process variations
have an impact not only on circuit timing (propagation delay,
setup time, and hold time) but also on logic functionality. Margin
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analysis [14] is a such research field to study functional success.
The functional failure of an SFQ clocked gate can be formalized
as follows.

1) When an input pattern arrives, an SFQ clocked gate gen-

erates an output pulse before the arrival of the clock pulse.

2) If the correct output of an SFQ gate in response to an input

pattern is logic one, the gate does not generate an output
pulse after the arrival of the clock pulse. Alternatively, if
correct output is logic zero, the gate generates an (erro-
neous) output pulse after the arrival of the clock pulse.

If either of the above cases occurs, the SFQ gate has func-
tionally failed. Examples of functional failures are shown in
Section IV.

The functional success (or failure) is a complex, nonlinear
function of process parameters and the context where the SFQ
clocked gate is situated. Equation (8) is provided to express the
functional success of the OR gate in the jth grid cell. We define
FSor,; = 1 when the OR gate works correctly and FSog ; = 0
when it does not. Note that FSog ; is either O or 1 as a function of
process variations only. Logistic classification [ 15] enables us to
use a linear combination to approximate FSog ; as the result of a
classification problem. If the result is nonnegative, FSor ; = 1.
If the result is negative, FSog ; = 0. The kth value of the column
VEClor CoR j is AaR,0R> L,0R> OF 4B OR if X, is ARj, ALj, or
AB;j, and 0 otherwise. The indicator function 1(x) is 1 when
the condition x is true, and O otherwise.

FSOR)J‘ = 1(nom0R + aR,ORARj
+ aL7ORALj + CLB7ORAB]‘ 2 O)

= 1([101’1’10R + COR’jTX 2 O) (8)

The clock period of an SFQ circuit is valid only when the
circuit works, which is equivalent to all gates functioning cor-
rectly. Instead of checking the functional success of all SFQ gate
instances one at a time, we can only check the functional success
of a small number of gate instances. All OR gates in the same grid
cell share the same process variations, such that they succeed or
fail simultaneously. The problem thus reduces to only check the
functionality of all gate types in all grid cells in (9). If a gate
type k in grid cell j can work, then nomy + ckJTX must be
nonnegative. If a circuit can work, then all gate types in all grid
cells must have nonnegative results. To simplify the following
discussions and proofs, let us define S as the minimum of all
nomy, + Ck,jTX.. As shown in (9), if S is nonnegative, then the
circuit can work.

FScircuit = l(nomk + Ck7_jTX = 0)

[1

gate type k in grid cell j
= 1(nomk + Ck}jTX > 07V]€,])

= 1(11}€1in(nomk + Ck’jTX) >0)

=1(S>0)
S = min(nomy, + ¢y ;7 X) ©)

k.j
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D. Goal

Based on above discussions, 7"is a RV conditioned on the fact
that the SFQ circuit is working correctly. The cumulative density
function (CDF) of T' can be formed as in (10) by applying the
Bayes’ theorem

P(T < t7FScircuit = 1)
P(Fscircuit = 1)

P(T g t|FScircuit = 1) =

_ P(T'<t,820) (10)
P(S >0)
The corresponding PDF of T is
f(r=t5>0)
T = t|FScircuit = 1) = 11

The goal of SSTA is to find the PDF efficiently and accurately.

IV. STATISTICAL STATIC TIMING ANALYSIS
A. Principal Component Analysis

Because two RVs X; and X are in general correlated, the
operations performed on them (e.g., the maximum operation)
can be complicated. Therefore, it is difficult to find the PDFs of
T and S. The problem can be simplified by applying principal
component analysis (PCA) [16]. PCA is a statistical procedure
that uses an orthogonal linear transformation to project cor-
related normal RVs into independent normal RVs. X can be
transformed into a multivariate standard normal random vector
Z as shown in (12)

Z=1(Z,...,%m"

Vi 0 ... 0
|0 Viz 0

0 ... 0 V%m

X=A-D-Z+u=A-D- Z (12)

The ith column of matrix A is the ith eigenvector correspond-
ing to the ith eigenvalue A; of the covariance matrix 3. In this
article, the mean value vector u of X isu = E(X) = 0. As a
result, each RV X is a linear combination of at most 3 m mutu-
ally independent standard normal distributions. Consequently,
T and S can be rewritten as a function of Z in (13).

T = max (nom; + ¢;7 X) = max (nom; + p;* Z)

1<i< 1<i<

S = rili_n(nomk + ek’ X) = rilin(nomk +pr;i’Z). (13)
J J

The expression after applying PCA has some desirable prop-

erties [9]. For any SetupCheck,, the mean is the nominal value

nom;, and the variance is the squared sum of coefficients. The
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covariance between SetupCheck; and Z; is the coefficient p; ;.
SetupCheck, = nom; +p; 121 + - - - + Pi 3mZ3m
E(SetupCheck;) = nom;

3m
Var(SetupCheck; ) = Z p, =0}
=1

Cov(SetupCheck;, Z;) = p;
Cor(SetupCheck;, Z;) = p; /0. (14)

Further, considering another SetupCheck; (i # j), it is also
easy to get the covariance and correlation between SetupCheck;
and SetupCheck;;.

SetupCheck; = nom; + p; 121 + - - - + Di.3mZ3m

SetupCheck; = nom; +p; 121 + - - 4 pj 3m Z3m

3m
Cov(SetupCheck;, SetupCheck;) = Z DiiDj,l
1=1

3m
Cor(SetupCheck;, SetupCheck ;) = LiziPutlil (g5
0;0;

B. Approximation of MAX Operation

Although the maximum of two normal RVs is not a nor-
mal RV, Clark[17] provides a way to approximate it into a
normal RV. Considering two normal RVs a ~ N (j,,02) and
b ~ N(up, o) with a correlation p,, = Cor(a,b), the mean
fig and the variance o7 of g = max(a,b) can be approximated
by the followings:

tg = paFz(B) + Fz(=B) + afz(B)
o0 = (s + 02)Fz(B) + (4 + 03) Fz(=)

+ (tta + ) fz(8) = g (16)
where
a= \/02 + 02 — 20400pap
B = (ta — )/
1 2
o) = oo (-5
x 1 LC2
Fy(x) = [m Eexp <—2> dx. (17)

F; and f; are the cumulative and PDF of a standard normal
distribution. Further, considering another normal RV d with
pa,a = Cor(a,d) and py g = Cor(b,d), the correlation py 4 =
Cor(g,d) between g and d can be obtained by

0apa,dlFz(B) + ovpp,al’z(—f) .

Og

Py = (18)

Therefore, the normal approximation of two normal RV en-
ables us to represent g = max(SetupCheck;, SetupCheck; ) as a
linear model. SetupCheck; and SetupCheck ; can be represented
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as follows:
SetupCheck; = nom; + piTZ
SetupCheck,; = nom; + pJ-TZ. (19)

Derived from (14) and (15), their variance and covari-
ance can shown in (20) such that we can compute o =

V(i — p;)T(pi — p;) in (17)

3m
2 2 T
03 = E Piy = Pi Pi
=1

3m
2 _ 2 _ T
05 = E P = Pj Pj
=1

3m

0i0jpPi,j = Zpi,lpj,l = piij-
=1

(20)

Because Z is a standard normal vector, we have (21) such that
we can compute 3 in (17)

w; = E(SetupCheck;) = nom;

pj = E(SetupCheck;) = nom. (2D

The computation of 4, and 03 in (16) is straightforward. If we

consider the /th element Z; of Z, (22) rewrites the covariance of
SetupCheck; and Z;, and the covariance of SetupCheck ; and Z;
in (14)
Cov(SetupCheck;, Z;) = p;,
Cov(SetupCheck;, Z;) = pji. (22)

If we also define the covariance of g and Z; as p, ;, following
(18), we can write (23). Note that the variance of the standard
normal distribution Z; is 1.

Py = pial'z(B) + pjiFz(—p)

Pg = Pil'z(B) + piFz(—f). (23)
Consequently, we can represent 7" as a linear model
T= +pi’ Z
ax (nom; + p;" Z)
=nomy + pr1Z1 + -+ PT.3m L3m- (24)

An algorithm to compute the normal approximation of 7" ~
N(ur,0%) is presented below (this is similar to the algorithm
first presented in [9]). Line 22 is used to eliminate the mismatch
between ag and s2. Similarly, this algorithm is also able to com-
pute the normal approximation of S ~ N(ug,0%) since S =
min;w»(nomk + pk7jTZ) = — max;w»(—nomk - pk7jTZ).

C. Path Pruning

The optimum clock period T is the maximum of all
SetupCheck;. Although we can compute the normal ap-
proximation of 7, the path-based SSTA has to traverse all
paths, which is not required in reality. Considering two
paths with RVs SetupCheck, and SetupCheck ., to guarantee
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Algorithm 1: Approximate T’ =max;<;<n (nom; +p;’ Z).

1: nomr = noms

2. pr=p1
3: forj=2,...,Ndo
4 a=/(pr—p;))"(pT —Pj)
5: lhq = nomrp
6:  pp = nom;
7 if @ = 0 then
8: if 10, > pp then
9: continue
10: else
11: nomr = nom;
12: PT = Pj
13: end if
14: else
15: o2 =prlpr
16: Ug = pijj
17: B = (pta — )/
18: Pg = PrFz(8) + piFz(—p)
19: tg = taFz(B) + poFz(—B) + afz(B)
20: o= (p2+0D)Fz(B) + (i + o) Fz(—B) +
(Ha + o) fz(B) — 1
21: s? = pg’ pg
22: PT = Pg * \/02/5?
23: nomy = fig
24: end if
25: end for

26:  pp = nomrp
27: o7 =pt’pr

that SetupCheck, > SetupCheck; holds under process varia-
tions, we simply enforce equation (25), thereby, eliminating
SetupCheckj [18].

SetupCheck; = max(SetupCheck;, SetupCheck;). ~ (25)

Another interpretation of (25) is that it checks whether
the inequality (26) is true or not. If it is true, we can de-
duce that SetupCheck; > SetupCheck; and can be confident
to drop SetupCheck ;. However, checking this inequality is not
trivial

min(SetupCheck; — SetupCheck;) > 0. (26)

1) Basic  Technique: Following the definition of
SetupCheck; in Section II, the straightforward and most
pessimistic lower bound of inequality (26) is inequality (27).
Once the right-hand-side (RHS) value becomes nonnegative,
we can guarantee that the left-hand-side (LHS) value is also
nonnegative, and therefore, SetupCheck; can be safely dropped
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from consideration.
min(SetupCheck; — SetupCheck;;)

= min((LP; — CP; + DP; + Setup,)
— (LP; — CP; + DP; + Setup;))
> min(LP;) — max(CP;)
— max(LP;) 4+ min(CP;)
+ min(DP;) — max(DP;)

+ min(Setup;) — max(Setup,). 27

Notice that min(LP;) is the sum of the minimum propagation
delays of all SFQ gates in path LP;. Moreover, the minimum
propagation delay of an SFQ gate can be found under specified
process variations (this observation is widely used in STA).
Other components in inequality (27) are calculated in the same
way.

2) Uni-Data-Path Common Path Pessimism Removal
(CPPR) Technique: The difference between LHS and
RHS values determines how many noncritical paths are
pessimistically included. The launch and capture paths are two
clock paths feeding the clock to different clocked SFQ gates on
a signal path of interest. Due to the limited fan-out capability
of SFQ gates, a splitter-based clock tree is used. A path from
the clock source to a clocked SFQ gate is a clock path in this
tree. Therefore, any two clock paths certainly have a common
path between them. To reduce the difference, a common path
pruning approach is typically used to remove the common path
between the launch path and the capture path related to a single
signal path.

min(SetupCheck; — SetupCheck;;)
> min(LP; — CP;)
— max(LP; — CPy)
+ min(DP;) — max(DP;)

+ min(Setup,) — max(Setup;). (28)

The technique is called CPPR [19]. Because it only involves
one data path and associated clock paths, we will call it uni-data-
path CPPR or UDP-CPPR. Note that UDP-CPPR is a highly
popular technique used in commercial STA tools in order to
make worst-case timing estimates less pessimistic. However,
the UDP-CPPR is not widely used in SSTA. The reason is that
the number of paths in a CMOS circuit is in the worst-case
exponential in the number of CMOS gates in the circuit. Con-
sequently, the block-based SSTA, which does not rely on the
estimation of paths, has emerged as the dominant strategy for
CMOS circuits,. As we discussed earlier, path-based SSTA is
more suitable and quite practical for SFQ circuits. We thus adapt
basic and UDP-CPPR techniques to prune noncritical paths in
SFQ circuits.

3) Multi-Data-Path CPPR: The computation of
min(SetupCheck; — SetupCheck;) involves two data paths
and four clock paths. Following the idea to remove common
paths from consideration before doing the computations, we can

1301612
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Fig. 2.  Model of UDP-CPPR and MDP-CPPR.

further reduce pessimism by removing common paths between
LP; and LP; and between CP; and CP; as shown as follows:

min(SetupCheck; — SetupCheck;)
2 mlH((LPl — CP,L) — (LPJ — CPJ))
+ min(DP;) — max(DP;)

+ min(Setup,) — max(Setup,) (29)

A new algorithm to prune noncritical paths, which we call
multidata-path CPPR or MDP-CPPR for short, is thus pre-
sented. MDP-CPPR needs to compare a pair of data paths.
An intuitive way is to compare all pairs to prune noncritical
paths, which is in fact unnecessary. A path M with the largest
SetupCheck_Max among all SetupCheck; must exist after path
pruning since it determines the worst value of the clock period.
Instead of comparing all paths with the path M, we only apply
MDP-CPPR on those paths which survive after application
of UDP-CPPR (SetupCheck_Min < max(SetupCheck;)). By
comparing min(SetupCheck,, — SetupCheck;), we can prune
all noncritical paths. The complexity of the path pruning algo-
rithm is the same as that of running STA twice. In conclusion,
the model-free path pruning approach is efficient and accurate.
We can find the normal approximation of 7'by examining a small
number of paths.

Fig. 2 the model of this new and more powerful pruning tech-
nique. Equation (28) of UDP-CPPR can remove the common
segment A from LP; and CP; and from LP; and CP;. Equation
(29) of MDP-CPPR can further remove the common segment
A and B from LP; and LP; and the common segment A and C
from CP; and CP;. Note that a segment could include zero or
more nets and splitters.
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Algorithm 2: Prune Non-Critical Paths.
1: SetupCheck_Maxr = —c0

SetupCheck_Min = +o0o

3: M=0

4: fori=1,...,N do

5:  a=max(LP;, — CF)

6:  b=max(DPF;) + max(Setup;)

7.

8

»

¢=min(LP; — CF))
: d=min(DP;) + min(Setup;)
9:  max(SetupCheck;) = a+b
10:  min(SetupCheck;) = c+d
11:  if SetupCheck_Max < max(SetupCheck;) then

12: SetupCheck_Max = max(SetupCheck;)
13: SetupCheck_Min = min(SetupCheck;)
14: M =1

15: end if

16: end for

17: Initialize the set ¢ = {M}
18: fori=1,...,Ndo
19: if SetupCheck_Min < max(SetupCheck;) then

20: a = min((LPM - CPAI) - (L.PZ - CPZ))

21: b= min(DPy;) — max(DF;)

22: ¢ = min(Setupys) — max(Setup;)

23: min(SetupCheckys — SetupCheck;) =
a+b+c

24: if min(SetupChecky — SetupCheck;) < 0
then

25: add i into ¢

26: end if

27: end if

28: end for

D. Probability Density Function

With the normal approximation of 7 and S, the conditional
PDF of T can be derived. T and § are correlated since they are
both affected by process variations. The correlation pr s can be
computed in (15). The joint PDF fr s(t,s) of two correlated
normal distribution 7" and § is a well-known concept [20]

2(1 - PQT,S)
1 t— —
_ K 2 = S Ms. (30)

, 2T = )
2rorog, /1 — p2T g ar gs

Therefore, we can compute f(T =t,S > 0) by integrating
fT,S(t, S).

2 2 2
Jr.s(t,s) =h-exp (— Ttz pT’SZTZS>

h =

—“+00

frs(t,s)ds
0

:h.exp(fé) X /+Ooexp 7w ds.
2 0 2(1 —PQT,S)
(€29)

By converting 7 and § into standard normal RVs, we can
simplify the representation in (32) so that f(7 =1¢,S > 0) is

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 7, OCTOBER 2020

TABLE I
CORRELATION MATRIX W

Grid 1 | Grid2 | Grid 3 | Grid 4
Grid 1 1 0.75 0.75 0.5
Grid 2 0.75 1 0.5 0.75
Grid 3 0.75 0.5 1 0.75
Grid 4 0.5 0.75 0.75 1

purely a function of ¢

fT=1,520=2f, (”‘T) (1 Fy(w)

orT

1 t—
w=——— (’“‘S + pT,s“T) . (32)
V1= prs N8 or
Similarly, we can compute P(.S > 0).
P(S>0)=1—FZ(U),1}=—’;—§. 33)

In conclusion, we can compute the PDF of clock period T as
follows:

T:t,S>0
f(T = t|FScircuit = 1) = f(ID(S>O))
B 1 t*/JIT 1*FZ(U)
( or )1—Fz<v>'
(34)

V. EXPERIMENTAL RESULTS

We used the SFQ gates developed by Stellenbosch Univer-
sity [21]. SFQ gates are wrapped with a receiver for each input
and a transmitter for each output and connected by PTLs. Refer-
ences [22] and [23] describe key aspects, and an analysis of the
process control monitor (PCM) data for the 350-nm fabrication
process SFQ5ee developed at MIT Lincoln Laboratory (MIT
LL).

Based on the available PCM data for the SFQ5ee fabrication
process, wesetor = 1%, 0, = 8%, and o = 3% and consider
R, L, and B to be mutually independent RVs. To represent spatial
correlations ¥ for R, L, and B, respectively, we follow the grid-
based model shown in [8] and divide the die area into four equal-
size grid cells (with two rows and two columns) as shown in
Table I. The ratio p of the local variance to the total variance is
set to 0.3 based on data presented in [24].

The covariance matrix for R, L, and B, respectively, can be
easily derived as follows:

Yp=(pV+1-pos
Y= (pV+1-p)ot
Sp =¥ +1-pok

Yr 0 0
X=]10 X O (35)
0 0 XB

The proposed qSSTA is implemented in Python3 and tested
on a desktop computer with Intel(R) Core(TM) i7-8700 CPU @
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Density

-4 -2 0 2
MC on LUT - MC on WRSpice (ps)

Fig. 3. Histogram of difference between MC on LUTs and MC on WRSpice.

TABLE II
MC COMPARISON ON LUTS AND WRSPICE

Mean Std 98.%
point

MC on LUTS (ps) 25.61 1.68 | 29.45
MC on WRSpice (ps) | 26.76 1.81 30.90
Absolute Error (ps) -1.15 | -0.13 | -1.45
Relative Error (%) -4.30 | -7.18 | -4.69

TABLE III
REAMAINING PATHS AFTER PATH PRUNING

Circuits # Paths | Basic | UDP-CPPR | MDP-CPPR
MULT4 238 238 238 238
D4 538 538 538 538
KSAI6 568 568 568 568
C499 388 388 666 664
CI355 944 944 856 854
C432 1199 1199 974 970
MULTS8 1350 1350 1350 1350
KSA32 1435 1435 1077 1065
C1908 1634 1634 1634 1633
D8 3184 3184 777 718
C3540 3703 9 12 12
12C Control” 4740 3083 1555 1421
C7552° 5352 5352 2343 2243
MULT16" 6166 6166 2713 2671
Barrel Shifter 6620 1926 1055 965
C6288" 7154 7154 3140 3092
Priority Encoder” | 13495 3533 602 560
OC Datetime” 16603 684 485 391
D167 19136 | 18898 1314 1209
Sine” 27232 457 266 229
ALU64" 29106 306 223 128

*These circuits are routed by Cadence Innovus™.

3.20 GHz. The SFQ tool suite [25]-[27] provides a collection of
postrouting SFQ circuits, such as the Kogge-Stone adder (KSA),
multiplier (MULT), integer divider (ID), some ISCAS bench-
mark circuits, and a few of the EPFL benchmark circuits [28].

A. Monte Carlo Simulation

To verify the efficiency of our tool and the quality of our
timing results, we used the Monte Carlo (MC) simulation to set
the gold standard for comparison. However, Spice simulation
for an SFQ circuit through JSIM [29] or WRSpice [30] is time-
consuming. To manage the runtime, we extracted the timing
characteristics [31], [32](e.g., functional success, propagation
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TABLE IV
SSTA OF CIRCUITS
| #of [ qSTA Monte-Carlo (MC) qSSTA |gSSTA-MC| [aSSTAMCT 109 %
Cireuits | Gates | (ps) 98% | Run 98% | Run 98% -
Mean Std . . Mean Std . . Mean Std . 98%
(ps) (ps) Point time (s) (ps) Point time (ps) (ps) Point | Mean Std Point
(ps) (s) (ps) (s) (ps)
KSA1l6 1,212 107.1 51.19 1.86 55.98 5.17 51.76 1.66 55.57 0.95 0.57 0.20 0.41 1.11 10.75 0.73
KSA32 3,738 144.7 97.43 0.75 99.3 15.38 97.67 0.81 99.56 2.22 0.24 0.06 0.26 0.25 8.00 0.26
MULT4 526 994 47.78 2.32 53.28 2.13 48.32 2.20 53.23 0.39 0.54 0.12 0.05 1.13 5.17 0.09
MULTS | 3,454 131.4 62.94 1.71 67.15 13.58 63.32 1.59 66.90 2.18 0.38 0.12 0.25 0.60 7.02 0.37
1D4 1,081 117.9 57.35 2.06 62.5 4.53 58.33 1.91 62.92 0.91 0.98 0.15 0.42 1.71 7.28 0.67
ID8 7,337 | 217.9 141.82 | 3.33 149.55 | 28.04 | 14233 | 2.96 148.55 | 5.02 0.51 0.37 1.00 0.36 11.11 0.67
C432 2,283 138.1 74.84 2.61 81.21 10.11 75.72 2.68 82.16 1.89 0.88 0.07 0.95 1.18 2.68 1.17
C499 2,088 184.8 107.44 | 3.89 116.96 9.36 108.56 | 3.65 116.87 1.47 1.12 0.24 0.09 1.04 6.17 0.08
C1355 2,143 164.9 88.90 3.30 96.92 9.76 89.82 3.73 98.28 1.51 0.92 0.43 1.36 1.03 13.03 1.40
C1908 3,801 169.1 100.80 | 2.14 | 106.39 16.80 | 101.53 | 2.24 | 106.78 | 2.58 0.73 0.10 0.39 0.72 4.67 0.37
C3540 7,960 | 511.2 | 409.14 | 6.98 | 426.48 | 40.20 411.9 7.86 | 430.19 | 5.56 2.76 0.88 3.71 0.67 12.61 0.87

delays, setup time, and hold time) of all SFQ gates as a function
of R, L, and B and stored them in 3-D LUTs.

The next thing is to verify the reliability of LUTs. We spent
almost ten days finding the minimum workable clock period of
an 2-b multiplier (MULT?2) with 44 gates for 4000 random sam-
ples of physical parameters by using WRSpice on a computer
with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz. Fig. 3
shows the histogram of difference between MC on LUTs and
MC on WRSpice. Most difference lies in the range [—4, 2].

Table II shows the statistical analysis, where std stands for
standard deviation. Absolute error and relative error are defined
as (LUTs — WRSpice) and (LUTs — WRSpice) /WRSpice for
mean, standard deviation, and the 98% point. The Monte Carlo
results on LUTs are close to those on WRSpice and thus reliable
for large-scale circuits. Subsequently, instead of using spice-
simulation, we could rely on gate-level Monte Carlo simulation
utilizing the said LUTs. qSSTA further extract coefficients of
the linear models through those LUTs.

B. Path Pruning

Path pruning results are reported in Table III, where the
number of pruned paths varies from one circuit to next. Two
design steps that greatly affect the efficacy of the path pruning
techniques are logic synthesis and clock tree synthesis.

Logic synthesis determines how many splitters are placed on
a signal path. In the inequality (29), min(DP;) — max(DP,) is
also a factor, affecting whether we can prune a path. However,
some SFQ clocked gates need to drive a lot of sink gates,
especially in a large-scale circuit. Due the fan-out limitation of
SFQ gates (limit is just one), a splitter tree is needed such that a
signal path (say DP;) may include many splitters. Evidently,
there also exist many signal paths (say DP;) that generally
include zero or only one splitter. Subsequently, min(DP;) can be
much larger than max(DP;), in which case the remaining terms
in (29) become negligible. Note also that signal paths, which are
not in the above splitter tree, are not critical for determining the
clock period (this is the case for example in circuit C3540). A
lot of paths can be pruned by just using the basic path pruning.

Clock tree synthesis determines the common path that two
clock paths share. If the clock tree of a circuit is well designed,
meaning that two clock paths share as much as possible, we

can prune a lot of paths by applying UDP-CPPR and MDP-
CPPR (like the circuit ID8). When a circuit only has signal paths
with small delays, and the clock tree is not well designed, we
cannot prune any path (this is the case for example in circuit
C1908). Since path pruning is an efficient algorithm, we can
always implement it and try to reduce the number of paths for
further timing analysis.

When SFQ circuitsare small, the clock trees are also small
so that no paths can be pruned. With the increase in the size of
SFQ circuits, the common path (between the launch path and
the capture path) for a data path becomes important. We can
thus prune many noncritical paths by applying the UDP-CPPR
technique. When a circuit becomes very large, the common paths
involved with two data paths also become prominent, and we
can prune more noncritical paths by applying the MDP-CPPR
technique on any survived paths after the application of the UDP-
CPPR technique. For example, the remaining path count of the
64 b ALU after the MDP-CPPR technique is 42.6% lower than
when the UDP-CPPR technique alone is used. For circuits with
more than 10000 paths, the MDP-CPPR technique results in an
average of 18.2% fewer remaining paths compared to the path
count when using the UDP-CPPR technique.

C. SSTA

The CDFs of MC simulation and qSSTA for KSA32, MULTS,
IDS, and C3540 are shown in Fig. 4. The SSTA results (in dashed
line) are close to the MC results (in solid line).

Detailed results of SFQ circuits are given in Table IV. The
98% point is the value of ¢ such that P(T' < t) = 0.98 and is a
safe upper bound for the clock period. On average, the obtained
percentage errors are 0.89% for the mean values, 8.04% for the
standard deviation, and 0.61% for the 98% point. The error of
the standard deviation is acceptable since the largest percentage
error is 13.0%. Moreover, the absolute difference of the standard
deviation is at most 0.88 ps and on average 0.25 ps.

Experimental results in Section V-A show the reliability of
LUTSs because Monte-Carlo results done using WRSpice and
Monte-Carlo results generated with LUTs are quite close. In
conclusion, the SSTA results (which are generated much more
efficiently than MC simulation results using WRSpice) are in
fact very accurate when compared to the MC simulation results
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using WRSpice (with one level of indirection through use of
LUTs).

The linear model is the main reason why the performance of
the standard deviation is worse than the mean value and the 98%
point. The second-order components of Taylor series expansion
contain more information about standard deviation, which are
not included in the linear model. However, it is quite difficult
to solve for the conditional RV of the clock period based on the
quadratic model. It can be seen that compared to the 98% point of
SSTA result, the included STA results [31] are very pessimistic.
The runtime column shows the efficiency of qSSTA.

VI. CONCLUSION

This article presented an efficient SSTA tool, gSSTA, for SFQ
circuits. The correlation model is introduced to represent the
intra/inter-die spatial correlations of physical parameters like
resistance, inductance, and the area of Josephson junction. Al-
though timing parameters like clock period are nonlinear func-
tions of physical parameters, we could focus on the linear model
based on the first-order Taylor expansion. The PCA enables us to
map correlated normal distributions into uncorrelated standard
normal distributions. Therefore, we can further approximate the
distribution of the clock period into a normal distribution through
Clark theorem.

Due to the clocked nature of SFQ gates, process variations
affect not only timing but also logic function. The distribution
of the clock period is valid only when a circuit can work so that
it is a conditional RV. With some simplifications, we can achieve
the close form of the PDF of the clock period.

Experimental results demonstrate the efficiency and quality of
gSSTA. The average percentage errors are 0.89% for the mean
values, 8.04% for the standard deviation, and 0.61% for the
98-percentile point, whereas the runtime of qSSTA is 83% faster
on average than Monte-Carlo simulations on LUTs. Further
research may include the quadratic model to reduce the error
of standard deviation.
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